The Handy Board Technical Reference

Fred G. Martiri
November 15, 2000

r————r——

P =0

\2A START® STOP

The Handy Board is a hand-held, battery-powered microcontroller board ideal for personal and
educational robotics projects. Based on the Motorola 68HC11 microprocessor, the Handy Board
includes 32K of battery-backed static RAM, outputs for four DC motors, inputs for a variety of
sensors, and a & character LCD screen. The Handy Board runs Interactive C, a cross-platform,
multi-tasking version of the C programming language.

The Handy Board is distributed under MIT’s free licensing policy, in which the design may be
licensed for for personal, educational, or commercial use with no charge.

*1595 Main Street, Concord MA 01742. E-mailr edm@l um m t . edu. This document is Copyright) 4991
2000 by Fred G. Martin. It may be distributed freely in verbatim form provided that no fee is collected for its distribution
(other than reasonable reproduction and mailing costs) and this copyright notice is included. An electronic version of
this document and the freely distributable software described herein are available from the Handy Board home page at
http://handyboard. coni.

Contents

1 Specifications 1
2 Ports and Connectors 2
3 Quick Start 4
4 6811 Downloaders 5
4.1 OVEIVIEW. o o i e e 5
4.2 Putting the Handy Board into Bootstrap DownloadMade 5
4.3 MS-DOS. e 6
4.4 Windows 3.1 and Windows95. 6
45 Macintosh. 6
4.6 UNIX o 6

5 Interactive C 7
51 UsingIC. 7
51.1 ICCommands e 8

5.1.2 LineEditing. 8

5.1.3 TheMainFunction. 8

52 AQuickCTutorial 9
5.3 Data Types, Operations, and Expressions 10
5.3.1 \VariableNames. 10

532 DataTypes 11

5.3.3 Localand Global Variables 11

534 Constants. 12

535 Operators. 12

5.3.6 Assignment Operators and Expressions. 13

5.3.7 Incrementand Decrement Operators. 14

5.3.8 Precedence and Order of Evaluation. 14

54 ControlFlow. e 15
54.1 StatementsandBlocks 15

542 |If-Else. e 15

543 While 15

544 FoOr. e 15

545 Break 16

55 LCDScreenPrinting 16
55.1 PrintingExamples oo 16

5.5.2 FormattingCommand Summary 17

55.3 SpecialNotes. L 17

5.6 Arraysand Pointers. 17
5.6.1 Declaring and Initializing Arrays.o 18

5.6.2 Passing Arraysas Arguments. 18

5.6.3 Declaring PointerVariables 19

5.6.4 Passing Pointersas Arguments. 19

5.7 Library Functions. 20
57.1 OutputControl 20
5.7.2 Sensorinput 21
573 TimeCommands. 23
574 ToneFunctions. e 24

58 Multi-Tasking 24
581 OVerview 24
5.8.2 CreatingNewProcesses 25
5.8.3 DestroyingProcesses 26
5.8.4 Process ManagementCommands 26
5.8.5 Process Management Library Functions. 26

5.9 Floating PointFunctions 27

5.10 Memory Access Functions.o 27

5.11 ErrorHandling 28
5.11.1 Compile-Time Errors. 28
5.11.2 Run-TimeErrors. 28

5.12 Binary Programs L 29
5.12.1 The Binary SourceFileo oL 29
5.12.2 Interrupt-Driven Binary Programs. 31
5.12.3 The Binary ObjectFile. 35
5.12.4 LoadinganICBFile 35
5.12.5 Passing Array Pointersto a Binary Program. 35

5.13 IC File Formats and Management. 36
5.13.1 CPrograms. e e e 36
5.13.2 ListFiles 36
5.13.3 File and Function Management. 36

5.14 Configuring IC. 37

Sensors and Motors 38

6.1 Connector Wiring Technique. L. 38
6.1.1 WireType. e 38
6.1.2 Strippingand TinningWireEnds 39
6.1.3 Installing Heat Shrink Tubing 39
6.1.4 SolderingtoMaleHeader L. 40
6.1.5 Shrinkingthe Tubing. L o 41

6.2 MOtOIS. e 42

6.3 SENSOIS e 42
6.3.1 Basic SensorConnector. Lo o 42
6.3.2 SwitchSensor 43
6.3.3 PhotocellSensor. 43
6.3.4 Infrared Reflectance Sensor. 44

7 Battery Maintenance
7.1 BatteryCharging
7.2 Adapter Specifications

8 Part Listing

9 Schematic Drawings
9.1 CPUandMemory.
9.2 MotorOutputs.
9.3 Digital Inputs
9.4 AnalogInputs.
9.5 Infrared TransSmIsSION o
9.6 PowerSupply.
9.7 InfraredReception
9.8 Serial Interface and Battery Charger L.

10 Printed Circuit Board Layouts
10.1 Handy Board ComponentSide
10.2 Handy Board Solder Side
10.3 Handy Board Silkscreen.
10.4 Interface/Charger Board ComponentSide
10.5 Interface/Charger Board SolderSide
10.6 Interface/Charger Board Silkscreen.

11 Pin-Out Detail

12 Frequently Asked Questions
12.1 Hardware
12.1.1 MotorVoltage.
12.1.2 Digital Outputs
12.1.3 High AdapterVoltage
12.2 Software.
12.2.1 ICBFiles
12.2.2 PowerGlitch

13 Vendors
14 Handy Board Community

15 Licensing

46
46
46

47

48
48
49
50
50
51
51
52
52

53
53
54
55
56
56
57

58

61

62

62

62

1 Specifications

The Handy Board features:

52—pin Motorola 6811 microprocessor with system clock at 2 MHz.

32K of battery-backed CMOS static RAM.

Two L293D chips capable of driving four DC motors.

16 x 2 character LCD screen.

Two user-programmable buttons, one knob, and piezo beeper.

Powered header inputs for 7 analog sensors and 9 digital sensors.

Internal 9.6v nicad battery with built-in recharging circuit.

Hardware 38 kHz oscillator and drive transistor for IR output and on-board 38 kHz IR receiver.
8-pin powered connector to 6811 SPI circuit (1 Mbaud serial peripheral interface).

Expansion bus with chip selects allows easy expansion using inexpensive digital /O latches.

Board size of 4.25< 3.15 inches, designed for a commercial, high grade plastic enclosure which
holds battery pack beneath the board.

2 Ports and Connectors

(18) piezo
béeper

OFF
(2\,5"?(‘:"’” (17) LCD screen
ON (16) SPI
expansion
Bommenior” headler

(15) charge I 14) batter
3) 4 DC indicator | tr(lck?e charge
motor outputs (19) power Q - connector
. OIand expansion
E ﬁeaﬁier
indicators (13) user
- [knob
_ | I—
OO (12 el
expansion
ey ‘0?‘_ — P pansic
B tent (5) “Stop”) :
utton 0
Buiton’ 9 q(| ital 7 analog (11)
(6) low battery |nputs inputs IsReIr?sloourt
indicator 10)
(7) power/ready IRtht ut
indicator indicator

Figure 1: Labeled Handy Board Diagram

Figure 1, above, shows a labeled view of the Handy Board’s ports, connectors, inputs, and outputs. In
the following, each of these is briefly described.

1. Power Switch. The power switch is used to turn the Handy Board on and off. The Handy Board
retains the contents of its memory even when the board is switched off.

2. Computer Connector. Viathis RJ11 connector, the Handy Board attaches to a desktop computer
(using the separate Interface/Charger Board).

3. 4 DC Motor Outputs and Indicators. The Handy Board’s four motor outputs are located at
this single 12—pin connector. Each motor output consists of three pins; the motor connects to
the outer two pins and the center pin is not used. Red and green LEDs indicate motor direction.
From top to bottom, the motor outputs are numbered O to 3.

4. Start Button. The Start button is used to control the execution of Interactive C programs. Also,
its state may be read under user program control.

2

5. Stop Button. The Stop button is used to put the Handy Board into a special bootstrap download
mode. Also, its state may be read under user program control.

6. Low Battery Indicator. The red Low Battery LED lights when for a brief interval each time the
Handy Board is switched on. If this LED is on steadily, it indicates that the battery is low and
that the CPU is halted.

7. Power/Ready Indicator. The green Power/Ready LED lights when the Handy Board is in normal
operation, and flashes when the Handy Board is transmitting serial data. If the board is powered
on and this LED is off, then the Handy Board is in special bootstrap mode.

8. 9 Digital Inputs. The bank of digital input ports is here. From right to left, the digital inputs are
numbered 7 to 15.

9. 7 Analog Inputs. The bank of analog input ports is here. From right to left, the analog inputs are
numbered O to 6.

10. IR Output and Indicator. The infrared output port is here. The red indicator LED lights when
the output is enabled.

11. IR Input Sensor. The dark green-colored infrared sensor is here.

12. Analog Expansion Header. The analog expansion header is a4lconnector row located
above analog inputs O to 3.

13. User Knob. The user knob is a trimmer potentiometer whose value can be read under user
program control.

14. Battery Trickle-Charge Connector. The battery charge connector is a coaxial power jack to
accept a 12 volt signal for trickle-charging the Handy Board’s internal battery.

15. Charge Indicator. The yellow charge indicator LED lights when the Handy Board is charging
via the coaxial power jack.

16. SPI Expansion Header. The SPI expansion header is a4 pin jack that allows connection
with the 6811'sserial peripheral interface circuit. See the CPU and memory schematic diagram
for a pin-out of this connector.

17. LCD Screen. The Handy Board is provided with a ¥@ LCD screen which can display data
under user control.

18. Piezo Beeper. The Handy Board has a simple piezo beeper for generating tones under user
control.

19. Power Expansion Header. The power expansion header is:adlpin jack that provides access
to the unregulated motor power and ground signals.

3 Quick Start
Here are the steps to getting started with the Handy Board and Interactive C:

1. Connectthe Handy Board to the serial port of the host computer, using the separate Serial Interface
board. The Serial Interface board connects to the host computer using a standard modem cable;
the Handy Board connects to the Serial Interface using a standard 4—wire telephone cable.

2. Put the Handy Board into bootstrap download mode, by holding downTbe &itton while
turning on system power. The pair of LED’s by the two push buttons should light up, and then
turn off. When power is on and both of the LED’s are off, the Handy Board is in download mode.

3. Runthe appropriate downloader for the host computer platform, and downloadpleetile hb. s19.

4. Turn the Handy Board off and then on, and the Interactive C welcome message should appear
on the Handy Board’s LCD screen.

5. Run Interactive C.

4 6811 Downloaders

There are two primary components to the Interactive C software system:

e The6811 downloader program, which is used to load the runtime 6811 operating program on the
Handy Board. There are a number of different 6811 downloaders for each computer platform.

¢ Thelnteractive C application, which is used to compile and download IC programs to the Handy
Board.

This software is available for a variety of computer platforms/operating systems, including MS-
DOS, Windows 3.1/Windows 95, Macintosh, and Unix. The remainder of this section explains the
choices in the 6811 downloaders.

4.1 Overview

The 6811 downloaders are general purpose applications for downloading a Motorola hex file (also
called an S19 record) into the Handy Board’s memory. Each line hex file contains ASCII-encoded
binary data indicating what data is to be loaded where into the Handy Board’s memory.

For use with Interactive C, the program nameddde_hb. s19” must be present in the Handy
Board. The task of the downloaders, then, is simply to initialize the Handy Board’s memory with the
contents of this file.

An additional purpose of the downloaders is to program the 6811's “CONFIG” register. The
CONFIG register determines the nature of the 6811 memory map. For use with Interactive C, the
CONFIG register must be set to the valuedc, which allows the 6811 to access the Handy Board'’s
32K static RAM memory in its entirety. Some downloaders automatically program the CONFIG
register; others require a special procedure to do so. Please note that programming of the CONFIG
registeronly needs to be done once to factory-fresh 6811’s. It is then set in firmware until deliberately
reprogrammed to a different value.

Another consideration related to downloaders is the type of 6811 in use. The Handy Board can use
both the “A” and “E” series of 6811. These two chip varieties are quite similar, but not all downloaders
support the E series’ bootstrap sequence. (The E series chips have more flexibility on their Port A
input/output pins and can run at a higher clock speed.)

4.2 Putting the Handy Board into Bootstrap Download Mode

When using any of the downloaders, the Handy Board must first be put into its bootstrap download
mode. This is done by first turning the board off, and then turning wiaihe holding down the STOP

button (the button closer to the pair of LEDs to the right of the buttons). When the board is first turned
on, these two LEDs should light for abogltof a second and then both should turn off. TheoS
button must be held down continuously during this sequewden the board is powered on and both

of these LEDs are off, it isready for bootstrap download.

4.3 MS-DOS
Two downloaders are available for MS-DOS machirgésby Randy Sargent ardim, by Fred Martin.

dl is compatible only with the A series of 6811, and automatically programs the CONFIG register.
Type “dl pcode_hb. s19” at the MS-DOS prompt.

dim is compatible with both the A and E series of 6811, but does not automatically program the
CONFIG register. Typedl m pcode_hb. s19 -256" to download to an A series chip and
“dl m pcode_hb. s19 -512" to download to an E series chip.

Neitherdl nor dim runs very well under Windows. It is generally necessary to run them from a
full-screen DOS shell to get them to work at all. Under Windadhizsl| is recommended instead.

4.4 Windows 3.1 and Windows 95

hbdl, by Vadim Gerasimoyv, is the recommended Windows 6811 downlo&bdirfeatures automatic
recognition of both A and E series 6811s and automatic programming of the CONFIG register.

To usehbdl, run thehbdl . exe application and select thepéode_hb. s19” file for download.
Make sure the text box for the CONFIG register has the vabae'*

45 Macintosh

There are two choices available for the Macintoshitialize Board, by Randy Sargent, anéB11
Downloader MCL, by Fred Martin.

Initialize Board features automatic programming of the CONFIG register, but only works with A
series 6811’s. It comes in two versions, one using the modem port and one using the printer port.

In order to getlnitialize Board to use the Handy Boardjscode_hb. s19 file, one must edit
its STR resources to name this file. Then using it is just a matter of double-clicking on the
application icon.

6811 Downloader MCL features automatic recognition of both A and E series 6811's. In order to
program the CONFIG register, one can select3teConfig. . . option from theHC11 menu.

6811 Downloader MCL is run by double-clicking on the application icon and typing the name
of the file to be downloaded into a text field. The S19 file to be downloaded must be located in
the same folder as the application.

An earlier version 06811 Downloader (note the lack of the MCL suffix in the application name)
may no longer be compatible with contemporary Macintosh designs.

4.6 Unix

Thedl downloader, written by Randy Sargent, is available for a number of Unix platforms, including
DECstations, Linux, Sparc Solaris, Sparc Sun OS, SGI, HPUX, and RS6000.

This downloader only works with the A series of 6811, and supports automatic programming of
the CONFIG register.

5 Interactive C

Interactive C (IC for short) is a C language consisting of a compiler (with interactive command-line
compilation and debugging) and a run-time machine language module. IC implements a subset of
C including control structured ¢r, whi |l e, i f, el se), local and global variables, arrays, pointers,
16-bit and 32-bit integers, and 32-bit floating point numbers.

IC works by compiling into pseudo-code for a custom stack machine, rather than compiling directly
into native code for a particular processor. This pseudo-codp-¢ode) is then interpreted by the
run-time machine language program. This unusual approach to compiler design allows IC to offer the
following design tradeoffs:

¢ Interpreted execution that allows run-time error checking and prevents crashing. For exam-
ple, IC does array bounds checking at run-time to protect against programming errors.

e Ease of design. Writing a compiler for a stack machine is significantly easier than writing
one for a typical processor. Since IC’s p-code is machine-independent, porting IC to another
processor entails rewriting the p-code interpreter, rather than changing the compiler.

e Small object code. Stack machine code tends to be smaller than a native code representation.

e Multi-tasking. Because the pseudo-code is fully stack-based, a process’s state is defined solely
by its stack and its program counter. It is thus easy to task-switch simply by loading a new stack
pointer and program counter. This task-switching is handled by the run-time module, not by the
compiler.

Since IC’s ultimate performance is limited by the fact that its output p-code is interpreted, these
advantages are taken at the expense of raw execution speed. Still, IC is no slouch.

|C was designed and implemented by Randy Sargent with the assistance of Fred Martin.
This manual covers the freeware distribution of 1C (version 2.8x).

5.1 UsingIC

When IC is booted, it immediately attempts to connect with the Handy Board, which should be turned
on and running thecode_hb. s19 program.

After synchronizing with the Handy Board, IC compiles and downloads the default set of library
files, and then presents the user with tle™ prompt. At this prompt, either an IC command or
C-language expression may be entered.

All C expressions must be ended with a semicolon. For example, to evaluate the arithmetic
expression } 2, type the following:

C> 1+ 2;

(The underlined portion indicates user input.) When this expression is typed, it is compiled by IC and
then downloaded to the Handy Board for evaluation. The Handy Board then evaluates the compiled
form and returns the result, which is printed on the IC console.

To evaluate a series of expressions, create a C block by beginning with an open curly{trace “
and ending with a close curly bracg™ The following example creates a local variableand prints
the sum +7 to the Handy Board’s LCD screen:

C> {int i=3; printf("%", i+7);}

5.1.1 IC Commands

IC responds to the following commands:

e Load file. The command oad <filename- compiles and loads the named file. The Handy
Board must be attached for this to work. IC looks first in the local directory and then in the IC
library path for files.

Several files may be loaded into IC at once, allowing programs to be defined in multiple files.

e Unload file. The commandinl oad < filename> unloads the named file, and re-downloads
remaining files.

e List files, functions, or globals. The commandi st fil es displays the names of all
files presently loaded into IC. The commadnidst functi ons displays the names of presently
defined C functions. The commahdst gl obal s displays the names of all currently defined
global variables.

e Kill all processes. The commandti I | _al | kills all currently running processes.
e Print process status. The commangbs prints the status of currently running processes.

e Help. The commandhel p displays a help screen of IC commands.

Quit. The commandui t exits IC. In the MS-DOS versiomr;TRL-C can also be used.

5.1.2 Line Editing

IC has a built-in line editor and command history, allowing editing and re-use of previously typed
statements and commands. The mnemonics for these functions are based on standard Emacs control
key assignments.

To scan forward and backward in the command history, type.-P or for backward, and

CTRL-N or for forward.
Figure 2 shows the keystroke mappings understood by IC.
IC does parenthesis-balance-highlighting as expressions are typed.

5.1.3 The Main Function

After functions have been downloaded to the Handy Board, they can be invoked from the IC prompt.
If one of the functions is namathi n() , it will automatically be run when the Handy Board is reset.

To reset the Handy Boandithout running thenai n() function (for instance, when hooking the
board back to the computer), hold down thea®r button when turning on the Handy Board. The
board will reset without runningai n() .

Keystroke Function
CTRL-A beginning-of-line
CTRL-B backward-char
backward-char
CTRL-D delete-char
CTRL-E end-of-line
CTRL-F forward-char
forward-char
CTRL-K kill-line

Figure 2: IC Command-Line Keystroke Mappings

5.2 A Quick C Tutorial

Most C programs consist of function definitions and data structures. Here is a simple C program that
defines a single function, calleahi n.

voi d main()

printf("Hello, world!l\n");

All functions must have a return value; that is, the value that they return when they finish execution.
mai n has a return value type obi d, which is the “null” type. Other types include integers() and
floating point numbersf(oat). This function declaration information must precede each function
definition.

Immediately following the function declaration is the function’s name (in this casey). Next,
in parentheses, are any arguments (or inputs) to the functi@nn has none, but a empty set of
parentheses is still required.

After the function arguments is an open curly-bra¢g& “This signifies the start of the actual
function code. Curly-braces signify progrdmocks, or chunks of code.

Next comes a series of §atements. Statements demand that some action be taken. Our demon-
stration program has a single statemenprant f (formatted print). This will print the message
“Hel 1 o, worl d!” to the LCD display. Tha n indicates end-of-line.

Thepri nt f statementendswith a semicolon). All C statements must be ended by a semicolon.
Beginning C programmers commonly make the error of omitting the semicolon that is required at the
end of each statement.

Thenmai n function is ended by the close curly-bragé.”

Let’s look at an another example to learn some more features of C. The following code defines the
functionsguare, which returns the mathematical square of a number.

i nt square(int n)

return n * n;

The function is declared as typet , which means that it will return an integer value. Next comes
the function namequar e, followed by its argument list in parenthessgjuar e has one argument,
which is an integer. Notice how declaring the type of the argument is done similarly to declaring the
type of the function.

When a function has arguments declared, those argument variables are valid within the “scope” of
the function (i.e., they only have meaning within the function’s own code). Other functions may use
the same variable names independently.

The code forsquar e is contained within the set of curly braces. In fact, it consists of a single
statement: theet ur n statement. Theet ur n statement exits the function and returns the value of
the Cexpression that follows it (in this caserf * n”).

Expressions are evaluated according set of precendence rules depending on the various operations
within the expression. In this case, there is only one operation (multiplication), signified by’the “

So precedence is not an issue.

Let’'s look at an example of a function that performs a function call tasthear e program.
fl oat hypotenuse(int a, int b)

float h;
h = sqgrt((float)(square(a) + square(b)));

return h;

This code demonstrates several more features of C. First, notice that the floating point Vvariable
is defined at the beginning of tlgpot enuse function. In general, whenever a new program block
(indicated by a set of curly braces) is begun, new local variables may be defined.

The value oh is set to the result of a call to tlegr t function. It turns out thagqr t is a built-in
function that takes a floating point number as its argument.

We want to use thequar e function we defined earlier, which returns its result as an integer. But
thesqrt function requires a floating point argument. We get around this type incompatibility by
coercing the integer sunisquar e(a) + square(b)) into a float by preceding it with the desired
type, in parentheses. Thus, the integer sum is made into a floating point number and passed along to
sqrt.

Thehypot enuse function finishes by returning the value lof

This concludes the brief C tutorial.

5.3 Data Types, Operations, and Expressions

Variables and constants are the basic data objects in a C program. Declarations list the variables to be
used, state what type they are, and may set their initial value. Operators specify what is to be done to
them. Expressions combine variables and constants to create new values.

5.3.1 Variable Names

Variable names are case-sensitive. The underscore character is allowed and is often used to enhance
the readability of long variable names. C keywords like whi | e, etc. may not be used as variable
names.

10

Global variables and functions may not have the same name. In addition, local variables named
the same as functions prevent the use of that function within the scope of the local variable.

5.3.2 Data Types
IC supports the following data types:

16-bit Integers 16-bit integers are signified by the type indicatot . They are signed integers,
and may be valued from 32,768 to4 32,767 decimal.

32-bit Integers 32-bit integers are signified by the type indicatong. They are signed integers,
and may be valued from2,147,483,648 te-2,147,483,647 decimal.

32-bit Floating Point Numbers Floating point numbers are signified by the type indic&tarat .
They have approximately seven decimal digits of precision and are valued from abétital 00,

8-bit Characters Characters are an 8-bit number signified by the type indicdtar. A character’s
value typically represents a printable symbol using the standard ASCII character code.
Arrays of characters (character strings) are supported, but individual characters are not.

5.3.3 Local and Global Variables

If a variable is declared within a function, or as an argument to a function, its bindiocals meaning
that the variable has existence only that function definition.

If a variable is declared outside of a function, it is a global variable. It is defined for all functions,
including functions that are defined in files other than the one in which the global variable was declared.

Variable Initialization Local and global variables can be initialized when they are declared. If no
initialization value is given, the variable is initialized to zero.

int foo()

int x; /* create | ocal variable x
with initial value 0O */
int y= 7, /* create local variable y
with initial value 7 */
}
float z=3.0; [* create global variable z

wth initial value 3.0 */

Local variables are initialized whenever the function containing them runs.
Global variables are initialized whenever a reset condition occurs. Reset conditions occur when:

1. New code is downloaded;
2. Thenmmi n() procedure is run;

3. System hardware reset occurs.

11

Persistent Global Variables A specialuninitialized form of global variable, called the “persistent”
type, has been implemented for IC. A persistent globabtdnitialized upon the conditions listed for
normal global variables.

To make a persistent global variable, prefix the type specifier with the keypeord st ent . For
example, the statement

persistent int i;

creates a global integer called The initial value for a persistent variable is arbitrary; it depends on
the contents of RAM that were assigned to it. Initial values for persistent variables cannot be specified
in their declaration statement.

Persistent variables keep their state when the Handy Board is turned off and onpaviters
run, and when system reset occurs. Persistent variables, in general, will lose their state when a new
program is downloaded. However, it is possible to prevent this from occurring. If persistent variables
are declared at the beginning of the code, before any function or non-persistent globals, they will be
re-assigned to the same location in memory when the code is re-compiled, and thus their values will
be preserved over multiple downloads.

If the program is divided into multiple files and it is desired to preserve the values of persistent
variables, then all of the persistent variables should be declared in one particular file and that file should
be placed first in the load ordering of the files.

Persistent variables were created with two applications in mind:
¢ Calibration and configuration values that do not need to be re-calculated on every reset condition.

¢ Robot learning algorithms that might occur over a period when the robot is turned on and off.

5.3.4 Constants

Integers Integers may be defined in decimal integer format (@63 or - 1), hexadecimal format
using the 0x” prefix (e.g.,0x1f f f), and a non-standard but useful binary format using e prefix
(e.g.,0b1001001). Octal constants using the zero prefix are not supported.

Long Integers Long integer constants are created by appending the suiffinr“L” (upper- or
lower-case alphabetic L) to a decimal integer. For exanfiilas the long zero. Either the upper or
lower-case “L” may be used, but upper-case is the convention for readability.

Floating Point Numbers Floating point numbers may use exponential notation (el®e3” or
“10E3”) or must contain the decimal period. For example, the floating point zero can be giver’as “
“0. 0", or “OE1", but not as just0”.

Characters and Character Strings Quoted characters return their ASCII value (€.g.,).
Character strings are defined with quotation marks, €lgh,s is a character string.".

5.3.5 Operators

Each of the data types has its own set of operators that determine which operations may be performed
on them.

12

Integers The following operations are supported on integers:

e Arithmetic. addition+, subtractionr , multiplication*, division/ .

e Comparison. greater-thar, less-thark, equality==, greater-than-equak, less-than-equal
<=,

e Bitwise Arithmetic. bitwise-OR| , bitwise-AND &, bitwise-exclusive-OR, bitwise-NOT" .

e Boolean Arithmetic. logical-OR| |, logical-AND &&, logical-NOT! .

When a C statement uses a boolean value (for exainf)eit takes the integer zero as meaning
false, and any integer other than zero as meaning true. The boolean operators return zero for
false and one for true.

Boolean operatorg&& and || stop executing as soon as the truth of the final expression is
determined. For example, in the expressio®& b, if a is false, therb does not need to be
evaluated because the result must be false.&Bhaperator “knows this” and does not evaluate
b.

Long Integers A subset of the operations implemented for integers are implemented for long inte-
gers: arithmetic additiom, subtractiors , and multiplicationt, and the integer comparison operations.
Bitwise and boolean operations and division are not supported.

Floating Point Numbers IC uses a package of public-domain floating point routines distributed
by Motorola. This package includes arithmetic, trigonometric, and logarithmic functions.
The following operations are supported on floating point numbers:

e Arithmetic. addition+, subtraction , multiplication*, division/ .

e Comparison. greater-thar, less-thark, equality==, greater-than-equak, less-than-equal
<=,

e Built-in Math Functions. A set of trigonometric, logarithmic, and exponential functions is
supported, as discussed in Section 5.9 of this document.

Characters Characters are only allowed in character arrays. When a cell of the array is referenced,
it is automatically coerced into a integer representation for manipulation by the integer operations.
When a value is stored into a character array, it is coerced from a standard 16-bit integer into an 8-bit
character (by truncating the upper eight bits).

5.3.6 Assignment Operators and Expressions

The basic assignment operatorisThe following statement adds 2 to the valueof

a=a+ 2

The abbreviated form

13

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & . |

5.3.7 Increment and Decrement Operators

The increment operator++” increments the named variable. For example, the statenssit’‘is
equivalentto 4= a+1” or “a+= 1".
A statement that uses an increment operator has a value. For example, the statement
a= 3;
printf("a=% a+1=%l\n", a, ++a);
will display the text ‘a=3 a+1=4."
If the increment operator comes after the named variable, then the value of the statement s calculated
after the increment occurs. So the statement
a= 3;
printf("a=% a+1=%l\n", a, a++);

would display ‘a=3 a+1=3" but would finish witha set to 4.
The decrement operator-” is used in the same fashion as the increment operator.

5.3.8 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associativity for the C operators. Operators
listed earlier in the table have higher precedence; operators on the same line of the table have equal
precedence.

| Operator | Associativity |
() [1] left to right
7 ++ -- - (type) right to left
* % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= 1= left to right
& left to right
- left to right
| left to right
&& left to right
[] right to left
= += -=etc. right to left
, left to right

14

5.4 Control Flow

IC supports most of the standard C control structures. One notable exceptionaséandswi t ch
statement, which is not supported.

5.4.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be grouped together into a
block using curly braces. Inside a block, local variables may be defined.
There is never a semicolon after a right brace that ends a block.

5.4.2 If-Else

Thei f el se statement is used to make decisions. The syntax is:

i f (expression
statement-1

el se
Statement-2

expressiofis evaluated,; if it is not equal to zero (e.g., logic true), tlséatement-is executed.
The el se clause is optional. If théf part of the statement did not execute, and ¢hee is
present, thestatement-2xecutes.

5.4.3 While

The syntax of ahi | e loop is the following:
whi | e (expression
Statement

whi | e begins by evaluatingxpressionl|f it is false, thenstatemenis skipped. If it is true, then
statemenis evaluated. Then the expression is evaluated again, and the same check is performed. The
loop exits wherexpressiofbecomes zero.

One can easily create an infinite loop in C usingwhel e statement:

while (1)
Statement

544 For

The syntax of d or loop is the following:

for (expr-1;, expr-2;, expr-3)
Statement

This is equivalent to the following construct usiwgi | e:

15

expr-1,

while (expr-2) {
Statement
expr-3;

}

Typically, expr-1is an assignmengxpr-2is a relational expression, amkpr-3is an increment
or decrement of some manner. For example, the following code counts from O to 99, printing each
number along the way:

int i;
for (i=0; i < 100; i++)
printf("%l\n", i);

545 Break

Use of thebr eak provides an early exit fromahi | e or af or loop.

5.5 LCD Screen Printing

IC has a version of the C functigm i nt f for formatted printing to the LCD screen.

The syntax opri nt f is the following:

printf(format-string [arg-1] , ..., [arg-N])
This is best illustrated by some examples.

5.5.1 Printing Examples
Example 1: Printing a message. The following statement prints a text string to the screen.

printf("Hello, world!\n");

In this example, the format string is simply printed to the screen.

The character\"n” at the end of the string signifiemd-of-line. When an end-of-line character is
printed, the LCD screen will be cleared when a subsequent character is printed. Thugy inmo$t
statements are terminated by a.

Example 2: Printing a number. The following statement prints the value of the integer variable
with a brief message.

printf("Value is %l\n", x);
The special fornva is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints the value of the integer
variablex as a binary number.

16

printf("Value is %\n", x);

The special forn% is used to format the printing of an integer in binary format. Onlyltvebyte of
the number is printed.

Example 4: Printing a floating point number. The following statement prints the value of the
floating point variable as a floating point number.

printf("VvValue is %\n", n);
The special forn¥4 is used to format the printing of floating point number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=% B=%\n", a, b);

The form% formats an integer to print in hexadecimal.

5.5.2 Formatting Command Summary

| Format Command | Data Type | Description |

% i nt decimal number

Ux i nt hexadecimal number

% i nt low byte as binary number
e i nt low byte as ASCII character
% fl oat floating point number

s char array | char array (string)

5.5.3 Special Notes

¢ The final character position of the LCD screen is used as a system “heartbeat.” This character
continuously blinks back and forth when the board is operating properly. If the character stops
blinking, the Handy Board has crashed.

e Characters that would be printed beyond the final character position are truncated.
e Theprintf () command treats the two-line LCD screen as a single longer line.

¢ Printing of long integers is not presently supported.

5.6 Arrays and Pointers

IC supports one-dimensional arrays of characters, integers, long integers, and floating-point numbers.
Pointers to data items and arrays are supported.

17

5.6.1 Declaring and Initializing Arrays
Arrays are declared using the square brackets. The following statement declares an array of ten integers:
int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed by enclosing the index number
within square brackets:00[4] denotes the fifth element of the arryo (since counting begins at
zero).

Arrays are initialized by default to contain all zero values; arrays may also be initialized at
declaration by specifying the array elements, separated by commas, within curly braces. Using this
syntax, the size of the array would not specified within the square braces; it is determined by the
number of elements given in the declaration. For example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, witho[0] equalling Of oo[1] equalling 4, etc.
Character arrays are typically text strings. There is a special syntax for initializing arrays of
characters. The character values of the array are enclosed in quotation marks:

char string[]= "Hello there";

This form creates a character array caledi ng with the ASCII values of the specified characters.

In addition, the character array is terminated by a zero. Because of this zero-termination, the character
array can be treated as a string for purposes of printing (for example). Character arrays can be initialized
using the curly braces syntax, but they will not be automatically null-terminated in that case. In general,
printing of character arrays that amet null-terminated will cause problems.

5.6.2 Passing Arrays as Arguments

When an array is passed to a function as an argument, the array’s pointer is actually passed, rather than
the elements of the array. If the function modifies the array values, the array will be modified, since
there is only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as an array or as a pointer. IC
only allows declaring array arguments as arrays.

As an example, the following function takes an index and an array, and returns the array element
specified by the index:

int retrieve_elenment(int index, int array[])

return array[index];

}

Notice the use of the square brackets to declare the argumeay as an array of integers.
When passing an array variable to a function, use of the square brackets is not needed:

{
int array[10];

retrieve_elenment (3, array);

}

18

5.6.3 Declaring Pointer Variables

Pointers can be passed to functions which then go on to modify the value of the variable being pointed
to. This is useful because the same function can be called to modify different variables, just by giving
it a different pointer.

Pointers are declared with the use of the asterikl the example

int *foo;
float *bar;

f oo is declared as a pointer to an integer, aad is declared as a pointer to a floating point number.

To make a pointer variable point at some other variable, the ampersand operator is used. The
ampersand operator returns #ddress of a variable’s value; that is, the place in memory where the
variable’s value is stored. Thus:

int *foo;
int x=5;

f oo= &x;

makes the pointedroo “point at” the value ofk (which happens to be 5).

This pointer can now be used to retrieve the value asing the asterisk operator. This process is
calledde-referencing. The pointer, or reference to a value, is used to fetch the value being pointed at.
Thus:

int vy;
y= *foo0;

setsy equal to the value pointed at lbyo. In the previous examplépo was set to point at, which
had the value 5. Thus, the result of dereferen€ing yields 5, andy will be set to 5.

5.6.4 Passing Pointers as Arguments

Pointers can be passed to functions; then, functions can change the values of the variables that are
pointed at. This is termechll-by-reference; the reference, or pointer, to the variable is given to the
function that is being called. This is in contrastaal-by-value, the standard way that functions are
called, in which the value of a variable is given the to function being called.

The following example defines aaver age_sensor function which takes a port number and a
pointer to an integer variable. The function will average the sensor and store the result in the variable
pointed at byr esul t .

In the code, the function argument is specified as a pointer using the asterisk:

voi d average_sensor(int port, int *result)

int sunF O;
int i;

for (i= 0; i< 10; i++) sum += anal og(port);

*result= suni 10;

}

19

Notice that the function itself is declared asa d. It does not need to return anything, because it
instead stores its answer in the pointer variable that is passed to it.

The pointer variable is used in the last line of the function. In this statement, the as1xswd is
stored at the location pointed at bgsul t . Notice that the asterisk is used to get kbeation pointed
byresult.

5.7 Library Functions

Library files provide standard C functions for interfacing with hardware on the Handy Board. These
functions are written either in C or as assembly language drivers. Library files provide functions to do
things like control motors, make tones, and input sensors values.

IC automatically loads the library file every time it is invoked. The name of the default library
file is is contained as a resource within the IC application. On command-line versions of IC, this
resource may be modified by invoking¢ - confi g”. On the Macintosh, the IC application has a
STRresource that defines the name of the library file.

The Handy Board'’s root library file is namédb_hb. | i s.

5.7.1 Output Control

DC Motors DC motor ports are numbered from O to 3.

Motors may be set in a “forward” direction (corresponding to the green motor LED being lit) and
a “backward” direction (corresponding to the motor red LED being lit).

The functiong d(i nt n) andbk(i nt m turn motormon or off, respectively, at full power. The
functionof f (i nt m) turns motomoft.

The power level of motors may also be controlled. This is done in software by a motor on and off
rapidly (a technique callepgulse-width modulation. Thenotor (int m int p) function allows
control of a motor’s power level. Powers range frao0 (full on in the forward direction) te 100
(fullonin the backward direction). The system software actually only controls motors to seven degrees
of power, but argument bounds efL00 and+100 are used.

void fd(int m
Turns motomon in the forward direction. Exampléd(3) ;

voi d bk(int m
Turns motomon in the backward direction. Exampliek(1) ;

void off(int m
Turns off motorm Example:of f (1) ;

void al | of f ()

voi d ao()
Turns off all motors.ao is a short form fomal | of f .

20

void notor(int m int p)
Turns on motomat power levep. Power levels range from00 for full on forward to- 100 for
full on backward.

Servo Motor A library routine allows control of a single servo motor, using digital input 9, which

is actually the 6811’s Port A bit 7 (PA7), a bidirectional control pin. Loading the servo library files
causes this pin to be employed as a digital output suitable for driving the control wire of the servo
motor.

The servo motor has a three-wire connection: power, ground, and control. These wires are often
color-codedred, black, and white, respectively. The control wire is connected to PA7; the ground wire,
to board ground; the power wire, to4b volt source. The Handy Board’s regulate8v supply may
be used, though this is not an ideal solution because it will tax the regulator. A better solution is a
separate battery with a common ground to the Handy Board or a tap-aéthposition of the Handy
Board's battery back.

The position of the servo motor shaft is controlled by a rectangular waveform that is generated on
the PA7 pin. The duration of the positive pulse of the waveform determines the position of the shaft.
This pulse repeats every 20 milliseconds.

The length of the pulse is set by the library functssr vo, or by functions calibrated to set the
position of the servo by angle.

voi d servo.on()
Enables PA7 servo output waveform.

void servo._on()
Disables PA7 servo output waveform.

int servo(int period)

Sets length of servo control pulse. Value is the time in half-microseconds of the positive portion
of a rectangular wave that is generated on the PA7 pin for use in controlling a servo motor. Minimum
allowable value is 1400 (i.e., 7Q@ec); maximum is 4860.

Function return value is actual period set by driver software.

int servorad(float angle)
Sets servo angle in radians.

int servo.deg(float angle)
Sets servo angle in degrees.
In order to use the servo motor functions, the fdesvo. i cb andser vo. ¢ must be loaded.

5.7.2 Sensor Input

int digital (int p)
Returns the value of the sensor in sensor ppds a true/false value (1 for true and O for false).

21

Sensors are expected to aetive low, meaning that they are valued at zero volts in the active, or
true, state. Thus the library function returns the inverse of the actual reading from the digital hardware:
if the reading is zero volts or logic zero, thegi t al () function will return true.

If the di gi tal () function is applied to port that is implemented in hardware as an analog input,
the result is true if the analog measurement is less than 127, and false if the reading is greater than or
equal to 127.

Ports are numbered as marked on the Handy Board.

int anal og(int p)
Returns value of sensor port numbepeResult is integer between 0 and 255.
If the anal og() function is applied to a port that is implemented digitally in hardware, then the
value O is returned if the digital reading is 0, and the value 255 is returned if the digital reading is 1.
Ports are numbered as marked on the Handy Board.

User Buttons and Knob The Handy Board has two buttons and a knob whose value can be read
by user programs.

int stop_button()
Returns value of button labelledSrF: 1 if pressed and O if released.
Example:

/* wait until stop button pressed */
while (!stop_button()) {}

int start _button()
Returns value of button labelled/8RT.

voi d stop_press()
Waits for Srop button to be pressed, then released. Then issues a short beep and returns.
The code fost op_pr ess is as follows:

while (!stop_button());
while (stop_button());
beep();

voi d start press()
Like st op_pr ess, but for the SART button.

i nt knob()
Returns the position of a knob as a value from 0 to 255.

22

Infrared Subsystem The Handy Board provides an on-board infrared receiver (the Sharp 1IS1U60),
for infrared input, and a 40 kHz modulation and power drive circuit, for infrared output. The output
circuit requires an external infrared LED.

As of thiswriting, only the infrared receive function is officially supported. On the Handy Board
web site, contributed software to extend the infrared functionality is available.

To use the infrared reception function, the gleny-ir.i cb must be loaded into Interactive C.
This file may be added to the Handy Board default library fiieh_hb. | i s. Please make sure that
thefiler22_ir.lis isnotpresentinthel i b_hb.lis file

The sony-ir.icb file adds the capability of receiving infrared codes transmitted by a Sony
remote, or a universal remote programmed to transmit Sony infrared codes.

int sonyinit(1)
Enables the infrared driver.

int sony.nit(0)
Disables the infrared driver.

int ir_data(int dumry)

Returns the data byte last received by the driver, or zero if no data has been received since the last
call. A value must be provided for thRinmy argument, but its value is ignored.

The infrared sensor is the dark green component in the Handy Board’s lower right hand corner.

5.7.3 Time Commands

System code keeps track of time passage in milliseconds. The time variables are implemented using
the long integer data type. Standard functions allow use floating point variables when using the timing
functions.

voi d reset systemti nme()
Resets the count of system time to zero milliseconds.

| ong nseconds()

Returns the count of system time in milliseconds. Time count is reset by hardware reset (i.e.,
turning the board off and on) or the functioaset _syst emti ne(). nseconds() is implemented
as a C primitive (not as a library function).

fl oat seconds()
Returns the count of system time in seconds, as a floating point number. Resolution is one
millisecond.

voi d sl eep(float sec)
Waits for an amount of time equal to or slightly greater thkan secondssec is a floating point

number.
Example:

23

/* wait for 1.5 seconds */
sl eep(1.5);

voi d nsl eep(l ong nsec)

éNaits flor an amount of time equal to or greater tihaec milliseconds.nsec is a long integer.
xample:

/* wait for 1.5 seconds */
nsl eep(1500L) ;

5.7.4 Tone Functions

Several commands are provided for producing tones on the standard beeper.

voi d beep()
Produces a tone of 500 Hertz for a period of 0.3 seconds.

voi d tone(fl oat frequency, float |ength)
Produces a tone at pitéhr equency Hertz forl engt h seconds. Botlir equency andl engt h
are floats.

voi d set beeper pitch(float frequency)
Sets the beeper tone to beequency Hz. The subsequent function is then used to turn the beeper
on.

voi d beeper on()
Turns on the beeper at last frequency selected by the former function.

voi d beeper _of f ()
Turns off the beeper.

5.8 Multi-Tasking
5.8.1 Overview

One of the most powerful features of IC is its multi-tasking facility. Processes can be created and
destroyed dynamically during run-time.

Any C function can be spawned as a separate task. Multiple tasks running the same code, but with
their own local variables, can be created.

Processes communicate through global variables: one process can set a global to some value, and
another process can read the value of that global.

Each time a process runs, it executes for a certain numhberksf defined in milliseconds. This
value is determined for each process at the time it is created. The default number of ticks is five;
therefore, a default process will run for 5 milliseconds until its “turn” ends and the next process is run.
All processes are kept track of inpeocess table; each time through the table, each process runs once
(for an amount of time equal to its number of ticks).

24

Each process has its ovpnogram stack. The stack is used to pass arguments for function calls,
store local variables, and store return addresses from function calls. The size of this stack is defined at
the time a process is created. The default size of a process stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrays will probably require a
stack size larger than the default. Each function call requires two stack bytes (for the return address)
plus the number of argument bytes; if the function that is called creates local variables, then they also
use up stack space. In addition, C expressions create intermediate values that are stored on the stack.

It is up to the programmer to determine if a particular process requires a stack size larger than the
default. A process may also be created with a stackssnaer than the default, in order to save stack
memory space, if it is known that the process will not require the full default amount.

When a process is created, it is assigned a urpoeeessidentification number or pid. This number
can be used to kill a process.

5.8.2 Creating New Processes

The function to create a new processstsart _process. start _process takes one mandatory
argument—the function call to be started as a process. There are two optional arguments: the process’s
number of ticks and stack size. (If only one optional argument is given, it is assumed to be the ticks
number, and the default stack size is used.)

start _process has the following syntax:

int start _process(function-call(...), [TICKS] , [STACK-SIZH)

st art _process returns an integer, which is the process ID assigned to the new process.
The function call may be any valid call of the function used. The following code shows the function
mai n creating a process:

voi d check_sensor (int n)
while (1)
printf("Sensor % is %\n", n, digital(n));
voi d main()

start_process(check_sensor(2));

Normally when a C functions ends, it exits with a return value or the “void” value. If a function
invoked as a process ends, it “dies,” letting its return value (if there was one) disappear. (This is okay,
because processes communicate results by storing them in globals, not by returning them as return
values.) Hence in the above example,theck_sensor function is defined as an infinite loop, so as
to run forever (until the board is reset okal | _pr ocess is executed).

Creating a process with a non-default number of ticks or a non-default stack size is simply a matter
of usingst art _pr ocess with optional arguments; e.g.

start _process(check_sensor(2), 1, 50);

will create acheck_sensor process that runs for 1 milliseconds per invocation and has a stack size of
50 bytes (for the given definition afheck _sensor, a small stack space would be sufficient).

25

5.8.3 Destroying Processes

Theki | | _process function is used to destroy processes. Processes are destroyed by passing their
process ID number tki | | _pr ocess, according to the following syntax:

int Kill _process(int pid)

ki | | _process returns a value indicating if the operation was successful. If the return valyéien
the process was destroyed. If the return valug iken the process was not found.

The following code shows theai n process creatingeheck _sensor process, and then destroying
it one second later:

voi d main()
int pid,

pi d= start_process(check_sensor(2));
sl eep(1.0);
kill _process(pid);

}

5.8.4 Process Management Commands

IC has two commands to help with process management. The commands only work when used at the
IC command line. They are not C functions that can be used in code.

kill all
kills all currently running processes.

ps

prints out a list of the process status.

The following information is presented: process ID, status code, program counter, stack pointer,
stack pointer origin, number of ticks, and name of function that is currently executing.

5.8.5 Process Management Library Functions

The following functions are implemented in the standard C library.

voi d hog_processor ()

Allocates an additional 256 milliseconds of execution to the currently running process. If this
function is called repeatedly, the system will wedge and only execute the process that isheajling
processor (). Only a system reset will unwedge from this state. Needless to say, this function should
be used with extreme care, and should not be placed in a loop, unless wedging the machine is the
desired outcome.

voi d defer()

Makes a process swap out immediately after the function is called. Useful if a process knows that
it will not need to do any work until the next time around the scheduler ldeper () is implemented
as a C built-in function.

26

5.9 Floating Point Functions

In addition to basic floating point arithmetic (addition, subtraction, multiplication, and division) and
floating point comparisons, a number of exponential and transcendental functions are built in to IC.
These are implemented with a public domain library of routines provided by Motorola.

Keep in mind that all floating point operations are quite slow; each takes one to several milliseconds
to complete. If Interactive C’s speed seems to be poor, extensive use of floating point operations is a
likely cause.

float sin(float angle)
Returns sine oéngl e. Angle is specified in radians; result is in radians.

float cos(float angle)
Returns cosine adngl e. Angle is specified in radians; result is in radians.

float tan(float angle)
Returns tangent afngl e. Angle is specified in radians; result is in radians.

float atan(float angle)
Returns arc tangent ahgl e. Angle is specified in radians; result is in radians.

float sqgrt(float num
Returns square root eum

float |o0glO(float nun
Returns logarithm ofumto the base 10.

float |og(float nun
Returns natural logarithm efum

float explO(float nun
Returns 10 to theumpower.

float exp(float nun
Returns: to thenumpower.

(float) a = (float) b
Returnsa to theb power.

5.10 Memory Access Functions

IC has primitives for directly examining and modifying memory contents. These should be used with
care as it would be easy to corrupt memory and crash the system using these functions.

There should be little need to use these functions. Most interaction with system memory should be
done with arrays and/or globals.

27

i nt peek(int |oc)
Returns the byte located at address.

i nt peekword(int |oc)
Returns the 16-bit value located at addriess andl oc+1. | oc has the most significant byte, as
per the 6811 16-bit addressing standard.

voi d poke(int loc, int byte)
Stores the 8-bit valueyt e at memory addredsoc.

voi d pokeword(int |oc, int word)
Stores the 16-bit valusor d at memory addressésc andl oc+1.

void bit_set(int loc, int mask)
Sets bits that are set mask at memory addredsoc.

void bit _clear(int loc, int mask)
Clears bits that are set mask at memory addredsoc.

5.11 Error Handling

There are two types of errors that can happen when working witbd@pile-time errors andun-time
errors.

Compile-time errors occur during the compilation of the source file. They are indicative of mistakes
in the C source code. Typical compile-time errors result from incorrect syntax or mis-matching of data
types.

Run-time errors occur while a program is running on the board. They indicate problems with a
valid C form when it is running. A simple example would be a divide-by-zero error. Another example
might be running out of stack space, if a recursive procedure goes too deep in recursion.

These types of errors are handled differently, as is explained below.

5.11.1 Compile-Time Errors

When compiler errors occur, an error message is printed to the screen. All compile-time errors must
be fixed before a file can be downloaded to the board.

5.11.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the LCD screen indicating the error
number. If the board is hooked up to ICwhen the error occurs, a more verbose error message is printed
on the terminal.

Here is a list of the run-time error codes:

28

| Error Code | Description

no stack space fart art _process()

no process slots remaining

array reference out of bounds

stack overflow error in running process
operation with invalid pointer

floating point underflow

floating point overflow

floating point divide-by-zero

number too small or large to convert to integer
tried to take square root of negative number
tangent of 90 degrees attempted
log or In of negative number or zero
15 floating point format error in printf
16 integer divide-by-zero

R
HOQOOO\I@(H-&OOI\)I—\

=
N

5.12 Binary Programs

With the use of a customized 6811 assembler program, IC allows the use of machine language programs
within the C environment. There are two ways that machine language programs may be incorporated:

1. Programs may be called from C as if they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811, running repetitiously
or when invoked due to a hardware or software interrupt.

When operating as a function, the interface between C and a binary program is limited: a binary
program must be given one integer as an argument, and will return an integer as its return value.
However, programs in a binary file can declare any number of global integer variables in the C
environment. Also, the binary program can use its argument as a pointer to a C data structure.

5.12.1 The Binary Source File

Special keywords in the source assembly language file (or module) are used to establish the following
features of the binary program:

Entry point. The entry point for calls to each program defined in the binary file.

Initialization entry point. Each file may have one routine that is called automatically upon a reset
condition. (The reset conditions are explained in Section 5.3.3, which discusses global variable
initialization.) This initialization routine particularly useful for programs which will function as
interrupt routines.

C variable definitions. Anynumber of two-byte C integer variables may be declared within a binary
file. When the module is loaded into IC, these variables become defined as globals in C.

29

[* Sanmple icb file */

/* origin for nodul e and variables */
ORG MAI N_START

/* programto return twice the argunment passed to us */
subrouti ne_doubl e:

ASLD

RTS

/* declaration for the variable "foo" */
vari abl e _foo:
FDB 55

/* programto set the C variable "foo" */
subroutine_set foo:

STD vari abl e_f oo

RTS

/* programto retrieve the variable "foo" */
subrouti ne_get foo:

LDD vari abl e foo

RTS

/* code that runs on reset conditions */
subroutine_initialize_nodul e:

LDD #69
STD vari abl e foo
RTS

Figure 3: Sample IC Binary Source Fileesti cb. asm

To explain how these features work, let’s look at a sample IC binary source program, listed in
Figure 3.

The first statement of the file@RG MAI N.START”) declares the start of the binary programs. This
line must precede the code itself itself.

The entry point for a program to be called from C is declared with a special form beginning with
the textsubr out i ne_. In this case, the name of the binary programdsbl e, so the label is named
subr out i ne_doubl e. As the comment indicates, this is a program that will double the value of the
argument passed to it.

When the binary program is called from C, it is passed one integer argument. This argument is
placed in the 6811’s D register (also known as the “Double Accumulator”) before the binary code is
called.

Thedoubl e program doubles the number in the D register. ASeD instruction (“Arithmetic
Shift Left Double [Accumulator]”) is equivalent to multiplying by 2; hence this doubles the number in
the D register.

The RTS instruction is “Return from Subroutine.” All binary programs must exit using this
instruction. When a binary program exits, the value in the D register is the return value to C. Thus, the
doubl e program doubles its C argument and returns it to C.

30

Declaring Variables in Binary Files The labelvari abl e_f oo is an example of a special form
to declare the name and location of a variable accessable from C. The special labeljpréfat! e_”
is followed the name of the variable, in this caged.”

This label must be immediately followed by the statenfed® <nunber >. This is an assembler
directive that creates a two-byte value (which is the initial value of the variable).

Variables used by binary programs must be declared in the binary file. These variablesthen become
C globals when the binary file is loaded into C.

The next binary program in the file is namexkt _f 0o.” It performs the action of setting the value
of the variablef oo, which is defined later in the file. It does this by storing the D register into the
memory contents reserved fiooo, and then returning.

The next binary program is namegdét _f oo.” It loads the D register from the memory reserved
for f oo and then returns.

Declaring an Initialization Program The labekubrouti ne_i ni ti al i ze_nodul e is a special
form used to indicate the entry point for code that should be run to initialize the binary programs.
This code is run upon standard reset conditions: program download, hardware reset, or running of the
mai n() function.

In the example shown, the initialization code stores the value 69 into the location reserved for the
variablef oo. This then overwrites the 55 which would otherwise be the default value for that variable.

Initialization of globals variables defined in an binary module is done differently than globals
defined in C. In a binary module, the globals are initialized to the value declared bpBratatement
only when the code is downloaded to the 6811 board (not upon reset or running of main, like normal
globals).

However, the initialization routine is run upon standard reset conditions, and can be used to initialize
globals, as this example has illustrated.

5.12.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary module to install a piece
of code into the interrupt structure of the 6811.

The 6811 has a number of different interrupts, mostly dealing with its on-chip hardware such as
timers and counters. One of these interruptsis used by the runtime software to implement time-keeping
and other periodic functions (such as LCD screen management). This interrupt, dubbed the “System
Interrupt,” runs at 1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional programs (that need
to run at 1000 Hz. or less) may install themselves into the System Interrupt. User programs would be
then become part of the 1000 Hz interrupt sequence.

This is accomplished by having the user program “intercept” the original 6811 interrupt vector that
points to runtime interrupt code. This vector is made to point at the user program. When user program
finishes, it jumps to the start of the runtime interrupt code.

Figure 4 depicts the interrupt structure before user program installation. The 6811 vector location
points to system software code, which terminates in a “return from interrupt” instruction.

Figure 5 illustrates the result after the user program is installed. The 6811 vector points to the user
program, which exits by jumping to the system software driver. This driver exits as before, with the
RTl instruction.

31

Before User Program Installation

6811 interrupt vector |

(dedicated RAM position) 2 l

IC system
software
interrupt driver

Return from Interrupt |

instruction RTI l

Figure 4: Interrupt Structure Before User Program Installation

Multiple user programs could be installed in this fashion. Each one would install itself ahead of
the previous one. Some standard library functions, such as the shaft encoder software, is implemented
in this fashion.

Figure 6 shows an example program that installs itself into the System Interrupt. This program
toggles the signal line controlling the piezo beeper every time it is run; since the System Interrupt runs
at 1000 Hz., this program will create a continous tone of 500 Hz.

The first line after the comment header includes a file naré8d1r egs. asni. This file contains
equates for all 6811 registers and interrupt vectors; most binary programs will need at least a few of
these. Itis simplest to keep them all in one file that can be easily included.

Thesubroutine.initialize_nodul e declaration begins the initialization portion of the pro-
gram. The file I dxi base. asnf is then included. This file contains a few lines of 6811 assembler
code that perform the function of determining the base pointer to the 6811 interrupt vector area, and
loading this pointer into the 6811 X register.

The following four lines of code install the interrupt program (beginning with the iaftedr r upt _-
code_st art) according to the method that was illustrated in Figure 5.

First, the existing interrupt pointer is fetched. As indicated by the comment, the 6811's TOC4
timer is used to implement the System Interrupt. The vector is poked into the JMP instruction that will
conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code. These two steps
complete the initialization sequence.

The actual interrupt code is quite short. It toggles bit 3 of the 6811's PORTA register. The PORTA
register controls the eight pins of Port A that connect to external hardware; bit 3 is connected to the
piezo beeper.

The interrupt code exits with a jump instruction. The argument for this jump is poked in by the

32

After User Program Installation

6811 interrupt vector | |
(dedicated RAM position) Vs

User assembly
language program

Jump instruction | JWP_ |

IC system
software
interrupt driver

Return from Interrupt |

instruction RTI l

Figure 5: Interrupt Structure After User Program Installation

33

*

icb file: "sysibeep.asnt
exanpl e of code installing itself into
Systenint 1000 Hz interrupt

Fred Martin
Thu Cct 10 21:12:13 1991

* % X X X X F

#i ncl ude <6811regs. asnp
ORG MAI N_START
subroutine_initialize_nodul e:

#i ncl ude <l dxi base. asn®
* X now has base pointer to interrupt vectors ($FFO0 or $BF00)

* get current vector; poke such that when we finish, we go there

LDD TOCAI NT, X ; Systemint on TOA
STD i nterrupt _code_exit+1
* install ourself as new vector
LDD #i nterrupt _code_start
STD TOCAI NT, X
RTS

* interrupt program begins here

i nterrupt_code_start:

* frob the beeper every tine called
LDAA PORTA
EORA #969©0001000 ; beeper bit
STAA PORTA

i nterrupt _code_exit:
JwP $0000 ; this value poked in by init routine

Figure 6:sysi beep. asm Binary Program that Installs into System Interrupt

34

initialization program.

The method allows any number of programs located in separate files to attach themselves to the
System Interrupt. Because these files can be loaded from the C environment, this system affords
maximal flexibility to the user, with small overhead in terms of code efficiency.

5.12.3 The Binary Object File

The source file for a binary program must be named with. tliem suffix. Once the asmfile is

created, a special version of the 6811 assembler program is used to construct the binary object code.
This program creates a file containing the assembled machine code plus label definitions of entry points
and C variables.

S$116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assenbler version 2.1 10-Aug-91
pl ease send bugs to Randy Sargent (rsargent @thena.mt. edu)
origi nal program by Mt orol a.
subroutine_doubl e 872b *0007
subroutine_get foo 8733 *0021
subroutine_initialize _nmodul e 8737 *0026
subroutine set foo 872f *0016
vari able_foo 872d *0012 0017 0022 0028

Figure 7: Sample IC Binary Object Filé:est i cb. i cb

The programas11.i c is used to assemble the source code and create a binary objectfile. Itis given
the filename of the source file as an argument. The resulting object file is automatically given the suffix
.icb (for IC Binary). Figure 7 shows the binary object file that is created front thst i cb. asm
example file.

5.12.4 Loading an ICB File

Oncethe i cb file is created, it can be loaded into IC just like any other C file. If there are C functions
that are to be used in conjunction with the binary programs, it is customary to put them into a file with
the same name as thecb file, and then use al i s file to loads the two files together.

5.12.5 Passing Array Pointers to a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an integer, use the
following form:

array ptr= (int) array,

wherear r ay _pt r is an integer andr r ay is an array.

When compiling code that performs this type of pointer conversion, IC must be used in a special
mode. Normally, IC does not allow certain types of pointer manipulation that may crash the system.
To compile this type of code, use the following invokation:

35

ic -wzard

Arrays are internally represented with a two-byte length value followed by the array contents.

5.13 IC File Formats and Management

This section explains how IC deals with multiple source files.

5.13.1 C Programs

All files containing C code must be named with the™ suffix.
Loading functions from more than one C file can be done by issuing commands at the IC prompt
to load each of the files. For example, to load the C files namedc andbar . c:

C | oad foo.c
C |load bar.c

Alternatively, the files could be loaded with a single command:

C |oad foo.c bar.c

If the files to be loaded contain dependencies (for example, if one file has a function that references
a variable or function defined in the other file), then the second method (multiple file names to one
load command) or the following approach must be used.

5.13.2 List Files

If the program is separated into multiple files that are always loaded together, a “list file” may be
created. This file tells IC to load a set of named files. Continuing the previous example, a file called
gnu. | i s can be created:

Listing ofgnu. | i s:

f 0o. cC
bar.c

Then typing the commardad gnu. | i s fromthe C promptwould cause bdtho. ¢ andbar . c
to be loaded.

5.13.3 File and Function Management

Unloading Files When files are loaded into IC, they stay loaded until they are explicitly unloaded.
This is usually the functionality that is desired. If one of the program files is being worked on, the
other ones will remain in memory so that they don’t have to be explicitly re-loaded each time the one
undergoing development is reloaded.

However, suppose the fitwo. c is loaded, which contains a definition for the functra n. Then
the filebar . c is loaded, which happens to also contain a definitiomorn. There will be an error

36

message, because both files contammian. 1C will unloadbar . ¢, due to the error, and re-download
f 0oo. c and any other files that are presently loaded.

The solution is to first unload the file containing tin@ n that is not desired, and then load the file
that contains the newai n:

C unload foo.c
C |load bar.c

5.14 Configuring IC

IC has a multitude of command-line switches that allow control of a number of things. With command-
line versions of IC, explanations for these switches can be gotten by issuing the commaniae] p”.

IC stores the search path for and name of the library files internally; theses may be changed by
executing the command € - confi g”. When this command is run, IC will prompt for a new path
and library file name, and will create a new executable copy of itself with these changes.

The Macintosh version of IC is configured by changing the valu&gBfresources using a utility
like ResEdit.

37

6 Sensors and Motors

This section explains how to interface a variety of devices to the Handy Board:

e A DC motor.
e A microswitch touch sensor.
¢ A photocell-based light sensor.

e An infrared reflectance sensor.

First, proper connector wiring technique, applicable to all devices is explained. Then individual
wiring diagrams for each of the devices are presented.

6.1 Connector Wiring Technique

Connectors are the bane of existence of all electronics. If there is one weak link in the reliable
performance of any electronic system, it is its connectors. With this in mind, the importance of
patiently and neatly built robot connectors cannot be overemphasized. Particularly since a robot is
a mobile system subjected to various jolts and shocks, care taken in the construction of the robot’s
connectors will always pay off in the long run.

The Handy Board uses 0.1 inch male header as its connector for both motors and sensors. These
are not the easiest connectors to work with, but they have a very compact footprint, allowing a large
number of devices to be individually connected to the Handy Board.

The technique presented here has been time-tested to yield reliable results. There are four basic
steps in the process:

1. Stripping and tinning wire ends.
2. Inserting heat shrink tubing on the individual wires.
3. Soldering wire ends to male header connector.

4. Shrinking tubing around the joints.

The remainder of this section explains the technique, showing diagrams for building the standard
DC motor connector.

6.1.1 Wire Type

It is important to use stranded, not solid, wire cable. Each length of stranded wire consists of a twisted
bundle of very thin thread-like wires. Solid wire, on the other hand, is a single thick wire segment.

The advantage of stranded wire is that it is much more flexible than solid wire, and also less
susceptible to breakage. One thread of a stranded wire lengths can break without affecting the
performance of the connection, but if a solid wire breaks the connection is lost.

An ideal wire for building sensor and motor cables is 28 gauge ribbon cable. Ribbon cable is
stranded; the 28 gauge is the right weight to carry the current required to drive motors while still

38

providing excellent flexibility. Ribbon cable also “zips” easily, so that sets of two or three wires can
easily be made. Finally, rainbow ribbon cable is brightly colored in a ten-color sequence, making it
easy to keep track of which wire connects where.

6.1.2 Stripping and Tinning Wire Ends
Stripped Wire Ends

4

Solder \
(0=

O/Qle .

The first step is to strip insulation from the wire cable &imthe wire ends. “Tinning” is the process
of infusing the stranded wire end with solder.

Remove between 1/8 and 1/4 inch of insulation from the end of each wire. With your fingertips,
individually twist the threads of each wire end tightly (follow the existing weave of the stranded wire
bundle). Then, put a dab of solder onto the soldering iron, hold it to the wire end, and add some solder
to the wire end. Draw the iron tip along the wire end to evenly distribute solder into the wire end.

6.1.3 Installing Heat Shrink Tubing

Sensor Connector
1/4” Lengths
Heat Shrink Tubing

| 5

Cut a 1/4 inch length of heat shrink tubing for each connection, and feed a tubing segment onto each
wire.

39

In preparation for soldering, align the wires with the male header pins as indicated in the diagram.
If necessary, zip back the individual wires so that the tubing does not get in the way of the connection.
(The use of a “helping hands” tool is helpful here—a tool with two alligator clips on flexible arms.)

6.1.4 Soldering to Male Header
Solder

S
*ering e
n

Line up the wire ends with the male header pins and solder. Make sure that the heat shrink tubing is
far enough away from the joint that the tubing does not shrink prematurely.

40

6.1.5 Shrinking the Tubing

Gently apply heat from heat gun to shrink the tubing over the joints.

Slide the heat shrink tubing over the joints, and apply heat from a heat gun. If a heat gun is not
available, the open flame from a match or butane lighter may be used. Hold the joint so the heat shrink
tubing is at least 1 inch above the tip of the flame.

That's it! The connector end that plugs into the Handy Board is now complete.

41

6.2 Motors

DC Motor

The DC motor connector uses two male pins on 0.2 inch spacing; i.e., the outer two of three pins. The
center pin can be clipped away from the assembly.

Motors used with the Handy Board should be rated for 9 volt operation with a maximum current
draw of about 600 mA.

6.3 Sensors

6.3.1 Basic Sensor Connector

[| sensor signal

[| +5v supply

[| ground

The Handy Board uses a three-conductor connector for plugging in sensor devices. As indicated in
the diagram, the connector is formed from 4—prong male header pins, with one pin clipped away to
polarize the connector (i.e., prevent it from being plugged in improperly).

The pin labelled 45v supply” may be used to power an active sensor (e.g., the transmitter LED
of a reflective optosensor). The pin labelled “sensor signal” is the input to the Handy Board circuitry;
this must be in the range of 0 to 5 volts. The pin labelled “ground” is the system ground.

The Handy Board includes a 47K pullup resistor that is wired between the sensor signal line and
the +5v supply on all of its inputs, both analog and digital. This simplifies sensor design in several
regards:

¢ All sensors have a default level ef5v when nothing is plugged in.

e For switch-type or resistive-type sensors, the sensor device just needs to be wired from the sensor
signal pin to ground. Thus many sensor devices reduce to a simple two-wire connection.

42

6.3.2 Switch Sensor

T

Microswitch—style

sensor
NCC> NO OC
+5v | |
ground | |

Wire to switch terminals labelled
C (common) and NO (normally open)

The above diagram shows how to wire a microswitch-style sensor to the Handy Board. As indicated
in the diagram, the switch terminals labelled “C” (common) and “NO” (normally open) should be
connected to the sensor plug.

This wiring creates a switch sensor that is normally open, or disconnected, except when the switch
is pressed. The normally open case means that the sensor line is pulled high by the 47K resistor on the
Handy Board. The standard software for reading the state of a switch interprets this logic high value
as “not pressed” or false. When the switch is closed, the sensor line is connected to ground, and the
software reads a logic low value, which is interpreted as “pressed” or true.

A pushbutton-style switch, or any simple switch, may be wired in the same fashion.

6.3.3 Photocell Sensor

signal | —
CdS photocell
(or other resistive
+ov | sensor)
ground | =

The photocell sensor wiring also makes use of the on-board 47K resistor that connects the sensor signal
line to+5v. When wired from the signal line to ground, the photocell becomes part of a voltage divider

43

circuit as indicated in the schematic to the right. The output voltégein the circuit is the sensor
signal line.

\out varies as to the ratio between the two resistances (the fixed 47K resistance and the varying
Rphoto resistance. When the photocell resistance is small (as when brightly illuminatedjuhe
signal is close to zero volts; when the photocell resistance is large (as in the\daitlky, close to+5
volts, with a continuously varying range between the extremes.

This means that the sensor will report small values when brightly illuminated and large values in
the dark.

6.3.4 Infrared Reflectance Sensor

Quality Technologies QRD1114

Infrared Reflective Optosensor

signal |
ground [L X J
| \

330Q resistor

The infrared reflectance sensor consists of two discrete devices: an infrared LED emitter and an
infrared phototransistor receiver. The receiver and emitter are matched, so that the peak sensitivity
of the receiver is at the same wavelength of the emissions of the emitter. In the eXx@ugley
Technologies QRD1114 sensor diagram, the detector LED is on the left and the emitter is on the
right.

The wiring for the reflectance sensor is straightforward. The emitter LED is powered by the Handy
Board's+5v supply, with a 330 ohm resistor in series to limit the current through the LED to an
appropriate value. The detector transistor is pulled high with the Handy Board'’s internal 47K resistor.

When increasing amounts of light from the emitter LED is reflected back into the receiver, increasing
amounts of current flow through the receiver transistor and hence the internal 47K resistor. The voltage
drop across this resistor results in a lower voltage presented to the Handy Board’s analog input.

Different varieties of phototransistor may perform better with a smaller resistor value than the
on-board 47K resistor. If the sensitivity of the device is poor, try connecting the signal line-tébthe
supply through 10K, 4.7K, or 2.2K resistors to determine the best response. For the QRD1114 device,

44

however, the default 47K value is ideal.

Soecial note for working with infrared light: Infrared light is indeed invisible (unless you

are a bumblebee), making it hard to ascertain that a given infrared emitter LED is indeed
working. Here are two methods that may be used to visualize its presence: (1) Look at
the IR LED through a video-camera that has a viewfinder CRT screen. The CCD lens of a
standard video-camera is sensitive to infrared light, and it will be visible on its display. (2)
Purchase an infrared detector card (Radio Shack 276—099 or MCM 72-003 and 72-005),
which contains a phosphorescent panel that glows visibly under infrared illumination.

Quality Technologies QRB1114

Infrared Reflective Optosensor

signal | |

+5v |

ground |

330Q resistor

The Quality Technologies QRB1114 sensor, above, is another good reflective optosensor. In
the diagram, the left-hand component, marked “E” on the device package, is the infrared emitter, and
the right-hand component, marked “S,” is the infrared sensor.

45

7 Battery Maintenance

The Handy Board has a 9.6v, 600 mA battery pack consisting of eight AA-cell nickel-cadmium
rechargeable batteries.

7.1 Battery Charging

There are three ways to charge the internal battery:

1. Adapter plugged directly into the HB. Just plug the adapter into the power jack on the HB, and
the yellow “CHARGE” LED on the HB will light. This is a trickle-charge mode, which means
that (1) the Handy Board will fully charge in about 12 to 14 hours, and (2) the HB may be left
in this mode indefinitely.

2. Adapter plugged into the Serial Interface/Battery Charger board; HB connected via telephone
wire; “ NORMAL CHARGE” mode selected. The yellow “CHARGE” LED on the interface
board will light. This is a trickle-charge mode, which means that (1) the Handy Board will fully
charge in about 12 to 14 hours, and (2) the HB may be left in this mode indefinitely.

3. Adapter plugged into the Serial Interface/Battery Charger board; HB connected via telephone
wire; “ ZAP CHARGE” mode selected. The yellow “CHARGE” LED on the interface board will
not light. The ZAP CHARGE will fully charge the HB'’s battery in just 3 houafier which time
the battery will become warm and it should be removed from charge or placed into either of the
two trickle-charge modes.

When using one of the trickle-charge modes, the Handy Board itself should be turned off so that
the charge current goes toward charging the battery and not simply running the board. In Zap charge,
there is enough charge current to operate the board and charge the batteries at the same time (assuming
that the board is not driving motors or other external loads).

7.2 Adapter Specifications

The specifications of the Handy Board’s DC adapter are as follows:
e 12 volt, 500 mA DC output
e 2.1 mm inside, 5.5 mm outside diameter barrel-type plug
e center conductor negative

Most “universal” type adapters will work properly at one of their settings. Look for the yellow
charge LED to light up indicating proper charge (make sure the Charge Rate switch is set to “Normal”
mode).

Please be careful not to get an adapter thavespowered. Problems have been reported using
adapters that are rated for 1 to 2 amps.

Also, do not use an adapter that is underpowered or undervoltage. A 9 volt adapter will appear
to work—the charge LED will light—but it won’t be able to charge the battery for more than a few
minutes’ worth of power.

46

8 Part Listing

Circuit: hbschl2

Dat e: Thursday, Novenber 30, 1995 -

Devi ce Type Num

8 cell AA nicad pack
2% pol yprop cap
nmonolithic cer cap
mni radial 'lytic
nmonolithic cer cap

t el ephone cabl e
tantal um

mni axial 'lytic
mni axial 'lytic
power di ode

si gnal diode

bridge rectifier

AC or DC adapt er

CPU board encl osure
interface encl osure
Pol ySwi t cha fuse
Coax Power Jack

RJ11 top entry

RJ12 side entrK
10- pi n feral e header
12-pin fermal e header
14-pin fermal e header
14-pi n mal e header

3 pcs 9-pin fenal e hdr
3 pcs. 7-pin femal e hdr
3-pin fenal e header
4-pi n header

4x2 header, fenale
DB- 25 fenal e connect or
iron core inductor

hi gh-eff red LED

hi -eff yell ow LED
hi -eff green LED

NPN darl i ngt on

1% precision res
trinpot

RPACK6

RPACK9

14-pin DI P socket
16-pi n DI P socket
20-pi n DI P socket
28-pin DI P socket
52-pi n PLCC socket
pi ezo beeper

SPDT slide swtch
SPDT switch
pushbutton sw tch
32K static CMOS RAM
hex inverters

quad Schm tt NANDs
3-t0-8 decoder
tristate bus driver
transparent octal latch
octal latch

vol t age nonitor

i nfrared denodul at or
nmot or driver
vol t age regul at or
vol t age regul at or
RS232 converter
6811 mi croprocessor
16x2 LCD

m croproc crysta
femal e strip header
mal e strip header

RPRARPRRRPRPNNRRRRRRPRPRRNRRPRPRERNANNRPRPNNRWRRRRWONRE ON NRPRRNRPRRRPRPRPRRRRNRRRPRRRERRNNRNARNR R

9: 58 AM
Val ue Ref er ences Price Ea. Catal og No. Suppl i er
BAT1 19. 28 P227-1024- ND Di gi key
0. 0068 uF C6 0. 49 P3682- ND Di gi key
0.1 uF C5 C7 CO Cl4 0.21 P4917- ND Di gi key
10uF Cl0 Cl1 C12 C13 0.08 P6248- ND Di gi key
22 pF ClL 2 0.18 P4841- ND Di gi key
4-Wmre CAB1 1. 60 17MP007 Mouser
4.7 uF 4 C8 0.29 P2011- ND Di gi key
47 uF Cl5 C16 0.29 P5972- ND Di gi key
470 uF C3 0. 65 P6305- ND Di gi key
1N4001 D3 0.15 333-1N4001 Mouser
1N914 D1 0.15 333-1N914 Mouser
DB101 D2 0.62 DB101- ND Di gi key
12v, 500mA DC1 3.95 100087 Janeco
ENCL1 5.12 537-402- RD Mouser
ENCL2 1.94 400- 5043 Mouser
F1 1.32 RUE250- ND Di gi key
2.1nm I D J11 J12 0.34 CP- 002A- ND Di gi key
6/ 4 J5 1.08 154- UL6642 Mouser
6/ 6 jéo 1.28 154- UL6661 Mouser
Ja
J14
J15
J2 [FEMALE HEADER | S CUT
J1 FROM 36- PI N HEADER
J7 LI STED AT END OF PAGE]
J8 J13
J6
J9 1.54 152- 3425 Mouser
1 uH L1 0.84 M7010- ND Di gi key
HLMP1700 LED1 LED2 LED3 LED4 0.282 HLMP-1700QT-ND Digi key
LED9 LED11 LED13
HLMP1719 LED14 LED15 0. 282 HLMP- 1719QT- ND Di gi key
HLMP1790 LED5 LED6 LED7 LED8 0.282 HLMP-1790QT-ND Digi key
LED10 LED12
ZTX614 QA 0.59 ZTX614- ND Di gi key
10K R3 R7 0. 0235 10KEBK- ND Di gi key
1K R2 R5 R10 0. 0235 1KEBK- ND Di gi key
2. 2K RO 0. 0235 2. 2KEBK- ND Di gi key
2.2M R1 0. 0235 2. 2MEBK- ND Di gi key
3. 83K R4 0.11 3. 83KXBK- ND Di gi key
20K VR1 0.72 569- 91AR- 20K Mouser
47K R6 R8 R15 0. 0235 47KEBK- ND Di gi key
47%p 5W R11 0.41 47W 5- ND Di gi key
47 %o R12 R13 0. 0235 47EBK-ND Di gi key
A47%p 1/ 2W R14 0. 06 47H ND Di gi key
1Kx4 RP4 0.21 592- 8A- 1K Mouser
1Kx5 RP2 0.16 592-6S- 1K Mouser
47Kx9 RP1 RP3 0.27 592-10S- 47K Mouser
DI P4 DI P5 0.57 ED3114- ND Di gi key
DI P6 DI P7 DI P8 DI P9 0.65 ED3116- ND Di gi key
DI P1 DI P2 0.81 ED3120- ND Di gi key
DI P3 1.13 ED3728- ND Di gi key
PLCC 2.03 A2123- ND Di gi key
SPKR1 1.90 P9957- ND Di gi key
SWL 4. 47 CKN5006- ND Di gi key
SW 1.10 SWL01- ND Di gi key
SW2 SWB 0.20 P8006S- ND Di gi key
62256- 100LP U2 3.95 42833 Janeco
74HC04 U] 0.29 570- CD74HCO4E Mbuser
74HC132 u7 0. 46 511- MF4HC132 Mouser
74HC138 U6 0. 46 570- CD74HC138E Mbuser
74HC244 uUs 0.70 570- CD74HC244E Mouser
74HC373 U3 0.68 570- CD74HC373E Muser
74HC374 us 0.61 570- CD74HC374E Mouser
DS1233- 10 ui2 1.25 manuf act ur er Dal | as Seni
1 S1U60 uls 3.00 manuf act ur er Shar p
L293D ulo U1l 3.00 manuf act ur er SGS- Thonson
LM2931Z-5.0 U14 U17 0.90 LM2931Z-5. 0-ND Di gi key
LM7805CTB uU13 0.53 NJM7805FA- ND Di gi key
MAX232CPE Ul6 1.95 24811 Jameco
MC68HCL1A1FN Ul 8. 00 manuf act ur er Mbt or ol a
Hi t achi W 8. 00 LMD52L Ti mel i ne
8 Mz X1 2.32 332-5080 Mouser
1.10 929974- 01- 36- ND Di gi key
0.76 929834- 01- 36- ND Di gi key

a7

9 Schematic Drawings

9.1 CPU and Memory

vd >
lonwsues) Hi zool[>
g00L[>
[03U0d @07 vooI [>—
indino ozaid sool[>
J9A19981 H| 1oL [
2oIL >—
sindur jenbip
eoll [>

Jadeaq ozaid

TaldS
S00L
sindu 07INY [
Bojeuy
YAow >

T
(]

uN2uID Alows pue NdD :pleog NdD Z'T uoisian preog ApueH

PIHT T
vad .
_ & 3D
= EEEEERNE 58
Anua doy TTCY g
axL
s 1 7.. =
8ETOHYL axy
¢ “Sa leway ‘1apeay Xy
MY 0 sc B>
av—=p I YMAMSNN ISOW
eIV A e Son
A osin
s _|AH_ oA 10818 Indino Jojow ss
9rp2!
LAPF] < 1A 19918s Indur Bip
< ouixou
osin
v__wo <] s70a
o8 ST 13534~
axL
] 1] —
aadas : O0LTANTH “ d1001-95229
zT1SvEz IPSY 100 , -
020000V PSISSX nan K7 T 4
1 10000dA /SO IL o
seleouova /1111 S TWW T gayaqq ks axd
STViggistvead T 2evsoL av /1 Ol 3 s+ 4
VoTy aE|vIvie8d VYVVVVY ddEzd oux g a
ety Tvsed ddddddd dddd i3s3 ¢ a
TV/pad dd /avidd
verv e Tv/ead 9v/90d g a
oTv v/zad SH89 SQV/50d 4
18d YQv/¥Od
= a 08d TTOH £0V/EDd 3 ZIv2¢
03d 2av/zod IV
YNV/p3d m_ m m m_ TaV/Tod oTvE£
TNV/T3d 0av/00d 3 6
VVVYV T xS . 8 m €LEOHYL
I av v 1 L v 5 Q8l57—7q
z9gLlUusad ML 2| = 9 v OL [e
v 3333 11500Ss /X ™ S v—T] a941—g
« ddddAAANWY I NI 4d z; m v 2 W mu (i3
_ n IEEEEEE g 94 V. 8
v V5 3 Qg
v ZHN 8 WZ'Z TO T 2 o4 az o
] =| | S¥wn oLV ot at~
- 3 ¥20L ¢, 0T ov — T
v BY 9 fos— SrTTisY
(44 20/
AS+ MAoEE—i My T
_ 3 GGN en
RRRRRRRE | 1= o | —
HMd-WIN
Hor] RN L4 yelgdosnedr o o
vl L9sveztodotdup CETOHYL
STV PPPPPPPP |WWsSMU 2 _
m\suim%l_ .L. 5 1 d b =
(EEEPEEEEER arxer p STV 0T-££21S07]
06664064646 o sin b
ec == CETOHYL ~o10591 A
sng uoisuedx3 vn €ez1sa ||_l
NS+
zin

48

9.2 Motor Outputs

ANODel0l0N

N

L7700 [

Y0OHYL
€T 9
1T 0T pub
B i e
p— 60 Jlleu no
1 o1l ¢ vinoles
FOOHVL g ¢*° B0y
aeec
ul Nno |——
o A
¢l 1Inhino
p6N 150 €
T oo A lapeay sjewsay uid-zT
UMAOLON > g o A Y
NG+ T
V.LEOHYL szmoﬂo_z 0 W
Id__ 81 w|%_3 YOOHYL — Im.o
R A i
Sa 2 PO I sHI S a3
v IT |0 &p9L S 9 =0
A SsT pub O
Za 7 19€ 3 o6n yul £
z Og=—— STeur no [
Ta g T o 3 o1 gul iz} T K
0d €7 7T L
A £ino
TP TOOHVZ g TT
T0[P0/ aeec ve
cul zino || a =3 =) () < =) =] p
- I o ORISR
a0 182 010 € * 1 t t
_ T SSA SA A— ,—
E T I L z I T z
z z = = = =
YMJHOLOW AG+ X R 3 2 8 2
~ ~ ~ ~ ~ ~
© o [o © o
o o o o o o

unanD ndinQ JoloN

MS-1dV1S

SXAT 2dd

preog NdD Z'T UOISIaA preog ApueH

49

9.3 Digital Inputs

Handy Board version 1.2 CPU Board: Digital Input Circuit

D0.7 [>
Y7 [>
+5V us
RS +—1a1/6
START-SW [>— 17 liag 1yql 3 D7
47K 2 1'% 1yplL8 D6
15 5 D5
4 |FAS 1YSE b4
1A4 1Y4
MODA >
D1 P! 190,/
p , 1N914T 6 |14 D3
Start T3 RAL 2Y1I—F
2A2 2Y
Sw2 8 g sygl2 D1
11 9 DO
~—o A4 2v4)
. ., 74HC244
Stop
Sw3
1
= ~RESET > z
4
5
6
7
PAI 8
9
Tic2 [0
47Kx9
mics >
blsl7lelslalzet
000000000
J2
I0-0-0-0-0-0-0-0-0;
[0-0-0-0-0-0-0-0-0]

Digital Inputs
9.4 Analog Inputs

Handy Board version 1.2 CPU Board: Analog Input Circuit

AN7..0 ;

+5V

VR1
20K

IRQ/XIRQ >

TIC3 D—] 47Kx9

J1

o|o|wo|~|o|a|s|w vl

0-0-0-0-0-0O-Qf
0-0-0-0-0-O-Of

Analog Inputs

50

9.5 Infrared Transmission

Handy Board version 1.2 CPU Board:

TOC2

Infrared Transmission Circuit

+5V

J7

ro
ro

- [nole

R5 1K

LEDO
HLMP1700 %/

[2
1

U7a
74HC132

C6
0.0068 uF

2% polyprop cap

U9a Q1
R3
L 2 NN
10K
74HC04 ZTX614

NPN darlington

O
3-pin female header

Handy Board version 1.2 CPU Board: Power Supply Circuit

9.6 Power Supply
LED15 R13 UNSWPWR
J12 HLMP1719 470Q U
\\ D3
) R14 b
Coax Power Jack 1N4001
2.1mm ID 47Q, 1/2W power diode
Charge —
Jack N F1

Swi

——

PolySwitch® fuse

[o}

u13
LM7805CTB

1

3
SPDT slide switch ™ L 5
2 o o
=
. 1+
BAT1 = - -
_ ui4
8 cell AA nicad pack E LM2931Z-5.0
e 3 1 . -
L1 > O S T _L E
(] ~ o L]
"o 1~ 1I=°

< MOTORPWR

Motor Power
Header

Motor-GND

51

9.7

9.8

Infrared Reception

Handy Board version 1.2 CPU Board:

+5V

TicL [.

u1s

Sharp IS1U60

-

Infrared Input Circuit

+5V

3

123

Serial Interface and Battery Charger

Handy Board Interface/Charger Unit, version 1.0

u17

+5V
LM2931Z-5.0
, 3 1 .
L ° L bhy
c15 c16 1K
47 uF 47 uF
LED13
Coax Power Jack — — — /% HLMP1700
2.1mm ID - - - “PWR”
R11 =
470, 12w “CHARGE”
R12 Z
3
47Q LED14
HLMP1719
Sw4
J9 1 —o)— ZAP! s
g - SPDT switch
4 +5V
é 5 u16) +5V
< 6 c10 "
< 7 + 2 Cl+ b
N v+ c1.3 c14
9 10UF Ta 10uF 0.1 uF
< 0 L 6l\. C2+] c13 I
é 1 = c11 ca2.B —
2 + -
< 3 n 14|T10ut Tiinl11
S 4 10uF 10uF
é g = 7 Tzouto<} T2inl10 Jio
< T17 | 3
< 8 13|R1in Rilout|12 g
< 9 4
S gi 8| R2in {>°R20u19 5|
22 s
| 23 R9 RJ12 side entry
54 2 2K MAX232CPE
| 25 —
DB-25 female connector NS LED12 MAX232:
HLMP1790 pin 16 = +5v
SER pin 15 = gnd

52

10 Printed Circuit Board Layouts

10.1 Han

- +
1999 Fred G.
990y et O o n8of0o ooH A%ooomEW/rw/o\poooo 00 o vi2i
0
() o == T—

= G = 2 Q
o — [Wcovronent o 4 9 o o’ j_mlojlhj 5 0\0
o OQ ﬂlMIO y O oja o|M/roM
3 / o—0 "\ o—~<0 Db
"
~

§3o H

A
= o
0 0 (o) OOOOWHMWOO
00000
(o] (o]

(o)

(o)

(o)

r v
D/
O—={1

SN2
o Oomu\h\o?@o o 2 Uo

——L a °
0o ,~C o4O

Side

dy Board Component

10.2 Handy Board Solder Side

QO ono on OE,O

37*0

O

QQ

*x/° It lo %;b , 0

0f0—0100000000

Qo—cqo @_D/oij>_—h/4hﬁiong
—5 0 0—o

N 22 N9) cog oo
\:f_—w Ea il
7 N R i3
000 ofp o n(’C’C’CD olog
E O'OO\OOZE/—\:\:@); oo

o

54

10.3 Handy Board Silkscreen

- + GND +5 VRA9A8T4 DOD1 D2D3D4D5D6D7 YO Y1Y2Y3 YAYSTO3ASAIS E
<] <]
U4—-LCD Display J3 V_@M
4
_ NON W
L yars -
© 0 ~ ¥ U2-60256—120@LP
o Al x| o 2 ©
- = _ 0
=5 " o O © U3—74HC373 m "
n = <
v D +F ' ~ %m m
© ﬁs\% _ ¥
(h'd N
= RP4 : S B | __/
L1 S
Js O._ €LRrR1} ON Cc8
U9—74HC04 U1 v: ._”mm“_. " Jg Lo
mgIN o || «
+9 TNO14 Al
=z — _ ﬁ\% o
J4
S E
o < rh
“_a U1e—L293D 3 m
(] <
X ~ o]
m i I U1 CHARGE
2 "~ ™~ J12
~ 66 mm N)
< _ 0 68HC11A1FN LED15Y
m 0
“_oa U11—L293D =) iR6F
N 76 % o QF
3 M
= Jisbo 1 L J .ﬂ
2 RP2-1Kx5 T —3 ,, LIR2%F g [CCC DO T3
» 86 4R |) +, - o
01 I — [—
THE |swz | | sw3| Y4 DoR | _

HANDY BOARD

o

V21 START STOP parTPwr- 151413121110 9 8 7 6 54 3 2 1

@

IROUT

55

10.4 Interface/Charger Board Component Side

O O 000000000000 O
o T 0QROe000000000 Clgogge
o Q NORMAL Q€
Q 3 o oo poo n; oo
S QA o
o< °ojoogooooo0omn

<2 @

% %;D'- o oojoo OZAP// (o)

oS @3 XX

zZ 0 e 00O

-3 =

-~ Q
Q 0 () 1997
QO (0] O j ol O O Fred G. Martin

SE PWR CHARGE MIT Media Lab

10.5

Interface/Charger Board Solder Side

: _— Teoocooy
N HHHQT

O O 0000

OOOOOO

BOOOOOO
00000

O

56

10.6 Interface/Charger Board Silkscreen
GCyE-CST ¥3ISNOW <
©
¥l ch
I arge
W L Rote
S 3 @@0@“‘”‘“
23 =20 i
—‘ —
Q—‘% ~ ! n
— |2 U16 =
é“ %t &) |: H Py
-~ w) a
@ 2, N 1+ ZAP! ! -
< J— T
ofZ — 1— C16 +
=3 L T
g a R9 R1@ R12
Q 0 [
® o =
- LEDI2G 13R 14Y N
| © © ©
- SER PWR CHARGE

57

11 Pin-Out Detalil

]
BEadBABEH WW_W%W%%MMW
a
] =
g g
T
SPI
+5V a\D
M SQ PD2 SS/ PD5
Mot or Ports MOSI / PD3 SCK/ PD4
[]nvoT 0+ NC N C
®O [|NC
| |MOT O- MOBSHCL1ALFN
|vor 1+
®O[L]INC Battery
| |MOT 1- Power
| vor 2+
QOLNe PRER
| |MOT 2- i [EREE
NOT 3+ FFIE o [TT 1]
®®|ZO _HDHD Digital In Anal og I n | R QUT
| MoT 3- HEEEEEEEEnEEEEEEn +
. . mmmmmmicid 5883888 [
88 f2E2EZEZ%
START/ Bl T7 STOP/ BI T6 tElE
Not es: YO t hrough Y5 are active Wite 0x4000 = YO

The 'Bit X' on the
buttons and Di gital
In are bits of a
read t o OX7FFF.

| ows.

what to do to force them
| owfor a cycle.

Read 0x4000 = Y1
Wite 0x5000 = Y2
Read 0x5000 = Y3
Wite 0x6000 = Y4
Read 0x6000 = Y5

Thi s tabl e shows

This diagram was contributed by Brian Schmalz.

58

12 Frequently Asked Questions

This section answers some common questions and problems regarding the Handy Board. Please note
that the information here is only a subset of the full FAQ, which is on-line. For more questions and
answers, please refer to the on-line FAQiat p: / / handyboar d. coni f aq/ .

12.1 Hardware
12.1.1 Motor Voltage

How can | use motors other than 9 volts with the Handy Board?

The Handy Board’s internal battery is rated for 9.6 volts; this is generally adequate for running
motors rated between 6 and 12 volts. However, some 6 volt motors aren’t happy with the extra voltage,
and some 12 volt motors will run too slowly.

Instructions are available on the Handy Board web site for modifying the Handy Board to
accept an external motor battery that can be any voltage from about 6 volts to 36 volts. See
htt p: // handyboar d. coni nods/ hbntut . ht i .

Lyle Hazelwood implemented a high-current H-bridge circuit described by Chuck McManis and
tested by Jeffrey Keyzer, and posted the schematic and circuit notes. See
ftp://cherupakha. medi a. nit. edu/ pub/contrib/lyl ehaze/ hbri dge/ .

12.1.2 Digital Outputs

Doesthe Handy Board have any digital outputs?

The SPI pins on the connector on the middle right edge of the bd&)dcgn be configured as
digital outputs. Do goke(0x1009, 0x3c) to make them outputs; then they are mapped to the
middle 4 bits of address 0x1008 (SS= bit 5, SCK= bit 4, MOSI= bit 3, MISO= bit 2). Poke to that
address (0x1008) to set them.

d0..d7 is the data bus and stuff is flying around on those pins all the time, so they cannot be used
as outputs. If you hook an *hc374 chip to the board, in the same fashion as the one driving the motor
chips, you get 8 more digital outs. Connect the 'hc374’s clock line to any of the three unused output
latch selects of the 'hc13&(Q, Y2, or Y4). All of these signals are present on the Expansion Bus.

Also, digital input #9 can be reconfigured as an output. Dotaset (0x1026, 0x80) to make
it an output, and then ud® t _set (0x1000, 0x80) to turn the bit on andi t _cl ear (0x1000,
0x80) to turn it off.

Finally, TO3 is an uncommitted timer output brought out to the Expansion Bus. This pin is bit 5 of
PORTA; i.e., set it withbi t _set (0x1000, 0x20) and clear it withbi t _cl ear (0x1000, 0x20) .

12.1.3 High Adapter Voltage

I’mmeasuring the voltage on my adapter, and it says 18 volts. Isthisnormal?

This is correct. Normal DC adapters are unregulated and there is an inverse relationship between
voltage and current.

Here is how to interpret the rating on an adapter. Let’s use the Handy Board’s 12 volt, 500 mA
(milliamp) DC adapter standard as an example.

59

This rating means that when a load is drawing 500 mA of current, the adapter voltage will be 12
volts.

If the adapter is plugged into the wall but its output is not connected to anything—in other words,
there is no load—then the current is zero and the voltage measured will higher than the adapter’s
specification. For the Handy Board’s “12 volt” adapter, a reading of 18 volts is normal if there is no
load.

If there is load that drawsiore than 500 mA, then the output voltage would be less than 12 volts.
Note that itis possible to draw more than 500 mA even though an adapter might only be rated for 500
mA. The effect is that the output voltage will be less than the adapter’s specified voltage, and also this
will overtax the adapter and potentially cause it to fail.

12.2 Software
12.2.1 ICB Files

IC won'tload my I CB files,

Please note an important bug related to ICB files. On the MS-DOS platform (with both the freeware
v2.853 and commercial 3.1 beta 4) version of Interactive C, the ICB files must have Unix-style line
termination.

Here is the explanation. ICB files are text files, and in a text file, the Mac, Unix, and MS-DOS
file systems each have a different way of specifying the end of each text line. On the Mac, a ctrl-M
indicates the end of line. On Unix, it's a ctrl-J. On the PC, it’s a ctrl-M followed by a ctrl-J.

On the MS-DOS computer platform, if you use Newton Lab’s web-based ICB assembler (located
athref =http://ww. newt onl abs. com'i ¢/i cb. ht m), or if you download an ICB file from an
FTP server, when you save the resulting ICB file it will undoubtedly create a normal MS-DOS text file,
with ctrl-M + ctrl-J linefeeds. You must edit this file and remove all of the ctrl-M’s.

Originally, ctrl-J meant line feed and ctrl-M meant carriage return (think of a TeleType machine).
So on MS-DOS, when you remove the ctrl-M’s you get files where each new line starts where the last
one ended in terms of screen column. This will look wrong but it is what the MS-DOS Interactive C
versions require.

On the Mac and Unix platforms, the IC accepts the corresponding native text file format. But the
MS-DOS and Windows versions of IC require the CTRL-M’s to be edited out of ICB files.

Remi Desrosierss(| ver wva@dyssee. net) contributed a DOS utility to automatically strip out
the CTRL-M’s. Itis available altit t p: / / handyboar d. com sof t war e/ i 2u. exe .

Please make sure to save as source so it gets downloaded as a binary file.

12.2.2 Power Glitch

| keep getting a message that says “ - PONER GLI TCH " on the Handy Board LCD screen.

This is caused when the incorrect pcode file is downloaded to the Handy Board. Make sure you
are downloadingcode_hb. s19, not pcoder 22. s19.

It may be necessary to reconfigure your downloader to send the proper file. If you are using
Initialize Board on the Macintosh, use ResEdit to changeShR resource, namingdcode _hb. s19”
as the file to download.

60

12.2.3 | can’t get any of the downloaders to work on my fast Windows 95 machine.
What is wrong?

For presently unknown reasons, some fast Pentiums have trouble running the downloaders properly.
Here are some suggestions that many Handy Board users have found helpful:

e When usingll . exe, runitin a full-screen DOS mode. (This may also be necessary when using
the freeware DOS version of Interactive C.)

¢ In the advanced serial port options, change the setting for receive buffer and transmit buffer to
the lowest value possible (min).

61

13 Vendors

The Handy Board is commercially available from the following companies:

Gleason Research. Gleason Research suppliesassembled Handy Board systems, Expansion Boards,
and accessories. Gleason Research, P.O. Box 1494, Concord, MA 01742. Phone (510) 665—
2302; fax (978) 287-4170; E-maihf o@l easonr esear ch. com
URL htt p:// gl easonresearch. con .

Robot Store HK. Robot Store HK, located in Hong Kong, supplies Handy Boards, Expansion
Boards, and accessories, assembled or in kit form. Mr Hui, Pak Ki, Robot Store (HK), 7th Floor,
Fok Wa Mansion, No. 19 Kin Wah Street, North Point, Hong Kong. Telephone (852) 2563-8511;
fax (852) 2887-2519; E-maiui p@kst ar . cony URL ht t p: / / wwwv. r obot st or ehk. cont .

Douglas Electronics. Douglas Electronics supplies blank Handy Board printed circuit boards,
blank Expansion Boards, and Expansion Board parts kits. Douglas Electronics, Inc., 2777
Alvarado Street, San Leandro, CA 94577 USA. Phone (510) 483-8770; fax (510) 483-6453;
BBS (FirstClass) (510) 483-6548; E-mailf o@ougl as. com

Acroname. Acroname sells unassembled Handy Boards, Expansion Boards, and accessories. Acron-
ame, 5621 Arapahoe Ave, Suite C, Boulder CO, 80303. Phone (720) 564-0373; fax (720)
564-0376; E-maisal es@cr onane. cont URL htt p: // ww. acr onane. cont .

14 Handy Board Community

In order to support everyone who wants to use a Handy Board, it is crucial that all users help each
other in troubleshooting problems, exchanging ideas and techniques, and sharing code. Neither | (Fred
Martin) nor the Handy Board vendors can do it alone.

The Handy Board discussion group is the main way that Handy Board users communicate with
each otherAll active Handy Board users are encouraged to seek technical support, advise, and ideas
fromthe discussion group community.

For information, seét t p: // news. | ugnet . coni r obot i cs/ handyboard/ .

15 Licensing

The Handy Board technology, including the printed circuit board layout and supplied code libraries,
is distributed under a free licensing policy. This agreement allows any party to use the Handy Board
technology for any purpose without having to pay a licensing fee.

The technology isot public domain. The Massachusetts Institute of Technology reserves the
copyrightto the artwork and code. Any commercial use of the technology must include a reproduction
of the copyright notice on the board itself, and must acknowledge the institutional source (MIT)
and author (Fred Martin) of the technology in an appropriate fashion in any accompanying product
documentation.

A copy of the documentation authorizing this usage is available from the Handy Board web site
htt p: // handyboar d. coni howt oget/ I i cense. html .

62

