ASxxxx Assenbl ers

and

ASLI NK Rel ocati ng Linker

CHAPTER 1

c

[N

CONOUARRERARRARAARAERARRARARARARARNNNWWWWONNNNNNE R

NNNPNNNNNNNNNE
ORARRRRARDWON R

PRRPRPRRPRPRRPRPRRPRPRRPRPRRPRPRPRRPRPRRPRPRREPRPRREPRPRREPRPRREPRPRREPRRREPRRERR

P

WN P

e

.1
.2
.3
.4

~No oA~ WNPRE

O©CoOoO~NOUILAWNPE

ER 2

O~NO U WNPE

THE ASSEMBLER
THE ASXXXX ASSEMBLERS
Assenbly Pass 1
Assenbly Pass 2
Assenbly Pass 3
SOURCE PROGRAM FORMAT
St at ement For mat
Label Field
Operator Field
Operand Field
Comment Field
SYMBOLS AND EXPRESSI ONS
Character Set
User - Defi ned Synbol s
Local Synbol s
Current Location Counter
Nunber s
Ter s
Expressi ons
GENERAL ASSEMBLER DI RECTI VES
.modul e Directive
.title Directive
.sbttl Directive
. page Directive
.byte and .db Directives
.word and .dw Directives

.bl kb, .blkw, and .ds Directives

.ascii Directive
.asciz Directive
.radi x Directive
.even Directive
.odd Directive

.area Directive
.org Directive

.globl Directive

.if, .else, and .endif Directives

.include Directive
.setdp Directive
I NVOKI NG ASXXXX
ERRORS
LI STI NG FI LE
SYMBOL TABLE FI LE
OBJECT FILE

THE LI NKER
ASLI NK RELOCATI NG LI NKER
I NVOKI NG ASLI NK
ASLI NK PROCESSI NG
LI NKER | NPUT FORMAT
bj ect Modul e For mat
Header Line
Modul e Li ne
Symbol Line
Area Line
T Line
R Li ne
P Li ne
LI NKER ERROR NMESSAGES

RPRRPRRPRRPRRPRRRPRERRLRER
1 1 1 1 1 1

o '
RPOOO0OOUIUITWWWNNNR K-

[l S
1 1
B
AN

1-14
1-15
1-16
1-16
1-17
1-17
1-17
1-17
1-18
1-18
1-18
1-19
1-19
1-20
1-20
1-20
1-22
1-22
1-23
1-24
1-24
1-26
1-27
1-28
1-30
1-30

NDNNNNMNNNDNNDNNDNDNDNDN
1

1
N~Nooooiomonoh WN R

CHAPTER 3 BUI LDI NG ASXXXX AND ASLI NK

3.
3.

1
2

BUI LDI NG AN ASSEMBLER
BUI LDI NG ASLI NK

APPENDI X A AS6800 ASSEMBLER

> r

1

2
2
2
2
2
2
2

DU WNPEF

6800 REGQ STER SET
6800 | NSTRUCTI ON SET

I nherent Instructions

Branch I nstructions

Si ngl e Operand I nstructions

Doubl e Operand I nstructions

Junp and Junp to Subroutine Instructions
Long Register Instructions

APPENDI X B AS6801 ASSEMBLER

WWwwwwwwmmw

1

2
3
3
3
3.
3
3
3
3

~No ok~ WNPRE

. hd6303 DI RECTI VE
6801 REG STER SET
6801 | NSTRUCTI ON SET

I nherent |nstructions

Branch | nstructions

Si ngl e Operand I nstructions

Doubl e Operand Instructions

Junp and Junp to Subroutine Instructions
Long Register Instructions

6303 Specific Instructions

APPENDI X C AS6804 ASSEMBLER

DO00000000

1

2
2
2
2
2
2
2
2

~No ok wWwN R

6804 REGQ STER SET
6804 | NSTRUCTI ON SET

I nherent Instructions

Branch I nstructions

Si ngl e Operand Instructions

Junp and Junp to Subroutine Instructions
Bit Test Instructions

Load I mmedi ate data I nstruction

6804 Derived Instructions

APPENDI X D AS6805 ASSEMBLER

CooOO0O0O000

1

2
2
2
2
2
2
2

U WNPE

6805 REGQ STER SET
6805 | NSTRUCTI ON SET

Control Instructions

Bit Mani pul ation Instructions

Branch I nstructions

Read- Modi fy-Wite Instructions

Regi ster\ Menory I nstructions

Junp and Junp to Subroutine Instructions

APPENDI X E AS6809 ASSEMBLER

mmmmmm

1

2
2
2
2
2

6809 REGQ STER SET
6809 | NSTRUCTI ON SET

I nherent Instructions

Short Branch Instructions
Long Branch Instructions

Si ngl e Operand I nstructions

Page ii

E-1
E-1
E-1
E-3
E-3
E-3
E-4

mmmmmm
NN

P P2 OO0~ U

0
1

Doubl e Operand I nstructions

D-register Instructions

I ndex/ St ack Regi ster Instructions

Junp and Junp to Subroutine Instructions
Regi ster - Register Instructions

Condi tion Code Register Instructions
6800 Conpatibility Instructions

APPENDI X F AS6811 ASSEMBLER

mmmmmmm M

1

2
2
2
2
2
2
2
2

~No ok wWN PR

6811 REGQ STER SET
6811 | NSTRUCTI ON SET

I nherent |nstructions

Branch I nstructions

Si ngl e Operand Instructions

Doubl e Operand Instructions

Bit Manupul ation I nstructions

Junp and Junp to Subroutine Instructions
Long Regi ster Instructions

APPENDI X G AS8085 ASSEMBLER

G

OOOOOOOO

1

2
2
2
2
2
2
2.
2.

~No ok, WN B

8085 REG STER SET
8085 | NSTRUCTI ON SET

I nherent Instructions

Regi ster/ Menory/ I mmedi ate Instructions
Call and Return Instructions

Junp Instructions

I nput / Qut put/ Reset Instructions

Move | nstructions

Ot her Instructions

APPENDI X H ASZ80 ASSEMBLER

ITITIIIIIIIIIT

W W0 W W wwwwwN R
P OO~NOUITRAWNPE

. hd64 DI RECTI VE
Z80 REGQ STER SET AND CONDI TI ONS
Z80 | NSTRUCTI ON SET

I nherent Instructions

Inmplicit Operand Instructions

Load Instruction

Cal | /Return Instructions

Junp and Junp to Subroutine Instructions
Bit Mani pul ation Instructions

Interrupt Mbde and Reset I|nstructions

I nput and Qutput Instructions

Regi ster Pair Instructions

HD64180 Specific Instructions

Page iii

QO BRABDMWNNRERRPP

PPOPOPRR P
WWWNNNNR R

H 1
H 1
H 1
H 2
H 3
H 3
H 4
H 4
H 4
H5
H5
H5
H5
H 6

Page iv

PREFACE

The ASxxxx assenblers were witten following the style of
several cross assenblers found in the Digital Equi pnment Cor pora-
tion Users Society (DECUS) distribution of the C programng
| anguage. The DECUS code was provided with no docunentation as
to the input syntax or the output format. Study of the code
reveal ed that the unknown aut hor of the code had attenpted to
fornulate an assenbler with attributes simliar to those of the
PDP- 11 MACRO assenbl er (without macro's). The inconplete code
from the DECUS C distribution has been largely rewitten, only
the program structure, and C source file organization remains
relatively unchanged. However, | wish to thank the author for
his contribution to this set of assenblers.

The ASLINK programwas witten as a conpanion to the ASXxXxx
assenmblers, its design and inplenmentation was not derived from
any ot her work.

The ASxxxx assenblers and the ASLINK relocating |inker are
pl aced in the Public Domain. Publication or distribution of
these prograns for non-commercial use is hereby granted with the

stipulation that the copyright notice be included wth al
copi es.

I would greatly appreciate receiving the details of any
changes, additions, or errors pertaining to these prograns and
will attenpt to incorporate any fixes or generally usefu
changes in a future update to these prograns.

Alan R. Bal dwi n

Kent State University
Physi cs Depart ment
Kent, Ohio 44242

CHANGES I'N VvVO0O1.50

The ASxxxx assenbler and |inker have been updated to nove
byte index, direct page mpde, and byte pc relative address
checking fromthe assenmbler to the linker. This change has al -
| owed the foll owi ng enhancenents:

1. The .setdp directive now has a conmon format for al
AS68xx assenbl ers.

2. Direct page variables nmmy be externally defined with
their addresses resolved at link tine.

3. Byte index offsets my be external references and
resolved at link tine.

4. Byte pc relative instructions (i.e. branches) may
reference external |abels or |abels in other areas.

The ASxxxx assenblers (using the -f or -ff option) can
generate a listing file which flags the data that will be relo-
cated by the linker.

The REL file format now has an additional directive for pag-
ing information and has additional flags for pageO, page, and
unsigned byte formats. The new linker is conpatible with the
first version of the ASxxxx assenblers.

The renmining changes are related to non-portable code found
while porting the assenblers to a notorola 68030 system

CHAPTER 1

THE ASSEMBLER

1.1 THE ASXXXX ASSEMBLERS

The ASxxxx assenblers are a series of mcroprocessor assem
blers witten in the C programm ng | anguage. Each assenbl er has
a device specific section which includes:

1. device description, byte order, and file extension in-
formation

2. a table of the assenbler general directives, special
device directives, assenbler menonics and associated
operation codes

3. machine specific code for processing the device menon-
i cs, addressing nodes, and special directives

The device specific information is detailed in the appendices.
The assenbl ers have a common devi ce i ndependent section which

handl es the details of file input/output, synmbol table genera-
tion, programdata areas, expression analysis, and assenbler
directive processing.
The assenblers provide the follow ng features:

1. Command string control of assenbly functions

2. Al phabetized, formatted synbol table listing

3. Rel ocatabl e object nodul es

4. d obal symbols for linking object npdul es

5. Conditional assenbly directives

THE ASSEMBLER PAGE 1-2
THE ASXXXX ASSEMBLERS

6. Program sectioning directives

ASxxxx assenbl es one or nore source files into a single relo-
catable ascii object file. The output of the ASxxxx assenblers
consists of an ascii relocatable object file(*.rel), an assenbly
listing file(*.Ist), and a synbol file(*.sym

1.1.1 Assenbly Pass 1

During pass 1, ASxxxx opens all source files and perforns a
rudi nenatry assenbly of each source statenment. During this pro-
cess all synbol tables are built, program sections defined, and
nunber of bytes for each assenbled source line is estimted.

At the end of pass 1 all undefined synbols may be nade gl oba
(external) using the ASxxxx switch -g, otherw se undefined sym
bols will be flagged as errors during succeedi ng passes.

1.1.2 Assenbly Pass 2

During pass 2 the ASxxxx assenbl er resolves forward refer-
ences and determ nes the nunmber of bytes for each assenbled
l'ine. The nunber of bytes used by a particular assenbler in-
struction my depend upon the addressi ng node, whether the in-
struction allows multiple forms based upon the relative distance
to the addressed | ocation, or other factors. Pass 2 resolves
these cases and determ nes the address of all synbols.

1.1.3 Assenbly Pass 3

Pass 3 by the assenbler generates the listing file, the rel o-
catable output file, and the synbol tables. Also during pass 3
the errors will be reported.

The relocatable object file is an ascii file containing sym
bol references and definitions, program area definitions, and
the relocatable assenbled code, the linker ASLINK will wuse this
information to generate an absolute |load file (Mdtorola or Inte
formats).

THE ASSEMBLER PAGE 1-3
SOURCE PROGRAM FORNMAT

1.2 SOURCE PROGRAM FORMAT

1.2.1 Statenent Format

A source programis conposed of assenbly-|anguage statenents.
Each statenment nust be conpleted on one line. A line my con-
tain a maximum of 128 characters, longer lines are truncated and
| ost.

An ASxxxx assenbler statement nmay have as many as four
fields. These fields are identified by their order wthin the
statenment and/or by separating characters between fields. The
general format of the ASxxxx statement is:

[l abel :] Operator Oper and [; Comment (s)]

The |abel and comment fields are optional. The operator and
operand fields are interdependent. The operator field may be an
assenbler directive or an assenbly mmenonic. The operand field
may be optional or required as defined in the context of the
oper at or.

ASxxxx interprets and processes source statenents one at a
tinme. Each statenment causes a particular operation to be per-
fornmed.

1.2.1.1 Label Field -

A label is a user-defined synbol which is assigned the val ue
of the current |ocation counter and entered into the wuser de-
fined synbol table. The current location counter is used by
ASxxxx to assign menory addresses to the source program state-
ments as they are encountered during the assenbly process. Thus
a label is a means of synbolically referring to a specific
st at ement .

VWhen a program section is absolute, the value of the current
| ocation counter is absolute; its value references an absolute
menory address. Simlarly, when a programsection is relocat-
abl e, the value of the current |ocation counter is relocatable.
A relocation bias calculated at link time is added to the ap-
parent value of the current |ocation counter to establish its
effective absolute address at execution tine. (The user can
al so force the linker to relocate sections defined as absol ute.
This may be required under special circunstances.)

If present, a label nust be the first field in a source
statenment and nust be term nated by a colon (:). For exanpl e,

THE ASSEMBLER PAGE 1-4
SOURCE PROGRAM FORNMAT

if the value of the <current location counter is absolute
01FO(H), the statenent:

abcd: nop

assigns the value O0l1FO(H) to the label abcd. |If the location
counter value were relocatable, the final value of abcd would be
01FO(H) +K, where K represents the rel ocation bias of the program
section, as calculated by the linker at link tine.

More than one |abel may appear within a single label field.
Each | abel so specified is assigned the sane address value. For
exanple, if the value of the <current |location counter is
1FFO(H), the nultiple labels in the follow ng statement are each
assigned the val ue 1FFO(H)

abcd: aq: $abc: nop

Mul tiple | abels may al so appear on successive |ines. For ex-
anpl e, the statenents

abcd:
aq:
$abc: nop

i kewi se cause the sane value to be assigned to all three | a-
bel s.

A double <colon (::) defines the |abel as a global synbol.
For exanple, the statenent

abcd: : nop

establishes the | abel abcd as a global synbol. The distinguish-
ing attribute of a global synbol is that it can be referenced
from within an object nodule other than the nodule in which the
synmbol is defined. References to this label in other npdules
are resolved when the nodules are |inked as a conposite execut-
abl e i mage.

The | egal characters for defining |abels are:

through zZ
through z
through 9

. (Period)

$ (Dol lar sign)
_ (underscore)

o >

A label may be any |length, however, only the first eight (8)
characters are significant and, therefore nust be wunique anobng
al | labels in the source program (not necessarily anobng

THE ASSEMBLER PAGE 1-5
SOURCE PROGRAM FORNMAT

separately conpiled nodules). An error code(s) (mor p) will be
generated in the assenbly listing if the first eight characters
in two or nore |abels are the sane. The mcode is caused by the
redeclaration of the synbol or its reference by another state-
ment. The p code is generated because the synmbols location is
changi ng on each pass through the source file.

The label nust not start with the characters 0-9, as this
designates a |l ocal synbol with special attributes described in a
| ater section.

1.2.1.2 Operator Field -

The operator field specifies the action to be perforned. It
may consi st of an instruction menonic (op code) or an assenbl er
directive.

Wien the operator is an instruction menonic, a nachine in-
struction is generated and the assenbl er evaluates the addresses
of the operands which follow. \When the operator is a directive
ASxxxx performs certain control actions or processing operations
during assenbly of the source program

Leading and trailing spaces or tabs in the operator field
have no significance; such characters serve only to separate
the operator field fromthe preceeding and follow ng fields.

An operator is termnated by a space, tab or end of |ine.

1.2.1.3 Operand Field -

VWen the operator is an instruction menonic (op code), the
operand field contains program variables that are to be
eval uat ed/ mani pul ated by the operator.

Operands nmay be expressions or synbols, depending on the
operator. Miltiple expressions used in the operand fields nmay
be separated by a comma. An operand should be preceeded by an
operator field; if it is not, the statenent will give an error
(g or o). Al'l operands follow ng instruction menonics are
treated as expressions.

The operand field is terminated by a senmicolon when the field

is followed by a coment. For exanmple, in the followng
st at ement :
| abel : | da abcd, x ; Comment field

the tab between | da and abcd term nates the operator field and
defines the beginning of the operand field; a comm separates

THE ASSEMBLER PAGE 1-6
SOURCE PROGRAM FORNMAT

the operands abcd and x; and a sem colon term nates the operand
field and defines the beginning of the coment field. When no
comment field follows, the operand field is term nated by the
end of the source line.

1.2.1.4 Comment Field -

The conment field begins with a sem colon and extends through
the end of the line. This field is optional and rmay contai n any
7-bit ascii character except null.

Comments do not affect assenbly processing or program execu-
tion.

1.3 SYMBOLS AND EXPRESSI ONS

This section describes the generic conponents of the ASxxxx
assenbl ers: the character set, the conventions observed in con-
structing synbols, and the use of nunbers, operators, and ex-
pressi ons.

1.3.1 Character Set

The followi ng characters are legal in ASxxxX source prograns:

1. The letters A through Z. Both upper- and | ower-case
letters are acceptable. The assenblers are case sensi -
tive, i.e. ABCD and abcd are different synbols. (The
assenbl ers can be nade case insensitive by reconpiling
with the appropriate switches.)

2. The digits O through 9

3. The characters . (period), $ (dollar sign), and _ (un-
derscore).

4. The special characters listed in Tables 1 through 6.
Tables 1 through 6 describe the various ASxxxx | abel and

field term nators, assignnent operators, operand separators, as-
senbly, unary, binary, and radi x operators.

THE ASSEMBLER
SYMBOLS AND EXPRESSI ONS

Label

Col on

Doubl e col on

= Equal sign

== Doubl e equa
si gn

Table 2

Tab
Space
, Comma

; Seni col on

Tabl e 3

Nunber sign
Peri od
(Left parenthesis

) Ri ght parenthesis

PAGE 1-7

Term nators and Assi gnnment Operators

Label term nator.
Label Term nator; defines the
| abel as a gl obal | abel

Di rect assignnent operator

Di rect assignnent operator
defines the synbol as a gl oba
synbol .

Field Term nators and Operand Separators

ltemor field term nator.
ltemor field tern nator.
Operand field separator.

Comment field indicator.

Assenbl er Operators

| medi at e expression indicator.
Current |ocation counter.
Expression deliniter.

Expression delineter.

THE ASSEMBLER
SYMBOLS AND EXPRESSI ONS

Unary Operators

PAGE 1-8

< Left bracket

> Ri ght bracket

+ Pl us sign

- M nus sign

~ Ti |l de

Si ngl e quote

Doubl e quote

\ Backsl ash

>FEDC

+A

-A

Produces the |lower byte
val ue of the expression.
(DO

Produces the upper byte
val ue of the expression.
(FE)

Positive value of A

Produces the negative
(2's conplenent) of A

Produces the 1's conpl e-
ment of A

Produces the value of
t he character D.

Produces the double byte
val ue for AB.

Uni x style characters
\b, \f, \'n, \r, \t
or octal byte val ues.

THE ASSEMBLER
SYMBOLS AND EXPRESSI ONS

Bi nary Operators

PAGE 1-9

Table 5
<< Doubl e
Left bracket
>> Doubl e

Ri ght bracket

+ Pl us sign

- M nus sign

* Ast eri sk

/ Sl ash

& Anpersand
| Bar
% Percent sign

A Up arrow or
circunfl ex

0800 << 4

0800 >> 4

Produces the 4 bit

left-shifted val ue of
0800. (8000)

Produces the 4 bit
right-shifted value of
0800. (0080)

Arithmetic Addi tion
oper at or.

Arithnetic Subtraction
oper at or.

Arithnetic Mul tiplica-
tion operator. (signed
16-bit)

Arithmetic Di vi si on
oper at or. (signed

16-bit quotient)
Logi cal AND operator.
Logi cal OR operator.

Modul us oper at or
(16-bit val ue)

EXCLUSI VE OR operator.

THE ASSEMBLER PAGE 1-10
SYMBOLS AND EXPRESSI ONS

Table 6 Tenporary Radi x Operators
Ob, 0B Bi nary radi x operator.
0@ 0o, 00, 0g, 0Q Cctal radix operator.
0d, 0D Deci mal radi x operator
Oh, OH, 0x, 0X Hexi deci mal radi x operator.

Potential anbiguities arising fromthe use of Ob and 0d
as tenporary radi x operators may be circunvented by pre-

ceding all non-prefixed hexideciml nunbers with 00.
Leading 0's are required in any case where the first
hexi decimal digit is abcdef as the assenbler will treat

the letter sequence as a | abel

1.3.2 User-Defined Synbols

User-defined symbols are those synbols that are equated to a
specific value through a direct assignnment statenent or appear
as labels. These synbols are added to the User Synbol Table as
they are encountered during assenbly.

The follow ng rules govern the creation of user-defined synbols:

1. Synbols can be conposed of alphanuneric characters,
dollar signs ($), periods (.), and underscores (_)
only.

2. The first character of a synbol nust not be a nunber
(except in the case of |ocal synbols).

3. The first eight characters of a synbol nust be unique.
A synbol can be witten with nore than eight |ega
characters, but the ninth and subsequent characters are
i gnor ed.

4. Spaces and Tabs nust not be enbedded within a synbol.

THE ASSEMBLER PAGE 1-11
SYMBOLS AND EXPRESSI ONS

1.3.3 Local Synbols

Local synbols are specially formatted synbols used as | abels
within a block of coding that has been delimted as a |ocal sym
bol bl ock. Local synbols are of the formn$, where nis a
decimal integer fromO to 255, inclusive. Exanples of loca
synmbol s are

1%
27%
138%
244%

The range of a local synbol block consists of those state-
ments between two normally constructed synbolic |abels. Not e
that a statement of the form

ALPHA = EXPRESSI ON

is a direct assignment statenent but does not create a | abel and
thus does not delimt the range of a |ocal synbol block

Note that the range of a local synbol block nay extend across
program ar eas.

Local synbols provide a conveni ent neans of generating | abels
for branch instructions and other such references wthin |oca

synmbol bl ocks. Usi ng | ocal symbols reduces the possibility of
synmbols with nultiple definitions appearing within a user pro-
gram In addition, the wuse of local synbols differentiates

entry-point |abels fromlocal |abels, since local |abels cannot
be referenced fromoutside their respective |ocal synbol bl ocks.
Thus, |ocal synbols of the sane name can appear in other |oca
symbol bl ocks without conflict. Local synbols require | ess sym
bol table space than normal synbols. Their use is reconmended.

The use of the same |ocal synbol within a | ocal synmbol bl ock
will generate one or both of the mor p errors.

THE ASSEMBLER PAGE 1-12
SYMBOLS AND EXPRESSI ONS

Exanpl e of |ocal synbols:

a: | dx #atabl e ;get table address
| da #0d48 ;table length

1$: clr , X+ ;clear
deca
bne 1%

b: | dx #bt abl e ; get table address
| da #0d48 ;table length

1%: clr L X+ ;cl ear
deca
bne 1%

1.3.4 Current Location Counter

The period (.) is the synmbol for the current |ocation coun-
ter. Wien used in the operand field of an instruction, the
period represents the address of the first byte of the
i nstruction:

AS: | dx #. ; The period (.) refers to
;the address of the | dx
;instruction.

Wien wused in the operand field of an ASxxxx directive, it
represents the address of the current byte or word:

XK =0

.word OXFFFE, . +4, K ; The operand .+4 in the .word
;directive represents a val ue
;stored in the second of the
;three words during assenbly.

If we assume the current value of the program counter is
OHO0200, then during assenbly, ASxxxx reserves three words of
storage starting at |ocation OH0200. The first value, a hex-

i deci mal constant FFFE, will be stored at |ocation 0H0200. The
second value represented by .+4 wll be stored at |ocation
0OHO0202, its value will be OHO0206 (= OHO202 + 4). The third
value defined by the synbol QK wll be placed at |ocation
0HO0204.

At the beginning of each assenbly pass, ASxxxx resets the |o-
cation counter. Normally, consecutive nenory |ocations are as-
signed to each byte of object code generated. However, the
val ue of the location counter can be changed through a direct
assignment statenent of the followi ng form

THE ASSEMBLER PAGE 1-13
SYMBOLS AND EXPRESSI ONS

= . + expression

The new |location counter can only be specified relative to
the current location counter. Neglecting to specify the current
program counter along with the expression on the right side of
the assignnent operator will generate the (.) error. (Absol ute
program areas may use the .org directive to specify the absol ute
| ocation of the current program counter.)

The following coding illustrates the use of the current |ocation
counter:
.area CODE1 (ABS) ; program ar ea CODE1l
;i's ABSOLUTE
.org 0OH100 ;set location to

; OH100 absol ute

numl: | dx #. +0H10 : The | abel nunl has
:the val ue 0OH100.
;X is |oaded with
: OH100 + OH10

.org OH130 ;location counter
;set to OH130

nung: | dy #. ; The | abel nunR has
; the val ue 0OH130.
;Y is loaded with
; val ue 0H130.

.area CODE2 (REL) ; program ar ea CODE2
;i s RELOCATABLE

= . + 0H20 ; Set | ocation counter
;to rel ocatabl e OH20 of
;the program section.

nunt: .word 0 : The | abel nunB has
:the val ue
;of rel ocatabl e OH20.

= . + 0H40 ;will reserve OH40
;bytes of storage as wll
. bl kb 0H40 ; or
. bl kw 0H20

The .blkb and .blkw directives are the preferred nethods of
al l ocati ng space.

THE ASSEMBLER PAGE 1-14
SYMBOLS AND EXPRESSI ONS

1.3.5 Nunbers

ASxxxx assunes that all nunbers in the source programare to
be interpreted in decinmal radi x unl ess otherwi se specified. The
.radix directive nmay be used to specify the default as octal
decimal, or hexidecinmal. Individual nunbers can be designated
as binary, octal, decimal, or hexidecinmal through the tenporary
radi x prefixes shown in table 6.

Negative numbers nust be preceeded by a minus sign; ASXXXX
transl ates such nunbers into two's conplenment form Positive
nunmbers may (but need not) be preceeded by a plus sign

Nunbers are al ways considered to be absol ute val ues, therefor
they are never rel ocatable.

1.3.6 Terns

A termis a conmponent of an expression and may be one of the
fol | owi ng:

1. A nunber.

2. A synbol:
1. A period (.) specified in an expression causes the
current |ocation counter to be used.
2. A User-defined synbol
3. An undefined synbol is assigned a value of zero and
inserted in the User-Defined synbol table as an un-
defined synbol.

3. A single quote followed by a single ascii character, or
a doubl e quote followed by two ascii characters.

4. An expression enclosed in parenthesis. Any expression
so enclosed is evaluated and reduced to a single term
before the remainder of the expression in which it ap-
pears is evaluated. Parenthesis, for exanple, nmmy be
used to alter the left-to-right evaluation of expres-
sions, (as in A*B+C versus A*(B+C)), or to apply a un-
ary operator to an entire expression (as in -(A+B)).

5. A unary operator followed by a synbol or nunber.

THE ASSEMBLER PAGE 1-15
SYMBOLS AND EXPRESSI ONS

1.3.7 Expressions

Expressions are conmbinations of terms joined together by
bi nary operators. Expressions reduce to a 16-bit value. The
evaluation of an expression includes the deternination of its
attributes. A resultant expression value may be one of three
types (as described later in this section): relocatable, ab-
solute, and external

Expressions are evaluate with an operand hierarchy as foll ows:

* / % mul tiplication
di vi si on, and
nmodul us first.

+ - addi ti on and
subtracti on second.

<< >> left shift and
right shift third

A exclusive or fourth.
& | ogi cal and fifth.
| | ogi cal or | ast

except that unary operators take precedence over binary
operators.

A missing or illegal operator termnates the expression
anal ysi s, causing error codes (0) and/or (q) to be generated
dependi ng upon the context of the expression itself.

At assenbly tine the value of an external (global) expression
is equal to the value of the absolute part of that expression
For exanple, the expression external +4, where 'external' is an
external symbol, has the value of 4. This expression, however,
when evaluated at link tine takes on the resolved value of the
synmbol 'external', plus 4.

Expressions, when evaluated by ASxxxx, are one of three
types: relocatable, absolute, or external. The following dis-
tinctions are inportant:

1. An expression is relocatable if its value is fixed re-
lative to the base address of the program area in which
it appears; it will have an offset value added at |ink
time. Terns that contain |labels defined in rel ocatable
program areas will have a rel ocatable val ue

THE ASSEMBLER PAGE 1-16
SYMBOLS AND EXPRESSI ONS

simlarly, a period (.) in a relocatable program area,
representing the value of the current program |l ocation
counter, will also have a rel ocatabl e val ue

2. An expression is absolute if its value is fixed. An
expressi on whose terns are nunbers and ascii characters
will reduce to an absolute value. A relocatable ex-
pression or termmnnus a relocatable term where both
el enments being evaluated belong to the sane program
area, is an absolute expression. This is because every
term in a programarea has the sanme relocation bias.
When one termis subtracted fromthe other the reloca-
tion bias is zero.

3. An expression is external (or global) if it contains a
single global reference (plus or m nus an absolute ex-
pression value) that is not defined within the current
program Thus, an external expression is only par-
tially defined followi ng assenbly and nust be resol ved
at link tine.

1.4 GENERAL ASSEMBLER DI RECTI VES

An ASxxxx directive is placed in the operator field of the
source line. Only one directive is allowed per source Iline.
Each directive nmay have a blank operand field or one or nore
operands. Legal operands differ with each directive.

1.4.1 .nodule Directive
For mat :
.modul e string

The .nodule directive causes the string to be included in the
assenbl ers output file as an identifier for this particular ob-
ject nodul e. The string may be from 1 to 8 characters in
length. Only one identifier is allowed per assenbled nodule.
The nmmin use of this directive is to allow the linker to report
a modul es' use of undefined synbols. At link time all undefined
synmbols are reported and the npdules referencing themare
I'isted.

THE ASSEMBLER PAGE 1-17
GENERAL ASSEMBLER DI RECTI VES
1.4.2 .title Directive
For mat :
.title string
The .title directive provides a character string to be placed
on the second |ine of each page during |isting.
1.4.3 .sbttl Directive
For mat :
.sbttl string
The .sbttl directive provides a character string to be placed
on the third line of each page during listing.
1.4.4 .page Directive
For mat :
. page
The .page directive causes a page ejection with a new heading
to be printed. The new page occurs after the next line of the
source programis processed, this allows an i mediately foll ow

ing .sbttl directive to appear on the new page. The . page
source line will not appear in the file |listing.

1.4.5 .byte and .db Directives

For mat :
. byte exp ; Stores the binary val ue
.db exp ;of the expression in the
;next byte.
. byte expl, exp2,expn ;Stores the binary val ues
.db expl, exp2,expn ;of the list of expressions
;i n successive bytes.
where: exp, represent expressions that wll be

expl, truncated to 8-bits of data.

Each expression will be cal cul ated

as a 16-bit word expression,

the high-order byte will be truncated.
. Mul ti pl e expressions nust be
expn separated by commas.

THE ASSEMBLER PAGE 1-18
GENERAL ASSEMBLER DI RECTI VES

The .byte or .db directives are used to generate successive
bytes of binary data in the object nodule.

1.4.6 .word and .dw Directives

For mat :
.word exp ; Stores the binary val ue
. dw exp ;of the expression in
;the next word.
.wor d expl, exp2, expn ;Stores the binary val ues
. dw expl, exp2,expn ;of the list of expressions
;i n successive words.
where: exp, represent expressions that will occupy two

expl, bytes of data. Each expression wll be
calculated as a 16-bit word expression
. Mul tipl e expressions nust be
expn separated by commas.
The .word or .dw directives are used to generate successive
words of binary data in the object nopdul e.
1.4.7 .blkb, .blkw, and .ds Directives
For mat :
. bl kb N ;reserve N bytes of space
.blkw N ;reserve N words of space
.ds N ;reserve N bytes of space
The .blkb and .ds directives reserve byte blocks in the ob-
ject module; the .blkw directive reserves word bl ocks.
1.4.8 .ascii Directive
For mat :

.ascii [/string/

where: string is a string of printable ascii characters.

[repr esent the delimting characters. These
delimters my be any paired printing
characters, as long as the characters are not
contained within the string itself. If the

delimting characters do not match, the . asci
directive will give the (q) error.

THE ASSEMBLER PAGE 1-19
GENERAL ASSEMBLER DI RECTI VES

The .ascii directive places one binary byte of data for each
character in the string into the object nodule.

1.4.9 .asciz Directive
For mat :
.asciz [string/
where: string is a string of printable asciz characters.

[represent the delimting characters. These
delimters may be any paired printing
characters, as long as the characters are not
contained within the string itself. If the
delimting characters do not match, the .asciz
directive will give the (q) error.

The .ascii directive places one binary byte of data for each
character in the string into the object nodule. Fol owi ng al
the character data a zero byte is inserted to termnate the
character string.
1.4.10 .radix Directive
For mat :

.radi x character
where: character represents a single character specifying the

default radix to be used for succeedi ng nunbers.
The character nay be any one of the follow ng:

B, b Bi nary
oo Cct al
Qq

@

D, d Deci mal
' bl ank'

, h Hexi deci mal
X

THE ASSEMBLER PAGE 1-20
GENERAL ASSEMBLER DI RECTI VES
1.4.11 .even Directive
For mat :
.even
The .even directive ensures that the current |ocation counter

contains an even boundary value by adding 1 if the current |oca-
tion is odd.

1.4.12 .odd Directive
For nmat :
. odd

The .odd directive ensures that the current |ocation counter
contai ns an odd boundary val ue by adding one if the current |o-
cation is even.

1.4.13 .area Directive

For mat :
.area namne [(options)]
where: nane represents the synbolic nane of the program sec-
tion. This nane nmy be the sanme as any

user-defined synbol as the area nanes are in-
dependent of all synbols and | abels.

options specify the type of programor data area:

ABS absol ute (automatically invokes OVR)
REL rel ocatabl e

OVR overl ay

CON concat enat e

PAG paged area

The .area directive provides a neans of defining and separat-
ing multiple progranm ng and data sections. The nanme is the
area |abel used by the assenbler and the linker to collect code
fromvarious separately assenbl ed modul es into one section. The
name may be from1l to 8 characters in | ength.

The options are specified within parenthesis and separated by
commas as shown in the follow ng exanple:

.area TEST (REL,CON) ;This section is relocatable
;and concatenated with other

THE ASSEMBLER PAGE 1-21
GENERAL ASSEMBLER DI RECTI VES

sections of this program area

.area DATA (REL,OVR) ;This section is relocatable
and overl ays other sections
;of this program area

.area SYS (ABS, OVR) ; (CON not all owed with ABS)
This section is defined as
absol ute. Absol ute sections
are al ways overlayed with

ot her sections of this program
ar ea.

.area PAGE (PAG ;This is a paged section. The
section nust be on a 256 byte
boundary and its length is
checked by the linker to be

no | arger than 256 bytes.

; This is useful for direct page
; ar eas.

The default area type is REL|CON; i.e. a relocatable sec-
tion which is concatenated with other sections of code with the
same area nane. The ABS option indicates an absolute area. The
OVR and CON options indicate if program sections of the sanme
name will overlay each other (start at the same |ocation) or be
concatenated with each other (appended to each other).

Multiple invocations of the .area directive with the sane
name nust specify the sane options or leave the options field
bl ank, this defaults to the previously specified options for
this program area

The ASxxxx assenblers automatically provide two program
sections:

‘. .ABS.' Thi s dunmby section contains all absolute
synbol s and their val ues.

' _CODE' This is the default progran data area.
This programarea is of type (REL, CON).

THE ASSEMBLER PAGE 1-22
GENERAL ASSEMBLER DI RECTI VES
1.4.14 .org Directive
For mat :
.org exp

where: exp is an absolute expression that becones the cur-
rent | ocation counter.

The .org directive is valid only in an absol ute program section
and will give a (q) error if used in a relocatable program area.
The .org directive specifies that the current |ocation counter
is to becone the specified absol ute val ue.

1.4.15 .globl Directive

For mat :
.globl syml, syn2,...,sym

where: symi, represent |egal synbolic nanes. Wen
syng, ... VWhen nultiple synbols are specified,
sym they are separated by commas.

A .globl directive may al so have a | abel field and/or a com
ment field.

The .globl directive is provided to define (and thus provide
i nkage to) synbols not otherwise defined as global synbols
within a nodule. In defining global synbols the directive
.globl J is simlar to:

J == expression or J::

Because object nodules are linked by gl obal synbols, these
synmbols are vital to a program Al internal synbols appearing
within a given program nust be defined at the end of pass 1 or
they will be considered undefined. The assenbly directive (-Q)
can be be invoked to make all undefined synmbols gl obal at the
end of pass 1.

THE ASSEMBLER PAGE 1-23
GENERAL ASSEMBLER DI RECTI VES

1.4.16 .if, .else, and .endif Directives
For nat :

i f expr

+ 1

;} range of true condition
+}

'}

;} range of false condition

'}

.el se

_endi f

The conditional assenbly directives allow you to include or
exclude bl ocks of source code during the assenbly process, based
on the evaluation of the condition test.

The range of true condition will be processed if the expres-
sion 'expr' is not zero (i.e. true) and the range of false con-
dition wll be processed if the expression "expr' is zero (i.e

false). The range of true condition is optional as is the .else
directive and the range of false condition. The followi ng are
all valid .if/.else/.endif constructions:

i f A-4 ;evaluate A-4

. byte 1,2 ;insert bytes if A4 is
.endif ;not zero

i f K+3 ;eval uate K+3

.el se

. byte 3,4 ;insert bytes if K+3
.endif ;is zero

i f J&3 ;evaluate J masked by 3
. byte 12 ;insert this byte if J&3
.el se ;is not zero

. byte 13 ;insert this byte if J&3
.endif ;is zero

The .if/.elsel/.endif directives may be nested upto 10 | evels.

The .page directive is processed within a false condition
range to allow extended textual information to be incorporated
in the source program with out the need to use the conment
delimter (;):

S f 0

. page
This text will be bypassed during assenbly

THE ASSEMBLER PAGE 1-24
GENERAL ASSEMBLER DI RECTI VES

but appear in the listing file.

.endif

1.4.17 .include Directive
For mat :
.include string

where: string represents a delimted string that is the file
specification of an ASxxxx source file.

The .include directive is used to insert a source file within
the source file currently being assenbled. Wen this directive
is encountered, an inplicit .page directive is issued. Wen the
end of the specified source file is reached, an inplicit .page
directive is issued and input continues fromthe previous source
file. The maximum nesting |evel of source files specified by a
.include directive is five. The line containing the .include
directive will not appear in the listing file.

The total nunber of separately specified .include files is
unlimted as each .include file is opened and then closed during
each pass made by the assenbl er.

1.4.18 .setdp Directive
For mat :

.setdp [base [, area]]
The set direct page directive has a comon fornmat in all the
AS68xx assenblers. The .setdp directive is used to inform the
assenbler of the current direct page region and the offset ad-

dress within the selected area. The nor mal i nvocati on nethods
ar e:

.area DI RECT (PAG
.setdp

or
.setdp 0, DI RECT

for all the 68xx microprocessors (the 6804 has only the paged
ram area). The commands specify that the direct page is in area

THE ASSEMBLER PAGE 1-25
GENERAL ASSEMBLER DI RECTI VES

DI RECT and its offset address is O (the only valid value for al
but the 6809 nicroprocessor). Be sure to place the DIRECT area
at address O during linking. Wen the base address and area are
not specified, then zero and the current area are the defaults.
If a .setdp directive is not issued the assenbler defaults the
direct page to the area " _CODE" at offset O.

The assenbler verifies that any |local variable used in a
direct variable reference is located in this area. Local \vari-
able and constant value direct access addresses are checked to
be within the address range fromO to 255.

External direct references are assunmed by the assenbler to be
in the correct area and have valid offsets. The linker wll
check all direct page relocations to verify that they are within
the correct area

The 6809 microprocessor allows the selection of the direct
page to be on any 256 byte boundary by loading the appropriate
value into the dp register. Typically one would like to sel ect
the page boundary at link time, one nmethod foll ows:

.area DI RECT (PAG ; define the direct page
.setdp

_area PROGRAM

| dd #DI RECT ; load the direct page register
tfr a, dp ; for access to the direct page
At link time specify the base and gl obal equates to |ocate the

di rect page:

-b DI RECT
-g DI RECT

0x1000
0x1000

Both the area address and offset value nust be specified (area
and vari abl e names are independent). The linker wll verify
that the relocated direct page accesses are within the direct

page.

THE ASSEMBLER PAGE 1-26
GENERAL ASSEMBLER DI RECTI VES

The preceeding sequence could be repeated for nultiple paged
areas, however an alternate nethod is to define a non-paged area
and use the .setdp directive to specify the offset val ue:

.area DI RECT ; define non-paged area

.area PROGRAM

.setdp 0, DI RECT ; direct page area

| dd #DI RECT ; load the direct page register

tfr a, dp ; for access to the direct page

.setdp 0x100, DI RECT ; direct page area

| dd #DI RECT+0x100 ; load the direct page register

tfr a, dp ; for access to the direct page
The linker wll wverify that subsequent direct page references
are in the specified area and offset address range. It is the

programers responsibility to |load the dp register with the cor-
rect page segnent corresponding to the .setdp base address
speci fi ed.

For those cases where a single piece of code nust access a
defined data structure within a direct page and there are nany
pages, define a dunmby direct page linked at address 0. This
dunmby page is used only to define the variable |abels. Then
load the dp register with the real base address but donot use a
.setdp directive. This nethod is equivalent to indexed address-
ing, where the dp register is the index register and the direct
addressing is the offset.

1.5 | NVOKI NG ASXXXX

The ASxxxx assenblers are conmand line oriented. After the
assenbler is started, enter the option(s) and file(s) to assem
ble following the "argv:' pronpt:
argv: [-dgxgalosf] filel [file2 file3 ... file6]

The options are:

d decimal listing
q oct al listing
X hex listing (default)

The listing radix affects the
.Ist, .rel, and .symfiles.

THE ASSEMBLER PAGE 1-27
I NVOKI NG ASXXXX

g undefined symbol s nade gl oba
a all user synbol s made gl oba

I create |ist output filel.lst

o] create object output filel.re

S create synmbol output filel.sym

f flag relocatable references by ° inthe list-
ing file

ff flag relocatable references by nmode in the list-
ing file

The file name for the .Ist, .rel, and .symfiles is the first
file nanme specified in the conmand line. Al output files are
ascii text files which may be edited, copied, etc. The output
files are the concatenation of all the input files, if files are
to be assenbled independently invoke the assenbler for each
file.

The .rel file contains a radix directive so that the |inker
will use the proper conversion for this file. Linked files my
have different radices.

If the list (1) option is specified without the synbol table
(s) option, the synmbol table is placed at the end of the listing
file.

1.6 ERRORS

The ASxxxx assenblers provide |inted diagnostic error codes
during the assenbly process, these errors will be noted in the
listing file and printed on the stderr device. The errors are:

(.) This error is caused by an absolute direct assign-
ment of the current |ocation counter
= expression (incorrect)
rather than the correct
= . + expression

(a) Indicates a machine specific addressing or address-
i ng node error.

(b) I ndicates a direct page boundary error.
(d) I ndicates a direct page addressing error
(i) Caused by an .include file error or an .if/.endif

m smat ch.

THE ASSEMBLER PAGE 1-28

ERRORS

(m

(0)

(p)

(a)

(r)

(u)

Multiple definitions of the sanme label, nultiple
.modul e directives, or nultiple conflicting attri-
butes in an .area directive.

Directive or mmenpnic error or the use of the .org
directive in a relocatable area

Phase error: |abel location changi ng between passes
2 and 3. Nornmlly caused by having nore than one
| evel of forward referencing.

Questionabl e syntax: mssing or inproper operators,
termnators, or delimters.

Rel ocation error: |l ogic operation attenpted on a
rel ocatable term addition of two relocatable terns,
subtraction of two relocatable terns not within the
same progranmm ng area or external synbols.

Undefined synbol encountered during assenbly.

1.7 LISTING FILE

The

(-1) option produces an ascii output listing file. Each
page of output contains a four |ine header:

1.

2

3.

4.

The ASxxxx program nane and page nunber
Title froma .title directive (if any)
Subtitle froma .sbttl directive (if any)

Bl ank |i ne

Each succeeding line contains five fields:

Error field (first three characters of line)
Current | ocation counter

Generated code in byte formt

Source text |ine nunber

Sour ce text

THE ASSEMBLER PAGE 1-29
LI STI NG FI LE

The error field may contain upto 2 error flags indicating any
errors encountered while assenbling this |ine of source code.

The current location counter field displays the 16-bit pro-
gram position. This field will be in the selected radix.

The generated code foll ows the programlocation. The listing
radi x deternines the nunber of bytes that will be displayed in
this field. Hexidecimal listing allows six bytes of data within
the field, decimal and octal allow four bytes within the field.
If more than one field of data is generated fromthe assenbly of
a single line of source code, then the data field is repeated on
successi ve |ines.

The source text line nunber is printed in decimal and is fol-
| owed by the source text.

Two special cases wll disable the Ilisting of a line of
source text:

1. Source line with a .page directive is never |isted.
2. Source line with a .include file directive is not

listed unless the .include file cannot be opened.

Two data field options are available to flag those bytes

which will be relocated by the Iinker. If the -f option is
specified then each byte to be relocated will be preceeded by
the '*' character. |If the -ff option is specified then each

byte to be relocated will be preceeded by one of the follow ng
characters:

1. = paged rel ocation

2. U unsi gned byte relocation

3. p PCR byte or low byte of word relocation
4. q PCR high byte of word relocation

5. r |l ow byte relocation

6. s hi gh byte rel ocation

THE ASSEMBLER PAGE 1-30
SYMBOL TABLE FI LE

1.8 SYMBOL TABLE FILE

The synbol table has two parts:

1. The al phabetically sorted list of synbols and/or |abels
defined or referenced in the source program

2. A list of the program areas defined during assenbly of
t he source program

The sorted list of synbols and/or |abels contains the foll ow
ing information:

1. Program area nunber (none if absolute val ue or exter-
nal)

2. The synbol or | abel
3. Directly assigned synmbol is denoted with an (=) sign

4. The value of a synbol, location of a |label relative to
the program area base address (=0), or a **** |ndicat-
ing the synbol or |abel is undefined.

5. The characters: G- global, R - relocatable, and X -
ext er nal

The list of program areas provides the correspondence between
the program area nunbers and the defined program areas, the size
of the program areas, and the area flags (attributes).

1.9 OBJECT FILE

The object file is an ascii file containing the information
needed by the linker to bind nmultiple object nobdules into a com
plete |oadable nenory image. The obj ect nodul e contains the
foll owi ng desi gnators:

[XDQ [HL]
X Hexi deci mal radi x
D Deci mal radi x
Q Cctal radix
H Most significant byte first
L Least significant byte first

THE ASSEMBLER
OBJECT FILE

T Hn>Z

Modul e

Area

Symbol

Obj ect code

Rel ocati on information
Pagi ng i nformation

Refer to the linker for a detail ed description of
designators and the format of the information contained in

object file.

PAGE 1-31

each of the

t he

CHAPTER 2

THE LI NKER

2.1 ASLINK RELOCATI NG LI NKER

ASLINK is the conpanion |inker for the ASxxxx assenblers.

The

program ASLINK is a general relocating |inker perfornng

the follow ng functions:

1.

2

Bind multiple object nobdules into a single nenory image
Resol ve inter-nodul e synbol references

Combi ne code belonging to the sane area fromnultiple
object files into a single contiguous nenory region

Perform byte and word program counter relative
(pc or pcr) addressing cal cul ations

Define absol ute synbol values at link tine
Define absol ute area base address values at link time
Produce Intel Hex or Mdtorola S19 output file

Produce a map of the |inked nmenory inage

THE LI NKER PAGE 2-2
I NVOKI NG ASLI NK

2.2 | NVOKI NG ASLI NK

The linker may run in the conmand |ine node or conmand file
nodes. The allowed startup |inker commands are:

-c/-f command line / command file nodes
-p/-n enabl e/ di sabl e echo file.lnk input to stdout
If command line node is selected, all |inker commands cone

fromstdin, if the command file node is selected the commands
are input fromthe specified file (extension nmust be .Ink).

The linker is started via
ASLI NK - (cfpn)

After invoking the linker the valid options are:

1. -il-s Intel Hex (file.ihx) or Mdtorola S19 (file.s19)
i mage output file.

2. -m Generate a nap file (file.map). This file con-
tains a list of the synbols (by area) with absolute ad-
dresses, sizes of linked areas, and other linking

i nformati on.

3. -xdq Specifies the nunmber radix for the map file
(Hexi deci mal , Decimal, or Octal).

4. fileN Files to be linked. Files may be on the sane
line as the above options or on a separate line(s) one
file per line or nmultiple files separated by spaces or
t abs.

5. -b area = expression (one definition per line)
This specifies an area base address where the expres-
sion may contain constants and/or defined synbols from
the linked files.

6. -g synbol = expression (one definition per line)
This specifies the value for the synbol where the ex-
pression nay contain constants and/or defined synbols
fromthe linked files.

7. -e or null line, termnates input to the linker.

THE LI NKER PAGE 2-3
ASLI NK PROCESSI NG

2.3 ASLI NK PRCCESSI NG

The linker processes the files in the order they are
presented. The first pass through the input files is wused to
define all program areas, the section area sizes, and synbols
defined or referenced. After the first pass the -b (area base
address) definitions, if any, are processed and the areas
I'i nked.

The area linking proceeds by first exam ning the area types

ABS, CON, REL, OVR and PAG. Absolute areas (ABS) from separate
obj ect npodul es are al ways overlayed and have been assenbled at a
speci fic address, these are not normally relocated (if a -b com
mand is used on an absolute area the area will be relocated).
Rel ative areas (normally defined as REL| CON) have a base address
of 0x0000 as read fromthe object files, the -b command speci -
fies the beginning address of the area. All subsequent relative
areas wll be concatenated with proceeding relative areas.
Where specific ordering is desired, the first linker input file
should have the area definitions in the desired order. At the
conpletion of the area linking all area addresses and |engths
have been determ ned. The areas of type PAG are verified to be
on a 256 byte boundary and that the |length does not exceed 256
bytes. Any errors are noted on stderr and in the map file.

Next the global synbol definitions (-g option), if any, are
processed. The synbol definitions have been del ayed until this
poi nt because the absol ute addresses of all internal synbols are
known and can be used in the expression cal cul ations.

Before continuing wth the Iinking process the synbol table
is scanned to deternmine if any synbols have been referenced but
not defined. Undefined synbols are |isted on the stderr device.
if a .nmodule directive was included in the assenbled file the
modul e nmeking the reference to this undefined variable will be
pri nted.

Constants defined as global in nore than one nodule will be
flagged as nmultiple definitions if their values are not identi-
cal .

After the preceeding processes are conplete the |inker may
output a map file (-moption). This file provides the foll ow ng
i nformati on:

1. dobal synbol values and | abel absol ute addresses
2. Defined areas and there | engths

3. Remini ng undefined synbol s

THE LI NKER PAGE 2-4
ASLI NK PROCESSI NG

4, Li st of nodul es |inked

5. List of -b and -g definitions

The final step of the linking process is perfornmed during the
second pass of the input files. As the xxx.rel files are read
the code is relocated by substituting the physical addresses for
the referenced synbols and areas and nmay be output in Intel or
Motorola formats. The nunber of files |inked and synbols de-
fined/referenced is limted by the processor space available to
build the areal/synbol |ists.

2.4 LINKER | NPUT FORNMAT

The linkers' input object file is an ascii file containing
the information needed by the linker to bind nmultiple object
modul es into a conpl ete | oadabl e nmenory i mage.

The obj ect nodul e contains the follow ng designators:

[XDQ [HL]
X Hexi deci mal radi x
D Deci mal radi x
Q Cctal radix
H Most significant byte first
L Least significant byte first
H Header
M Modul e
A Ar ea
S Synbol
T Obj ect code
R Rel ocation information
P Pagi ng i nformation

THE LI NKER PAGE 2-5
LI NKER | NPUT FORNMAT

2.4.1 Object Mdule Formt

The first 1line of an object nodule contains the [XDQ [HL]
format specifier (i.e. XHindicates a hexidecimal file wth
nmost significant byte first) for the foll owi ng designators.
2.4.2 Header Line

H aa areas gg gl obal synbols
The header line specifies the nunber of areas(aa) and the

nunber of gl obal synbol s(gg) defined or referenced in this ob-
j ect modul e segnent.

2.4.3 Modul e Line

M nanme
The nmodule line specifies the nodule name fromwhich this
header segnent was assenbled. The nodule line will not appear

if the .nodule directive was not used in the source program

2.4.4 Synbol Line
S string Defnnnn

or
S string Refnnnn

The synbol line defines (Def) or references (Ref) the synbo
"string' with the value nnnn. The defined value is relative to
the current area base address. References to constants and ex-
ternal global synbols will always appear before the first area
definition. References to external synmbols will have a val ue of
zero.

THE LI NKER PAGE 2-6
LI NKER | NPUT FORNMAT

2.4.5 Area Line
A | abel size ss flags ff

The area line defines the area |abel, the size (ss) of the
area in bytes, and the area flags (ff). The area flags specify
the ABS, REL, CON, OVR, and PAG paraneters:

OVR/ CON (0x04/0x00 i.e. bit position 2)
ABS/ REL (0x08/0x00 i.e. bit position 3)

PAG (0x10 i.e. bit position 4)

2.4.6 T Line
T XX XX Nnh nn nn nn nn ..

The T Iline contains the assenbl ed code output by the assem
bler with xx xx being the offset address fromthe current area
base address and nn being the assenbled instructions and data in
byte format.

2.4.7 R Line
R O O nn nn nl n2 XX XX ..

The R line provides the relocation information to the |inker.
The nn nn value is the current area index, i.e. which area the
current values were assenbled. Relocation information is en-
coded in groups of 4 bytes:

1. nlis the relocation node and object format
1. bit 0 word(0x00)/byte(0x01)
2. bit 1 relocatable area(0x00)/synbol (0x02)
3. bit 2 normal (0x00)/PC rel ative(0x04) relocation
4 bit 3 1-byte(0x00)/2-byte(0x08) object format for
byte data
bit 4 signed(0x00)/unsigned(0x10) byte data
. bit 5 normal (0x00)/page '0' (0x20) reference
7. bit 6 nornal (0x00)/page 'nnn' (0x40) reference

o o

2. n2 is a byte index into the corresponding (i.e. pre-
ceeding) T line data (i.e. a pointer to the data to be
updated by the relocation). The T line data may be
1-byte or 2-byte byte data format or 2-byte word
format .

THE LI NKER PAGE 2-7
LI NKER | NPUT FORNMAT

3. XX XX is the areal/synbol index for the areal/synbol be-
ing referenced. the corresponding areal/synbol is found
in the header area/symnbol |ists.

The groups of 4 bytes are repeated for each itemrequiring relo-
cation in the preceeding T line.

2.4.8 P Line
P O O nn nn nl n2 xxX XX

The P |line provides the paging information to the |inker as
specified by a .setdp directive. The fornmat of the relocation
information is identical to that of the RIline. The correspond-
ing T line has the followi ng information

T xx xx aa aa bb bb

VWere aa aa is the area reference nunber which specifies the
sel ected page area and bb bb is the base address of the page.
bb bb will require relocation processing if the 'nl n2 xx xx' is
specified in the Pline. The linker will verify that the base
address is on a 256 byte boundary and that the page | ength of an
area defined with the PAG type is not |arger than 256 bytes.

The linker defaults any direct page references to the first

area defined in the input REL file. All ASxxxx assenblers wll
specify the _CODE area first, making this the default page area.

2.5 LI NKER ERROR MESSAGES

The |inker provides detailed error nessages allow ng the pro-
granmer to quickly find the errant code. As the linker com
pletes pass 1 over the input file(s) it reports any page
boundary or page length errors as follows:

?ASl i nk- W Paged Area PAGEO Boundary Error
and/ or
?AS| i nk- W Paged Area PACGEO Length Error
where PAGEO is the paged area.
During Pass two the linker reads the T, R and P lines per-

form ng the necessary relocations and outputting the absolute
code. Various errors nay be reported during this process

THE LI NKER
LI NKER ERROR MESSAGES

PAGE 2-8

The P line processing can produce only one possible error:

?AS| i nk- W Page Definition Boundary Error

file modul e pgar ea pgof f set
PgDef t 6809l t 6809l PAGEO 0001
The error nessage specifies the file and nodul e where the .setdp

direct was issued and indicates
of fset value determ ned after

the page
rel ocati on.

area and the page

The R Iine processing produces various errors:

?ASl i nk- WByte PCR relocation error for synbol bra2

file nodul e area of fset
Ref by t 68009l t 6809l TEST 00FE
Defin tconst t const . ABS. 0080
?ASI i nk- WUnsi gned Byte error for symbol two56
file modul e area of f set
Ref by t 6800l t 6800l Dl RECT 0015
Defin tconst t const . ABS. 0100
?AS| i nk- W PageO relocation error for synbol |twod56
file nmodul e area of f set
Ref by t 6800l t 6800l Dl RECT 000D
Defin tconst t const DI RECT 0100
?ASl i nk- W Page Mode relocation error for synbol two56
file modul e area of f set
Ref by t 68009l t 6809l Dl RECT 0005
Defin tconst t const . ABS. 0100
?AS| i nk- W Page Mode rel ocation error
file nmodul e area of f set
Ref by t Paget est PROGRAM 0006
Defin t Paget est DI RECT 0100
These error nessages specify the file, nodule, area, and offset

within the area of the code

(Defin) the synbol.
as the reference the |inker

The assenbler
fromthe specified area to | ocated the offendi ng code.

ref erencing
If the synbol

(Ref by)
is defined in the sane nopdul e
is unable to report the synbol nane.
listing file(s) should be exam ned at the offset

and defining

The errors are:

1. The byte PCR error is caused by exceeding the pc rel a-
tive byte branch range.

2. The Unsigned byte error indicates an indexing val ue was
negative or larger than 255.

THE LI NKER PAGE 2-9
LI NKER ERROR MESSAGES

3. The PageO error is generated if the direct page vari-
able is not in the pageO range of 0 to 255.

4. The page npde error is generated if the direct variable
is not within the current direct page (6809).

CHAPTER 3

BUI LDI NG ASXXXX AND ASLI NK

The assenblers and |inker have been successfully conpiled us-
ing the DECUS C (PDP-11) conpiler (patch |evel 9) with
RT-11/TSX+, Eyring Research Institute, Inc. PDCS (680x0) C
V5.4b conpiler, and with Borland's Turbo C V1.5 with MsS-DCS
(80x86) .

The device specific header file (i.e. nB6800.h, n6801. h,
etc.) contains the DECUS C 'BU LD directives for generating a
command file to conpile, assenble, and link the necessary files
to prepare an executable inmage for a particular assenbler.

3.1 BU LD NG AN ASSEMBLER

The building of a typical assenbler (6809 for exanple) re-
quires the following files:

M6809. H
MO9QEXT. C
MOOMCH. C
MO9ADR. C
MOOPST. C
ASM H
ASMAIN. C
ASLEX. C
ASSYM C
10. ASSUBR. C
11. ASEXPR C
12. ASDATA.C
13. ASLIST.C
14. ASQUT.C

CONoOAEWN R

The first five files are the 6809 processor dependent sec-
tions which contain the follow ng:

BUI LDI NG ASXXXX AND ASLI NK PAGE 3-2
BUI LDI NG AN ASSEMBLER

1. nB6809.h - header file containing the machine specific
definitions of constants, variables, structures, and
types

2. mD9ext - device description, byte order, and file ex-

tension information

3. md9pst - a table of the assenbler general directives,
speci al device directives, and assenbl er nmenonics with
associ at ed operation codes

4. nD9nch / nmD9adr - machine specific code for processing
the device menonics, addressing nopdes, and special
directives

The remaining nine files provide the device i ndependent sec-
tions which handle the details of file input/output, synbol
table generation, progranm data areas, expression analysis, and
assenbl er directive processing.

The assenbler defaults to the case sensitive node. This may
be altered by changing the case sensitivity flag in asmh to

/*

* Case Sensitivity Flag
*/

#define CASE_SENSITIVE O

The assenblers and |linker should be conmpiled with the sane
case sensitivity option.

The DECUS C build files are asxxxx.bld and the Turbo C pro-
ject files are asxxxx.prj.

3.2 BUILDI NG ASLI NK

The building of the linker requires the following files:

ASLI NK. H
LKMAIN. C
LKLEX. C
LKAREA. C
LKHEAD. C
LKSYM C
LKEVAL. C
LKDATA. C
LKLI ST. C
LKRLCC. C

CONORWNE

[EEN

BUI LDI NG ASXXXX AND ASLI NK PAGE 3-3
BUI LDI NG ASLI NK

11. LKS19.C
12. LKIHX. C

The linker defaults to the case sensitive mode. This may be
altered by changing the case sensitivity flag in aslink.h to

/*

* Case Sensitivity Flag
*/

#define CASE SENSITIVE O

The linker and assenblers should be compiled with the sane
case sensitivity option.

The DECUS C build file is aslink.bld and the Turbo C project
file is aslink.prj.

APPENDI X A

AS6800 ASSEMBLER

A.1 6800 REG STER SET

The following is a list of the 6800 registers used by AS6800:
a, b - 8-bit accunul ators
X - i ndex register

A.2 6800 | NSTRUCTI ON SET

The following tables list all 6800/ 6802/ 6808 menbni cs recog-
ni zed by the AS6800 assenbler. The designation [] refers to a
requi red addressing nmode argunment. The following list specifies
the format for each addressi ng node supported by AS6800:

#dat a i medi at e data
byte or word data

*dir di rect page addressing
(see .setdp directive)
0 <= dir <= 255

, X regi ster indirect addressing
zero of fset

of fset, x regi ster indirect addressing
0 <= offset <= 255

ext ext ended addressing
| abel branch | abe

The terns data, dir, offset, ext, and |label may all be expres-
si ons.

AS6800 ASSEMBLER PAGE A-2
6800 | NSTRUCTI ON SET

Note that not all addressing nodes are valid with every in-
struction, refer to the 6800 technical data for valid nodes.

A.2.1 Inherent Instructions

aba cbha
clc cli
clv daa
des dex

i ns i nx
nop rti
rts sba
sec sei
sev SWi
tab tap

t ba t pa

t sx txs
wai

psha pshb
psh a psh b
pul a pul b
pul a pul b

A.2.2 Branch Instructions

bra | abel bhi | abe
bl s | abel bcc | abe
bhs | abel bcs | abel
bl o | abel bne | abe
beq | abel bvc | abe
bvs | abel bpl | abe
bm | abel bge | abe
bl t | abel bgt | abel

bl e | abel bsr | abel

AS6800 ASSEMBLER

6800 | NSTRUCTI ON SET

A. 2.3 Single Operand Instructions

asl a
asl a
asl

asra
asr a
asr

clra
clr a
clr

coma
com a
com

deca
dec a
dec

i nca
inc a
inc

| sl a
Isl a
| sl

| sra
lsr a
| sr

nega
neg a
neg

rol a
rol a
r ol

rora
ror a
ror

tsta
tst a
tst

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

asl b
asl b

asrb
asr b

clrb
clr b

conb
comb

decb
dec b

i ncb
inc b

Islb
Isl b

Isrb
Isr b

negb
neg b

rolb
rol b

rorb
ror b

tsth
tst b

PAGE A-3

AS6800 ASSEMBLER PAGE A-4
6800 | NSTRUCTI ON SET

A. 2.4 Double Operand Instructions

adca [] adcb []
adc a [] adc b []
adda [] addb []
add a [] add b []
anda [andb []
and a [] and b []
bita [bitb []
bit a [] bit b []
cnpa [cnpb []
cnp a [] cmp b []
eora [] eorb []
eor a [] eor b []
| daa [| dab []
lda a [] lda b []
oraa [orab []
ora a [] ora b []
sbca [sbcb []
sbc a [] sbc b []
st aa [stab []
staa [] sta b]
suba [subb []
sub a [] sub b T[]

A. 2.5 Junp and Junp to Subroutine Instructions

jmp [] jsr []

AS6800 ASSEMBLER
6800 | NSTRUCTI ON SET

A. 2.6 Long Register Instructions

cpx []
| ds [1] sts
| dx [1] st x

—_——
[—

PAGE A-5

APPENDI X B

AS6801 ASSEMBLER

B.1 .hd6303 DI RECTI VE

For mat :

. hd6303
The .hd6303 directive enables processing of the HD6303 specific
menoni cs not included in the 6801 instruction set. HD6303
menoni cs encountered without the .hd6303 directive will be

flagged with an 'o' error.

B.2 6801 REGQ STER SET
The following is a list of the 6801 registers used by AS6801
. b - 8-bit accumul ators

16-bit accunul ator <a: b>
- i ndex register

X oo
1

B.3 6801 | NSTRUCTI ON SET

The following tables list all 6801/ 6303 menoni cs recogni zed
by the AS6801 assenbler. The designation [] refers to a re-
quired addressing node argument. The following list specifies
the format for each addressi ng nbde supported by AS6801:

#dat a i medi ate data
byte or word data

*dir di rect page addressing
(see .setdp directive)
0 <=dir <= 255

AS6801 ASSEMBLER PAGE B-2
6801 | NSTRUCTI ON SET

, X regi ster indirect addressing
zero of fset

of fset, x regi ster indirect addressing
0 <= offset <= 255

ext ext ended addressing
| abel branch | abe

The terns data, dir, offset, ext, and label may all be expres-
si ons.

Note that not all addressing nodes are valid with every in-
struction, refer to the 6801/6303 technical data for wvalid
nodes.

B.3.1 |Inherent Instructions

aba abx
cha clc
cli clv
daa des
dex ins
i nx rul
nop rti
rts sha
sec sei
sev SW
tab tap
t ba t pa
t sx t xs
wai

B.3.2 Branch Instructions

bra | abel brn | abe
bhi | abel bl s | abe
bcc | abel bhs | abe
bcs | abel bl o | abel
bne | abel beq | abe
bvc | abel bvs | abel
bpl | abel bm | abe
bge | abel bl t | abe
bgt | abel bl e | abel

bsr | abel

AS6801 ASSEMBLER

6801 | NSTRUCTI ON SET

B.3.3 Single Operand Instructions

asl a
asl
asl

asra
asr
asr

clra
clr
clr

coma
com
com

deca
dec
dec

eora
eor
eor

inca
inc
inc

I sla
| sl
| sl

| sra
| sr
| sr

nega
neg
neg

psha
psh

pul a
pul

rol a
r ol
r ol

a

a

a

a

a

a

a

a

a

a

a

a

a

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

asl b
asl b

asrb
asr b

clrb
clr b

conb
comb

decb
dec b

eorb
eor b

i ncb
inc b

Islb
Isl b

Isrb
Isr b

negb
neg b

pshb
psh b

pul b
pul b

rolb
rol b

asld
asl

| sld
| sl

| srd
| sr

pshx
psh

pul x
pul

d

d

d

X

X

PAGE B-3

AS6801 ASSEMBLER

6801 | NSTRUCTI ON SET

rora
ror a
ror

tsta
tst a
tst

B.3.4 Double Operand Instructions

adca
adc a

adda
add a

anda
and a

bita
bit a

cnpa
cnp a

| daa
| da a

or aa
ora a

shca
sbc a

st aa
sta a

suba
sub a

[]

[]

[]
[]

[]
[]

,_|,_| ,_”_‘ ,_|,_| ,_|,_| ,_”_‘ ,_|,_| ,_|,_|
[E—— [R—— [R—— [E—— [R—— [R—— [E——

,_|,_|
[R——

rorb
ror b

tstb
tst b

adcb
adc b

addb
add b

andb
and b

bith
bit b

cnpb
cnp b

| dab
Ida b

orab
ora b

shcb
sbc b

st ab
sta b

subb
sub b

[]
[]

[]
[]

,_|,_| ,_”_‘ ,_|,_| ,_|,_| ,_”_‘ ,_|,_| ,_|,_|
[E—— [R—— [R—— [E—— [R—— [R—— [E——

,_|,_|
[R——

PAGE B-4

subd
sub d

,_|,_|
[R——

AS6801 ASSEMBLER
6801 | NSTRUCTI ON SET

B.3.5 Junp and Junp to Subroutine Instructions

jmp [] jsr []

B.3.6 Long Register Instructions

cpx [| dd []
| ds [I dx []
std [sts []

[]

St x

B.3.7 6303 Specific Instructions

eim #dat a,

aim #data, [] []
[] tim #data, []

oi m #dat a,

xgdx slp

PAGE B-5

APPENDI X C

AS6804 ASSEMBLER

Requires the .setdp directive to specify the ramarea

C.1 6804 REG STER SET
The following is a list of the 6804 registers used by AS6804:

X,y - i ndex registers

C.2 6804 I NSTRUCTI ON SET

The following tables list all 6804 menpnics recogni zed by
the AS6804 assenbler. The designation [] refers to a required
addressing node argunent. The following |ist specifies the

format for each addressi ng node supported by AS6804:

#dat a i nmedi at e data
byte or word data

, X regi ster indirect addressing
dir di rect addressing

(see .setdp directive)

0 <= dir <= 255
ext ext ended addressing

| abel branch | abe

The terns data, dir, and ext nmay be expressions. The |abel for
the short branchs beq, bne, bcc, and bcs nmust not be external

Note that not all addressing nodes are valid with every in-
struction, refer to the 6804 technical data for valid npdes.

AS6804 ASSEMBLER
6804 | NSTRUCTI ON SET

C. 2.1 |Inherent

coma
decy
i ncy
rti

stop
tay
tya

I nstructions

decx
i ncx
rol a
rts
t ax
t xa
wai t

C. 2.2 Branch Instructions

bne
bcc

| abel beq | abe
| abel bcs | abel

C. 2.3 Single Operand Instructions

add
and
cnp
dec
inc
| da
sta
sub

C. 2.4 Junp and
jsr
jnp
C.2.5 Bit Test

brclr
br set

belr
bset

— — — — ————
[S O S S S S S—

Junp to Subroutine Instructions
[
[

I nstructions

#data, [], | abel
#data, [], | abel

#1 abel , []
#l abel , []

PAGE C-2

AS6804 ASSEMBLER PAGE C-3
6804 | NSTRUCTI ON SET

C.2.6 Load Immedi ate data Instruction

nmvi [1,#data

C.2.7 6804 Derived Instructions

asl a

bam | abel
bap | abel
bxmni | abel
bxpl | abel
bym | abel
bypl | abel
clra

clrx

clry

deca

decx

decy

inca

i ncx

i ncy

| dxi #dat a
| dyi #dat a
nop

t ax

tay

t xa

tya

APPENDI X D

AS6805 ASSEMBLER

D.1 6805 REGQ STER SET
The following is a list of the 6805 registers used by AS6805:
a - 8-bit accunul ator

X - i ndex register

D.2 6805 I NSTRUCTI ON SET

The following tables list all 6805 menonics recogni zed by
the AS6805 assenbler. The designation [] refers to a required
addressing node argunent. The following |list specifies the

format for each addressi ng node supported by AS6805:

#dat a i medi at e data
byte or word data

*dir di rect page addressing
(see .setdp directive)
0 <= dir <= 255

, X regi ster indirect addressing
zero of fset

of fset, x regi ster indirect addressing
0 <= offset <= 255 --- byte node
256 <= offset <= 65535 --- word node
(an externally defined of fset uses the
wor d node)
ext ext ended addressing

| abel branch | abe

AS6805 ASSEMBLER PAGE D-2
6805 | NSTRUCTI ON SET

The terns data, dir, offset, and ext nmay all be expressions.
Note that not all addressing nodes are valid with every in-

struction, refer to the 6805 technical data for valid nopdes.

D.2.1 Control Instructions

clc cli
nop rsp
rti rts
sec sei
stop Swi
t ax t xa
wai t

D.2.2 Bit Mnipulation Instructions

br set #dat a, *dir, | abel
brclr #dat a, *dir, | abel

bset #data, *dir
belr #data, *dir

D. 2.3 Branch Instructions

bra | abel brn | abel
bhi | abel bl s | abel
bcc | abel bcs | abel
bne | abel beq | abel
bhcc | abel bhcs | abel
bpl | abel bm | abel
bnt | abel bns | abel
bi | | abel bi h | abel

bsr | abel

AS6805 ASSEMBLER

6805 | NSTRUCTI ON SET

D.2.4 Read-Mdify-Wite Instructions

nega
neg

coma
com

| sra
| sr

rora
ror

asra
asr

| sl a
| sl

rol a
rol

deca
dec

inca
inc
tsta
tst

clra
clr

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

negx

conk

| srx

rorx

asr X

| sl x

rol x

decx

i ncx

tstx

clrx

D.2.5 Register\Menory Instructions

sub
shc
and
| da
eor
ora
| dx

— e, —_———
e e —

cnp
cpx
bi t
sta
adc
add
st x

— e, —_———
e e —

PAGE D-3

AS6805 ASSEMBLER PAGE D-4
6805 | NSTRUCTI ON SET

D.2.6 Junp and Junp to Subroutine Instructions

jmp [] jsr []

E.1 6809 REG STER SET

The following is a list

APPENDI X E

AS6809 ASSEMBLER

of the 6809 registers

a, b - 8-bit accunul ators
d - 16-bit accunul ator <a:
X,y - i ndex registers
s, u - stack pointers
pc - program count er
cc - condition code
dp - di rect page
E.2 6809 I NSTRUCTI ON SET
The following tables Ilist all 6809 menp
the AS6809 assenbler. The designation [] refe
addressi ng node argunent. The follow ng

used by AS6809:

b>

ni cs recogni zed by
rs to a required
list specifies the

format for each addressi ng nbde supported by AS6809:

#dat a

*dir

| abel

r,rl,r2

i mredi at e data
byte or word data

di rect page addressing
(see .setdp directive)
0 <= dir <= 255

branch | abel

registers
cc,a, b,d, dp, x,y,s, u,pc

regi ster indexed
aut odecr enment

AS6809 ASSEMBLER PAGE E-2

6809 | NSTRUCTI ON SET

, X+ , X++ regi ster indexed
aut oi ncr enent
, X regi ster indexed addressing
zero offset
of fset, x regi ster indexed addressing
-16 <= offset <= 15 --- b5-bit
-128 <= offset <= -17 --- 8-bit
16 <= offset <= 127 --- 8-bit
-32768 <= offset <= -129 --- 16-bit
128 <= of fset <= 32767 --- 16-bit
(external definition of offset
uses 16-bit node)
a, X accurul ator of fset indexed addressing
ext ext ended addressing
ext, pc pc addressing (pc <- pc + ext)
ext, pcr pc rel ative addressing
[,--X] regi ster indexed indirect
aut odecr enent
[, x++] regi ster indexed indirect

aut oi ncr enent

regi ster indexed indirect addressing

zero offset

[of fset, X] regi ster indexed indirect addressing
-128 <= of fset <= 127 --- 8-bit
-32768 <= offset <= -129 --- 16-bit
128 <= offset <= 32767 --- 16-bit
(external definition of offset

uses 16-bit node)

[a, x] accurul at or of fset indexed
i ndi rect addressing
[ext] extended i ndirect addressing
[ext, pc] pc indirect addressing
([pc <- pc + ext])
[ext, pcr] pc relative indirect addressing

terms data, dir,

si ons.

| abel, offset, and ext may all be expres-

AS6809 ASSEMBLER PAGE E-3
6809 | NSTRUCTI ON SET

Note that not all addressing nodes are valid with every in-
struction, refer to the 6809 technical data for valid nodes.

E.2.1 Inherent Instructions

abx daa
mul nop
rti rts
sex SW
swil swW 2
sw 3 sync

E.2.2 Short Branch Instructions

bcc | abel bcs | abel
beq | abel bge | abel
bgt | abel bhi | abel
bhi s | abel bhs | abel
bl e | abel bl o | abel
bl os | abel bl s | abel
bl t | abel bm | abel
bne | abel bpl | abel
bra | abel brn | abel
bvc | abel bvs | abel
bsr | abel

E. 2.3 Long Branch Instructions

| bcc | abel | bcs | abel
| beq | abel | bge | abel
| bgt | abel | bhi | abel
| bhi s | abel | bhs | abel
| bl e | abel I bl o | abel
| bl os | abel I bl's | abel
| blt | abel | bm | abel
| bne | abel | bpl | abel
| bra | abel I brn | abel
| bve | abel | bvs | abel

| bsr | abel

AS6809 ASSEMBLER

6809 | NSTRUCTI ON SET

E.2.4 Single Operand Instructions

asl a
asl

asra
asr

clra
clr

coma
com

deca
dec

inca
inc
I sla
| sl

| sra
| sr

nega
neg

rol a
rol

rora
ror

tsta
tst

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

asl b

asrb

clrb

conb

decb

i ncb

I'slb

Isrb

negb

rolb

rorb

tsth

PAGE E-4

AS6809 ASSEMBLER

6809 | NSTRUCTI ON SET

E.2.5 Double Operand Instructions

adca

adda

anda

bita

cnpa

eora

| da

suba

E.2.6 D-register Instructions

addd

cnpd
std

E.2.7 Index/Stack Register Instructions

cnps
cnpx

| ds
| dx

| eas
| eax

sts
st x

pshs
pul s

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[]
[]
[]

[]
[]
[]
[]
[]
[]
[]
[]

r
r

adcb
addb
andb
bitb
cnpb
eorb
| db
orb
shcb
stb

subb

subd
| dd

cnpu
cnpy

| du
I dy

| eau
| eay

stu
sty

pshu
pul u

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

,_”_‘ ,_|,_| ,_”_‘
[R—— [E—— [S——

,_”_‘
[S——

PAGE E-5

AS6809 ASSEMBLER
6809 | NSTRUCTI ON SET

E. 2.8 Junp and Junp to Subroutine Instructions

jmp [] jsr []

E.2.9 Register - Register Instructions
exg ri,r2 tfr ri,r2
E. 2. 10 Condition Code Register Instructions
andcc #dat a orcc #dat a

cwai #dat a

E.2.11 6800 Conpatibility Instructions

aba cbha

clc cli

clv des

dex i ns

i nx

| daa [1 | dab [1
oraa [] orab []
psha pshb

pul a pul b

sba sec

sei sev

st aa [] st ab []
tab tap

t ba t pa

tsx txs

wai

PAGE E-6

APPENDI X F

AS6811 ASSEMBLER

F.1 6811 REG STER SET

The following is a list of the 6811 registers used by AS6811:

a, b - 8-bit accunul ators
d - 16-bit accumul ator <a: b>
X,y - i ndex registers

F.2 6811 I NSTRUCTI ON SET

The following tables list all 6811 menpnics recogni zed by
the AS6811 assenbler. The designation [] refers to a required
addressing node argunent. The following |ist specifies the

format for each addressi ng node supported by AS6811:

#dat a i nmedi at e data
byte or word data

*dir di rect page addressing
(see .setdp directive)
0 <= dir <= 255

, X regi ster indirect addressing
zero of fset

of fset, x regi ster indirect addressing
0 <= offset <= 255

ext ext ended addressing
| abel branch | abe

The terns data, dir, offset, and ext nay all be expressions.

AS6811 ASSEMBLER
6811 | NSTRUCTI ON SET

struction,

F. 2.

F. 2.

Not e

1

2

t hat

I nher ent

aba
aby
clc
clv
des
dey
idiv
i nx
nul
rti
sha
sei
stop
tab
t ba
tsx
wai
xgdy

psha
psh a
pshx
psh x

pul a
pul a
pul x
pul X

not all

PAGE F-2

addressi ng nodes are valid with every in-

I nstructions

abx
cha
cli
daa
dex
fdiv
ins
i ny
nop
rts
sec
sev
SWi
tap
t pa
t xs
xgdx

pshb
psh b
pshy
psh y

pul b
pul b
puly
pul 'y

Branch I nstructions

bra
bhi

bcc
bcs
bne
bvc
bpl

bge
bgt
bsr

| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel

refer to the 6811 technica

brn
bl s
bhs
bl o
beq
bvs
bni
bl t
bl e

data for valid npdes.

| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel

AS6811 ASSEMBLER PAGE F-3
6811 | NSTRUCTI ON SET

F.2.3 Single Operand Instructions

asl a asl b asld
asl a asl b asl d
asl [1]

asra asrb

asr a asr b

asr []

clra clrb

clr a clr b

clr | abel

conmn conb

com a comb

com []

deca decb

dec a dec b

dec []

i nca i ncb

inc a inc b

inc []

| sl a I'slb Isld
Isl a Isl b Isl d
| sl [1

| sra Isrb I srd
lsr a Isr b lsr d
| sr []

nega negb

neg a neg b

neg []

rol a rolb

rol a rol b

r ol []

rora rorb

ror a ror b

ror []

tsta tsth

tst a tst b

tst [1]

AS6811 ASSEMBLER
6811 | NSTRUCTI ON SET

F.2.4 Double Operand I|nstructions

adca
adc a

adda
add a

anda
and a

bita
bit a

cnpa
cnp a

eora
eor a

| daa
lda a

oraa
ora a

shca
shc a

st aa
sta a

suba
sub a

[]
[]
[]
[]
[]
[]

[]
[]

,_|,_| ,_”_‘
[E—— [R——

,_|,_|
[R——

,_|,_| ,_|,_|
[R—— [E——

——
[R——

addb
add b

subb
sub b

adcb
adc b
[]
[]

andb
and b

bith
bit b

cnpb
cnp b

eorb
eor b

| dab
lda b

orab
ora b

shcb
shc b

st ab
sta b

F.2.5 Bit Mnupul ation Instructions

bclr
bset

breclr
br set

, #dat a
, #dat a
, #dat a, | abel
, #dat a, | abel

addd [1
add d [1
[]
[]
[]
[]
[]
[
[]
[]
[]
[]
[]
[
[]
[]
[]
[]
subd []
sub d []

PAGE F-4

AS6811 ASSEMBLER PAGE F-5
6811 | NSTRUCTI ON SET

F.2.6 Junp and Junp to Subroutine Instructions

jmp [] jsr []

F.2.7 Long Register Instructions

cpx [cpy []
| dd [I ds []
| dx [I dy []
std sts

,_|,_|
[—

[]
st x [] sty

G 1 8085 REGQ STER SET

The following is

AS8085:

a

a,b,c,d, e h,l

m
sp

psw

APPENDI X G

AS8085 ASSEMBLER

ist of the 8080/8085 registers used by

- 8-bit accumul ators
- menory through (hl)
- stack pointer

- status word

G 2 8085 I NSTRUCTI ON SET

The following tables Iist al
by the AS8085

format for each addressi ng node supported by AS8085:

#dat a

r,rl, r2

m

addr

| abel

The terns dat a,

Not e that

struction,
nodes.

refer to

not all

m addr,

t he

i medi ate data
byte or word data

register or register pair
psw, a, b, c,d, e, h,l

bc, de, hl, sp, pc

menory address using (hl)

direct nmenory addressing

call or junp |abel

and | abel may be expressions.

8080/ 8085 technical data

for

8080/ 8085 mmenmoni cs recogni zed
assenbl er. The following Ilist specifies

t he

addressi ng nodes are valid with every in-

valid

AS8085 ASSEMBLER
8085 | NSTRUCTI ON SET

G 2.1 |Inherent

cma
daa
ei
nop
r al
ret
rrc
sim
stc
xt hl

I nstructions

G 2.2 Register/Mnory/l

adc
add
ana
cnp
ora
sbb
sub
Xra

G 2.3 Call

cc
cm
cnc
cnz
cp
cpe
cpo
cz
cal l

and

= == === = =

cnc
di
hl t
pchl
rar
rim
ric
sphl
xchg

medi ate | nstructions

adc
add
ana
cnp
ora
sbb
sub
Xra

33333333

Return Instructions

| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel

G 2.4 Junp Instructi

| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel

ons

rc
rm
rnc
rnz
rp
rpe
rpo
rz

aci
adi
ani
cpi
ori
shi
sui
Xri

#dat a
#dat a
#dat a
#dat a
#dat a
#dat a
#dat a
#dat a

PAGE G 2

AS8085 ASSEMBLER
8085 | NSTRUCTI ON SET

G 2.5 |Input/Qutput/Reset Instructions

in
out
rst

G 2.6 Myve

G 2.7 Oher
dcr
inr
dad
i nx
pop
st ax

| da
shl d

| xi

data
data
data

I nstructions
rl, r2
r,m
mr
r, #dat a
m #dat a
I nstructions
r der m
r inr m
r dcx r
r | dax r
r push r
r
addr I hlid addr
addr sta addr

r, #dat a

PAGE G 3

APPENDI X H

ASZ80 ASSEMBLER

H. 1 .hd64 DI RECTI VE

For mat :

. hd64
The .hd64 directive enables processing of the HD64180 specific
menoni cs not included in the Z80 instruction set. HD64180
menoni cs encountered without the .hd64 directive wll be

flagged with an 'o' error.

H 2 2780 REG STER SET AND CONDI TI ONS

The following is a conplete list of register designations and
conditi on menoni cs:

byte registers - a,b,c,d, e h|,i,r
register pairs - af ,af', bc,de, h
word registers - pc,sp,iXx, iy

C - carry bit set

M - sign bit set

NC - carry bit clear

NZ - zero bit clear

P - sign bit clear

PE - parity even

PO - parity odd

Z - zero bit set

ASZ80 ASSEMBLER PAGE H-2
Z80 | NSTRUCTI ON SET

H 3 Z80 | NSTRUCTI ON SET

The following tables |list all Z80/HD64180 mmenoni cs recog-
ni zed by the ASZ80 assembler. The designation [] refers to a
requi red addressing nmode argunent. The following list specifies
the format for each addressi ng node supported by ASZ80:

#dat a i nmedi at e data
byte or word data

n byte val ue

rg a byte register
a,b,c,d, e hlI

rp a register pair
bc, de, hl

(hl) i npli ed addressing or
regi ster indirect addressing

(I abel) di rect addressing

of fset (i x) i ndexed addressing with
an of fset

| abel call/jmp/jr | abe

The terns data, dir, offset, and ext nmay all be expressions.
The terms dir and offset are not allowed to be external refer-
ences.

Note that not all addressing nodes are valid with every in-
struction, refer to the Z80/HD64180 technical data for wvalid
nodes.

ASZ80 ASSEMBLER PAGE H-3
Z80 | NSTRUCTI ON SET

H. 3.1 |Inherent Instructions

ccf cpd
cpdr cpi
cpir cpl
daa di
ei exx
hal t neg
nop reti
retn rla
rica rid
rra rrca
rrd scf

H 3.2 Inplicit Operand Instructions

adc a, [] adc []
add a, [] add [1
and a, [] and [1]
cp a,[] cp []
dec a, [] dec [1]
inc a, [] inc []
or a, [] or []
ri a, [] ri []
rlic a, [] rlic []
rr a, [] rr []
rrc a, [] rrc []
sbc a, [] sbc [1]
sl a a, [] sl a []
sra a, [] sra [1]
srl a, [] srl []
sub a, [] sub []
xor a, [] xor []

ASZ80 ASSEMBLER

Z80 | NSTRUCTI ON SET

H. 3.3 Load Instruction

0000000 QQ

o Q
=a

H 3.4 Call/Return Instructions

cal l
cal l
cal l
cal l
cal |
cal |
cal |
cal |
cal |

H 3.5 Junp and Junp to Subrouti

j
J
)
j

T T T DT

J
j

T T

dj nz

rg, []
(bc), a
(de), a
(label), a
(label),rp
i,a

a, i

sp, hl
sp,iy

C, | abel
M | abel
NC, | abel
NZ, | abel
P, | abel
PE, | abel
PO, | abel
Z, | abel
| abel

C, | abel
NC, | abel
P, | abel
PO, | abel

(hh)
(iy)

| abel

C, | abel
NZ, | abel
| abel

0000000 QQ

| ddr
Idir

ret
ret
ret
ret
ret
ret
ret
ret
ret

[l1.rg

a, (bc)

a, (de)

a, (Il abel)
rp, (1 abel)
r,a

a,r

sp, i x

rp, #dat a

ne I nstructions

j
J
)
j

T T T DT

J
j

T T

M | abel
NZ, | abel
PE, | abel
Z, | abel

(i x)

| abel

NC, | abel
Z, | abel

PAGE H-4

ASZ80 ASSEMBLER
Z80 | NSTRUCTI ON

SET

H 3.6 Bit Mnipulation Instructions

bi t
res
set

H 3.7

im
im
im
rst

H 3.8

in
ind
ini
out

outd
out i

H 3.9 Register

add
add

adc
ex
ex
ex
ex

push

nterrupt Mdde and Reset

n, []
n, []
n, []

5 5 35 S

nput and Qutput Instructions

a, (n) in
i ndr
inir
(n),a out

ot dr
otir

Pair Instructions

hl,rp add
iy, rp

hl,rp sbc
(sp), hl ex
(sp).iy

de, hl

af , af

rp pop

I nstructions

rg. (c)

(c).,rg

ix,rp

hl,rp

(sp),ix

rp

PAGE H-5

ASZ80 ASSEMBLER

Z80 | NSTRUCTI ON SET

H. 3.10

HD64180 Specific Instructions

in0
outO

otdm
otim

m t
m t

slp

tst
tstio

rg, (n)
(n),rg
bc
hl
a
#dat a

ot dnr
otinr
mt de
m t sp

PAGE H-6

