
Debug@Chip Users Guide

Author: Jack Gatrost

Date: 26 April 2003

Title: Debug@Chip User’s Guide

Page 2 of 45

1 Introduction... 5
1.1 Intended Users.. 5
1.2 Requirements from Environment... 5

1.2.1 Windows PC.. 5
1.2.2 SC12 Resources Required.. 5

1.3 Target Programs Under Test in SC12.. 6
1.4 Functionality Overview.. 6

1.4.1 Borland Symbol Table Usage.. 6
1.4.2 Real-time Data Watch.. 8
1.4.3 Breakpoint Control... 9
1.4.4 Single Step... 10
1.4.5 Task Control.. 11

1.5 Window Types.. 11
1.5.1 Watch Windows... 11
1.5.2 Assembly Code Windows .. 11
1.5.3 File Editor Windows... 12
1.5.4 Assembly/Source Mix View.. 12
1.5.5 Registers Window.. 12
1.5.6 Local Variables Window.. 12
1.5.7 Calling Tree Window.. 12
1.5.8 Timing Window.. 12
1.5.9 Symbol Table Window... 12

1.6 Additional Functionality... 12
1.6.1 Code Navigation.. 12
1.6.2 Line Assembler... 12
1.6.3 Program Download .. 13
1.6.4 IDE Builds.. 13
1.6.5 Help System... 13

2 Getting Started... 13
2.1 Installing Debug@Chip Program on PC... 13

2.1.1 Removing Debug@Chip Program from PC... 13
2.2 SC12 Target Configuration.. 13
2.3 Debug@Chip Program Configuration... 13

2.3.1 Target Programs... 14
2.3.2 Comm.. 16
2.3.3 Save/Restore.. 16
2.3.4 Options .. 17

3 Debug@Chip Screen... 17
3.1 Status Line .. 17

3.1.1 CPU Status Window.. 17
3.1.2 Clock / Stop Watch Window.. 17
3.1.3 Message Window... 18

3.2 Main Toolbar.. 18
4 Main Menu Operation.. 19

4.1 File Submenu .. 19

Title: Debug@Chip User’s Guide

Page 3 of 45

4.2 Breakpoints Submenu.. 21
4.3 CPU Submenu... 22
4.4 Grep ... 23

5 Window Operation.. 23
5.1 Overview.. 23
5.2 Watch Windows ... 23

5.2.1 Watch Controls Submenu... 24
5.2.2 Watch Window Right Mouse Pop-up Menu.. 26

5.3 Assembly Code Windows... 26
5.3.1 Assembly Code Controls Submenu... 26
5.3.2 Assembly Code Right Mouse Pop-up Menu ... 28

5.4 CPU Registers Windows... 28
5.4.1 Register Controls Submenu... 28
5.4.2 Register Window Right Mouse Pop-up Menu ... 29

5.5 Timing Breakpoint Window... 29
5.5.1 Timing Measurement Specifications... 29
5.5.2 Timing Breakpoint Window Controls Submenu ... 30
5.5.3 Timing Breakpoint Window Right Mouse Pop-up Menu.. 30

5.6 Calling Tree Windows... 30
5.6.1 Calling Tree Window Controls Submenu... 30
5.6.2 Calling Tree Window Right Mouse Pop-up Menu ... 31

5.7 File Editor Windows.. 31
5.7.1 Enabling the File Editor... 31
5.7.2 Mouse Operation on File Editor Windows .. 32
5.7.3 File Editor Window Controls Submenu ... 33
5.7.4 Edit Submenu... 34
5.7.5 File Editor Window Right Mouse Pop-up Menu.. 35

5.8 Symbol Table Windows .. 35
5.8.1 Symbol Table Window Controls Submenu.. 36
5.8.2 Color Coding on Symbol Table Window... 36

6 Breakpoint Operation.. 36
6.1 Breakpoint Modes .. 37
6.2 Breakpoint Toolbar ... 37
6.3 Breakpoint Types.. 37
6.4 Breakpoint Clock.. 38
6.5 Program Faults.. 38
6.6 Single Stepping.. 38
6.7 Stopping an Executing Program... 39
6.8 Breakpoint Implementation Notes.. 39

7 Task Control ... 40
7.1 Control Buttons... 40
7.2 Implementation Notes.. 41

8 Configuring for Multiple Users or Projects.. 41
9 Probe Embedded Program... 42

9.1 Probe Command Line Options .. 42
9.2 Probe Default Operation.. 43

Title: Debug@Chip User’s Guide

Page 4 of 45

10 Supplementary Tools .. 43
10.1 timetag.exe .. 43

10.1.1 Time Tagging After PKLITE Use... 43
10.2 depends.exe .. 44

11 Trouble Shooting.. 44
11.1 Console Error Messages at PROBE Start .. 44
11.2 Target CPU Crashing... 44
11.3 Debug@Chip Program Crashing.. 45

Title: Debug@Chip User’s Guide

Page 5 of 45

1 Introduction
The Debug@Chip debugger is a Windows PC program which monitors and controls
multiple programs within a SC12 target CPU. This is accomplished by executing a
program, PROBE.EXE, on the SC12. This embedded probe communicates with the
DEBUG@CHIP.EXE executing on a Windows PC via either a TCP/IP socket or one of the
two SC12 RS-232 ports.

1.1 Intended Users
Debug@Chip is useful both as a debugger used by software developers during initial
program development and as a system monitor used by system engineers during integration
testing, field engineering, etc.

The breakpoint control, low level assembly code inspection and code navigation capabilities
will be of use to the software developers. Once loaded1 with relevant memory locations
with assistance from the software designers, the real-time data Watch windows can be used
by the system engineers to study the internal operation of their new system.

1.2 Requirements from Environment
The debugger’s PROBE program requires SC12 @Chip-RTOS version 1.01 or newer.
(For older @Chip-RTOS version, an error message “Int21 ax=0x5000 not supported!" will
appear at the console.)

The Debug@Chip Debugger system requires the following resources:

1.2.1 Windows PC
Operating System: Win32, z.B. Microsoft Windows 95, 98, NT, 2000, XP or newer.
CPU: Pentium 133 MHz or better.
Disk Space: 10 Mbyte
RAM Space: At least 64 M Byte working RAM (recommended). Amount of RAM used

by Debug@Chip depends on number of windows opened and size and number of
target programs being monitored.

1.2.2 SC12 Resources Required
Flash Disk Space: 12.5 Kbyte to store PROBE.EXE program. (Program is compressed

with the PKZIP tool.)
RAM Space: Around 28 Kbyte RAM used during probe execution
Communication Port: Either one of the two RS-232 ports, or a TCP/IP socket offered by

the SC12 BIOS API. Port selection is controlled from the
PROBE.EXE command line.

1 Debug@Chip saves the contents of Watch windows for use in subsequent sessions.

Title: Debug@Chip User’s Guide

Page 6 of 45

RTOS Resources: One task for PROBE.EXE itself (single threaded program). No other
RTOS resources are consumed by the probe. During Start command
operations an extra task named X is momentarily created to launch
target programs.

1.3 Target Programs Under Test in SC12
At a raw assembly code level, any program executing on the SC12 can be monitored. The
breakpoint function works only on code residing in RAM. Source level debugging is
supported for C code generated by Borland compilers version 3.0 or version 5.02. C++
code generated by version 5.02 compiler is supported with some limitations2.

1.4 Functionality Overview
The Debug@Chip provides the following core functionality.

1.4.1 Borland Symbol Table Usage
The symbol tables (i.e. "debug information") generated by either the Borland 3.0 or 5.02
compilers are used by the Debug@Chip to:

• Obtain source line number information to map between target code and source files.
• Allow symbolic entry of memory locations to be watched, including data structures.

Data type information is retrieved from the symbol table.

Within the Borland 5.02 IDE the generation of symbol table information in the executables is
enabled as follows. First the compiler must be told to generate debug information to be
included in the OBJ intermediate files. This is done from the Borland IDE's Options |
Project dialog shown below in Figure 1. Assure here that the "Line Numbers" and
"Generate debug information" checkboxes are selected as shown. The command line
equivalents to these checkboxes are the –v option for "Generate debug information" and –y
option for "Line Numbers".

2 Examples of C++ limitations: Overloaded names are not selectable on entry. The tool simply
takes the first match encountered in the symbol table.

Title: Debug@Chip User’s Guide

Page 7 of 45

Figure 1) Enabling Generation of Debug Information

The final step required then is to instruct the linker to pass this debug information along to the
resulting executable file. This is done by checking the Linker option "Include debug
information" shown in the following dialog. The equivalent linker command line option for
"Include debug information" is –v.

Title: Debug@Chip User’s Guide

Page 8 of 45

Figure 2) Enabling Linker Debug Information

Now with this debug information, the Debug@Chip tool is aware of your program's
variables names and locations. Breakpoints can be set at source level.

Note: The resulting debug information can occupy at lot of disk space. This information
serves no purpose loaded into the SC12 and is therefore a waste of flash disk
space. The use of the tdstrip utility supplied by Borland is recommended, which
can create a second copy of the executable file with the debug information removed
for download to the SC12 target.

1.4.2 Real-time Data Watch
Static locations in memory can be observed during program execution. Memory space
locations can be specified either symbolically or by address. I/O space locations can only
be entered numerically by address. All locations not in ROM can be written.

Limitations:
Maximum Update rate: around 20 Hz. This decreases with volume of data on

windows and number of Watch windows.
Maximum Data per Watch Window: A limit of 2000 bytes of data collected from

the SC12 target system is placed on each Watch window display.
Data Sampling Integrity: In theory at least, brief garbage values can appear for long

values due to probe executing at a higher priority interrupting lower priority
application programs in the middle of a long value update.

Title: Debug@Chip User’s Guide

Page 9 of 45

Symbolic Data: Display of multi-dimension arrays appear as only two dimensions
(row, column) on display. All arrays of data structures appear as a single
dimension (row, column folded into single index).

Dereferencing arrays of pointers is not supported directly.

1.4.3 Breakpoint Control
Breakpoints can be set in code residing in RAM. They may be set at source level or
assembly. The breakpoint functionality has four modes of operation:

Full Stop - The program thread that hits this type breakpoint is suspended in a
RTX_Sleep_Time() loop until the user presses RUN. Registers (except for
SS and SP) and local variables can be modified during the stop.

Fly-By - When “fly-by” breakpoints are hit, the CPU registers and up to 100 bytes
of local variables on the stack are dumped into buffers within the probe
program for report back to the Debug@Chip monitor. This allows
inspection of local variables without stopping the program. If the reporting
buffers are busy (due to a recent breakpoint) then only a breakpoint
counter (visible on the Debug@Chip Registers window) is incremented.
The overhead for the breakpoint code (register/locals dump action) is on
the order of 100 us.

Fly-By One-Shot - This is a variant of the Fly-By type breakpoint. After
encountering the breakpoint trap a single time, the breakpoint is
automatically removed. This form of breakpoint is necessary for inspecting
high frequency loops for which a repeated 100 us overhead for the
breakpoint dump would be to great.

Timing - This mode of breakpoint measures elapsed time between two points in the
program marked by fly-by breakpoints A and B. Resulting measurements
for Maximum, Minimum, Average and Pass count are displayed on the
Debug@Chip Timing window.

Refer to section 6 on page 36 for more details about breakpoint control.

Limitations:
Limit on number of breakpoints:

100 full stop breakpoints
Two Fly-By breakpoints (shared with timing function)
One Fly-By One-Shot breakpoint

Reporting Limitations:
Only one full stop breakpoint occurrence is reported at a time. If more program
threads hit a full stop breakpoint after some other thread is already in a full stop
breakpoint, then these additional threads are held in a stop loop FIFO not visible

Title: Debug@Chip User’s Guide

Page 10 of 45

from the Debug@Chip console. Their reports will become visible one by one (first
come first serve order) as previous breakpoints are exited with the RUN button.

During the brief moment of time required for the probe to report the register
contents to the Debug@Chip monitor, no Fly-By register dumps are possible. In
these collision cases, the Fly-By breakpoint will simply increment a breakpoint
counter and returns control to the program without waiting.

Breakpoint Setting Limitations:
• Breakpoints cannot be set in ROM based code.
• Breakpoints cannot be set within the first 8 bytes of start-up code in programs

compressed by PKZIP or similar compression tools.
• Source level breakpoints set in include files will affect only one instance of the

code generated for the respective include file. No “one source line to many
code instances” mapping is provided by the Debug@Chip.

• Full stop breakpoints cannot be set within RTOS timer callback
functions3, or any other locations within the RTOS Kernel task.

• Breakpoints cannot be set inside Interrupt Service Routines prior to
where the interrupt controller is issued the "End of Interrupt" (EOI) signal.
(This is due to the system not responding to any further interrupts after the
breakpoint stop is entered.)

• Source level stepping is not supported for C++ “inline” code specified in
header files. Only assembly level is available for such code.

Timing Limitations:
Breakpoint timing of periods exceeding 1 ms requires interrupts to be enabled.
The timing measurement overhead is 123 us. This amount is subtracted out from
values displayed on the Debug@Chip Timing window.

1.4.4 Single Step
From full stop breakpoints the CPU can be single stepped. Single stepping is supported in
the following modes:

Single Instruction - One assembly instruction per step.
Source Level Step - Step up to next source line for which compiler provided line

number information in the symbol table.

For either of the above forms of single step, the following step variants are available in
addition to simply single stepping:

Step Over - Subroutine calls are bypassed without stopping.

Step Out of - Execute up past the next RET or IRET to return from a subroutine to
calling the procedure.

3 Timer callback functions execute within the RTOS Kernel task. Stopping the Kernel task
prevents further task switching and the entire system dies, including the debugger's PROBE.

Title: Debug@Chip User’s Guide

Page 11 of 45

Limitations:
Single step will not work across instructions which modify the stack segment register
SS. No report will result.

It is not possible to single step through IRET or POPF instructions, unless the trace flag
was set in the FLAG word retrieved from the stack.

The “Step Out” implementation analyzes the program stack at breakpoints to determine
a routine’s return address . This analysis will not work properly within the first few lines
of compiler generated register saving assembly within interrupt type routine. If you
first step up to the first source line of interrupt routines before using the “Step Out”,
it should then work properly.

1.4.5 Task Control
Limited control over the tasks executing on the SC12 is provided by the Task Control
window. This window can be reached with the CPU | Task Control menu option or with
the F12 key. See section 7 on page 40.

The Start button on the toolbar or the CPU | Start Program menu option can be used to
command the target system to start an application, or to issue some other command.

1.5 Window Types
The user can open arbitrary numbers of the following types of windows, which are presented
in a Windows’ Multiple Document Interface (MDI) fashion.

1.5.1 Watch Windows
Watch windows contain a set of memory locations whose contents are reported for display
by the embedded probe. These windows show real-time data during the execution of
software. It is not necessary to stop programs to observe static data.

The layout of these windows is automatically saved on exit from the Debug@Chip program
for use during a subsequent Debug@Chip sessions.

Limitations:
Watch window’s can gather data from the target system for up to 45 items. Two
contiguous items (target address wise) of the same object size are automatically
gathered together and collected from the target system as an array, requiring a single
data request “item”. The maximum volume of data collected from the target system for
an individual Watch window is 2000 bytes. Items listed on the Watch window
exceeding these limits will appear with a blanked data field.

1.5.2 Assembly Code Windows
These windows display the disassembled code from either the target system or from an
executable file (*.EXE or *.ROM). No target system is required for viewing code from an
executable file.

Title: Debug@Chip User’s Guide

Page 12 of 45

1.5.3 File Editor Windows
Any ASCII text file can be viewed and edited. For files recognized as source files for
*.EXE programs under test, breakpoints can be controlled at source level. The File Editor
windows update automatically when files are edited by another editor, unless you have edited
from within the Debug@Chip File Editor window without saving to disk.

1.5.4 Assembly/Source Mix View
For source files with line number information in the symbol table, a File Editor window can
be switched to Mix mode. Here you can see the assembly code generated by the compiler,
which can often show why your C statement is not giving the result you wanted. No target
system connection is required for this Mix view.

Limitation: For include files containing code, the Mix window will display only the first
instance found of the resulting code.

1.5.5 Registers Window
The CPU registers reported at breakpoints are viewed here.

1.5.6 Local Variables Window
This window is similar to the Watch windows, except that it is loaded automatically with local
variables in scope at breakpoints.

1.5.7 Calling Tree Window
This window shows the return addresses (expressed symbolically) found on the program
stack at full stop breakpoints.

1.5.8 Timing Window
This window displays the breakpoint timing results.

1.5.9 Symbol Table Window
This window list a link map obtained from the *.EXE symbol table. All static objects within
a program are listed here in either alphabetic or numeric order.

1.6 Additional Functionality

1.6.1 Code Navigation
The Source file windows and Assembly Code window share a code navigation stack which
allows you to mouse click through a program’s source files and code. With the right mouse
button a menu option allows displaying the function whose name is at the window’s caret.

1.6.2 Line Assembler
From the Assembly Code windows, you can modify RAM based code in the target system
by editing the assembly code. Editing floating-point emulator code (INT 0x34 through
0x3E) is not supported.

Title: Debug@Chip User’s Guide

Page 13 of 45

1.6.3 Program Download
Programs or any other file can be transferred to the target system flash disk.

1.6.4 IDE Builds
An “Integrated Development Environment” type build option (not functional under Window
95) bundles the program make and download process together. Source files can be opened
to where compiler/assembly errors are reported with a mouse click in manner expected from
IDE’s. Project Makefile dependencies can be updated automatically.

1.6.5 Help System
On-line context sensitive help is included with the program.

2 Getting Started

2.1 Installing Debug@Chip Program on PC
The Debug@Chip program consists of an executable file Debug@Chip.exe and a set of
Dynamic Link Libraries (DLL’s). This set of executables is distributed in a single self
installing compressed bundle, itself named Debug@Chip.exe. The Debug@Chip program
can be installed by executing this installation program. You will be given a prompt for which
directory on your PC to install the set of files.

2.1.1 Removing Debug@Chip Program from PC
The Debug@Chip program can later be removed from your PC by simply deleting the
directory into which you had installed the program. All files and subdirectories placed on
your PC by the installation process went into this single directory.

2.2 SC12 Target Configuration
The Debug@Chip debugger system requires a probe.exe program to be executing on the
SC12 target system. The probe.exe program is delivered with the Debug@Chip installation.
It can be found in the Debug@Chip/bin directory. Transfer this file to your SC12 target
system. You may want to place a statement in your SC12 autoexec.bat file to invoke the
probe.exe if you will be using the debugger regularly.

Refer to section 9 on page 42 for command line arguments used to configure the
communication port used by probe.exe.

2.3 Debug@Chip Program Configuration
The Debug@Chip program first needs some configuration information from you before it can
do much for you. Most important are the symbol tables for the programs under test. The
Debug@Chip Configuration dialog pages are reached from the main menu under File |
Configuration. An alternative way to invoke this dialog is by double clicking on the CPU

Title: Debug@Chip User’s Guide

Page 14 of 45

status window at the top left side of the Debug@Chip window, directly under the main
menu. The Debug@Chip program configuration consists of four tabbed property pages:

• Target Programs
• Comm
• Save/Restore
• Options

Each of these configuration pages is discussed below.

2.3.1 Target Programs
On this dialog sheet you specify the set of programs under test. This information is saved in
a file named Debug@Chip.cfg in the current working directory.

Executables for Programs to be Monitored ... containing symbol tables

In this list you specify each program which will be under test. These will be an *.exe or
*.rom file4 complete with a Borland symbol table. (Otherwise there is little point in listing the
program here, since the entire Debug@Chip set of displays rely heavily on these symbol
tables.) Use the following five buttons to the right of this list box to manage the contents:

Add Program - Use this button to add another program to the end of the list. A file
selection dialog box will appear.

Edit Program - Use this button to change the selected program’s executable file.
Drop Program - Use this button to remove the selected program from the list.
Move Up List - Press this button to move the selected program under the highlight up

one notch in the ordered list.
Move Down List - Press this button to move the selected program under the highlight

down one notch in the ordered list.

The order of the programs in this list plays a role when symbols are entered by name on the
Watch or Assembly Code windows and these symbols are present in more than one
program (e.g. compiler supplied utilities such as strcpy). The symbol search order is first
the “Focus program”, and then from the top of this program list to the bottom. The “Focus
Program” is the program you leave the highlight over when you exit this dialog.

The remaining five fields on the Target Programs dialog specify support files and a command
line for the selected (highlighted) program in the list of executables. These entries are
optional.

Master Build Batch File (for overall program)
This is an optional entry. Specify here a batch file that can be invoked to build your
program. This batch file will be called when the IDE build operation is requested. It should

4 For *.rom files, a corresponding *.loc file produced by the Paradigm locator must be available in
the same directory in order for the Debug@Chip program to determine the final location of objects.

Title: Debug@Chip User’s Guide

Page 15 of 45

be constructed such that it emits the text “Build Successful” on successful builds so that the
Debug@Chip’s results parser can detect a successful build.

The file name entered here serves a second purpose of informing the Debug@Chip tool
where the program’s build directory is at. This may be necessary if the program’s
executable with symbol table does not reside in the original build directory5. You may need
to enter here the name of some file from your program’s build directory in order for the
Debug@Chip to be able to locate the program’s source files. The paths to source files
specified in the Borland symbol table are stated relative to the build directory. Consequently
the Debug@Chip tool needs to know where the program’s build directory was in order to
locate the source files. Correct access to the source files can be tested on the Project

Source Files dialog reached with the Open button on the main toolbar.

Makefile(s)
This is an optional entry. Specify here your program’s set of makefiles. A drop down list
box holds your previous entries for easy re-selection. The currently selected makefile will be
accessible through the File | Build Target Program dialog’s Show Make File button for
convenience. Makefile names no longer desired can be deleted from the drop down list box
by first selecting them and then pressing the delete key.

Compressed Executable for Download to Target ... without symbol table (optional)
Specify here the executable file which is actually to be loaded into the target. Usually this will
at least have the symbol table stripped away6 and possibly be compressed with a PKLITE
tool. The download operation performed automatically after a successful IDE build will
transfer this file to the target.

Target File Path and Name (optional)
This field allows you to specify a directory and file name in the target system where the
program resides. On downloads, the file from the PC will be renamed if necessary to the
name specified here. By default it is assumed that the program resides in the target system's
root directory and that it has the same name as the executable on the PC. You may leave
this field blank if this is the case. This field is also used to recognize program launch
announcements from the target system.

Command to Start Program in Target (optional)
This optional field allows you to specify a command line used for this program with the Start
button. This command line may include arguments and should include the full path to the
target executable if this executable does not reside in the target system's root directory. By
default, the command line used for the Start operation will be simply the target file name.

5 The current working directory during program compilation and linking.
6 Borland’s tdstrip utility can be used to remove the symbol table. However, you should preserve
the original executable that includes the symbol table while performing this step by creating a new file
(perhaps in different directory) containing only the executable code and file header.

Title: Debug@Chip User’s Guide

Page 16 of 45

2.3.1.1 Correlation of Target Programs

The Debug@Chip must determine where in memory a program resides in order to operate.
As the target system launches programs, it notifies the PROBE resident in the target
(assuming that this required monitor has been launched). The PROBE in turn sends a
program launch report to the Debug@Chip on the PC. This launch report contains the
command line used to launch the new application program and the location (first paragraph)
of the new application program in memory.

This reported command line is used by the Debug@Chip to correlate launch reports to
configured target programs. The following prioritized sequence of logic is used for this
correlation. The search is stopped at the first method that comes up with a match. Any
blank fields in the Target Programs Configuration are skipped.

1) If the command line reported matches (case insensitive) to the command line you have
entered on the Target Programs Configuration Command to Start Program in Target
field, then that program is matched to the report. This field takes precedence, which
allows multiple instances of a single EXE to be monitored provided that they can be
distinguished by command line parameters.

2) Next, the EXE file name (first argument of command line) is compared to the Target
Programs Configuration Target Programs Path and Name field. If no exact match
with full path is found, then any match of just the file name is accepted.

3) Next the EXE file name without path is compared to the Target Programs Configuration
Compressed Executable for Download to Target field.

4) Finally, the EXE file name without path is compared to the file names in the Target
Programs Configuration list of EXE files with symbol tables.

2.3.2 Comm
On this dialog sheet the form of communication with the target is specified. The information
specified here must match the PROBE program configuration (see section 9 on page 42).
Either RS-232 or TCP/IP ports may be used to communicate with the target system.

The Set to Defaults button can be used to restore settings to the PROBE’s default values.

2.3.3 Save/Restore
This dialog is not important for initial setup. Here you can alter the default file names used for
saving the Debug@Chip desktop and restoring the desktop on subsequent invocations of the
Debug@Chip program. The “desktop” is the set of windows you have placed in the
Debug@Chip multiple document interface, including Watch windows with variables listed.

On closing the Debug@Chip program, you will usually receive a prompt asking you if you
want the desktop saved. This prompt allows you to control whether are not the current
desktop is saved in the desktop file.

Title: Debug@Chip User’s Guide

Page 17 of 45

2.3.4 Options
Here is where the optional features are controlled. The Build button option allows you to
run IDE type builds from within the Debug@Chip environment. This combines the build and
download to target system steps.

Note: The Build operation does not work properly under Window 95 or Windows
98 operating systems.

Other options:

Translate Floating Point Emulator INT Opcodes
The floating point emulators use 11 software interrupts, numbers 0x34 through
0x3E. When this option is selected, the disassembler will display the equivalent
floating point instructions. In order to single step through software emulator code,
this option must be selected as the single step mechanism relies upon the
disassembler. If your program uses these software interrupts for other purposes
than for floating point emulation then you should deselect this option.

Target Name
This name will appear on the Debug@Chip program's title bar, and on the
Window's program selection bar. This can make switching between instances of
Debug@Chip easier when monitoring multiple target systems using multiple
instances of Debug@Chip. (Hint: Use a unique working directory for each
target's Debug@Chip session.)

3 Debug@Chip Screen

3.1 Status Line
The status line is immediately under the program’s menu bar. This line is subdivided into the
following three windows.

3.1.1 CPU Status Window
This window is in the upper left corner of the display. The state of the target SC12 and
problems communicating with the target are indicated here. When breakpoints are set, you
will see momentary (hopefully momentary, unless the breakpoint state machine gets stuck
due to target communication problems) messages here indicating the action that the tool’s
breakpoint manager is taking. So long as they disappear, you may ignore them. If they
persists, then a problem setting the breakpoints has been encountered.

3.1.2 Clock / Stop Watch Window
In the middle of the status line, a small clock window will appear provided that the
Debug@Chip program window is made wide enough. By mouse clicking on this window7

7 No keyboard alternative is provided here, a mouse is required for operating this timer.

Title: Debug@Chip User’s Guide

Page 18 of 45

you can start either a timer up count or down count. A single click starts the up count. A
double click prompts for a specified down count period.

During timer operation (window green), a single mouse click will freeze the timer display
(window blue) resolved to tenth seconds. The internal timer is still counting during these
display freezes. Another single mouse click exits the display freeze mode and resumes the
live count display.

An exit from timer mode can be made by double clicking to get the down count period
prompt and entering a null time period.

3.1.3 Message Window
The window at the right side of the status line displays a message that is specific to the
current MDI window that has the input focus. Status messages for time consuming internal
operations will also appear here.

3.2 Main Toolbar
The buttons on the Debug@Chip main toolbar provide the following functions:

 - Opens the window selection dialog box where you can change the input focus to
windows which may be buried in the stack.
- Calls up the Timing window where the execution times between breakpoints A and
B are displayed.

Map - Opens the Symbol Table window.
Open - Provides the Project Source Files dialog from which you can open one of the

current project’s source files in a File Editor window.
Src - Sets the focus to a File Editor window. When pressed while an Assembly Code

window has the input focus, the source file which contains the code on the Assembly
Code window is opened provided that line number information is available for the
code in question.

Mix - Exposes the assembly code on the File Editor windows for source files with line
number information in the symbol table. The assembly and source are intermixed
within the same window. Note that code may appear out of address order within
these views.

Asm - Calls up an Assembly Code window. When pressed while a source file with line
number information has the input focus, the corresponding raw assembly code will be
displayed. Code patches are possible from here.

Reg - Opens a Register window, displaying the CPU registers at a particular breakpoint.
- Opens a real-time data Watch window.

Start – Execute a command in target system. This dialog may be used to start target
programs.

Run - Continues program execution after a full stop breakpoint. If this button is clicked
when it is already pressed in (indicating that no task is currently in a full stop
breakpoint) then the Task Control window is opened. From the Task Control
window you can stop a running task with the Single Step button on this dialog.
Note that the Debug@Chip does not offer any mechanism to launch programs. Target

Title: Debug@Chip User’s Guide

Page 19 of 45

programs must be started in the normal manner (console command line, autoexec.bat,
etc.).
- Single steps from a full stop breakpoint, stepping into each subroutine call.
- Single steps, stepping over subroutine calls.
- Steps out of the current subroutine, up to the return address found on the program
stack.
- Used at a full stop breakpoint to continue execution up to a location marked by the
caret on either an Assembly Code or source file window. The window with the input
focus is the one which applies.

... One of the following two buttons appear depending on File | Configuration

Options selected
Build - Opens the IDE project build dialog.
Load - Opens the file selection dialog to select a file to be downloaded to target system.

4 Main Menu Operation
Here is an explanation of the options offered by the main menu. The Controls submenu has a
different content for each class of window, so these submenu’s are discussed with each
window’s explanation in the subsequent section.

4.1 File Submenu
The File submenu offers the following options:

File New ... - This submenu contains the following selections:
Watch Data - Creates a new initially empty Watch window.
Source File - Creates a new text file. You receive a prompt to name this new file.
Assembly Code from Object File - Creates a new Assembly Code window based on the

executable file for the current focus program. You must first have set the
Debug@Chip configuration so that at least one executable file with symbol table is
specified.

Assembly Code in Target - Creates a new Assembly Code window based on code read
out of the target system.

CPU Registers - Creates a new Registers window.
CPU Timing - Opens the breakpoint Timing display window which displays execution

times between fly-by breakpoints A and B.
Graph - Creates a new Graph window. Data items from Watch windows can be selected

for display on Graph window verses time.
Program - Opens file selection dialog for adding an executable file (with symbol table) to

the Debug@Chip configuration’s list of programs under test.

File Open ... - This submenu contains the following selections:

Title: Debug@Chip User’s Guide

Page 20 of 45

Watch Data - Prompts for *.w86 Watch window file. Watch windows can be saved8 in
files and later restored to screen with this menu option.

Top Most Source Window - Brings top most File Editor window to top of desktop. This
may be useful when your source file windows get buried under the other windows.

Source File - Opens the Project Source Files dialog where you can select a source file
from the current project (target program). Use the Other Files button here to open
arbitrary text files outside the scope of the current project. The Select Program

button allows you to switch context to another project.
Assembly Code from Object File - Opens an Assembly Code window based on the

executable file for the current focus program. You must first have set the
Debug@Chip configuration so that at least one executable file with symbol table is
listed.

Assembly Code in Target - Opens an Assembly Code window based on code read out
of the target system.

CPU Registers - Opens or sets focus to the Registers window.
CPU Timing – Opens or sets focus to the breakpoint Timing display window.
Graph - Opens or sets focus to a Graph window (data verses time).
Symbol Table - Opens or sets focus to the Symbol Table listing window for current focus

program.

Close - Closes current window.
Save - Saves current window to disk. This control is disabled if current window is not of

type which can be saved.
Save As - Provides file dialog which allows you to provide the file name where contents of

current window will be saved. This control is disabled if current window does not
save.

Save All Editor Files - Writes contents of any edited files within File Editor windows to
disk. Note: This operation is performed automatically prior to a Build operation.

Restore Destroyed - This option “pops” the most recently destroyed Watch window back
to the screen. This can be useful when you accidentally delete a Watch window.

Desktop Save/Restore - This option allows you to either save the current desktop or
restore one previously saved from a file on disk. Desktop’s can be moved between
PC’s in this manner.

Record - The data flowing to Watch windows from the target system can be recorded on
disk for later playback. This control allows you to specify a file name where the
recorded data is stored and the recording interval. The recording process can later
be stopped by invoking this same menu option at a later time after the recording
process has been started.

Playback - This option allows you to playback a recorded Watch window. These
playback windows will appear in gray.

Print to File ... Start New File / Append File - The contents of some windows can be
output to an ASCII file. (Note: A direct interface to printers is not supported by
Debug@Chip program.)

8 The set of data items to be monitored is what is saved here, not the actual contents of these
locations. See the File | Record menu option for recording the contents of locations.

Title: Debug@Chip User’s Guide

Page 21 of 45

Download File to Target - This option allows any selected file to be transferred to target
system.

Symbol Tables - The submenu offers the following options:
Select Program - Here you can select which program from your configuration will be used

as the “focus program”. This program is where symbols are searched for first.
List By Symbols - Opens a Symbol Table window with contents presented in alphabetical

order.
List By Address - Opens a Symbol Table window with contents presented in address

order.
Files In Use - Provides a message box which lists the file dates of executable files in use.

An indication of whether or not the file matches that found in the target system is also
given here. The “Time Stamp” refers to the tag placed in executables by the timetag

program distributed with the Debug@Chip. Use of this tool is recommended to
automate the determination of whether the symbol table in use matches with code in
the target system. This is especially important when setting breakpoints!

Build Target Program - This calls up the control interface for running project builds.
Configuration - Here is where you must configure the Debug@Chip program for use. In

particular, you need to specify the executable files containing the symbol tables for
the target programs.

Exit - Closes Debug@Chip session.

4.2 Breakpoints Submenu
The Breakpoints submenu offers the following options:

Set Breakpoint - This control is enabled when either an Assembly Code window or File
Editor window has the input focus. For File Editor windows, the file in view must be
a source file for which line number information is available in the associated symbol
table. This control sets or removes (toggle) a breakpoint at the current caret
position, providing an alternative to double clicking the mouse in the left margins of
these windows.

List Breakpoints - This option provides a complete summary list of all breakpoints currently
set. The list will show parenthesis around breakpoints which are set in programs not
currently loaded in the target system. Breakpoints cannot be set through this dialog
box, however they can be removed.

Clear All Breakpoints - This control erases all breakpoints that have been set within all
programs.

Code at Breakpoint - This option displays the code at the place where the most recent
breakpoint occurred. The source file will be shown provided line number
information, otherwise an Assembly Code window is used.

Code at Fault - This option is disabled until a program fault (e.g. invalid opcode) is reported
by the target system. It displays the code at the place where the fault interrupt was
invoked.

Calling Tree on Stack - This option is only enabled during a stop in either a full stop
breakpoint or after a fault report. This control opens a window that displays the
calling tree determined by reading the return addresses found on the program stack.

Title: Debug@Chip User’s Guide

Page 22 of 45

4.3 CPU Submenu
The CPU submenu offers the following options:

Task Control - Opens the Task Control window. See section 7 on page 40.
Start Program - Same as Start button. Provides dialog for command to be issued in

target system.
Reset Target - This commands the target system to reset.
Comm Reset - This resets the PC’s communication channel, either the TCP/IP socket in

use or RS-232 port. This can sometimes restore communication with the target
system. This can also be used to terminate some command such as a memory write
which may keep causing the target system to crash. A cycling condition can
sometimes be reached where after each reboot, the troublesome memory write is
attempted again resulting in another reboot. The Comm Reset can be used to
break this cycle.

Run - This control is used to continue program execution after a full stop breakpoint. The
functionality is the same as the Run button on the main toolbar.

Step Over - This control single steps the program such that subroutine calls are bypassed.
This functions the same as the button on the main toolbar.

Step Into - This control provides the most detailed single step by stepping into each
subroutine call. This functions the same as the button on the main toolbar.

Step Out Of - This control is used at a full stop breakpoint to execute up to where the
current subroutine was called from. This functions the same as the button on the
main toolbar.

Execute Up to Caret - This control is used at a full stop breakpoint to execute up to the line
you mark on either an Assembly Code window or source file. This functions the
same as the button on the main toolbar.

Single Step Mode - Here you are given a dialog box where you can control aspects of the
single step operation. Normally the single stepping is done either at source level or
single instruction level based on the type of window that currently has the input
focus. Here you can override this default to force either source or assembly level
stepping. The manner in which the step out of and step over operations are
implemented is also controlled here.

Registers - Opens or sets focus to the Registers window.
Timing Window - Opens or sets focus to the breakpoint Timing window, which displays

execution times between breakpoints A and B.
Fault Message - After a program fault is reported by the target system, this option displays

a message stating the cause and location of the fault.
Program Time Tags - Provides message box which lists the dates and time tags of each of

the programs under test. The time tags are those set by the timetag tool9. Of
particular importance here is that the time tags reported from the target system match
those found in the executable files used by Debug@Chip. Otherwise all symbolic
information is suspect!

9 See section 10.1 on page 43 for more information about timetag program.

Title: Debug@Chip User’s Guide

Page 23 of 45

Select Program - This dialog box allows you to select the focus program from among the
set of target programs under test you have configured the Debug@Chip to monitor.
Use the Configuration button here to add additional target programs to the list.

4.4 Grep
The Grep menu option provides a dialog box from which you can invoke a Unix style grep
operation. All occurrences of a specified string within a set of ASCII files will be located for
you. The set of files can be all files belonging to the currently active project and/or a
specified directory. When specifying a search directory, file wild card notation such as *.c
may be used to narrow the search.

Refer to the on-line help for further information on usage of the Grep function.

5 Window Operation

5.1 Overview
The following classes of data windows are available:

• Watch ... either static data or local variables (two types of Watch window)
• Assembly Code
• CPU Registers at breakpoints
• Timing Breakpoint
• Calling Tree at breakpoints
• File Editor Windows
• Symbol Table Listing
• Graph windows display selected data item values verses time.

On the main menu a Controls submenu appears. The set of controls listed on this submenu
depends on the class of window from the above list which currently has the input focus (e.g.
on top). A useful subset of these controls is also available from a pop-up menu called up
with the right mouse button. The pop-up may also contain additional controls to those on the
main menu.

5.2 Watch Windows

Watch windows are accessed with the button on the toolbar. You can organize your
target data locations to be monitored using an arbitrary number of Watch windows. The first
10 Watch windows created will show a number preceding their name that appears in the
window title. The Alt-1 through Alt-0 key combinations can be used to set the input focus to
these primary Watch windows.

Watch window update rates are independently adjustable. Minimized windows do not
update, so they place no load on the target data channel. The updating cycles round-robin
between the enabled Watch windows.

Title: Debug@Chip User’s Guide

Page 24 of 45

Each data item on the Watch windows can be independently formatted. For example you
may specify hexadecimal display mode for one group of variables and decimal for others.

When either Watch windows are restored to the screen or when a new symbol table comes
into use, the locations of all symbolically entered data items in the Watch window are
resolved with the current symbol table.

CAUTION: Type information is not checked again once a data item is placed on a Watch
window. If the program is modified such that data types or data structure
members change for items placed on a Watch window, you must manually delete
the data structure or item from the Watch window and re-enter it in order to pick
up the new type information from the current symbol table.

NOTE: When variables belonging to programs which have not been loaded into target
memory are displayed on Watch windows, their data field display will remain
blanked until the respective program begins execution in the target.

5.2.1 Watch Controls Submenu
Here is an explanation for each item on the Watch window’s Controls menu. Refer to the
actual menus for the short cut keys indicated to the right of the menu items which have keys
assigned. (E.g. Insert key is short cut for Insert Item menu option.)

Insert Item – Provides a dialog box for adding a data item to the Watch window. The new
item will be placed on the screen above the current highlighted data item. Locations
can be in either the CPU’s memory or I/O space. Only memory locations can be
specified symbolically. I/O ports must be entered by port address.

... The following two menu items provide options on how newly inserted items are
formatted. They both operate as toggle switches with a check mark appearing beside
the menu item when the respective item format mode is selected.

Use Symbol Table Data Structure Info – When selected, the information found in the
symbol table will be used to load the screen with each member of data structures
when you add a data structure to the Watch window. For example, in some rare
cases you may want to view a block of memory where a data structure lies as just an
array of bytes. So this option is provided here to disable the usage of the symbol
table. When symbol table is not used, each symbol defaults to simply an integer.
You can then use the Format and/or Array menu options to display the memory area
as you desire.

Hex Default - When selected, newly inserted data items will default to hexadecimal display
format. You are free to change this default with an additional action after the item is
on the screen, but this switch can eliminate this extra step each time when there are a
series of data items you want formatted a particular way.

Delete Item – Removes highlighted data item from the Watch window.

Title: Debug@Chip User’s Guide

Page 25 of 45

... The following block of menu options apply to the entire Watch window.
Show Linear Address - This toggle switch affects how item addresses are formatted. The

default is segmented addresses. Addresses of data items appear in the message
window at the top right of the Debug@Chip frame window. Also the display of data
items formatted as pointers will be affected by this display mode switch.

Freeze Display - This toggle switch stops the display updates. The window appears gray
when the display freeze is in affect.

Update Rate - This option provides a dialog box where you can control the rate and
manner that the current Watch window will be updated. Refer to the on-line help
offered by the Help button on this dialog for more details.

Screen Name - You can give the Watch window a meaningful title here.
Show Full Names - This toggle switch affects the name display for isolated data structure

members. When the option is selected the entire full name of a data structure
member will appear on the screen. When deselected only the final member name
will be shown on the screen.

Show Member Names - This toggle switch either displays or hides member names on data
structure displays.

Clear Focus - This control terminates the data Focus mode initiated with the Focus control
described below.

Clear Continuous Write - This control terminates any continuous writes initiated with the
Write control described below.

Evaluate Ptrs - This toggle switch affects the message presented in the upper right
message window of the Debug@Chip frame window for the data item under the
highlight. It only affects the message for data items formatted as pointers (near or
far). When this menu option is selected, a pointer’s contents will be evaluated
symbolically using the symbol table to display by name the object referenced by the
pointer. When deselected the address of the pointer’s own location is instead
displayed.

Record Selected - This toggle switch is used to mark a Watch window for data recording.
When selected, a green box will appear under the spinning wheel in the lower right
corner of the Watch window. Then when recording is activated with the File |

Record menu option, the data from all Watch windows marked in this manner will be
recorded in the specified recording file which can later be played back. During the
recording process, the green box changes to red.

... The following block of menu options apply to the specific data item under the highlight.

Format - This option provides a dialog box where you can specify an items display format.
Refer to on-line help available on the Help button for more details.

Array - Here you can specify up to a two dimensional array.
Write - This option allows you to write to the data item under the highlight. By selecting

the Continous Write check box the write to the location will automatically be
repeated at a low frequency until the Clear Continous Write option listed above is
used to stop the repetitive writes. A maximum of 10 locations can be placed in the
continuous write mode (sum for all Watch windows).

Title: Debug@Chip User’s Guide

Page 26 of 45

Dereference Pointer - This control applies to pointer data items. It will generate another
data item on the Watch window which displays the object pointed to by the pointer.
The location referenced by the pointer will be tracked dynamically.

Focus - This control adds the item under the highlight to the list of data items under focus.
All other data items on the current Watch window are eliminated from the update
cycle, unless they were previously selected with this same control. The purpose of
this control is to allow a faster update rate for a small set of data items. Normally,
you will want to minimize any other Watch windows when using this control so that
your current Watch window will have a dedicated data channel to the target system.
Use the Clear Focus control listed above to exit this restricted update mode and
resume display of all data items.

Graph Data - The item under the highlight will be added to the most recent Graph window.
Graph windows display a data’s value verses time.

5.2.2 Watch Window Right Mouse Pop-up Menu
Most of the options on the Watch window’s pop-up menu are the same as the menu options
on the Controls menu explained above. The unique controls here are:

Hexadecimal Format - This is a toggle switch to flip the data item under the highlight
to/from hexadecimal display mode.

5.3 Assembly Code Windows
The Assembly Code windows display disassembled code obtained from either the target
system or from a *.exe (or *.rom) executable file.

Note: Assembly Code windows for target code hide the INT 3 opcodes set for breakpoints
inserted into programs by substituting the original opcodes for display10. Under some
circumstances, the data base of breakpoints maintained by the Debug@Chip can get
out of synch with the target system and you will see INT 3 opcodes appearing on the
target Assembly Code windows, but not in the corresponding executable file Assembly
Code window. If this occurs, it is recommended that the target system be reset.

5.3.1 Assembly Code Controls Submenu
Here is an explanation for each item on the Assembly Code window’s Controls menu. Refer
to the actual menus for the short cut keys indicated to the right of some menu items. (E.g. N
key is short cut for Call New Page menu item.)

Watch Location / Go to Location - This menu item will appear in one of two forms
depending on whether the target location at the cursor (white arrow) is a data item or
a subroutine. Data items will be appended to the Watch window that most recently

10 If you inspect the opcodes through the Watch windows (which do not perform this substitution)
you will see the actual INT 3 opcodes.

Title: Debug@Chip User’s Guide

Page 27 of 45

had the input focus. For subroutines this Assembly Code window will display the
subroutines disassembled code.

Call New Page - This menu item prompts for an address or subroutine name to open a new
Assembly Code window at. Any target of the highlighted instruction on the current
window will be the default location preset in the prompt edit control.

Go To - This menu option works the same as the previous Call New Page option except
that it transfers the current Assembly Code window to the new address instead of
creating another window.

Show Program - This menu option allows you to specify one of your other programs to be
viewed in a new Assembly Code window.

Show Linear Address - This control is a toggle switch. A check mark appears next to the
menu text when the option is selected. The address field on all Assembly Code
windows will switch from segmented addresses to linear addresses when this option
is selected.

Hexadecimal Numerics - This control is a toggle switch with a check mark present when
this display mode is selected. The arguments of the assembly code instructions will
be displayed in hexadecimal when selected and in decimal when deselected11.

Unsigned Numerics - This control is a toggle switch with a check mark present when this
display mode is selected. The arguments of the assembly code instructions will be
interpreted and displayed as unsigned values when selected and signed values when
deselected.

Edit Code - This provides access to the line assembler. The code at the highlight can be
edited provided that the program is located in the target system. Otherwise this
control is disabled. Refer to on-line help for more information about the line
assembler and patch log operation.

Previous Patch - A log of program patches made by the line assembler are held to make
restoring original code easier. This menu option scans to a patch at a lower
addresses when one exists, otherwise the control is disabled.

Next Patch - This control scans down to a program patch at a higher address when one
exists. Otherwise the control is disabled.

Refresh Display - This control forces a refresh of the code buffer used to support the
Assembly Code window. This is meaningful when viewing code in the actual target
system, in case for some reason the code has changed since originally sampled and
cached in the Debug@Chip PC.

Properties - This menu option provides a message box which lists a few details about the
current executable. If the window is displaying code from the target system, then the
message details apply to the program located at the displayed addresses.

11 This hexadecimal mode control and the following Unsigned Numerics control also affect the
disassembly shown in the File Editor Mix windows. However the Mix windows will not update in
response to these controls. The display mode in effect when the Mix window was generated will
remain. You can force a display mode change on the Mix windows by closing the Mix window and
re-opening the source file after setting these Assembly Code window controls to the desired state.

Title: Debug@Chip User’s Guide

Page 28 of 45

5.3.2 Assembly Code Right Mouse Pop-up Menu
Most of the options on the Assembly Code window’s pop-up menu are the same as the
menu options on the Controls menu explained above. The unique controls here are:

Return to ... - This is a part of the code navigation implementation shared with the File
Editor windows. It operates as a stack where for each call you make navigating
through the source and assembly code there is a corresponding Return to option
provided by this control. This control pops one address off of this navigation stack
and restores the screen to where you were before the call.

Show Code In Target / Show Assembly Code in *.EXE - One of these two options will be
presented depending on whether the current window is showing live code from the
target system or code from a *.exe (or *.rom). For the live code window this
option offers the corresponding executable file for viewing. For an executable file
Assembly Code window, the corresponding live target code is offered provided that
the program has been located in the target.

Show Source Code in *.C - This option calls up the source code which corresponds to
the current Assembly Code window. The option is disabled if no line number
information is available in the symbol table for the highlighted line of assembly code.

Show Program - This option allows you to call up an Assembly Code window for another
program.

5.4 CPU Registers Windows
The Registers windows display the contents of the CPU registers at breakpoints or faults.
All data is displayed in hexadecimal format, except for the contents of the gray box in the
lower right corner of the Registers window where the value in data registers is repeated in
decimal format. For the Flags register, the value of each of the CPU flags is stated here.
The Format Registers menu control allows the format of this gray window field to be
adjusted. At full stop breakpoints the contents of the registers can be edited.

The four letter task name displayed on the top line identifies the program thread which hit the
breakpoint or fault.

The windows also display a count of times that each of the breakpoints has been reached.
The counts are labeled A, B, 1, and S. Count A indicates the number of occurrences of fly-
by breakpoint A. B indicates fly-by breakpoint B occurrences, and 1 indicates fly-by
breakpoint 1 occurrences. The count marked S indicates the number of full stop breakpoint
occurrences.

5.4.1 Register Controls Submenu
Here is an explanation for each item on the Register window’s Controls menu.

Modify Register - This option allows the contents of the highlighted register to be edited,
with some restrictions. The target system must be in a full stop breakpoint in order

Title: Debug@Chip User’s Guide

Page 29 of 45

to edit registers. The SS and SP registers cannot be modified. Refer to the on-line
help for data entry format.

Format Register - This menu option allows the format of data register values displayed in
the gray box in the lower right corner of the registers window to be adjusted.
Signed or unsigned decimal displays with a scale factor and binary point may be
specified. Pointer format can be selected, in which case the object pointed to by the
register will be displayed based on the contents of the symbol table.

Show Local Variables - This menu option opens a Watch window containing the local
variables at the current breakpoint. This control is disabled if the symbol table
reports no local variables at the current instruction pointer, or if execution has been
resumed with the Run command.

... The next set of controls select which breakpoint’s set of registers are displayed. Each
registers reported at each category of breakpoint are buffered independently.

Full Stop Breakpoint Registers - This menu option sets the current Register window to
display register contents at most recent Full Stop breakpoint.

Breakpoint A Registers - This menu option sets the current Register window to display
register contents at most recently reported12 breakpoint A.

Breakpoint B Regisiters - This option displays registers from most recently reported
breakpoint B.

Breakpoint 1 Registers - This option displays registers from most recently reported
breakpoint 1

Fault Breakpoint Registers - This option displays registers from most recently reported
program fault (e.g. “Invalid Opcode”).

5.4.2 Register Window Right Mouse Pop-up Menu
The Register window’s pop-up menu provides the same set of controls listed above available
from the main menu.

5.5 Timing Breakpoint Window
The Timing Breakpoint window displays the elapsed times between breakpoint A and
breakpoint B when these breakpoints are operated in timing mode13.

5.5.1 Timing Measurement Specifications
The timing measurements displayed here have the following characteristics.

Clock Source: Quartz crystal based TIMER #2 within the SC12.

12 If fly-by breakpoints are occurring at too high a rate to report registers and stack contents back
to the PC, then only the breakpoint counter is incremented and the register/stack dump is bypassed.
This breakpoint counter appears on the Register window.
13 Timing mode is activated by pressing in the clock button, , that appears on the Source File or
Assembly Code windows. If you have no mouse available, this mode can also be activated by
selecting the Timing mode check box on the List Breakpoints dialog reached with the Ctrl-F2 keys.

Title: Debug@Chip User’s Guide

Page 30 of 45

Range: 18.2 Hours (2**32 ms)
Resolution: 0.2 us
Measurement Accuracy: 1 us or Quartz clock drift, which ever is greater. (This

accuracy stated excludes any bias due to measurement overhead or interval measurement
bias. See below)

Measurement Overhead: approximately 150 us
The measurement overhead is the amount of CPU time required to perform each measurement,
which covers the time required for breakpoint A execution and breakpoint B execution. A
calibration factor14 of 123 us is subtracted out from the measured values before display to
compensate for this overhead. However, if breakpoint B is not reached for each occurrence of
breakpoint A then a positive bias of about 50 us will appear in the measurements for each
excess execution of breakpoint A.

Interval Measurement Bias: approximately 273 us
Execution rate measurements can be made by placing breakpoint B immediately before
breakpoint A. However in this case the display calibration has an undesired affect. It biases
the interval measurements by minus 123 us. Adding the 150 us measurement overhead to this
and the total display bias during interval measurements is then about 273 us. This means that
the displayed interval values will be about 273 us lower than the actual values.

5.5.2 Timing Breakpoint Window Controls Submenu
Here is an explanation for the items on the Timing Breakpoint window’s Controls menu.

Reset Statistics - This option clears the timing measurement accumulators.
Write Report to File - This option writes the currently displayed timing measurements to an

ASCII listing file of your choice.

5.5.3 Timing Breakpoint Window Right Mouse Pop-up Menu
The Timing Breakpoint window’s pop-up menu provides the same set of controls listed
above available from the main menu.

5.6 Calling Tree Windows
Use Breakpoints | Calling Tree on Stack menu option to open a Calling Tree window.
This menu option is disabled unless the target system is currently in a full stop breakpoint or
program fault.

The Calling Tree window lists the return addresses obtained from the program stack at full
stop breakpoints or program faults. The deepest call is listed at the top of the window with
parent routines listed below.

5.6.1 Calling Tree Window Controls Submenu
Here is an explanation for the items on the Calling Tree window’s Controls menu. The
context of all controls applies to the program instruction pointer under the highlight. The
highlight can be moved with either the up/down arrow keys or mouse selection.

14 The 130 us is the elapsed time prior to the clock read action within the timing breakpoint
interrupt. The additional 30 us is spent within the breakpoint interrupt following the clock read.

Title: Debug@Chip User’s Guide

Page 31 of 45

Show Source Code in *.C - This option calls up the File Editor window to show the source
code corresponding to the highlighted instruction pointer. The control is disabled if
the symbol table provides no line number information for this instruction pointer.

Show Local Variables - This option opens a Watch window loaded with the local
variables in scope at the highlighted instruction pointer. Note that display of register
variables (e.g. SI, DI) is not supported for stack frames up the stack.

Show Assembly Code in Target - This option opens an Assembly Code window to show
the disassembled code read out of the target system at the highlighted instruction
pointer.

Show Assembly Code in *.EXE - This option opens an Assembly Code window to show
the disassembled code read out of the executable file at the highlighted instruction
pointer. This option is disabled if the instruction pointer does not map to a known
program located in the target.

5.6.2 Calling Tree Window Right Mouse Pop-up Menu
The Calling Tree window’s pop-up menu provides the same set of controls listed above
available from the main menu under Controls.

5.7 File Editor Windows
The File Editor windows can be opened for source files from the current project with the
Open button on the main toolbar. Any ASCII file can be opened by using the Other Files

button on the Project Source Files dialog.

A breakpoint control toolbar (see section 6.2 on page 37) will appear in the upper right
corner of File Editor windows when line number information is present in the symbol table for
the respective source file. This toolbar is used to select the type of breakpoint to be set by a
subsequent double click in the left margin. The Mix button on the main toolbar applies to
these File Editor windows with line number information. In mix display mode, the
disassembled code from the associated executable file will be displayed below the applicable
source lines. Note that the code presented in this fashion can be out of address order15.

For source files with line number information available in the symbol table, a “Modified”
indication will appear in the window’s title bar if the source file’s date is newer than the
corresponding executable file. In such cases, the MIX display is usually inaccurate!
Remember that accurate source level control over breakpoints requires a valid map of the
source files by the line number information.

5.7.1 Enabling the File Editor
By default the File Editor’s editing functions are disabled to protect against unintended
changes to the source files. Editing can be enabled with the Edit | Edit Enable menu option.

The editor provided here is a very crude editor, lacking syntax highlighting, auto formatting
and many other features which one must have these days. Consequently it is intended to be

15 Out of order code is common around for or while loops.

Title: Debug@Chip User’s Guide

Page 32 of 45

used only in conjunction with your favorite editor. The debugger’s editor can be used for
quick simple editing, and then your can switch over to your favorite editor for more
significant editing. This debugger editor will automatically reload updated files when they
appear on disk16. Assuming that your favorite editor can also be configured to automatically
reload files that appear updated on disk, then the transition between these two editors will be
comfortable.

Mix Window Limitations:
The Mix windows are provided to show the relationship between source code and the
resulting assembly code generated by the compiler. Source editing is not implemented on the
File Editor’s Mix windows. You must return to the pure source view in order to edit files.

Any editing you do on source file’s with this debugger’s editor will not be reflected in the
Mix windows. The source file contents of the Mix windows are frozen to the original source
file contents present at the time the window’s disassembly was performed. However if you
edit with an outside editor, the Mix window will then show the new text due to the debugger
reloading the source file from disk and creating a new Mix image. But be aware that the line
number information from the program’s symbol table most likely no longer matches the
source file in these cases! Take note of the “Modified” warnings in the File Editor’s title
bar. Usually this indicates that assembly code mapping to source lines is not reliable.

After a program is recompiled and linked, the debugger will automatically accept the
program’s new executable code when one of following conditions is satisfied:

1) No communication with a target system available.
2) Target system has not reported the loading and execution of the program in

question17.
3) Target system reports loading of this new program with matching time tag.

When the debugger accepts the new executable code, any affected Mix windows will be
regenerated based on the new line number information and the Modified indication should
then disappear.

5.7.2 Mouse Operation on File Editor Windows
The mouse can be used to mark of blocks of text, set breakpoints and transfer data objects
to a Watch window. These operations are done as follows.

No Button Pressed - Selects item under cursor for the small Quick Watch data window.
Left Mouse Click - Moves edit caret to mouse cursor.
Left Mouse Down and Drag - Marks block of text.

16 Unless you have been editing without saving the file to disk. In this case you will be asked what
you want to do.
17 The debugger avoids using a new executable found on disk if that program is currently executing
on the target system. This allows the previous symbol table to be used further until you have loaded
the new program into the target system.

Title: Debug@Chip User’s Guide

Page 33 of 45

Left Mouse Double Click - Over text it highlights word under cursor, over left margin it
sets a breakpoint at next line for which line number information is available
in symbol table.

Ctrl Key + Left Mouse Double Click - Sets breakpoint at cursor, same as double click
left mouse in left margin.

Right Mouse Click - Provides pop-up menu in context of cursor position.
Ctrl Key + Right Mouse Down and Drag - Drags and drops data object under cursor

out to a Watch window or code window. Cursor will change to a box
shape if object is static and found in symbol table.

Middle Mouse Button Down and Drag - Drags and drops data object under cursor,
same as “Ctrl Key + Right Mouse Down”.

In case you do not have a mouse available, the above mouse operations can also be
accomplished with either the Edit submenu off the main menu (block marking) or the
Breakpoints | Set Breakpoint menu control. The breakpoint context toolbar within the File
Editor window can be selected with the Breakpoint | List Breakpoints dialog, if necessary.

5.7.2.1 Quick Watch

The mouse can be used on the File Editor window to point to simple data items to view their
current values in a momentary pop-up window. This feature allows a quick look at data
without cluttering your Watch windows intended for more persistent displays. This feature
does not support display of data structures or arrays of objects other than characters.
These larger objects must be placed on a normal Watch window for viewing.

Automatic local variables are not displayable unless you bring them into scope by setting a
breakpoint at an appropriate place. Note that for Fly-By breakpoints there is a limit of 100
bytes reported for local variables on the stack. Full stop breakpoints do not have this
limitation.

5.7.3 File Editor Window Controls Submenu
Here is an explanation for the items on the File Editor window’s Controls menu.

Watch Object at Caret - This menu option transfers a static data item under the entry caret
to a Watch window. The option is disabled when the caret is not over a static data
item. By default, the data structure element referenced by the text at caret is selected
for display on the Watch window. If you instead want the entire data structure
displayed, then you must select (double click with left mouse or drag left mouse) the
isolated data structure name prior to applying this menu option. The data item will
be appended to the Watch window which most recently had the input focus.

Call to Routine At Caret - This menu option opens a new File Editor or Assembly window
to show the routine at the caret. The source file will appear in another File Editor
window provided line number info is available in the symbol table. Otherwise an
Assembly Code window will open at the routine’s code. The menu option operates
within the Code Navigation framework provided for File Editor and Assembly
Code windows. The current routine’s display is pushed onto a stack to allow you to

Title: Debug@Chip User’s Guide

Page 34 of 45

return to this window after reading the called routine’s code. The return is made
with the Return to menu option below.

Go to Routine At Caret - This menu option works the same as the Call to Routine At Caret

option except that the current window will switch content to display the routine
instead of opening a new window (call).

Return to ... - This menu option pops the stack maintained for the Code Navigation
function and returns you to a code display window (File Editor or Assembly Code)
you previously had before a Call/Go to operation.

Open Include File - When the caret is over an “#include somefile.h” statement, this
menu option will attempt to locate this include file and open it in a File Editor
window.

Note: For Borland 3.0 compiler the paths to the include files is not reported in the
symbol table. Consequently this function will not work for include files not in the
same directory as the source files when using Borland 3.0 symbol tables.

Show Local Variables - This menu option opens a Watch window with the current
routine’s local variables loaded for display. This option is only enabled when local
variables are within scope at the caret position and a breakpoint, either full stop or
fly-by type, has reported these locals. Note that for fly-by breakpoints the size of
the local variables area reported on the stack is limited to 100 bytes. For full stop
breakpoints this limit does not apply.

Quick Watch Hexadecimal - This is a toggle switch on which a check mark appears when
it is selected. It controls the display mode of the quick watch pop-up window,
switching it between decimal and hexadecimal.

Source Only - This control applies to source files with line number information available. It
switches the display mode to hide the assembly code mix.

Mix Source/Code - This control applies to source files with line number information
available. It switches the display mode to mix the assembly code in with the source
code to allow detailed code reviews.

Properties - This option displays a message box which list some details about the current
source file size, date and amount of code generated.

5.7.4 Edit Submenu
The Edit submenu off the main menu for File Editor windows has the following options:
Edit Enable - This control works as a toggle switch to globally enable or disable file editing.

You may want to disable editing to protect against unintended source file changes
during debugging.

Undo - This option cancels the most recent edit action, restoring the file to the state it was
before that action.

Block Begin - This is the first step in marking off a block of text in the fashion the good old
Borland DOS editors used to work. For larger blocks of text it can be a useful
alternative to the mouse marking method.

Block End - This marks the tail of a block of text being marked with the Block Begin

option.
Block Move - This option moves the highlighted block of text to the current caret position.
Block Copy - This option puts a copy of the highlighted block of text at the current caret

position. It does not place a copy into the Windows clipboard.

Title: Debug@Chip User’s Guide

Page 35 of 45

Block Delete - This option deletes the highlighted block of text.
Block Hide – This option toggles on/off a highlighted block selected with the above Block

Begin / Block End controls.
Delete Line(s) – This option deletes the line at the caret. When the Ctrl+L accelerator is

used, up to nine lines can be deleted at a time by pressing a number key with the Ctrl
key down prior to the L key.

Put Line(s) - This option inserts at the current caret position the lines previously deleted
with the Delete Line(s) option.

Cut - This option deletes the highlighted text and places it in the Windows clipboard.
Copy - This option copies the highlighted text into the Windows clipboard.
Paste - This option inserts at the current caret position text from the Windows clipboard.
Clear - This option deletes the highlighted text without affecting the Windows clipboard.
Options - This dialog provides control over the use of tabs and auto indenting. Refer to

online help for more details.
Create *.BAK Backup Files - This option is a toggle switch with a check mark indicating

that it is selected. When selected the original file will be saved with a *.bak
extension prior to saving a file after editing.

5.7.5 File Editor Window Right Mouse Pop-up Menu
The File Editor window’s pop-up menu provides the same set of controls listed above
available from the main menu under Controls plus some from off the main menu’s Edit

submenu.

5.8 Symbol Table Windows
The Symbol Table windows can be brought up with the Map button on the main toolbar or
the File | Symbol Tables submenu. These windows list the static data and functions for a
given program based on the Borland symbol table contents. Use the Windows | New

Window menu control to open more than a single window if desired.

The Symbol Table windows list the static contents of a program’s symbol table in either
alphabetic or numerical (by linear address) order. The address displayed will show a
question mark, ‘?’, after either the segment portion of the address or after the linear address
when the location of the program in the target system has not been resolved.

Positioning Window within Symbol List
The position of the window within the symbol list can be selected by typing in a symbols
name. The characters typed in appear in the window’s title bar and the window is scrolled
to the best fit to what you have typed in.

Selecting Items for Display
Press enter to select the highlighted symbol for display. Doing so will transfer data items to
the most recently used Watch window or open a File Editor or Assembly Code window to a
routine’s code.

Title: Debug@Chip User’s Guide

Page 36 of 45

5.8.1 Symbol Table Window Controls Submenu
Here is an explanation for the items on the Symbol Table window’s Controls menu.

Watch Object ... or Go to Routine ... - This exact text here depends on the symbol under
the highlight. Data objects are transferred over to a Watch window or the code for
routines is presented.

Select Program - Allows you to switch over to another program’s symbol table.
List Alphabetically - This option presents the symbols in alphabetic order.
List Numerically - This option presents the symbols ordered by linear address.

Note: This presentation can be particularly useful when you have some piece of data that is
mysteriously changing for no reason you know of. In such cases, review the handling
of data objects which lie immediately before it in memory for possible exceeding array
bounds.

Display Linear Address - This option is a toggle switch which switches the address display
mode between segmented and linear addresses.

Display Filter - This option allows you to filter out certain categories of symbols from the
display.

... A check mark will appear next to the following four display filter toggle switches when
selected.
Show Functions - Toggle switch alters the display filter to either display or hide functions

from the list.
Show Global Data - Toggle switch alters the display filter to either display or hide global

external data from the list.
Show Static Data - Toggle switch alters the display filter to either display or hide local static

data from the list.
Show Compiler/Linker Symbols - Toggle switch alters the display filter to either display or

hide extra symbols for which no type information is available. These commonly
originate from compiler provided libraries or from the linker.

Symbol Table Properties - This option displays a message with information about the
symbol table.

5.8.2 Color Coding on Symbol Table Window
The symbols listed on the Map windows are color coded as follows:

White - Routines
Yellow - Data
Red - Objects for which debug information is not available.

6 Breakpoint Operation
The F2 key can be used to set breakpoints on either the Assembly windows or the source
file View/Edit windows. This control works as an on/off toggle. A double click of the left
mouse button in the left margin of these windows also toggles the breakpoint on/off.

Title: Debug@Chip User’s Guide

Page 37 of 45

6.1 Breakpoint Modes
The breakpoints operate in two different modes: Full Stop and Fly-By. When a program
thread reaches a Full Stop breakpoint it is suspended in a wait loop until you resume
execution with either the Run button or single step operations. In Fly-By mode, the thread
will resume immediately after a brief moment required to dump registers and stack local
variables into buffers which are subsequently reported to the Debug@Chip program by the
probe.exe program. Two of the Fly-By breakpoints (designated A and B) can be operated
in a timing mode instead of register/stack dump mode.

6.2 Breakpoint Toolbar
On source file windows for which line number information is available and on Assembly
Code windows, a toolbar will appear similar to this:

This toolbar is used to select the mode in which subsequent breakpoints will be set. The
toolbar illustrated above has the Full Stop breakpoint mode selected. Any breakpoints
subsequently set will be Full Stop type breakpoints. Alternatively you could click the

mouse on the button so the tool bar appears as:

Now any breakpoint setting activity will set the Fly-By A breakpoint. Marks will appear in
the right margin of File Editor or Assembly code windows to indicate breakpoints. These
markers will appear in gray if the respective program is not yet located in the target system.
When the program begins execution in the target system the breakpoints will be set18 and the
indicators will show in color.

6.3 Breakpoint Types

 - Fly-By A breakpoint performs repeated registers/stack dumps in normal mode and
starts the timing clock in timing mode.

 - Fly-By B breakpoint performs repeated register/stack dumps in normal mode and
stops the timing clock in timing mode.

 - Fly-By 1 breakpoint performs a single register/stack dump and then automatically
disarms itself. Use of this breakpoint is recommended in sections of your program
which execute at such a high rate that the repetitive breakpoints would be too great a
load on the system under test.

18 For programs compressed with PKZIP, breakpoints cannot be set within the first 8 bytes of the
program’s startup code.

Title: Debug@Chip User’s Guide

Page 38 of 45

--- Note: Each of the above Fly-By breakpoints are unique. Only one of each exists.

 - Full Stop breakpoints. The Debug@Chip supports up to 100 full stop breakpoints.
The Breakpoints | List Breakpoints dialog (Ctrl+F2) can be used to view the total set
of breakpoints.

6.4 Breakpoint Clock
The breakpoints can be used to time software between two points in the programs. A clock
button is available to switch the breakpoint operation between register dumping mode
(normal) and breakpoint timing mode.

 - Clock off, breakpoint register dumping mode is selected. The contents of the CPU
registers dumped at the breakpoints can be viewed on the Register page reached with the
Ctrl+F5 key.

 - Clock on, breakpoint timing mode is selected. The resulting execution times can be
viewed on the CPU Timing page.

6.5 Program Faults
The PROBE performs a breakpoint style register dump when unexpected program faults
(exceptions) occur. The debugger traps the following 80186 fault interrupts:

INT 0 - Divide Overflow
INT 6 - Invalid Opcode

Pressing the Run button at a fault will command the program to continue, which will send it
into the fault handler that was installed at the time the PROBE program began execution.
Usually this will be the SC12 BIOS's fault handlers which print out an error message to the
console.

Note that the instruction pointer indication at an invalid opcode fault references the opcode
byte following where the actual invalid opcode was at.

6.6 Single Stepping
From full stop breakpoints, the program can be single stepped at either assembly level or
source level. By default, the level is determined by the type of window which has the input
focus. If you have selected a source file window, then source level stepping is performed. If
you have the input focus set to either an Assembly window or a Mix code window, then
assembly level stepping is done. You can override this default behavior with the CPU |

Single Step Mode menu option.

Four step control buttons are provided on the main toolbar:

Title: Debug@Chip User’s Guide

Page 39 of 45

Step Into , Step Over , Step Out of , and Execute Up to Caret .

The last three of these controls have two different implementations from which you can
choose with the CPU | Single Step Mode menu option’s “Step Over/Step Out of Method”
control. The default implementation momentarily replaces existing opcodes in the program
with a breakpoint interrupt 3 opcode to execute up to a designated “over”, “out” or “up to”
point. An alternate implementation uses the CPU’s single step trace flag and trace interrupt
1 to sequence through the program one instruction19 at a time until the designated instruction
pointer is reached. These methods have the following advantages and disadvantages.

Set INT 3 - This method allows real-time execution speed up to the designated “over”,
“out” or “up to” point in the program. This method only works for code residing in
RAM, since the INT 3 opcode must be inserted.

INT 1 Trace - This method allows tracing into ROM code20. This method can be very slow
when thousands of instructions must execute prior to reaching the designated “over”,
“out” or “up to” point. A “Single Stepping” message appears in the CPU status
window during this process. A resulting instruction count is displayed on the Register
window’s top line when the end point is finally reached.

6.7 Stopping an Executing Program
An executing program can be put into single step mode by first selecting the program’s task
in the Task Control window’s (F12 key) task list and then pressing the Single Step button
beside the task list.

6.8 Breakpoint Implementation Notes
The Debug@Chip maintains a data base of full stop breakpoints. The original opcode that
was replaced by an INT 3 opcode is recorded in this data base at the time a breakpoint is
set. It will be needed when the breakpoint is reached to execute through the breakpoint.

If you open a Debug@Chip session on a target system which is already stopped at a
breakpoint, the Debug@Chip program has a problem. It does not know the original opcode
that your target had at this address. Consequently the tool is going to ask you to reset the
target.

Also note the implications here for target programs with self modifying code. Depending on
when the code modification is performed, the breakpoint function may or may not work
properly.

19 Critical sections within the operating system are bypassed atomically, to respect the critical
section. The code sequence: “pushf, push CS, CLI” used by the RTX multi-tasking OS around its
critical sections is recognized by the PROBE program.
20 When you attempt to use the Set INT 3 stepping mode for an address in ROM, you will be given
a message offering temporary use of the INT 1 Trace method instead since the Set INT 3 stepping is
not possible here. You can avoid repeated occurrences of these messages by selecting the INT 1

Trace method at the CPU | Single Step Mode dialog box.

Title: Debug@Chip User’s Guide

Page 40 of 45

The fly-by breakpoints use a small data base held on board the target, offering a rapid look-
up of the original opcodes needed at the fly-by exception.

Note: When setting breakpoints in programs launched from autoexec.bat immediately
after PROBE, the H command line parameter will be needed on the PROBE
command line. Otherwise breakpoints can be missed due to timing problems. When
a program is launched the PROBE program suspends the thread that is launching the
new program until the Debug@Chip has had time to set any breakpoints desired in the
new program. However by default, this delay action only occurs when
communication with the PC has already been established. With the ‘H’ option, this
delay is inserted unconditionally. This gives time for the communication to be
established after a target reset.

7 Task Control

The task control window lists the tasks running in the SC12. The primary purpose of this
window is to allow you to see where an active program is executing with the Source or
Assembly buttons provided here. This can be useful when your application is caught up in
a loop somewhere.

The displayed information is based on an inspection of the RTX RTOS’s task status made
on roughly a one second strobe. The PROBE program attempts to access the user task
instruction pointers from off the program’s stack, but this method is not always reliable.
Tasks which indicate "active" are actually suspended due to interruption (except for the
PROBE program which of course was itself executing during this data collection).

The priorities range from 0 to 127 where lower numbers indicate higher priority.

The corresponding executable file known to Debug@Chip through the configuration settings
are indicated when available.

7.1 Control Buttons

The following task control buttons apply to the highlighted task from the task list. Note that
no control over the essential AMXK task is permitted. The Single Step, Source and
Assembly controls are not available for system tasks.

Caution:
Applying the task controls (e.g. Suspend/Resume ... etc.) to the
system tasks can result in the SC12 not working properly until the
computer is reset.

Title: Debug@Chip User’s Guide

Page 41 of 45

Suspend - Executes RTOS API interrupt 0xAD service 0x0E
(RTX_SUSPEND_TASK) for selected task.

Resume - Executes RTOS API interrupt 0xAD service 0x0F (RTX_RESUME_TASK)
for selected task.

Chg Priority - Executes RTOS API interrupt 0xAD service 0x08
(RTX_CHANGE_PRIO) on selected task with your specified priority. The
highest priority that can be set here is 3, and lowest is 127.

Single Step - Sets trace flag in FLAG word on stack for active tasks or tasks whose
status is either "Await Wakeup" or "Timed Await Wakeup". Breakpoint single
step mode then begins when the task is resumed. This operation is only available
for user tasks. It is not available if RTOS was reached using the dynamic links
API.

Source - For user tasks whose instruction pointer was located on the stack, this button
will open the source file to the line corresponding to the IP address when line
numbers are available.

Assembly - For user tasks whose instruction pointer was located on the stack, this button
opens the Assembly Code window to the IP address.

7.2 Implementation Notes
The probe program reads the BIOS RTX RTOS’s prioritized linked list of tasks to gather
the data displayed in the Task Control window’s task list. In order to minimize the impact on
the system, this operation is done at the probe program’s normal task priority and without
interrupts masked. This leaves a possibility that either an incomplete list or garbage may
appear in the displayed task list in the event that the RTOS’s linked list is edited in the midst
of the probe program’s scan. This could happen for example when a new program is
started from the higher priority console thread. But this erroneous display will persist only
until the next update.

8 Configuring for Multiple Users or Projects
It is recommended that Debug@Chip be opened with the current working directory set to
some other directory than the /bin directory where the Debug@Chip.exe resides. The
reason for doing this is to make life easy when you either share the PC with another user or
deal with more than a single project. Under Windows NT 4.0, Windows 2000 or Windows
XP the current working directory can be set by right mouse clicking on a Debug@Chip
program icon (assuming you have placed an icon on the Windows desktop), selecting the
Properties item on the pop-up menu. The working directory is then specified in the Start In

field.

If you want a new project or user to be initially configured the same as a previous project or
user, then copy the Debug@Chip.cfg and savedesk.t86 (or what ever name you have given
to your desktop file) files from the original project/users working directory over to the new
project/users working directory. The same procedure applies to moving between PC’s.

Title: Debug@Chip User’s Guide

Page 42 of 45

9 Probe Embedded Program
The Debug@Chip debugger system requires a probe.exe program to be executing on the
SC12 target system. The probe.exe program is delivered with the Debug@Chip installation.
It can be found in the Debug@Chip/bin directory. For 24 MHz CPU’s (non-standard) the
probe24.exe program should instead be used.

The PROBE program must begin execution prior to any programs under test. This assures
that the Debug@Chip will know where the program under test is loaded in target memory.
Launching the PROBE from the target system's AUTOEXEC.BAT is one approach to
meeting this requirement.

9.1 Probe Command Line Options
The PROBE program supports command line options that override default settings. Each
command line option consists of a single letter (case insensitive) usually followed immediate
by a numeric value. No white space is permitted between the command line option letter
and the numeric value. The command line options are as follows:

B - RS-232 BAUD rate specification. Supported BAUD rate values are 1200, 2400, 4800,
9600, 19200 and 38400. Default BAUD rate is 9600.

H - Hang thread on program launch until Debug@Chip program in PC has had a chance to
set breakpoints in new program. This option takes no numeric argument. It can be
used when breakpoints are desired in programs launched from autoexec.bat
immediately following PROBE. (By default the program launch thread is only
suspended when communication has already been established with PC.) CAUTION:
This option can hang up the program launch indefinitely if no communication with
Debug@Chip in PC is established.

C - RS-232 Comm Port specification: 0 = EXT Port, 1 =COM Port . (Default RS-232 port
is EXT.)

P - TCP/IP Port number. The port number after the P is optional. If no value is entered
then the default port number 3000 will be used. This can be useful to enable both
TCP/IP and RS-232 communication with Debug@Chip. When both communication
channels are enabled, the probe attempts communication over the RS-232 port when
ever a TCP/IP socket connection is not established.

T - Probe Task Priority: By default the probe will execute at priority 15. This is a higher
priority than normal programs will execute at. This command line option allows the user
to specify some other priority for the Probe program.

Any combination of command line parameters is accepted in any order.

Command Line Examples
probe B19200
 ... Enables RS-232 communication at 19,200 BAUD and disables the TCP/IP

communication.

probe C
 ... Enables RS-232 communication at default BAUD rate of 9,600 over default EXT port.

TCP/IP communication is disabled.

probe C P

Title: Debug@Chip User’s Guide

Page 43 of 45

 ... Enables both RS-232 and TCP/IP communication paths with default settings.

probe T24
 ... Sets PROBE program's priority to 24. Communication will be over the TCP/IP socket

at port 3000 (default).

probe C1 B4800 P3001
 ... Enables RS-232 communication over COM port at 4,800 BAUD. TCP/IP

communication remains enabled over port 3001.

9.2 Probe Default Operation

By default the probe communicates with the Debug@Chip over a TCP/IP socket on port
3000.

The probe executes at priority 15 by default. The X task created momentarily to Start
programs executes at the probe priority plus one, which is 16 for the default case.

10 Supplementary Tools
Some extra command line tools are provided in the Debug@Chip’s /bin directory for use
during program development.

10.1 timetag.exe
The use of this tool is recommended as a final step in your build process. It overwrites file
offset 0x1C of the executable file with a four byte time stamp representing the PC’s current
time, or program build time. This portion of the executable’s file header is otherwise unused,
so no harm is done.

On program launch by the SC12, this time tag is reported to the PROBE.EXE (embedded
portion of the Debug@Chip) which in turn passes this information up to the Debug@Chip.
You can then view these time stamps through either the File | Symbol Tables | Files In Use

or CPU | Program Time Tags menu options. During program monitoring it is essential that
the symbolic information used by Debug@Chip match the target program. This time stamp
automates this verification.

For command line syntax, simply type timetag at the DOS prompt and the program will list
some usage instructions to the console.

10.1.1 Time Tagging After PKLITE Use
If PKLITE is used to compress a target executable file, the timetag tool must be executed
twice. Once for the *.exe containing the symbol table used by the Debug@Chip program
and again after PKLITE is applied to the *.exe. For example, if your target program is
named target.exe the set of operations you would perform in your build process following
the linker step would be:

Title: Debug@Chip User’s Guide

Page 44 of 45

 timetag target.exe -h timetag.h
 tdstrip target.exe target1.exe
 pklite -o target1.exe load\target.exe
 timetag load\target.exe -r timetag.h

The first call to timetag places the current build time into the target.exe executable file
header and into the timetag.h file that it produces. Then Borland's tdstrip is used to remove
the symbol table from a second copy of the program. Then this second copy is compressed
with the PKLITE tool. Finally the timetag tool is executed a second time with the -r option
to apply the time stamp stored in timetag.h to the resulting EXE produced by the PKLITE
tool. This second pass is necessary since the PKLITE tool has overwritten the original file
header and time stamp.

10.2 depends.exe
This tool is provided to automatically update the dependencies section of project makefiles.
It can be invoked directly from the Build dialog’s Update Makefile Dependancies button.

11 Trouble Shooting

11.1 Console Error Messages at PROBE Start
Incompatibilities with the @Chip-RTOS version can result in the following messages output
to the console when the PROBE.EXE begins execution.

a) Int21 ax=0x5000 not supported!

 This error message can occur when the PROBE is used with older versions of the SC12
@Chip-RTOS. The PROBE requires the DOS software interrupt 0x21 to support a
service 0x50 used to hook application programs as they are launched by the RTOS.
Version 1.01 of the SC12 @Chip-RTOS or newer is required.

b) Int 0xAC not supported!

By default, the PROBE attempts to establish a TCP/IP socket with the Debug@Chip
program in the PC. This error message will be seen if the PROBE is used with a version
of the @Chip-RTOS such as TINY which does not include the TCP/IP stack. One of
the RS-232 ports will need to be used in this case. This must be specified on the PROBE
command line (see section 9.1 on page 42).

11.2 Target CPU Crashing
The Debug@Chip program can cause the target system to crash under certain conditions.
For example, if one of the Watch windows references an address in the target at which no
hardware responds, the target CPU may lockup due to no memory ready signal being

Title: Debug@Chip User’s Guide

Page 45 of 45

returned from this location. This normally will result in a CPU reset due to a watch dog
timer time-out.

 If you suspect this is occurring, the following procedure can be used:

1) Minimize all other windows.
2) Use the CPU | Comm Reset menu control to clear any memory request currently
being issued to the target system.

At this point if the target CPU runs OK, then one of the Debug@Chip windows must have
been causing the shutdown. You can re-open the minimized windows one by one to
determine which one causes the problem.

If you are still having a problem, then clear all breakpoints with the Breakpoints | Clear All

Breakpoints menu option and try again.

11.3 Debug@Chip Program Crashing
The Debug@Chip program is very dependant on the data it reads in from the *.cfg
configuration and *.t86 desktop files. If the program persistently crashes, try deleting either
or both of these files from the working directory. Default settings will then be used by the
program for a clean start.

When reporting Debug@Chip program crashing problems, the contents of the Windows
error message stating the DLL at fault will help in resolving the problem.

