
Contents

1 Introduction 1

1.1 Emerging Robots : 1
1.2 Declining Cost : 2
1.3 Rug Warrior : 2
1.4 Guide Summary : 3

2 Getting Started with the Brains Kit 5

2.1 Software Installation : : : : : : : : : : : : : : : : : : : 5
2.1.1 Macintosh Instructions : : : : : : : : : : : : : : 6
2.1.2 DOS Instructions : : : : : : : : : : : : : : : : : 6
2.1.3 Windows Instructions : : : : : : : : : : : : : : 6

2.2 Power and LCD Connection : : : : : : : : : : : : : : : 6
2.3 Serial Connection : 7
2.4 Downloading Pcode : : : : : : : : : : : : : : : : : : : 7
2.5 Communicating with the Host : : : : : : : : : : : : : : 9
2.6 Testing the Board : 10
2.7 Rug Warrior Software : : : : : : : : : : : : : : : : : : 10
2.8 Assembly Language Routines : : : : : : : : : : : : : : 11
2.9 Self Test : 11
2.10 Programming : 14

3 Electrical Assembly 15

3.1 Required Equipment : : : : : : : : : : : : : : : : : : : 15
3.2 Optional Equipment : : : : : : : : : : : : : : : : : : : 15
3.3 Factory Pre-assembly : : : : : : : : : : : : : : : : : : : 16
3.4 Building Rug Warrior : : : : : : : : : : : : : : : : : : 16
3.5 Soldering : 17
3.6 Assembly Steps : 18

3.6.1 Cables : 18

iii

3.6.2 Microphone Circuit : : : : : : : : : : : : : : : : 20
3.6.3 Sensors and Actuators : : : : : : : : : : : : : : 21
3.6.4 Jumpers : 26

3.7 Summary : 27

4 Mechanical Assembly 28

4.1 Drive Motors : 31
4.2 Drive Wheels : 32
4.3 Chassis : 34
4.4 Caster Wheel : 37
4.5 Battery Holders : 38
4.6 Skirt and Circuit Board : : : : : : : : : : : : : : : : : 39
4.7 Final Adjustment : 40

5 Expanding Rug Warrior 42

5.1 Built-in Ports : 42
5.2 Expansion Example : : : : : : : : : : : : : : : : : : : 44

6 Trouble Shooting 46

7 Interactive C Manual 51

7.1 Using IC : 52
7.1.1 IC Commands : : : : : : : : : : : : : : : : : : 52
7.1.2 Line Editing : : : : : : : : : : : : : : : : : : : 53
7.1.3 The main() Function : : : : : : : : : : : : : : 54

7.2 A Quick C Tutorial : 54
7.3 Data Types, Operations, and

Expressions : 56
7.3.1 Variable Names : : : : : : : : : : : : : : : : : : 56
7.3.2 Data Types : 57
7.3.3 Local and Global Variables : : : : : : : : : : : 57
7.3.4 Constants : 59
7.3.5 Operators : 59
7.3.6 Assignment Operators and Expressions : : : : 61
7.3.7 Increment and Decrement Operators : : : : : : 61
7.3.8 Precedence and Order of Evaluation : : : : : : 62

7.4 Control Flow : 62
7.4.1 Statements and Blocks : : : : : : : : : : : : : : 62
7.4.2 If-Else : 63
7.4.3 While : 63
7.4.4 For : 63

iv

7.4.5 Break : 64
7.5 LCD Screen Printing : : : : : : : : : : : : : : : : : : : 64

7.5.1 Printing Examples : : : : : : : : : : : : : : : : 64
7.5.2 Formatting Command Summary : : : : : : : : 65
7.5.3 Special Notes : : : : : : : : : : : : : : : : : : : 66

7.6 Arrays and Pointers : : : : : : : : : : : : : : : : : : : 66
7.6.1 Declaring and Initializing Arrays : : : : : : : : 66
7.6.2 Passing Arrays as Arguments : : : : : : : : : : 67
7.6.3 Declaring Pointer Variables : : : : : : : : : : : 68
7.6.4 Passing Pointers as Arguments : : : : : : : : : 68

7.7 Multitasking : 69
7.7.1 Overview : 69
7.7.2 Creating New Processes : : : : : : : : : : : : : 70
7.7.3 Destroying Processes : : : : : : : : : : : : : : : 71
7.7.4 Process Management Commands : : : : : : : : 71
7.7.5 Process Management Library Functions : : : : 72

7.8 Floating Point Functions : : : : : : : : : : : : : : : : : 72
7.9 Memory Access Functions : : : : : : : : : : : : : : : : 73
7.10 Error Handling : 74

7.10.1 Compile-Time Errors : : : : : : : : : : : : : : : 74
7.10.2 Run-Time Errors : : : : : : : : : : : : : : : : : 74

7.11 Binary Programs : 75
7.11.1 The Binary Source File : : : : : : : : : : : : : 75
7.11.2 Interrupt-Driven Binary Programs : : : : : : : 78
7.11.3 The Binary Object File : : : : : : : : : : : : : 82
7.11.4 Loading an icb File : : : : : : : : : : : : : : : 83
7.11.5 Passing Array Pointers to a Binary Program : 83

7.12 IC File Formats and Management : : : : : : : : : : : 83
7.12.1 C Programs : 83
7.12.2 List Files : 84
7.12.3 File and Function Management : : : : : : : : : 84

7.13 Con�guring IC : 84

Appendix 86

A.1 The IC Library File : : : : : : : : : : : : : : : : : : : 86
A.1.1 Time Commands : : : : : : : : : : : : : : : : : 86
A.1.2 Tone Functions : : : : : : : : : : : : : : : : : : 87
A.1.3 Sensor Input : : : : : : : : : : : : : : : : : : : 87
A.1.4 Motor Functions : : : : : : : : : : : : : : : : : 89
A.1.5 Shaft Encoders : : : : : : : : : : : : : : : : : : 90

A.2 Serial Connection : 91

v

A.3 Selected Rug Warrior Speci�cations : : : : : : : : : : 92

vi

Chapter 1

Introduction

1.1 Emerging Robots

Piece by piece, robots are creeping into our lives.
Parts of robots can now be found almost everywhere. Nearly all

automobiles manufactured today contain robot brains, highly inte-
grated microcontrollers. These tiny computers have analog-to-digital
converters, timers, and other features integrated in a single chip. In
cars microcontrollers examine many aspects of engine operation, then
command adjustments to optimize performance.

The eyes and ears of robots|photocells, infrared detectors, and
other sensors|scan our homes for signs of intruders. Other such
devices watch patiently for hands to appear under the faucet in an
airport restroom|hands detected, the water goes on.

The muscles of robots|servo motors and solenoids|dispense soda
from vending machines and move magnetic tape through the internal
labyrinths of handheld video recorders.

Individually, these component parts of robots are commonplace
and taken for granted. What remains uncommon is �nding microcon-
trollers, sensors, and motors that have been assembled into a func-
tioning autonomous robot. In everyday life we do not yet encounter
machines moving about on their own, independently performing tasks
that we consider important.

This situation is changing. Recent advances in the theory of robot
programming, continuing progress in microelectronics, and the minia-
turization of sensors have brought robots to a critical point. We are
entering a time when robots will begin to leave the laboratory and

1

move into our o�ces and homes. Soon you may purchase luggage
that can follow you through the terminal to your plane or you may
choose an intelligent vacuum cleaner that operates when no one is
home, keeping your oors clean with no e�ort on your part.

1.2 Declining Cost

A great deal of work remains to be done before these wonders can be
fully realized. However, because of the advances mentioned above,
the cost of learning about robots and conducting research in robotics
is lower now than ever before. Just a few years ago, with startup
costs in the tens of thousands of dollars, only a few well funded re-
search institutions could contemplate doing experimental work with
robots. Today, a serious program of robotics research or education
can be begun for well under $1000. The door has been thrown open
to participation in this vital and exciting �eld!

Rug Warrior and its accompanying text, Mobile Robots: Inspira-

tion to Implementation (A K Peters, Ltd., 1993, ISBN 1-56881-011-3),
were developed by researchers from the Arti�cial Intelligence Lab at
the Massachusetts Institute of Technology. The purpose of both the
robot and the book is to transfer newly developed technology from
the MIT AI Lab and elsewhere to a wide audience. Toward this end,
we designed Rug Warrior to be as inexpensive as possible without
sacri�cing technical sophistication.

1.3 Rug Warrior

Rug Warrior is o�ered in di�erent packages to meet the needs of a
diverse user community. The assembly of the Brains Kit, the Brawn
Kit, and the integration of the Brains and Brawn components in the
Expanded Kit are all described in this manual.

The Brains Kit provides the intelligence system builders need to
construct highly capable mobile robots using their own motors and
other mechanical components. The circuitry of the Brains Kit is
described in great detail in Mobile Robots: Inspiration to Implemen-

tation.

In the Brawn Kit, builders have a rugged, uncomplicated platform
to which they can add their own controlling circuitry. Such a con-
trol system might be composed of a hardwired, discrete component

2

circuit or a single board computer (plus required auxiliary devices)
obtainable from any of a large number of vendors.

The Expanded Kit (the Brains plus Brawn Kits) provides a fully
integrated robot, ready for use in education or research. If desired,
builders may enhance the Expanded Kit with the addition of, say, a
gripper, sonar sensor or other devices of their own design.

1.4 Guide Summary

The logic and interface circuitry of the Brains Kit are factory as-
sembled which allows you to begin programming immediately. Read
Chapter 2 to learn the details of how to operate the Rug Warrior
circuit board and program it from your computer. Figure 1.1 shows
the circuit board's layout of components and sockets.

Rug Warrior's sensor circuits are left to the builder to construct.
Step-by-step instructions in Chapter 3 guide you through this process.
Self-test software, provided with the Brains Kit, allows you to verify
the functionality of each subsystem as you build it.

Interactive C (IC), a powerful, easy-to-learn language, is the rec-
ommended programming environment for Rug Warrior. IC is in-
cluded with the Brains and Expanded Kits. Writing and debugging
robot programs is greatly simpli�ed by IC's interactive nature and
built-in multitasking. The Rug Warrior self-test program, demon-
stration program, and other example programs provided with the
robot are written in IC. You are, however, not restricted to program-
ming your robot using this system. Full access is provided to the
Motorola MC68HC11 microcontroller|it can be programmed using
any compatible system.

Construction of the Brawn Kit and integration of the Brains and
Brawn Kits are described in Chapter 4.

One of the most exciting aspects of robot building is implementing
sensor and actuator systems of your own design. To accommodate this
feature, Rug Warrior o�ers built-in expansion capabilities. Consult
Chapter 5 to learn more about this option.

Chapter 6 o�ers a number of suggestions for diagnosing and cor-
recting problems that sometimes crop up during or after construction.

The Interactive C Manual (Chapter 7) describes the IC program-
ming system. The appendices explain the supplied set of Rug Warrior
speci�c library routines and provide other useful information.

3

 Left
Motor

down
load

run

Motor
Power

Serial
cable
 jack

Power switch

J1

Logic
power

32K RAM

LED

Bat
On

LCD
socket

Piezo
buzzer

Right
motor

Reset
button

Bat low
 LED

LCD
 pot

Right shaft
encoder

Left shaft
 encoder

ABC

Bump switchs

J2 mode
 select

Microphone

Right photo
 cell

Left photo
 cell

Right IR
 emitter

Left IR
 emitter

IR detector

 Pyro
detector

Audio
 amp

MC68HC11A1

Debugging LEDs

IR osc potSerial line
 interface

Motor driver Tripple NAND Hex inverter

Expansion

LCD screen

off

Latch

F
igu

re
1.1:

L
ayou

t
of

th
e
R
u
g
W
arrior

circu
it
b
oard

(R
ev

3.1).

4

Chapter 2

Getting Started with

the Brains Kit

We recommend that you verify the functionality of your board and
familiarize yourself with the self test features before installing the
remainder of the sensor circuitry or adding your own customizing
touches. To accomplish this end you must complete the following
steps:

1. Install the programming environment, Interactive C (IC), on
your computer.

2. Connect battery power to the circuit board.

3. Connect a serial cable from your computer to the Rug Warrior
circuit board.

4. Initialize the board by downloading the pcode (the operating
system).

5. Run IC on your computer establishing communication with Rug
Warrior.

Each step is explained in this chapter.

2.1 Software Installation

The recommended programming environment for Rug Warrior, Inter-
active C, is supplied on the software disk included with the kit. To get

5

started using IC, follow the directions below. Alternately, you may
read and follow the directions in the README.IC �le on the software
disk.

2.1.1 Macintosh Instructions

Create a new folder called \IC" on your hard disk and drag the con-
tents of the software disk into that folder.

2.1.2 DOS Instructions

Use xcopy to copy the �les from the software disk to a directory called
ic on your hard disk. If the software disk is in drive a: the following
dialog is applicable:

C:> xcopy a:*.* c:\ic

Does IC specify a �le name
or directory name on the target
(F = �le, D = directory)? d

2.1.3 Windows Instructions

See the �le README.IC �le on the software disk.

2.2 Power and LCD Connection

Remove the circuit board from its protective antistatic envelope. In-
stall the LCD screen into the raised 14-pin connector on the Rug War-
rior circuit board. (In some cases this assembly step will have been
done at the factory.) See Figure 1.1. One edge of the LCD screen may
rest on the case of the 8.000 MHz crystal (the silver rectangular com-
ponent at the upper left corner of the MC68HC11 microcontroller).
Place a piece of electrical tape across the top of the crystal to prevent
any possibility of shorting the traces on the underside of the LCD
display against the crystal case.

Insert four AA alkaline batteries into the battery holder provided.
See that the power switch on the board is in its center OFF position.
Next, making certain that the circuit board does not rest on a con-
ductive surface or conductive material (wires, solder, etc.), connect
the cable from the battery holder to the 2-pin polarized plug on the
left side of the Rug Warrior board. The plug is labeled \MOT PWR."

6

2.3 Serial Connection

The cable assembly supplied with the Brains Kit has a DB-25 fe-
male connector on one end and a 6-4 phone plug, RJ-11, connector
on the other. Use this cable to make the connection between your
computer's serial port and the Rug Warrior board. See Figure 2.1.
The female DB-25 connector plugs directly into the serial connector
on many IBM-PC compatible computers. If your computer has a 9-
pin connector you must use either a modem cable or a 9 to 25 pin
adaptor (Radio Shack part 26-209A) in order to connect to the Brains
Kit cable assembly. If your computer is a Macintosh you must use
a standard modem cable, DIN-8 to DB-25, to connect to the Brains
Kit cable assembly.

Some computers have phone jacks associated with their internal
modems. Do not attempt to connect Rug Warrior to your computer
using this jack. Modems produce modulated tones suitable for use
with phone lines, not the logic signals required by Rug Warrior.

Consult your computer owner's manual for information on how
to con�gure your serial line. Notebook computers in particular often
direct the output of their serial lines to an internal modem. If this is
the case for your computer, you must change the computer's default
settings so that \external modem" is selected. If you typically have
some other device connected to your serial line, say a mouse or a
local area network, you will most likely need to disable the associated
software drivers. Otherwise, IC may not have access to the serial line.

2.4 Downloading Pcode

You can think of the pcode as the operating system of the robot. The
pcode makes it possible for the robot to run programs written in IC.
Normally, the pcode is resident in the on-board static RAM, main-
tained there by the battery backup system. The pcode will vanish,
however, if batteries are disconnected from the robot for more than
a few minutes. The pcode may occasionally become corrupted dur-
ing program development or robot assembly. If this occurs the pcode
must be reloaded into RAM.

To prepare the circuit board for downloading, connect the power
and serial cables as described above and move the power switch to
the right, toward the position labeled \DL" on the board. The green
LED, labeled \BAT ON," should be illuminated. Next press the

7

IBM PC with 25 pin
 serial connector

Brain Kit Cable
 Assembly

Brain Kit Cable
 Assembly

Brain Kit Cable
 Assembly

 Rug Warrior
Circuit Board

IBM PC with 9 pin
 serial connector

9 to 25 pin
adaptor

 Rug Warrior
Circuit Board

Macintosh
Macintosh modem

cable
 Rug Warrior
Circuit Board

Figure 2.1: Options for connecting the host computer to the Rug
Warrior circuit board.

8

RESET button. The red \BAT LOW" LED should remain lighted
for as long as the RESET button is held down; it should go o� when
RESET is released.

To download pcode from a Macintosh computer, �nd the �le la-
beled \Init Board RW 7.2 modem" and double click on its icon. (As
an alternative, you may connect Rug Warrior to the printer port and
double click on �le \Init Board RW 7.2 printer.")

To download from a DOS computer, type: dl pcoderwl.s19. Op-
tions for downloading from computers con�gured in the standard way
are described in the README.IC �le.

The pcode downloading program running on your computer keeps
you informed of its progress. In the �rst phase of downloading a
special 256-byte loader program is sent to the microcontroller at 1200
baud. A dot (or dash) is typed to the screen each time your computer
transmits a character. The purpose of this loader program is to tell
the microcontroller how to load the pcode that comes next. When the
last byte of the loader program has been received, the microcontroller
automatically begins to execute the loader program.

Serial line speed is now switched to 9600 baud and the down-
loading program attempts to communicate with the loader program
running in the microcontroller. If the loader program has been loaded
successfully, synchronization between host computer and the Rug
Warrior circuit board is achieved and the downloading program be-
gins sending the actual pcode. As this happens more dots are printed
to the screen. During the downloading process, the states (on or
o�) of the four LEDs below the MC68HC11 microcontroller have no
special signi�cance.

When downloading terminates, move the power switch all the way
to the left, to the RUN position, then press the RESET button. The
piezo buzzer will emit a brief \eeep" and the LCD screen will display
the \Interactive C" wake-up message. You may need to adjust the
LCD Pot (see Figure 1.1) to achieve the proper contrast.

2.5 Communicating with the Host

From a Macintosh computer, start the IC program by double clicking
on the application \IC RW 2.xxx modem" or \IC RW 2.xxx printer" if
you are using the printer port. (Here \xxx" is the three digit number
of the IC version on your software disk.)

From a DOS computer, type ic to start IC running.

9

Your computer will connect with the Rug Warrior board and load
the default library. You will now be able to execute C expressions
from the keyboard and to load programs into your robot board. For
example, if you type: beep(); the piezo buzzer will emit a brief beep.
Typing 2 + 2; will produce a response similar to:
Downloaded 7 bytes (addresses C200-C206)

Returned <int> 4

2.6 Testing the Board

The �rst program you load should be rw-test.lis. At the IC prompt
simply type: load rw-test.lis. When loading is complete, press
RESET to select, in turn, the test for each subsystem . See Section 2.9
for a detailed explanation of what each test does. Note that initially
only the LCD test, LED test, and buzzer test will produce meaningful
results.

2.7 Rug Warrior Software

In addition to the IC programming environment, the software disk
contains the following Rug Warrior speci�c code:

rw-test.lis Loader �le that loads the self test functions.

selftest.c Routines for testing all of Rug Warrior's sensors and ac-
tuators.

cof.c Enables Rug Warrior to play a tune that tests the piezo buzzer.

shaft.lis Loader �le for the shaft encoder utilities.

shaft.c User interface to the shaft encoders.

speed.asm Assembly �le that implements the left shaft encoder click
counter.

speed.icb Assembled version of speed.asm, loadable by IC (.asm
�les cannot be loaded).

regdefs.c De�nitions for the MC68HC11's memory mapped regis-
ters.

10

lib rw11.c Standard interface to Rug Warrior's sensors and actua-
tors.

The software accompanying your robot board kit is supplied free
of charge. You may copy and distribute this code as you choose,
provided only that such distribution satis�es the restrictions described
in README.IC. Software is provided as is; no warranty is stated or
implied.

2.8 Assembly Language Routines

The current release of Rug Warrior software does not include the
special MC68HC11 assembler (AS11) that simpli�es construction of
assembly language routines for inclusion in your code. This exclusion
poses no problem for the majority of builders who will choose to pro-
gram exclusively in IC. A description of the format of the processed
assembly language �les, .icb �les, can be found in the IC Manual
(Chapter 7). By deciphering this format, die-hard assembly program-
mers can create .icb �les by hand.

A more convenient solution is available to builders who have ac-
cess to the World Wide Web. Facilities provided by the creators of
IC at the site http://www.newtonlabs.com/ic allow you to convert
your assembly language code into .icb �les. This site has additional
information about IC including the availability of a supported, com-
mercial version.

If you have FTP access to the Internet, you may want to check
the site cherupakha.media.mit.edu periodically. The latest version
of IC and related software for Rug Warrior and similar robot circuit
boards can be found there.

2.9 Self Test

Rug Warrior is supplied with a set of routines that display the output
of its sensors and activate its actuators. These routines can be used
to verify the proper functioning of all subsystems as you construct
and customize your robot.

When you load the self test routines, by typing load rw-test.lis

to the IC prompt, a series of auxiliary �les are automatically loaded.

11

These �les include: speed.icb, shaft.c, regdefs.c, cof.c, and
selftest.c.

Once this loading process completes, you can select the desired
test by repeatedly pressing the RESET button. A particular test can
also be selected by calling it directly from the keyboard. To do this,
�rst type kill all to stop the test currently running; then call the
desired test from the list below. All tests run continuously but may
be stopped by hitting carriage return.

lcd test()

Displays, in turn, all characters de�ned by the LCD. Not all character
codes are de�ned so some will show up as blank.

led test()

Lights the four debugging LEDs. The 1s in the lowest 4 bits of the
byte shown on the LCD indicate which of the LEDs should be on.

piezo test()

Plays a tune on the piezo buzzer while displaying the frequency of
each note.

photo test()

Displays the light level sensed by the left and right photocells. Lower
numbers indicate brighter light. The �rst line of the LCD shows the
di�erence between left and right light levels; the arrow points toward
the sensor exposed to the brighter light.

bumper test()

Indicates which of the bumper switches are closed. Rug Warrior de-
termines switch closure by decoding an analog value from a voltage
adder. The voltage, mapped into the range 0 to 255 is displayed on
the second line of the LCD.

mic test()

Displays the instantaneous level of sound recorded by the microphone.
This value is found by sampling the microphone as rapidly as possible.
Sounds of very short duration, such as a hand clap, may be missed.

ir test()

Alternately activates the left and right IR emitters and indicates
whether a reection has been detected. Note that the IR detector
will function poorly if aimed directly at a uorescent light.

encoder test()

12

Displays the state of each encoder (high or low) using the two right-
most user LEDs. The LCD keeps a count of the encoder clicks (high
to low transitions) detected. encoder test() does not use the auto-
matic velocity-checking feature from speed.icb.

motor test()

Activates the left and right drive motors in a programmed sequence of
velocities. (You must connect drive motors and motor power supply
before the results of this test can be observed.) The number after
the L or R in the display is, respectively, the left or right commanded
velocity as a percentage of maximum velocity. The number before
the letter is the actual velocity in units of encoder clicks per interval.
For purposes of the test, the interval is 0.5 seconds.

user digital test()

Two digital input bits (PA1 and PA2) are available for user assign-
ment. Their status is continuously displayed by user digital test().
Unless the lines (which are present on the expansion connector) are
tied either high or low, the displayed value may uctuate between 0
and 1.

analog test(6|7)

Two analog lines (those associated with the microprocessor's PE6 and
PE7 pins) are available for user input. The value of these or any of
the six other analog lines may be displayed using analog test(n),
where n is any number from 0 to 7.

pyro test(100,155)

A pyroelectric sensor is an optional, user-supplied sensor. If you have
installed a pyro sensor on Rug Warrior, pyro test will display its
state. The two arguments control the sensitivity and range of the
thermometer display on the �rst line of the LCD. When the pyro is
pointed toward an unchanging scene, a more or less constant value
will be output. If a heat source (such as a person) moves across
the pyro's �eld of view, the output of the pyro will �rst increase (or
decrease) then decrease (or increase) as the heat edge passes. The
sign of the change depends on the relative temperature of the source
and background and on the orientation of the sensor.

13

2.10 Programming

See Chapter 7 for information on Interactive C. To create a robot
program, use any editor capable of producing an ASCII text �le. The
editors Emacs, Microsoft Word, SimpleText, and a great many others
will work. (You may have to experiment with the editor's �le saving
options in order to �nd a format compatible with IC.) After creating
a program �le, you can use the load command to load the program
into Rug Warrior just as you did with the rw-test.lis program.

Before writing a program of your own, you may �nd it instructive
to examine the self-test routines and the demo-one.c program. These
�les contain working examples of how to access sensors and run your
robot.

14

Chapter 3

Electrical Assembly

3.1 Required Equipment

To complete the assembly of the Rug Warrior circuit board you will
need the following tools and supplies:

� Soldering iron. The soldering iron should be a narrow-tipped,
high quality instrument. It must deliver only the required heat
as excessive heat can damage components.

� Small, sharp wire cutters.

� Needle-nose pliers.

� Wire stripper.

� Small gauge, rosin-core solder.

3.2 Optional Equipment

A multimeter capable of measuring voltage and resistance will enable
you to identify short circuits and open circuits and to determine if
proper voltage levels are present.

Along with being an invaluable aid in debugging high frequency
circuits, an oscilloscope can provide important insights into the op-
eration of the robot's sensors and other circuitry. Many wiring and
other errors in the robot's circuits can be most easily diagnosed using
an oscilloscope.

15

A circuit board holding/positioning vice (available from Radio
Shack, Digi-Key, and elsewhere) makes circuit board assembly less
awkward. If no such device is available it may be helpful to use
masking tape to hold components in place while you turn the board
over to apply solder.

3.3 Factory Pre-assembly

The Rug Warrior circuit board is partially assembled and tested at
the factory. The microprocessor, memory, serial line interface, and
certain other logic and auxiliary components are installed. This pre-
assembly enables you to begin programming immediately and to use
the microcontroller for debugging purposes as you build the rest of
the circuitry.

If you have not already done so, please follow the self-test proce-
dures described in the Chapter 2 before adding any other components
to the board. Further, we recommend that the board be fully re-
tested after each new system is installed. Doing so will allow you to
more quickly isolate any errors you might make.

Finally, always make sure that battery power is disconnected be-
fore soldering new components to the board.

3.4 Building Rug Warrior

Compared to the circuit boards in most consumer electronics prod-
ucts, the Rug Warrior board is uncomplicated and straightforward.
However, it will be necessary to pay very careful attention to detail
when mounting parts and soldering components.

Before attempting Rug Warrior we recommend that the novice
builder gain experience in the art of soldering and debugging with
less demanding projects. One suggestion along this line: if you have
previously constructed the TuteBot circuit on a bread board (as de-
scribed in Mobile Robots: Inspiration to Implementation), try trans-
ferring the circuit to a PC board. Radio Shack supplies a PC board
(part number 276-170) whose layout is identical to the bread board.
Simply transfer the components and solder.

Most of Rug Warrior's integrated circuits use CMOS technology;
CMOS chips can be damaged by electrostatic discharge. Manufac-
turers recommend that you work with a grounding strap attached to
your wrist. Avoid handling the chips until you are ready to install

16

a b c

Component

Solder

Soldering Iron

Circuit Board

Figure 3.1: Soldering technique and results.

them and be careful not to grab a chip the �rst thing after walking
across a carpeted oor|the spark that jumps from your �nger to the
chip may cause damage. Before touching a chip discharge yourself by
touching something that is grounded.

After soldering, use wire cutters to clip the leads of components
close to the bottom of the board.

Avoid putting the board down on anything conductive (wires, left-
over clipped leads, solder, etc.). Even when the power is switched o�
some connections will still have voltage applied and may short out.

3.5 Soldering

The theory of soldering is simple: Heat the objects to be soldered,
not just the solder itself. This action allows the solder to ow over,
and securely bond, the parts to be joined. To actually achieve such
happy results, however, requires a measure of skill.

Figure 3.1 is a side view of a component being soldered to a printed
circuit board. Ideally, the tip of the soldering iron will touch the lead
of the component, the pad to which the component will be attached,
and the solder. To insure good heat transfer, keep the tip of your
soldering iron properly tinned, coated with solder, at all times.

Parts a, b, and c of the �gure show what can happen. In a a good

17

joint has been made, it appears smooth and shiny. b is an example
of a \cold" solder joint. The surface appears dull and rough. Such
joints often make intermittent contact. In c, heat was applied only
to the component lead and not to the pad. The result is a joint that
looks good upon casual inspection, but one that does not produce a
reliable connection. Cases b and c can be corrected by reheating and,
possibly, adding a little more solder.

Sometimes too much solder is applied to a joint or a component
is soldered into the wrong hole. There are two helpful products that
make it easy to remove the solder and try again. The �rst is sol-
der wick, also known as desoldering braid. Solder wick is a copper
braid that absorbs solder when heated. The second product, based
on a spring-loaded piston, is the vacuum desoldering tool|popularly
known as a \solder sucker." Both are available through Radio Shack,
electronic hobbiest stores, and electronic mail order companies.

A helpful review of good soldering technique can be found in The

6.270 Robot Builder's Guide by Fred Martin. The guide is available
online on the Internet from cherupakha.media.mit.edu, Internet ad-
dress: 18.85.0.47.

3.6 Assembly Steps

This section guides you through the details of circuit board assembly.
Please consult Figure 3.2 to identify components and their polarity.
A number of tests will be recommended as construction proceeds.

3.6.1 Cables

All cables required by Rug Warrior can be made from the supplied
10-conductor cable and solder cup connectors. (See Figure 3.3.) As
indicated, separate the cable into a group of four conductors (brown,
red, orange, and yellow), a group of three conductors (green, blue,
and violet), and a group of two conductors (white and black). Cut
each group to the proper length as follows:

Shaft encoders: Two 4-inch lengths of 4-conductor cable.

Bump Switches: One 2.5-inch length, one 4.5-inch length, and one
5.5-inch length of the 3-conductor cable.

Motors: Two 7-inch lengths of the 2-conductor cable.

18

1 7

814

Ground
+5 volts
Signal

Pyroelectric sensor
(User supplied option)

+5

Gnd

nc

Sig

+
-

Cathode

Anode Vo
Gnd
+5

Chip socketCapacitors Integraged Circuit (chip)

1 7

814

IR DetectorIR emitter Photo cell

 Photo-reflector
for Shaft Encoder

Shaft Encoder
 Board

Microphone

Bump Switch Socket Header
Solder Cup
Connector

ncnocom

Resistors Resistor Pack Potentiometer

Figure 3.2: Component identi�cation.

19

Brown
Red
Orange
Yellow
Green
Blue
Violet
Grey
White
Black

}
}
}

Shaft
Encoders

Bump
Switches

Motors

Solder cup connector

Heat shrink tubing

Wire

Figure 3.3: Separate the 10-conductor ribbon cable to make cables
for shaft encoders, bump switches, and motors.

Figure 3.4: Detail of connector wiring. Strip insulation from the wire,
tin with solder, solder the wire to the solder cup, and apply heat to
heat shrink tubing to insulate the connection.

To make a good connection, �rst strip a bit of insulation from the
end of a wire, say 1/4 inch in length. Then tin (coat with solder) the
exposed wire. Next place a length of heat shrink tubing, su�cient to
cover the connection, over the wire. Insert the tinned end into the
solder cup end of a pin header and, using additional solder as required,
solder in place. Next slide the heat shrink tubing over the connection
and apply heat until the tubing shrinks around the connection. See
Figure 3.4.

3.6.2 Microphone Circuit

Install and solder in place the following:

 10 �F gain capacitor. Note the polarity of this capacitor. The
positive terminal goes into the lower of the two holes, the one
marked with a `+'.

20

 1000 �F capacitor. Note the capacitor's polarity. Since this com-
ponent is large, it should be installed lying on its side on the
board.

 2.2 K resistor (code: red, red, red) in the microphone circuit.

 0.001 �F disk capacitor in the microphone circuit. (The capacitor
should be stamped with the number 102, among other numbers.)

 Socket for the microphone (a 2-socket unit cut from the 32-socket
terminal strip). Install it in the holes near the \MIC" label.

 Socket for the LM386, the 8-pin IC socket.

Install:

 The LM386 into its socket; pin 1 goes to the lower left.

 The microphone into its socket. Note that the microphone is po-
larized. One pin of the microphone is connected to its case; this
pin goes into the hole labeled GND on the board.

� Test the microphone. Install Rug Warrior's self-test code and
run the microphone test, mic test. In a quiet environment the
thermometer display should show little or no activity. As you
speak, whistle, or blow air on the microphone element the display
should indicate a higher level of sound.

Construction tip: For certain applications, you might wish to re-
duce the motor noise picked up by the microphone by mounting the
microphone remotely from the board. To do so use a length of coaxial
cable. Connect the center conductor to the positive pin of the micro-
phone and the other end to the left socket hole. Connect the outer
braid to the ground on the board and to the pin that connects to the
case on the microphone.

3.6.3 Sensors and Actuators

Solder in place the following:

 Two motor connectors (2-socket terminal strips) at \L MOT" and
\R MOT."

21

C

NO

NC
Green

Blue

Violet

1

4

2

3

Socket
on board Bump

switch

Figure 3.5: Schematic for bump switch cable.

 L293D motor driver 16-pin socket (an SN754410 has been substi-
tuted for the L293D chip).

 74HC04 14-pin socket.

 Sockets for the bump switches: six 2-socket units soldered in pairs.
See Figure 1.1 for correct placement.

 Two 1.2 K resistors (code: brown, red, red) for the bump circuit.

 2.2 K resistor (code: red, red, red) in bump circuit.

 47 K resistor pack (not polarized).

� Test the bump circuit. Connect SPDT switches to all connectors of
the bump circuit. (See Figure 3.5.) Run bumper test() described
in Chapter 2 to verify that the bumpers have been wired correctly.

As an additional test of the bump circuit, you can measure the
voltage at pin PE3 as you activate the switches. There should be
evenly spaced, unique voltages for each switch and combination of
switches. The possible combinations of switch closures and voltage
at pin PE3 are:

22

IR

Switch Voltage
none 0.0
A 0.5
B 1.0
C 2.0

A & B 1.5
A & C 2.5
B & C 3.0

A & B & C 3.5

By monitoring the bump circuit voltage, the robot can determine
collisions from six possible directions using only three switches.

Continue assembly by installing:

 Two shaft encoder sockets, using a total of four 2-socket terminal
strips. Install sockets in the holes labeled \L SE" and \R SE" on
the board.

 Two photocell sockets (2-socket terminal strip), at \L PH" and
\R PH."

 Two IR emitter sockets (2-socket terminal strip), at \L IR" and
\R IR."

 IR detector socket at \IR." Use pliers to bend the pins on a 3-
socket header. Install it on the edge of the board as shown in
Figure 3.6.

Figure 3.6: IR detector mounting detail. Use pliers to bend the pins
at a right angle.

 Pyroelectric sensor socket (two 2-socket terminal strips) at label
\PYRO." (This installation step is optional.)

 Two 680
 resistors (code: blue, gray, brown) for the shaft encoder
circuit. (These resistors limit the current to the IR LEDs in the
shaft encoder.)

23

 Two 6.8 K resistors (code: blue, gray, red) for the shaft encoder
circuit.

 5 K potentiometer for the IR oscillator at \5K POT."

 0.001 �F capacitor in the oscillator circuit. (The capacitor should
be stamped with the number 102, among other numbers.)

 6.8 K resistor (code: blue, gray, red) in the oscillator circuit.

 100 K resistor (code: brown, black, yellow) in the oscillator circuit.

 50 K pot for LCD contrast adjustment at \CONTRAST."

 Two 10 K resistors (code: brown, black, orange) for photocells.

 Two 100
 resistors (code: brown, black, brown) for IR emitters.

 The light sensors (photocells|not polarized) into their sockets; do
not solder photocells. You may trim the leads so that the sensors
mount close to the board.

� Run photo test and observe that the arrows on the display point
toward the photocell exposed to brighter light.

 Install infrared LEDs (polarized). In both cases the negative ter-
minal goes toward the center of the board. (The emitters will not
be damaged if plugged in incorrectly.) You may trim the leads of
the IR emitters so that they can be mounted closer to the board.

 Solder a short piece of hookup wire directly from the ground termi-
nal of the GP1U52X infrared detector to its case. This connection
dramatically reduces the pickup of electrical noise by the detector.

 Install the GP1U52X infrared detector in its socket (ground pin
toward the bottom of the board). Bend the three mounting tabs
on the detector's case out so that they do not contact the leads of
other components already present on the board.

24

Brown
Red
Orange
Yellow

12

3 4

Figure 3.7: Wiring detail for shaft encoder board and cable. The
photoreector is mounted on top side of board; the bottom side has
solder traces.

 Plug the xx74HC04x into its socket (labeled 74HC04). The `x's in
the pre�x and su�x depend on the manufacturer of the chip. Pin
1 goes to the lower left.

� Test the IRs by running ir test. Hold a thick white card in
front of the IR emitters such that the radiation will reect into
the IR detector. Adjust the 40 kHz oscillator potentiometer until
maximum range is achieved.

 Plug the motor driver chip, SN754410xx, into the socket labeled
L293D. Pin 1 goes to the lower left.

Construction tip: If you are designing your own mechanical sys-
tem, select motors that draw no more than 1 Amp when stalled. This
amount is the maximum current that the motor driver chip can sup-
ply. The motor power supply can have a voltage in the range of 4.5
to 35 volts. The supply voltage should be 1 to 2 volts higher than the
voltage rating of the motors because there is a voltage drop in the
motor driver chip. See also the motors section of Chapter 6.

 Mount the photoreectors on the shaft encoder boards. When
soldering, use great care to avoid overheating and melting the
photoreector chip. Also, note that the mounting holes are very
close together. After soldering, check carefully to see that no solder
bridge has formed, shorting together adjacent mounting holes.

 The shaft encoders are mounted o� board and thus require a ca-
ble. Wire the shaft encoder cables as indicated by the schematic,
Figure 3.7. Install a 0:1 �F bypass capacitor (stamped with the
number 104) in parallel with the power and ground lines on each
shaft encoder connector as shown in Figure 3.8.

The motors and shaft encoders will be tested as a part of the �nal
assembly in Chapter 4.

25

1
3

2
Red

Brown

Orange

Yellow

µ0.1 F Capacitor

4

Figure 3.8: A 0:1 �F bypass capacitor is installed directly into the
shaft encoder connectors.

3.6.4 Jumpers

If you are building the Expanded Kit it is not necessary to alter
the factory jumper settings. You may, however, wish to change the
default settings if you are designing your own base and power system
or making certain other customizing changes.

Jumper J1 allows you to select either a single power supply or
two separate power supplies for the logic and motor systems. The de-
fault setting requires you to connect a separate supply for the motors.
This setup is recommended unless your motors are of the low noise,
low current type. (Such motors are manufactured by Escap and Mi-
cro Mo, among others.) If you choose to use a single supply for both
motor and logic power, you should cut the trace (on the bottom side
of the board) connecting the center and top pin of the area labeled
J1. Next, install a short wire on the top side between the center and
bottom holes.

The setting of jumper J2 causes the MC68HC11 to run in special

test mode. Special test mode was chosen because the LCD screen is
operational only in this mode. If you wish to forego the LCD screen
and operate in expanded multiplexed mode, cut the trace connecting
the center and left holes of the J2 area and solder a wire between the
center and right hole.

26

3.7 Summary

Rug Warrior's sensor circuitry is now complete|your circuit board
should be fully functional. Please repeat the full set of tests in the
rw-test.lis �le to make sure that your assembly is free of errors.

If you discover a problem �rst consult Chapter 6 for trouble shoot-
ing suggestions. If the problem persists, you may want to contact the
nearest Rug Warrior supporter on the enclosed list. Please remember
that these individuals and groups have volunteered their time purely
as a service to the amateur robotics community.

27

Chapter 4

Mechanical Assembly

This chapter describes the assembly of the mechanical components of
the Brawn Kit and the integration of the Brains and Brawn Kits. If
you have purchased the Brains Kit only, you may skip this chapter;
however, you may �nd the examples instructive in designing your own
robot. In addition to the equipment used for the electronic assembly
you will need:

� Hobby/utility knife (e.g. an X-acto knife).

� Small slotted screwdriver.

� Small pliers.

� Scissors.

Please identify the following components of the Brawn Kit illus-
trated in Figures 4.1 and 4.2:

� 1 Chassis plate.

� 1 Drive motor alignment channel.

� 1 4x1 AA battery holder. (The Brains Kit has a separate bat-
tery holder.)

� 1 Skirt.

� 1 Caster ball.

� 1 Caster ball shaft.

28

Chassis Plate
Battery Holder

Caster
Ball

Caster
Shaft

Wheel Drive Motor

Elastic

Cable Tie

Skirt

Stripe Pattern

Alignment Channel

Figure 4.1: Brawn Kit mechanical components.

29

Wheel collar#8 washer

10-24 Nut #10 Washer Allen key for wheel collar

4-40 Nut #4 Washer 4-40 screw
3/8 inch

4-40 screw
3/4 inch

SpacerAngle bracket

2-56 Nut #2 Washer
2-56 screw

1/2 inch

Figure 4.2: Brawn Kit mounting hardware.

30

� 1 Elastic strip.

� 2 Drive wheels.

� 2 Drive motors.

� 2 Adhesive-backed stripe patterns.

� 2 Cable ties.

� 2 10-24 nuts.

� 2 #10 washers.

� 1 Allen key for wheel collar.

� 2 #8 washers.

� 1 Wheel collar.

� 20 4-40 nuts.

� 22 #4 washers.

� 4 4-40, 3/4-inch screws.

� 16 4-40, 3/8-inch screws.

� 6 2-56 nuts.

� 6 #2 washers.

� 6 2-56 screws.

� 4 Motor/shaft encoder mounting brackets.

� 4 Nylon circuit board spacers.

4.1 Drive Motors

Use the black and white wires separated from the 10-conductor cable
to make two 2-conductor cables for the motors.

 Strip the insulation from both ends of the motor cable wires and
slide short pieces of heat shrink tubing over each wire on each end
leaving the stripped portion exposed. See Figure 4.3.

31

Figure 4.3: Prepare the motor cable as shown.

 Bend the two power connection tabs on the drive motor outward
90 degrees. Then solder the white wire of a motor cable to the +
terminal and solder the black wire to the � terminal.

 Slide the heat shrink tubing down over the solder joints and apply
heat to shrink the tubing in place. Repeat the steps above for the
second motor/cable assembly.

 Solder the 2-pin solder cup headers to the free ends of the motor
cables and secure the heat shrink tubing over each solder joint as
was done for the motor terminals.

4.2 Drive Wheels

Striped patterns are installed on the inside of the drive wheels as a
part of Rug Warrior's shaft encoder system. The output of a pho-
toreector pointed at the stripe patterns changes state as each stripe
passes. The robot uses this information to determine how far each
wheel has rotated. See Figure 4.4.

 With a utility knife roughen one lateral surface of each drive wheel.
Hold the blade perpendicular to the wheel surface and scrape,
being very careful not to cut the wheel.

 With scissors or a utility knife cut out the two patterns. Cut out
the center of the pattern so that it is slightly smaller than the
wheel hub (the hole should be about 0.9 inches in diameter). Cut
slits in the pattern as shown. These slits will allow the patterns
to conform to the contour of the wheel.

 Very carefully remove the pattern from the backing paper and
apply the pattern to the roughened surface of the wheel. Press
the inner portion of the pattern down so that it is captured by the
hub.

32

Cuts

Bracket

Screw

Figure 4.4: Stripe pattern cuts.

Construction tip: Sometimes, despite careful assembly, the outer
part of the stripe pattern will pull away from the wheel. You can pre-
vent this by laying down a thin bead of a cyanoacrylate gel adhesive
or other strong adhesive along the outer edge of the pattern.

 Attach (but do not tighten) the motor mounting bracket to the
motor as shown in Figure 4.5. Use a 4-40 screw, washer, and nut.
The right motor assembly is the mirror image of the left assembly
as shown in the �gure.

Figure 4.5: View, from the rear of the robot, of the left motor and
motor mounting bracket.

 Place a #8 washer on the shaft of each motor. The washer main-
tains proper spacing.

33

 Mount the wheels on the pear-shaped gear assembly as follows.
Hold the pear-shaped gear assembly at against a table with the
shaft pointing up. Let the motor (the cylindrical part) hang down
over the edge of the table. Making sure that the stripe pattern
faces downward, toward the gear assembly, press the wheel onto
the shaft. This procedure insures that assembly forces are not
transmitted to the gears inside the assembly.

Construction tip: If it ever becomes necessary to remove the wheel
from the shaft, you should hold the wheel hub and press the shaft
out rather than pull the wheel away from the gear assembly. This
method will avoid damaging the gears.

4.3 Chassis

Be very careful to the orient the chassis plate as shown in Figure 4.6
when attaching components. The �gure is a top view|motors and
related components attach below the chassis plate; bump switches
and the circuit board are attached above the plate.

 Place a piece of electrical tape across the back of each shaft en-
coder board. Put a 3/8-inch, 4-40 screw through the encoder
board's mounting hole from the top. Place two #4 washers on the
screw, then secure to the mounting bracket with a 4-40 nut. See
Figure 4.7. The second assembly should be a mirror image of the
�rst.

 Loosely attach the motor/bracket assemblies to the underside of
the chassis plate using 3/8-inch-long 4-40 screws, 4-40 nuts, and
#4 washers. See Figure 4.6 to identify the correct holes. Figure 4.7
shows motor and shaft encoder mounting details.

 Slide the motor alignment channel under the motors and press
both motors into the channel to seat the motors.

 Push a cable tie through the motor attachment hole and wrap
it around the motor and back up through the opposite attach-
ment hole so that the motor is held against the aluminum channel.
Tighten the cable tie and cut o� the excess. Repeat the operation
for the second motor.

34

Circuit board spacer

Circuit board spacer

Skirt attachmentl

Skirt attachment

Skirt attachment

Battery cable
through hole

Velcro attachment

Motor cable
through hole

Holes for motor
attachment cable ties

Shaft encoder
cable holes

Shaft encoder bracket mount

Motor bracket mount

Bump Sensor
slots

Bump Sensor
slots

Bump Sensor
slots

Caster shaft
hole

Figure 4.6: Function of the holes in the chassis plate (top view).

35

Shaft
Encoder

Cable
 Tie

Left side view Back View

Motor and Shaft
encoder brackets

Motor

Aluminum
 channel

Aluminum
 channel

Figure 4.7: Detail of the motor/chassis attachment.

 Tighten the screw holding each motor to its motor mounting
bracket. It will be necessary to compress the rubber wheel to
get the blade of your screwdriver to the 4-40 screw.

 Tighten the screws holding the motor bracket assemblies to the
chassis.

 Route the motor cables through the motor cable hole in the chas-
sis.

 Mount each bracket/shaft encoder board assembly using a 4-40
screw, nut, and washer.

 Route the shaft encoder cables upward through the encoder cable
holes in the chassis.

 Attach the three bump switches to the top of the chassis as shown
in Figure 4.8, using the 2-56 screws and washers. Attach the
bump switches only loosely as they will need to be adjusted when
mounting the skirt.

36

Front

2.5"

5.5"

4.5"

Left Right

Back

A

B

C

Delrin ball

Wheel
collar

Chassis plate
10-24 nuts
and washers

Caster ball
shaft

Figure 4.8: Position and orientation of bump sensors.

Figure 4.9: Caster wheel assembly.

4.4 Caster Wheel

 Place the 1-inch diameter delrin ball onto the caster shaft as shown
in the drawing of Figure 4.9. Use the wheel collar to hold the ball
in place. Tighten down the set screw in the wheel collar using the
Allen key provided. Make sure that the ball can rotate freely on
the shaft.

 Mount the caster wheel assembly on the chassis as shown. Use
two each of the 8-32 nuts and washers. Adjust the nuts so that
the chassis plate is level.

37

Battery Holder

Velcro strap

Wheel collar

Motor allignment
channel

Motor and Shaft encoder
mounting brackets

Figure 4.10: Vertical view of the assembly.

4.5 Battery Holders

 Use a stylus or the blade of a utility knife to make a hole, centered
about 1/4 inch from one end, in each piece of Velcro.

 Attach the Velcro strips to the underside of the chassis with 4-40
screws, washers, and nuts. Orient the Velcro with one side up,
one side down, so that the pieces can be stuck together to hold
the battery holders in place. See Figure 4.10.

38

LCD

Nylon Spacer

Circuit board

Motor allignment
channel

Motor

Wheel

Motor mount bracket Shaft encoder
mount bracket

Shaft encoder
board

Caster
ball

Caster
ball
shaft

Bump
Switch

Skirt

Elastic
suspension

Battery
Holders

Figure 4.11: Side view of the mechanical assembly.

4.6 Skirt and Circuit Board

The force sensing skirt oats relative to the chassis, suspended on
three lengths of elastic. The skirt is mounted such that collisions
from any direction will cause one or more of the bump switches to
be activated. Figure 4.11 shows how the elastic for the suspension is
positioned.

 Cut the elastic into sections approximately 2.5 inches long.

 Use a stylus or pin to make a hole 1/4 inch from each end of each
piece of elastic. Attach one end of each piece of elastic to the skirt
attachment holes on the chassis. Use 3/8-inch-long 4-40 screws,
4-40 nuts, and #4 washers. The elastic should extend radially
from the center.

 Attach the circuit board to the top of the chassis using four each
of the nylon spaces, 3/4-inch-long 4-40 screws, 4-40 nuts, and #4
washers. Connect the bump cables, shaft encoder cables, and
motor cables to their correct sockets on the board. Connect the
motor cables so that, looking from the back, the white wire is on
the left.

39

 With the assembly resting wheels down on a table, slide the skirt
over the top. Position the skirt so that the two larger holes
(through which the IR emitters will point) are toward the front.

 Attach the skirt to the elastic strips using the three mounting
holes near the bottom of the skirt. The skirt should hang about
1/2 inch above the oor.

 Carefully adjust the placement of the bump switches and the elas-
tic/skirt attachment so that when the skirt is undisturbed none of
the bump switches are depressed. Make sure that each switch is
activated when the skirt is pressed from the proper direction. Try
to avoid any blind spots, regions where the skirt can be pressed
without activating any switches. When all is optimally adjusted,
tighten the bump switch mounting screws.

 Stack the two battery holders and attach them to the bottom of
the chassis using the Velcro strips. Bring the cables up through
the battery cable hole in the chassis. Plug the cables into the logic
and motor supply connectors.

 Position the battery holders as far back as possible so that the
robot will balance properly. (If your robot has a tendency to pitch
forward when rapidly reversing direction, it may be necessary to
add weight at the rear.)

4.7 Final Adjustment

 Hold or suspend the robot so that the wheels do not contact
any surface. Type a command to move the motors forward, e.g.
drive(100,0);. Both wheels should turn so as to make the robot
move forward. If this is not the case switch the polarity of the
cable (plug it in the other way) going to the motor turning in the
wrong direction.

� Load the �le rw-test.lis and run the motor test routine. Verify
that the robot operates as expected. During the initial motor
break-in phase you may notice that the robot pulls to the left or
right when it has been commanded to go straight. After 15 to 30
minutes of motor operation this condition should correct itself.

40

� Load up and run the shaft encoder test from the self-test routines
supplied with the robot. As you move the wheels by hand, rotate
and adjust each shaft encoder board until a reliable signal is ob-
tained. Make sure that the shaft encoder can reliably detect every
dark to light stripe transition (and that no false transitions are
detected). Unless this procedure is done, distance measurements
taken by the robot will be unreliable.

 Push heat shrink tubing, cut to approximately 1/2 inch, over each
IR emitter and then carefully aim the emitters through the holes
in the skirt.

� Test the IR obstacle detection system using the ir test routine.
If the emitters are not positioned properly, the plastic skirt can
cause internal reections that the detector will interpret as an ob-
stacle. It may be necessary to cover the back of each emitter with
electrical tape to prevent IR leakage; the detector is quite sensi-
tive. If you need to block one emitter during the test, use black
electrical tape rather covering the emitter with your thumb|your
thumb and �ngers are translucent to the IR radiation.

Rug Warrior is now complete. As a �rst exercise you may wish
to run the demo-one.c program on the software disk. Demo-one has
three modes of operation selected by pressing the RESET button (the
same way that rw-test.lis selects di�erent test routines). The LCD
screen displays the current mode.

The �rst mode, \Seek light," causes the robot to move toward the
brightest light. While it does so, Warrior monitors the IR obstacle
detector and turns away if a collision seems imminent. The robot
also watches the bump sensors. If a collision does occur, Rug Warrior
will back up and attempt to escape from the obstacle. You will be
able to make Rug Warrior follow you by pointing a ashlight at its
photocells.

The second mode of operation, \Seek darkness," causes the robot
to avoid the light. Rug Warrior monitors the IR detector and bump
sensors as above while trying to �nd the darkest spot to hide.

In the third operating mode, \Wait for whistle," Rug Warrior
remains still while monitoring the microphone circuit. When the
robot detects a loud noise it responds by sounding the piezo buzzer.

You may use the ideas and example code in demo-one as a spring-
board for creating your own robot application programs.

41

Chapter 5

Expanding Rug

Warrior

Rug Warrior has built-in connections for four additional sensor inputs
and the signal to drive one more actuator is present on the board.
With a small bit of extra circuitry, Rug Warrior can accomodate any
number of new inputs or outputs.

5.1 Built-in Ports

Two digital inputs, lines PA1 and PA2, and two analog inputs, lines
PE6 and PE7, are available on the expansion connector for user as-
signment. One digital output port, PA4, is present on the expansion
connector as well. This port, however, is also used by the LCD screen
and is available for user assignment only if the LCD software driver is
disabled. (This deactivation may be accomplished by operating the
microcontroller in expanded mode rather than special test mode.)
The analog input, PE5, nominally assigned to the pyroelectric sen-
sor, is also available if you have not installed a pyro.

Line PA3, which drives the piezo buzzer, can be shared to drive
an RC servo or other actuator. To use PA3 you must install a socket
(or solder a wire) to the board as shown in Figure 5.1.

Besides the lines mentioned, the expansion connector also sup-
plies the non-multiplexed address lines of the MC68HC11's bus. The
LCD connector brings out the multiplexed data/address lines. See
Figure 5.2. Using the address lines, data lines, and other control sig-

42

MAX233

62256
Static
RAM

MC68HC11

LVI

PA3

E A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
S

P
E

7

P
E

6

G
nd

V
cc

P
A

4

P
A

2

P
A

1

Expansion connector

PC7

PC6

PC5

PC4

PC3

PC2

PC1

PC0

PA4

A8

A9

VR

Vcc

Gnd

LCD Connector

(contrast control)

Figure 5.1: Line PA3 is available on the board at the point indicated.

Figure 5.2: LCD connector and expansion connector.

43

+5V

PE6

R1

PC1

R1

PC1

G
nd

+
5V

P
E

6

Expansion Connector

Figure 5.3: A photocell circuit built on a 3-socket header plugs di-
rectly into the expansion connector.

nals it is possible to construct any number of memory mapped I/O
ports. To make full use of Rug Warrior's memory mapped expansion
capabilities, the sophisticated builder should acquire a set of refer-
ence manuals for the Motorola MC68HC11A1. Contact the Motorola
Literature Distribution o�ce at (800) 544-9497. Outside the United
States contact the nearest Motorola sales o�ce or representative.

5.2 Expansion Example

Suppose we would like for Rug Warrior to determine when it has run
under a table or chair. (Perhaps we're writing a program that has
the robot hide in a dark place until it detects a loud sound, then rush
out and surprise whomever has entered the room.) We can make this
scheme possible by installing an upward-pointing photocell on Rug
Warrior.

Normally, we would build expansion circuitry on a piece of pro-
toboard (circuit board material with predrilled holes and possibly
copper pads). However, a photocell circuit is so simple that it can be
constructed entirely on a 3-socket header. See Figure 5.3.

The schematic diagram on the left of Figure 5.3 shows how the
circuit works. A voltage divider is formed by resistor R1 and photocell
PC1. We choose R1 such that its resistance equals the resistance of

44

PC1 when PC1 is exposed to an \average" level of illumination. If
you build this circuit using the same type of photocell supplied with
the Brains Kit, then R1 should be about 10 K
s.

The right side of Figure 5.3 shows how the circuit is constructed.
Resistor R1 is soldered to the �rst and third pins of the 3-socket
header, PC1 is plugged into �rst and second pins of the header, and
the header is plugged into the PE6, Gnd, and +5 V sockets of the
expansion connector. In software we can access the new sensor using
the function analog(6).

Rug Warrior will support a great many other sorts of sensors and
actuators. For a detailed example showing how to install an RC
servo motor and sonar range �nder on Rug Warrior, please consult
\RugNav: a Scanning Sonar You Can Build," Parts 1 and 2. These
articles appeared in the fall 1995 and winter 1996 editions of The
Robotics Practitioner. If unavailable at your local library, contact
The Robotics Practitioner via email at trp@footfalls.com, or mail at
Footfalls, Ltd., 483 S. Kirkwood Road, Suite 130, Kirkwook, MO
63122.

45

Chapter 6

Trouble Shooting

This section contains some suggestions for solving problems some-
times encountered by robot builders.

Board doesn't work at all.

If not even the power-on (BAT ON) LED will light, check that the
batteries have su�cient voltage (at least 5 volts). Also, check that
the connector is plugged in correctly and that neither it nor the con-
necting wires have become damaged. If you have added components
to the board, check that power and ground have not inadvertently be-
come connected. Unplug the battery connector from the board and
measure the resistance between power and ground. If the resistance
is 0 or only a few ohms, inspect the board very carefully for solder
bridges or other accidental power-to-ground connections.

If, while testing the board, you have unplugged and reinstalled
any of the socketed integrated circuits, make sure that they have been
inserted in the correct direction. Pin 1, marked by a dot or semicircle,
(see Figure 1.1) should be on the left for all socketed chips, except the
28-pin RAM chip which has pin 1 on top. Chips can be damaged if
installed in the reverse direction and may require replacement if this
has occurred. Chips can also be damaged by an electric discharge.

Elevated temperature is one indication of a damaged chip. Only
the motor driver chip (SN754410) should be warm to the touch under
normal operation.

Cannot download pcode.

When attempting to download pcode (initialize the board) either the
system times out or an error message is displayed stating that a char-

46

acter received is di�erent from the one sent. Make sure that the
download switch is in the DL (download) rather than RUN position.
The battery voltage may be too low or there may be a fault in the
connector. Make sure that the power-on LED is lighted and that the
BAT LOW LED is not lighted. Check the voltage on the board. It
should be no lower than about 5 volts.

The serial line in your computer may be con�gured or connected
incorrectly. Check any system parameters in your computer that
could a�ect the serial line; e.g., serial output could be directed to
an internal modem. Check that the serial cable is plugged into the
proper connector|modem vs. printer, or the correct com port.

The serial cable may have been miswired or a poor connection
may exist. Miswiring may result if you are using a modular cable
other than the one supplied in the kit. Recheck all connections and
cables between the serial output of your computer and Rug Warrior's
phone jack. Frequently, the transmit and receive lines are inadver-
tently switched when builders construct their own cable (this causes
no damage). If this is the case, simply swap the lines and try down-
loading again.

If the problem persists you should do the following to isolate the
error. Pull the phone plug out of the phone jack on the Rug War-
rior board. Hold a thin wire so as to connect together the outermost
contacts of the 4-wire plug, the transmit and receive lines. (This pro-
cedured may require an extra set of hands.) While doing so run the
program to initialize the board. By connecting together the trans-
mit and receive wires you have created a loopback|this guarantees
that the initialize board program will receive the same characters it
transmits.

If the initialize board program successfully completes loading the
bootstrap loader (no timeout and no error message) it indicates that
your serial line and cable are con�gured correctly and the problem
may be in the Rug Warrior board.

If the initialize board program cannot load the bootstrap loader
it means that there is a aw in the serial cable, the connection, or the
con�guration of your serial line. In any case you may wish to contact
a member of the Rug Warrior Experts Group for advice on how to
proceed.

Board appears to initialize correctly but IC will not run.

After initializing the board move the download switch to the RUN
position and press the RESET button. If you do not hear an \eeep"

47

from the piezo buzzer initialization was unsuccessful. Recheck the
procedure and attempt initialization again. Also, make sure that the
pcode code has not been corrupted. If this is a possibility, replace the
�le pcoderwl.s19 on your hard disk with the copy from the software
distribution disk.

Behavior of board is \aky."

The two most common causes of odd behavior, e.g., board crashes
and restarts, are 1) low battery voltage, and 2) voltage transients
caused by the motors. If the LOW BAT LED ashes, it indicates
that the low voltage inhibit chip has been activated, which halts,
then restarts the processor. Check that the logic batteries are fresh.
If the batteries are good, make sure that any newly added sensor
or actuator circuitry is connected correctly and does not draw more
current than the batteries are rated to supply.

If the board behaves strangely only when the motors operate, it
indicates the presence of voltage transients. This condition should
not occur with the motors in the Brawn Kit but is a possibility if
you have designed your own mobility system. You should switch to
separate power supplies for logic and motors. If supplies are already
separate it may be that the motors produce excessive electrical noise
(see below).

Processor crashes when the motors run.

If the noisy motors of your custom designed mobility system prevent
your board from running properly, there are a few tricks to try before
abandoning your motors in favor of higher quality (more expensive)
ones. First, connect a disk capacitor (the value can be a fraction of
a microfarad, say 0:1�F) across the leads of each motor, at the mo-
tor. This action can reduce voltage spikes produced by the motor's
brushes. Another trick is to attach a large non-polarized electrolytic
capacitor across the motor; the larger the capacitance the better but
try 10:0�F or so to begin. (Don't use the more common polarized
electrolytic capacitor for this purpose as it will be destroyed by the re-
verse voltage when you run the motors backward.) The non-polarized
capacitors can reduce longer time scale voltage dips generated when
the motor starts up or reverses direction.

Adding resistors of a few ohms in series with each lead of both
motors can also help reduce voltage transients. This procedure is
guaranteed to work for su�ciently large resistances but motor per-
formance will degrade.

48

Finally, batteries capable of supplying a large surge current may
help. Try using NiCd or lead-acid batteries in place of alkaline cells
in the logic and/or motor supply.

Sensor does not pass self test.

Check the solder connections on board. Solder bridges (accidental
connections between adjacent traces or pads) and poorly made solder
joints can prevent circuits from working properly.

IR system does not work or range is too short.

Make sure that the IR emitters are correctly installed in their sockets.
(No damage results if emitters are backward.) Make sure the 40 kHz
oscillator is tuned correctly by adjusting the potentiometer (labeled
5 K POT on the board). Check for bad solder joints on the 78HC04
chip socket and in the 40 kHz oscillator.

Shaft encoders do not work.

The IR emitter-detector component of the shaft encoder system, the
photoreector, must be positioned so that it points at the radial black
and white stripe pattern attached to the wheels. Performance is
highly sensitive to the distance between the stripe pattern and the
photoreector. Ideally, separation should be about 3 millimeters.

The photoreector output changes state as each stripe passes. If
the output fails to change, it may be that there is insu�cient contrast
between reective and non-reective stripes. If the pattern was crin-
kled during installation, try smoothing it. If the black printed stripes
have been worn o�, try redrawing them with a marker.

I'm confused about how to plug in the LCD screen.

The LCD screen �ts over the board as shown in Figure 1.1. Note that
pin 14 on the LCD board corresponds to the pin labeled PC7 (with
a bold square) on Rug Warrior's LCD connector.

LCD screen doesn't work.

When IC begins running, it prints a message to the LCD screen. If
this message fails to appear, there are several possible causes. First,
make sure that IC is in fact running. Move the power switch to the
RUN position and press the RESET button. You should hear an
\eeep" from the piezo buzzer and you should be able to communicate
with the board. For example, if you type: 1 + 1, you should see a
response similar to:

49

Downloading 7 bytes (addresses C200-C206): 7 loaded

Returned <int> 2

on your computer screen. If you do not hear the \eeep" on reset or are
unable to communicate with the board, then IC may not be running.
Refer to the appropriate trouble shooting section.

If the LCD screen remains blank even though IC is running, try
adjusting the LCD Pot (see Figure 1.1). Typically, at one extreme
setting the screen will be blank; at the other, one line of the display
will be dark. (This behavior should be observed even with the board
in download mode.)

Make sure the LCD is correctly plugged into the 14-pin raised
connector on the PC board. If the screen remains blank, check the
voltage on the VR pin of the LCD connector (see Figure 4.1). Using
the LCD Pot, you should be able to adjust the voltage on the VR pin
from 0 to about 5 or 6 volts.

Getting help.

Whatever problem bedevils your robot, the likelihood is that someone
has encountered it before. Don't be stymied when help is available.
Tap into the wealth of experience and know-how at your �ngertips
by contacting a member of the Rug Warrior Experts Group.

50

Chapter 7

Interactive C Manual

This chapter Copyright c 1992 by Fred G. Martin.

Used by permission.

Interactive C (IC for short) is a C language consisting of a compiler
(with interactive command-line compilation and debugging) and a
run time machine language module. IC implements a subset of C
including control structures (for, while, if, else), local and global
variables, arrays, pointers, 16-bit and 32-bit integers, and 32-bit oat-
ing point numbers.

IC works by compiling into pseudocode for a custom stack ma-
chine, rather than compiling directly into native code for a particular
processor. This pseudocode (or pcode) is then interpreted by the run-
time machine language program. This unusual approach to compiler
design allows IC to o�er the following design tradeo�s:

� Interpreted execution that allows run-time error checking
and prevents crashing. For example, IC does array bounds
checking at run-time to protect against programming errors.

� Ease of design. Writing a compiler for a stack machine is
signi�cantly easier than writing one for a typical processor.
Since IC's pcode is machine-independent, porting IC to another
processor entails rewriting the pcode interpreter, rather than
changing the compiler.

� Small object code. Stack machine code tends to be smaller
than a native code representation.

51

� multitasking. Because the pseudocode is fully stack-based,
a process' state is de�ned solely by its stack and its program
counter. It is thus easy to task-switch simply by loading a
new stack pointer and program counter. This task-switching is
handled by the run-time module, not by the compiler.

Since IC's ultimate performance is limited by the fact that its
output pcode is interpreted, these advantages are taken at the expense
of raw execution speed. Still, IC is no slouch.

IC was designed and implemented by Randy Sargent with

the assistance of Fred Martin.

7.1 Using IC

When running and attached to a 6811 system, C expressions, function
calls, and IC commands may be typed at the \C>" prompt.

All C expressions must be ended with a semicolon. For example,
to evaluate the arithmetic expression 1 + 2, type the following:

C> 1 + 2;

When this expression is typed, it is compiled by the console com-
puter and then downloaded to the 6811 system for evaluation. The
6811 then evaluates the compiled form and returns the result, which
is printed on the console computer's screen.

To evaluate a series of expressions, create a C block by beginning
with an open curly brace \{" and ending with a closed curly brace
\}". The following example creates a local variable i and prints the
sum i+7 to the 6811's LCD screen:

C> fint i=3; printf("%d", i+7);g

7.1.1 IC Commands

IC responds to the following commands:

� Load �le. The command load <�lename> compiles and loads
the named �le. The board must be attached for this command
to work. IC looks �rst in the local directory and then in the IC
library path for �les.

Several �les may be loaded into IC at once, allowing programs
to be de�ned in multiple �les.

52

� Unload �le. The command unload < �lename > unloads the
named �le, and redownloads remaining �les.

� List �les, functions, or globals. The command list files

displays the names of all �les presently loaded into IC. The com-
mand list functions displays the names of presently de�ned
C functions. The command list globals displays the names
of all currently de�ned global variables.

� Kill all processes. The command kill all kills all currently
running processes.

� Print process status. The command ps prints the status of
currently running processes.

� Edit a �le. The command edit<�lename> brings up a system
editor to allow editing of a �le. This command is most useful
on single-tasking operating systems, like MS-DOS.

� Run an inferior shell. If IC is running on a MS-DOS system,
this command opens a shell to execute MS-DOS functions.

� Help. The command help displays a help screen of IC com-
mands.

� Quit. The command quit exits IC. ctrl-C can also be used.

7.1.2 Line Editing

IC has a built-in line editor and command history, allowing edit-
ing and reuse of previously typed statements and commands. The
mnemonics for these functions are based on standard Emacs control
key assignments.

To scan forward and backward in the command history, type

ctrl-P or " for backward, and ctrl-N or # for forward.

An earlier line in the command history can be retrieved by typing
the exclamation point followed by the �rst few characters of the line
to retrieve, and then the space bar.

Figure 7.1 shows the keystroke mappings understood by IC. IC
does parenthesis-balance-highlighting as expressions are typed.

53

Keystroke Function

del backward-delete-char
ctrl-A beginning-of-line
ctrl-B backward-char
 backward-char
ctrl-D delete-char
ctrl-E end-of-line
ctrl-F forward-char
! forward-char
ctrl-K kill-line
ctrl-U universal-argument
esc D kill-word
esc del backward-kill-word

Figure 7.1: IC Command-line keystroke mappings.

7.1.3 The main() Function

After functions have been downloaded to the board, they can be in-
voked from the IC prompt. If one of the functions is named main(),
it will automatically be run when the board is reset.

7.2 A Quick C Tutorial

Most C programs consist of function de�nitions and data structures.
Here is a simple C program that de�nes a single function, called main.

void main()
{
printf("Hello, world!\n");
}

All functions must have a return value; that is, a value that they
return when they �nish execution. main has a return value type of
void, which is the \null" type. Other types include integers (int)
and oating point numbers (float). This function declaration infor-
mation must precede each function de�nition.

Immediately following the function declaration is the function's
name (in this case, main). Next, in parentheses, are any arguments (or

54

inputs) to the function. main has none, but a empty set of parentheses
is still required.

After the function arguments is an open curly brace \f". This
signi�es the start of the actual function code. Curly braces signify
program blocks, or chunks of code.

Next comes a series of C statements. Statements demand that
some action be taken. Our demonstration program has a single
statement, a printf (formatted print) which will print the message
\Hello, world!" to the LCD display. The \n indicates the end of
the line.

The printf statement ends with a semicolon (\;"). All C state-
ments must be ended by a semicolon. Beginning C programmers
commonly make the error of omitting the semicolon that is required
at the end of each statement.

The main function is ended by the close curly-brace \g".

Let's look at another example to learn some more features of C.
The following code de�nes the function square, which returns the
mathematical square of a number.

int square(int n)
{
return n * n;
}

The function is declared as type int, which means that it will
return an integer value. Next comes the function name square, fol-
lowed by its argument list in parentheses. square has one argument,
n, which is an integer. Notice how declaring the type of the argument
is done similarly to declaring the type of the function.

When a function has arguments declared, those argument vari-
ables are valid within the \scope" of the function (i.e., they only have
meaning within the function's own code). Other functions may use
the same variable names independently.

The code for square is contained within the set of curly braces.
In fact, it consists of a single statement: the return statement. The
return statement exits the function and returns the value of the C
expression that follows it (in this case \n * n").

Expressions are evaluated according set of precedence rules de-
pending on the various operations within the expression. In this case,
there is only one operation (multiplication), signi�ed by the *", so
precedence is not an issue.

55

Let's look at an example of a function that performs a function
call to the square program.

float hypotenuse(int a, int b)
{
float h;
h = sqrt((float)(square(a) + square(b)));
return h;
}

This code demonstrates several more features of C. First, notice
that the oating point variable h is de�ned at the beginning of the
hypotenuse function. In general, whenever a new program block
(indicated by a set of curly braces) is begun, new local variables may
be de�ned.

The value of h is set to the result of a call to the sqrt function. It
turns out that sqrt is a built-in function that takes a oating point
number as its argument.

We want to use the square function we de�ned earlier, which
returns its result as an integer. But the sqrt function requires a
oating point argument. We get around this type of incompatibility
by coercing the integer sum (square(a) + square(b)) into a oat by
preceding it with the desired type, in parentheses. Thus, the integer
sum is made into a oating point number and passed along to sqrt.

The hypotenuse function �nishes by returning the value of h.

This concludes the brief C tutorial.

7.3 Data Types, Operations, and

Expressions

Variables and constants are the basic data objects in a C program.
Declarations list the variables to be used, state what type they are,
and may set their initial value. Operators specify what is to be done
to them. Expressions combine variables and constants to create new
values.

7.3.1 Variable Names

Variable names are case sensitive. The underscore character is allowed
and is often used to enhance the readability of long variable names.
C keywords like if, while, etc. may not be used as variable names.

56

Global variables and functions may not have the same name. In
addition, local variables named the same as functions prevent the use
of that function within the scope of the local variable.

7.3.2 Data Types

IC supports the following data types:

16-bit Integers. 16-bit integers are signi�ed by the type indicator
int. They are signed integers and may be valued from �32,768 to
+32,767 decimal.

32-bit Integers. 32-bit integers are signi�ed by the type indicator
long. They are signed integers and may be valued from�2,147,483,648
to +2,147,483,647 decimal.

32-bit Floating Point Numbers. Floating point numbers are sig-
ni�ed by the type indicator float. They have approximately seven
decimal digits of precision and are valued from about 10�38 to 1038.

8-bit Characters. A character is an 8-bit number signi�ed by the
type indicator char. A character's value typically represents a print-
able symbol using the standard ASCII character code.

Arrays of characters (character strings) are supported, but indi-
vidual characters are not.

7.3.3 Local and Global Variables

If a variable is declared within a function, or as an argument to a
function, its binding is local, meaning that the variable has existence
only in that function de�nition.

If a variable is declared outside of a function, it is a global variable.
It is de�ned for all functions, including functions that are de�ned in
�les other than the one in which the global variable was declared.

Variable Initialization

Local and global variables can be initialized when they are declared.
If no initialization value is given, the variable is initialized to zero.

57

int foo()
{
int x; /* create local var x with initial value 0 */
int y= 7; /* create local var y with initial value 7 */
...
}
float z=3.0; /* create global var z with initial value 3.0 */

Local variables are initialized whenever the function containing
them runs.

Global variables are initialized whenever a reset condition occurs.
Reset conditions occur when:

1. New code is downloaded.

2. The main() procedure is run.

3. System hardware reset occurs.

Persistent Global Variables

A special uninitialized form of global variable, called the \persistent"
type, has been implemented for IC. A persistent global is not initial-
ized upon the conditions listed for normal global variables.

To make a persistent global variable, pre�x the type speci�er with
the key word persistent. For example, the statement

persistent int i;

creates a global integer called i. The initial value for a persistent
variable is arbitrary; it depends on the contents of RAM that were
assigned to it. Initial values for persistent variables cannot be speci-
�ed in their declaration statement.

Persistent variables keep their state when the robot is turned o�
and on, when main is run, and when system reset occurs. Persis-
tent variables, in general, will lose their state when a new program is
downloaded. However, it is possible to prevent this loss from occur-
ring. If persistent variables are declared at the beginning of the code,
before any function or non-persistent globals, they will be reassigned
to the same location in memory when the code is recompiled, and
thus their values will be preserved over multiple downloads.

If the program is divided into multiple �les and it is desired to
preserve the values of persistent variables, then all of the persistent
variables should be declared in one particular �le and that �le should
be placed �rst in the load ordering of the �les.

58

Persistent variables were created with two applications in mind:

� Calibration and con�guration values that do not need to be
recalculated on every reset condition.

� Robot learning algorithms that might occur over a period when
the robot is turned on and o�.

7.3.4 Constants

Integers

Integers may be de�ned in decimal integer format (e.g., 4053 or
-1), hexadecimal format using the \0x" pre�x (e.g., 0x1fff), and
a non-standard but useful binary format using the \0b" pre�x (e.g.,
0b1001001). Octal constants using the zero pre�x are not supported.

Long Integers

Long integer constants are created by appending the su�x \l" or \L"
(upper- or lower-case alphabetic L) to a decimal integer. For example,
0L is the long zero. Either the upper- or lower-case \L" may be used,
but upper-case is the convention for readability.

Floating Point Numbers

Floating point numbers may use exponential notation (e.g., \10e3"
or \10E3") or must contain the decimal period. For example, the
oating point zero can be given as \0.", \0.0", or \0E1", but not as
just \0".

Characters and Character Strings

Quoted characters return their ASCII value (e.g., 'x').
Character strings are de�ned with quotation marks, e.g., "This

is a character string.".

7.3.5 Operators

Each of the data types has its own set of operators that determine
which operations may be performed on them.

59

Integers

The following operations are supported on integers:

� Arithmetic. addition +, subtraction -, multiplication *, divi-
sion /.

� Comparison. greater-than >, less-than <, equality ==, greater-
than-equal >=, less-than-equal <=.

� Bitwise Arithmetic. bitwise-OR |, bitwise-AND &, bitwise-
exclusive-OR ^, bitwise-NOT �.

� Boolean Arithmetic. logical-OR ||, logical-AND &&, logical-
NOT !.

When a C statement uses a Boolean value (for example, if),
it takes the integer zero as meaning false and any integer other
than zero as meaning true. The Boolean operators return zero
for false and one for true.

Boolean operators && and || stop executing as soon as the truth
of the �nal expression is determined. For example, in the expres-
sion a && b, if a is false, then b does not need to be evaluated
because the result must be false. The && operator \knows this"
and does not evaluate b.

Long Integers

A subset of the operations implemented for integers are implemented
for long integers: arithmetic addition +, subtraction -, and multipli-
cation *, and the integer comparison operations. Bitwise and Boolean
operations and division are not supported.

Floating Point Numbers

IC uses a package of public-domain oating point routines distributed
by Motorola. This package includes arithmetic, trigonometric, and
logarithmic functions.

The following operations are supported on oating point numbers:

� Arithmetic. addition +, subtraction -, multiplication *, divi-
sion /.

� Comparison. greater-than >, less-than <, equality ==, greater-
than-equal >=, less-than-equal <=.

60

� Built-in Math Functions. A set of trigonometric, logarith-
mic, and exponential functions is supported, as discussed in
Section 7.8 of this document.

Characters

Characters are only allowed in character arrays. When a cell of the
array is referenced, it is automatically coerced into a integer repre-
sentation for manipulation by the integer operations. When a value
is stored into a character array, it is coerced from a standard 16-bit
integer into an 8-bit character (by truncating the upper eight bits).

7.3.6 Assignment Operators and Expressions

The basic assignment operator is =. The following statement adds 2
to the value of a.

a = a + 2;

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & ^ |

7.3.7 Increment and Decrement Operators

The increment operator \++" increments the named variable. For
example, the statement \a++" is equivalent to \a= a+1" or \a+= 1".

A statement that uses an increment operator has a value. For
example, the statement

a= 3;
printf("a=%d a+1=%d\n", a, ++a);

will display the text \a=3 a+1=4."
If the increment operator comes after the named variable, then

the value of the statement is calculated after the increment occurs.
So the statement

61

a= 3;
printf("a=%d a+1=%d\n", a, a++);

would display \a=3 a+1=3" but would �nish with a set to 4.

The decrement operator \--" is used in the same fashion as the
increment operator.

7.3.8 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associa-
tivity for the C operators. Operators listed earlier in the table have
higher precedence; operators on the same line of the table have equal
precedence.

Operator Associativity

() [] left to right
! ~ ++ -- - (type) right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| right to left
= += -= etc. right to left
, left to right

7.4 Control Flow

IC supports most of the standard C control structures. One notable
exception is the case and switch statement, which is not supported.

7.4.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements
may be grouped together into a block using curly braces. Inside a
block, local variables may be de�ned.

There is never a semicolon after a right brace that ends a block.

62

7.4.2 If-Else

The if else statement is used to make decisions. The syntax is:

if (expression)

statement-1
else

statement-2

expression is evaluated; if it is not equal to zero (e.g., logic true), then
statement-1 is executed.

The else clause is optional. If the if part of the statement did
not execute, and the else is present, then statement-2 executes.

7.4.3 While

The syntax of a while loop is the following:

while (expression)

statement

while begins by evaluating expression. If it is false, then statement
is skipped. If it is true, then statement is evaluated. Then the ex-
pression is evaluated again, and the same check is performed. The
loop exits when expression becomes zero.

One can easily create an in�nite loop in C using the while state-
ment:

while (1)

statement

7.4.4 For

The syntax of a for loop is the following:

for (expr-1 ; expr-2 ; expr-3)

statement

This is equivalent to the following construct using while:

expr-1 ;

while (expr-2) {

63

statement
expr-3 ;

}

Typically, expr-1 is an assignment, expr-2 is a relational expres-
sion, and expr-3 is an increment or decrement of some manner. For
example, the following code counts from 0 to 99, printing each number
along the way:

int i;
for (i= 0; i < 100; i++)
printf("%d\n", i);

7.4.5 Break

Use of the break provides an early exit from a while or a for loop.

7.5 LCD Screen Printing

IC has a version of the C function printf for formatted printing to
the LCD screen.

The syntax of printf is the following:

printf(format-string , [arg-1] , : : : , [arg- N])

This procedure is best illustrated by some examples.

7.5.1 Printing Examples

Example 1: Printing a message. The following statement prints
a text string to the screen.

printf("Hello, world!\n");

In this example, the format string is simply printed to the screen.
The character \\n" at the end of the string signi�es end-of-line.

When an end-of-line character is printed, the LCD screen will be
cleared when a subsequent character is printed. Thus, most printf
statements are terminated by a \n.

Example 2: Printing a number. The following statement prints
the value of the integer variable x with a brief message.

64

printf("Value is %d\n", x);

The special form %d is used to format the printing of an integer in
decimal format.

Example 3: Printing a number in binary. The following state-
ment prints the value of the integer variable x as a binary number.

printf("Value is %b\n", x);

The special form %b is used to format the printing of an integer in
binary format. Only the low byte of the number is printed.

Example 4: Printing a oating point number. The following
statement prints the value of the oating point variable n as a oating
point number.

printf("Value is %f\n", n);

The special form %f is used to format the printing of oating point
number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=%x B=%x\n", a, b);

The form %x formats an integer to print in hexadecimal.

7.5.2 Formatting Command Summary

Format Command Data Type Description

%d int decimal number
%x int hexadecimal number
%b int low byte as binary number
%c int low byte as ASCII character
%f float oating point number
%s char array char array (string)

65

7.5.3 Special Notes

� The �nal character position of the LCD screen is used as a
system \heartbeat." This character continuously blinks back
and forth when the board is operating properly. If the character
stops blinking, the board has halted.

� Characters that would be printed beyond the �nal character
position are truncated.

� When using a two-line display, the printf() command treats
the display as a single longer line.

� Printing of long integers is not presently supported.

7.6 Arrays and Pointers

IC supports one-dimensional arrays of characters, integers, long inte-
gers, and oating point numbers. Pointers to data items and arrays
are supported.

7.6.1 Declaring and Initializing Arrays

Arrays are declared using the square brackets. The following state-
ment declares an array of ten integers:

int foo[10];

In this array, elements are numbered from 0 to 9. Elements are ac-
cessed by enclosing the index number within square brackets: foo[4]
denotes the �fth element of the array foo (since counting begins at
zero).

Arrays are initialized by default to contain all zero values; arrays
may also be initialized at declaration by specifying the array elements,
separated by commas, within curly braces. Using this syntax, the
size of the array would not be speci�ed within the square braces; it is
determined by the number of elements given in the declaration. For
example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with foo[0] equaling 0, foo[1] equal-
ing 4, etc.

66

Character arrays are typically text strings. There is a special
syntax for initializing arrays of characters. The character values of
the array are enclosed in quotation marks:

char string[]= "Hello there";

This form creates a character array called string with the ASCII
values of the speci�ed characters. In addition, the character array is
terminated by a zero. Because of this zero termination, the character
array can be treated as a string for purposes of printing (for example).
Character arrays can be initialized using the curly braces syntax,
but they will not be automatically null-terminated in that case. In
general, printing of character arrays that are not null-terminated will
cause problems.

7.6.2 Passing Arrays as Arguments

When an array is passed to a function as an argument, the array's
pointer is actually passed, rather than the elements of the array. If
the function modi�es the array values, the array will be modi�ed,
since there is only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument:
as an array or as a pointer. IC only allows declaring array arguments
as arrays.

As an example, the following function takes an index and an array,
and returns the array element speci�ed by the index:

int retrieve_element(int index, int array[])
{
return array[index];
}

Notice the use of the square brackets to declare the argument array
as an array of integers.

When passing an array variable to a function, use of the square
brackets is not needed:

{
int array[10];
retrieve_element(3, array);
}

67

7.6.3 Declaring Pointer Variables

Pointers can be passed to functions which then go on to modify the
value of the variable being pointed to. This situation is useful because
the same function can be called to modify di�erent variables, just by
giving it a di�erent pointer.

Pointers are declared with the use of the asterisk (*). In the
example

int *foo;
float *bar;

foo is declared as a pointer to an integer, and bar is declared as a
pointer to a oating point number.

To make a pointer variable point at some other variable, the am-
persand operator is used. The ampersand operator returns the ad-

dress of a variable's value; that is, the place in memory where the
variable's value is stored. Thus:

int *foo;
int x= 5;
foo= &x;

makes the pointer foo \point at" the value of x (which happens to
be 5).

This pointer can now be used to retrieve the value of x using the
asterisk operator. This process is called de-referencing. The pointer,
or reference to a value, is used to fetch the value being pointed at.
Thus:

int y;
y= *foo;

sets y equal to the value pointed at by foo. In the previous example,
foo was set to point at x, which had the value 5. Thus, the result of
de-referencing foo yields 5, and y will be set to 5.

7.6.4 Passing Pointers as Arguments

Pointers can be passed to functions; then, functions can change the
values of the variables that are pointed at. This situation is termed
call-by-reference; the reference, or pointer, to the variable is given to
the function that is being called. This setup is in contrast to call-by-

value, the standard way that functions are called, in which the value
of a variable is given to the function being called.

68

The following example de�nes an average sensor function which
takes a port number and a pointer to an integer variable. The function
will average the sensor and store the result in the variable pointed at
by result.

In the code, the function argument is speci�ed as a pointer using
the asterisk:

void average_sensor(int port, int *result)
{
int sum= 0;
int i;
for (i= 0; i< 10; i++) sum += analog(port);
*result= sum/10;
}

Notice that the function itself is declared as a void. It does not
need to return anything, because it instead stores its answer in the
pointer variable that is passed to it.

The pointer variable is used in the last line of the function. In this
statement, the answer sum/10 is stored at the location pointed at by
result. Notice that the asterisk is used to get the location pointed
by result.

7.7 Multitasking

7.7.1 Overview

One of the most powerful features of IC is its multitasking facility.
Processes can be created and destroyed dynamically during run time.

Any C function can be spawned as a separate task. Multiple
tasks running the same code, but with their own local variables, can
be created.

Processes communicate through global variables: one process can
set a global to some value, and another process can read the value of
that global.

Each time a process runs, it executes for a certain number of ticks,
de�ned in milliseconds. This value is determined for each process at
the time it is created. The default number of ticks is �ve; therefore,
a default process will run for 5 milliseconds until its \turn" ends and
the next process is run. All processes are monitored in a process table;
each time through the table, each process runs once (for an amount
of time equal to its number of ticks).

69

Each process has its own program stack. The stack is used to pass
arguments for function calls, store local variables, and store return
addresses from function calls. The size of this stack is de�ned at the
time a process is created. The default size of a process stack is 256
bytes.

Processes that make extensive use of recursion or use large local
arrays will probably require a stack size larger than the default. Each
function call requires two stack bytes (for the return address) plus
the number of argument bytes; if the function that is called creates
local variables, then they also use up stack space. In addition, C
expressions create intermediate values that are stored on the stack.

It is up to the programmer to determine if a particular process
requires a stack size larger than the default. A process may also be
created with a stack size smaller than the default, in order to save
stack memory space, if it is known that the process will not require
the full default amount.

When a process is created, it is assigned a unique process identi-
�cation number or pid. This number can be used to kill a process.

7.7.2 Creating New Processes

The function start process creates a new process. start process

takes one mandatory argument|the function call to be started as a
process. There are two optional arguments: the process' number of
ticks and stack size. (If only one optional argument is given, it is
assumed to be the ticks number, and the default stack size is used.)
start process has the following syntax:

int start process(function-call(: : :),[TICKS],[STACK-SIZE])

start process returns an integer, which is the process ID assigned
to the new process.

The function call may be any valid call of the function used. The
following code shows the function main creating a process:

void check_sensor(int n)
{
while (1)
printf("Sensor %d is %d\n", n, digital(n));
}
void main()
{
start_process(check_sensor(2));
}

70

Normally when a C functions ends, it exits with a return value or
the \void" value. If a function invoked as a process ends, it \dies,"
letting its return value (if there was one) disappear. (This outcome
is okay, because processes communicate results by storing them in
globals, not by returning them as return values.) Hence in the above
example, the check sensor function is de�ned as an in�nite loop,
so as to run forever (until the board is reset or a kill process is
executed).

Creating a process with a non-default number of ticks or a non-
default stack size is simply a matter of using start process with
optional arguments; e.g.,

start_process(check_sensor(2), 1, 50);

will create a check sensor process that runs for 1 millisecond per
invocation and has a stack size of 50 bytes (for the given de�nition of
check sensor, a small stack space would be su�cient).

7.7.3 Destroying Processes

The kill process function is used to destroy processes. Processes
are destroyed by passing their process ID number to kill process,
according to the following syntax:

int kill process(int pid)

kill process returns a value indicating if the operation was success-
ful. If the return value is 0, then the process was destroyed. If the
return value is 1, then the process was not found.

The following code shows the main process creating a check -

sensor process, and then destroying it 1 second later:

void main()
{
int pid;
pid= start_process(check_sensor(2));
sleep(1.0);
kill_process(pid);
}

7.7.4 Process Management Commands

IC has two commands to help with process management. The com-
mands only work when used at the IC command line. They are not
C functions that can be used in code.

71

kill all

Kills all currently running processes.

ps

Prints out a list of the process status.
The following information is presented: process ID, status code,

program counter, stack pointer, stack pointer origin, number of ticks,
and the name of the function that is currently executing.

7.7.5 Process Management Library Functions

The following functions are implemented in the standard C library.

void hog processor()

Allocates an additional 256 milliseconds of execution to the cur-
rently running process. If this function is called repeatedly, the sys-
tem will wedge and only execute the process that is calling hog -

processor(). Only a system reset will unwedge it from this state.
Needless to say, this function should be used with extreme care, and
should not be placed in a loop, unless wedging the machine is the
desired outcome.

void defer()

Makes a process swap out immediately after the function is called,
and is useful if a process knows that it will not need to do any work un-
til the next time around the scheduler loop. defer() is implemented
as a C built-in function.

7.8 Floating Point Functions

In addition to basic oating point arithmetic (addition, subtraction,
multiplication, and division) and oating point comparisons, a num-
ber of exponential and transcendental functions are built in to IC:

float sin(float angle)

Returns sine of angle. Angle is speci�ed in radians; the result is
in radians.

float cos(float angle)

Returns cosine of angle. Angle is speci�ed in radians; the result
is in radians.

72

float tan(float angle)

Returns tangent of angle. Angle is speci�ed in radians; the result
is in radians.

float atan(float angle)

Returns arc tangent of angle. Angle is speci�ed in radians; the
result is in radians.

float sqrt(float num)

Returns square root of num.

float log10(float num)

Returns logarithm of num to the base 10.

float log(float num)

Returns natural logarithm of num.

float exp10(float num)

Returns 10 to the num power.

float exp(float num)

Returns e to the num power.

(float) a ^ (float) b

Returns a to the b power.

7.9 Memory Access Functions

IC has primitives for directly examining and modifying memory con-
tents. These primitives should be used with care as it would be easy
to corrupt memory and crash the system using these functions.

There should be little need to use these functions. Most interac-
tion with system memory should be done with arrays and/or globals.

int peek(int loc)

Returns the byte located at address loc.

int peekword(int loc)

Returns the 16-bit value located at address loc and loc+1. loc
has the most signi�cant byte, as per the 6811 16-bit addressing stan-
dard.

73

void poke(int loc, int byte)

Stores the 8-bit value byte at memory address loc.

void pokeword(int loc, int word)

Stores the 16-bit value word at memory addresses loc and loc+1.

void bit set(int loc, int mask)

Sets bits that are set in mask at memory address loc.

void bit clear(int loc, int mask)

Clears bits that are set in mask at memory address loc.

7.10 Error Handling

There are two types of errors that can happen when working with IC:
compile-time errors and run-time errors.

Compile-time errors occur during the compilation of the source
�le. They are indicative of mistakes in the C source code. Typical
compile-time errors result from incorrect syntax or mismatching of
data types.

Run-time errors occur while a program is running on the board.
They indicate problems with a valid C form when it is running. A
simple example would be a divide-by-zero error. Another example
might be running out of stack space, if a recursive procedure goes too
deep in recursion.

These types of errors are handled di�erently, as is explained below.

7.10.1 Compile-Time Errors

When compiler errors occur, an error message is printed to the screen.
All compile-time errors must be �xed before a �le can be downloaded
to the board.

7.10.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the
LCD screen indicating the error number. If the board is hooked up
to IC when the error occurs, a more verbose error message is printed
on the terminal.

Here is a list of the run-time error codes:

74

Error Code Description

1 no stack space for start process()

2 no process slots remaining
3 array reference out of bounds
4 stack overow error in running process
5 operation with invalid pointer
6 oating point underow
7 oating point overow
8 oating point divide-by-zero
9 number too small or large to convert to integer
10 tried to take square root of negative number
11 tangent of 90 degrees attempted
12 log or ln of negative number or zero
15 oating point format error in printf
16 integer divide-by-zero

7.11 Binary Programs

With the use of a customized 6811 assembler program, IC allows the
use of machine language programs within the C environment. There
are two ways that machine language programs may be incorporated:

1. Programs may be called from C as if they were C functions.

2. Programs may install themselves into the interrupt structure
of the 6811, running repetitiously or when invoked due to a
hardware or software interrupt.

When operating as a function, the interface between C and a bi-
nary program is limited: a binary program must be given one inte-
ger as an argument, and will return an integer as its return value.
However, programs in a binary �le can declare any number of global
integer variables in the C environment. Also, the binary program can
use its argument as a pointer to a C data structure.

7.11.1 The Binary Source File

Special keywords in the source assembly language �le (or module) are
used to establish the following features of the binary program:

Entry point. The entry point for calls to each program de�ned in
the binary �le.

75

Initialization entry point. Each �le may have one routine that
is called automatically upon a reset condition. (The reset conditions
are explained in Section 7.3.3, which discusses global variable initial-
ization.) This initialization routine is particularly useful for programs
which will function as interrupt routines.

C variable de�nitions. Any number of 2-byte C integer variables
may be declared within a binary �le. When the module is loaded into
IC, these variables become de�ned as globals in C.

To explain how these features work, let's look at a sample IC
binary source program, listed in Figure 7.2.

/* Sample icb file */
/* origin for module and variables */
ORG MAIN_START
/* program to return twice the argument passed to us*/
subroutine_double:
ASLD
RTS
/* declaration for the variable "foo" */
variable_foo:
FDB 55
/* program to set the C variable "foo" */
subroutine_set_foo:
STD variable_foo
RTS
/* program to retrieve the variable "foo" */
subroutine_get_foo:
LDD variable_foo
RTS
/* code that runs on reset conditions */
subroutine_initialize_module:
LDD #69
STD variable_foo
RTS

Figure 7.2: Sample IC binary source �le: testicb.asm.

The �rst statement of the �le (\ORG MAIN START") declares the
start of the binary programs. This line must precede the code itself.

The entry point for a program to be called from C is declared with
a special form beginning with the text subroutine . In this case,
the name of the binary program is double, so the label is named
subroutine double. As the comment indicates, this program will
double the value of the argument passed to it.

76

When the binary program is called from C, it is passed one integer
argument. This argument is placed in the 6811's D register (also
known as the \Double Accumulator") before the binary code is called.

The double program doubles the number in the D register. The
ASLD instruction (\Arithmetic Shift Left Double [Accumulator]") is
equivalent to multiplying by two; hence this doubles the number in
the D register.

The RTS instruction is \Return from Subroutine." All binary pro-
grams must exit using this instruction. When a binary program exits,
the value in the D register is the return value to C. Thus, the double
program doubles its C argument and returns it to C.

Declaring Variables in Binary Files

The label variable foo is an example of a special form to declare
the name and location of a variable accessible from C. The special
label pre�x \variable " is followed the name of the variable, in this
case, \foo."

This label must be immediately followed by the statement FDB

<number>. This statement is an assembler directive that creates a
2-byte value (which is the initial value of the variable).

Variables used by binary programs must be declared in the binary
�le. These variables then become C globals when the binary �le is
loaded into C.

The next binary program in the �le is named \set foo." It per-
forms the action of setting the value of the variable foo, which is
de�ned later in the �le. It sets the value by storing the D register
into the memory contents reserved for foo, and then returning.

The next binary program is named \get foo." It loads the D
register from the memory reserved for foo and then returns.

Declaring an Initialization Program

The label subroutine initialize module is a special form used to
indicate the entry point for code that should be run to initialize the
binary programs. This code is run upon standard reset conditions:
program download, hardware reset, or running of the main() function.

In the example shown, the initialization code stores the value 69
into the location reserved for the variable foo. This action overwrites
the 55 which would otherwise be the default value for that variable.

77

Before User Program Installatio n

6811 interrupt vector
(dedicated RAM position)

System software
interrupt driver

Return from Interrupt
instruction

RTI

Figure 7.3: Interrupt structure before user program installation.

Initialization of global variables de�ned in an binary module is
done di�erently than globals de�ned in C. In a binary module, the
globals are initialized to the value declared by the FDB statement only
when the code is downloaded to the 6811 board (not upon reset or
running of main(), like normal globals). However, the initialization
routine is run upon standard reset conditions and can be used to
initialize globals, as this example has illustrated.

7.11.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of
the binary module to install a piece of code into the interrupt struc-
ture of the 6811.

The 6811 has a number of di�erent interrupts, mostly dealing
with its on-chip hardware such as timers and counters. One of these
interrupts is used by the system software to implement time-keeping
and other periodic functions (such as LCD screen management). This
interrupt, dubbed the \System Interrupt," runs at 1000 Hertz.

78

Instead of using another 6811 interrupt to run user binary pro-
grams, additional programs (that need to run at 1000 Hz or less)
may install themselves into the System Interrupt. User programs
would be then become part of the 1000 Hz interrupt sequence.

This result is accomplished by having the user program \inter-
cept" the original 6811 interrupt vector that points to system inter-
rupt code. This vector is made to point at the user program. When
the user program �nishes, it jumps to the start of the system interrupt
code.

Figure 7.3 depicts the interrupt structure before user program
installation. The 6811 vector location points to system software code,
which terminates in a \return from interrupt" instruction.

Figure 7.4 illustrates the result after the user program is installed.
The 6811 vector points to the user program, which exits by jumping
to the system software driver. This driver exits as before, with the
RTI instruction.

Multiple-user programs could be installed in this fashion. Each
would install itself ahead of the previous one.

Figure 7.5 shows an example program that installs itself into the
System Interrupt. This program toggles the signal line controlling
the piezo beeper every time it is run; since the System Interrupt runs
at 1000 Hz, this program will create a continuous tone of 500 Hz.

The �rst line after the comment header includes a �le named
\6811regs.asm". This �le contains equates for all 6811 registers and
interrupt vectors; most binary programs will need at least a few of
these equates. It is simplest to keep them all in one �le that can be
easily included.

The subroutine initialize module declaration begins the ini-
tialization portion of the program. The �le \ldxibase.asm" is then
included. This �le contains a few lines of 6811 assembler code that
perform the function of determining the base pointer to the 6811 in-
terrupt vector area, and loading this pointer into the 6811 X register.

The following four lines of code install the interrupt program
(beginning with the label interrupt code start) according to the
method that was illustrated in Figure 7.4.

First, the existing interrupt pointer is fetched. As indicated by the
comment, the 6811's TOC4 timer is used to implement the System
Interrupt. The vector is poked into the JMP instruction that will
conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the
new code. These two steps complete the initialization sequence.

79

After User Program Installation

6811 interrupt vector
(dedicated RAM position)

System software
interrupt driver

Return from Interrupt
instruction

RTI

JMP

User assembly
language program

Jump instruction

Figure 7.4: Interrupt structure after user program installation.

80

* icb file: "sysibeep.asm"
*
* example of code installing itself into
* SystemInt 1000 Hz interrupt
*
* Fred Martin
* Thu Oct 10 21:12:13 1991
*
#include <6811regs.asm>
ORG MAIN_START
subroutine_initialize_module:

#include <ldxibase.asm>
* X now has base pointer to interrupt vectors ($FF00 or $BF00)

* get current vector; poke such that when we finish, we go there
LDD TOC4INT,X ; SystemInt on TOC4
STD interrupt_code_exit+1

* install ourself as new vector
LDD #interrupt_code_start
STD TOC4INT,X
RTS

* interrupt program begins here
interrupt_code_start:
* frob the beeper every time called
LDAA PORTA
EORA #%00001000 ; beeper bit
STAA PORTA

interrupt_code_exit:
JMP $0000 ; this value poked in by init routine

Figure 7.5: sysibeep.asm: Binary program that installs into System
Interrupt.

81

The actual interrupt code is quite short. It toggles bit 3 of the
6811's PORTA register. The PORTA register controls the eight pins
of Port A that connect to external hardware; bit 3 is connected to
the piezo beeper.

The interrupt code exits with a jump instruction. The argument
for this jump is poked in by the initialization program.

The method allows any number of programs located in separate
�les to attach themselves to the System Interrupt. Because these �les
can be loaded from the C environment, this system a�ords maximal
exibility to the user, with small overhead in terms of code e�ciency.

7.11.3 The Binary Object File

The source �le for a binary program must be named with the .asm

su�x. Once the .asm �le is created, a special version of the 6811
assembler program is used to construct the binary object code. This
program creates a �le containing the assembled machine code plus
label de�nitions of entry points and C variables.

S116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assembler version 2.1 10-Aug-91

please send bugs to Randy Sargent (rsargent@athena.mit.edu)
original program by Motorola.

subroutine_double 872b *0007
subroutine_get_foo 8733 *0021
subroutine_initialize_module 8737 *0026
subroutine_set_foo 872f *0016
variable_foo 872d *0012 0017 0022 0028

Figure 7.6: Sample IC binary object �le: testicb.icb.

The program as11 ic is used to assemble the source code and
create a binary object �le. It is given the �le name of the source �le
as an argument. The resulting object �le is automatically given the
su�x .icb (for IC Binary). Figure 7.6 shows the binary object �le
that is created from the testicb.asm example �le.

82

7.11.4 Loading an icb File

Once the .icb �le is created, it can be loaded into IC just like any
other C �le. If there are C functions that are to be used in conjunction
with the binary programs, it is customary to put them into a �le with
the same name as the .icb �le, and then use a .lis �le to load the
two �les together.

7.11.5 Passing Array Pointers to a Binary Pro-
gram

A pointer to an array is a 16-bit integer address. To coerce an array
pointer to an integer, use the following form:
array ptr= (int) array;

where array ptr is an integer and array is an array.
When compiling code that performs this type of pointer conver-

sion, IC must be used in a special mode. Normally, IC does not allow
certain types of pointer manipulation that may crash the system. To
compile this type of code, use the following invocation:
ic -wizard

Arrays are internally represented with a 2-byte length value fol-
lowed by the array contents.

7.12 IC File Formats and Management

This section explains how IC deals with multiple source �les.

7.12.1 C Programs

All �les containing C code must be named with the \.c" su�x.
Loading functions from more than one C �le can be done by issuing

commands at the IC prompt to load each of the �les. For example,
to load the C �les named foo.c and bar.c:
C> load foo.c

C> load bar.c

Alternatively, the �les could be loaded with a single command:
C> load foo.c bar.c

If the �les to be loaded contain dependencies (for example, if one
�le has a function that references a variable or function de�ned in the
other �le), then the second method (multiple �le names to one load
command) or the following approach must be used.

83

7.12.2 List Files

If the program is separated into multiple �les that are always loaded
together, a \list �le" may be created. This �le tells IC to load a set of
named �les. Continuing the previous example, a �le called gnu.lis

can be created:

Listing of gnu.lis:

foo.c

bar.c

Then typing the command load gnu.lis from the C prompt would
cause both foo.c and bar.c to be loaded.

7.12.3 File and Function Management

Unloading Files

When �les are loaded into IC, they stay loaded until they are explicitly
unloaded, which is usually the functionality that is desired. If one of
the program �les is being worked on, the other ones will remain in
memory so that they don't have to be explicitly reloaded each time
the one undergoing development is reloaded.

However, suppose the �le foo.c is loaded, which contains a def-
inition for the function main. Then the �le bar.c is loaded, which
happens to also contain a de�nition for main. There will be an error
message, because both �les contain a main. IC will unload bar.c,
due to the error, and redownload foo.c and any other �les that are
presently loaded.

The solution is to �rst unload the �le containing the main that is
not desired, and then load the �le that contains the new main:
C> unload foo.c

C> load bar.c

7.13 Con�guring IC

IC has a multitude of command-line switches that allow control of a
number of things. Explanations for these switches can be obtained
by issuing the command \ic -help."

IC stores the search path for and name of the library �les inter-
nally; these may be changed by executing the command \ic -config."

84

When this command is run, IC will prompt for a new path and library
�le name, and will create a new executable copy of itself with these
changes.

85

Appendix

A.1 The IC Library File

Library �les provide standard C functions for interfacing with hard-
ware on the robot controller board. These functions are written either
in C or as assembly language drivers. Library �les provide functions
to do things like control motors, make tones, and input sensor values.

IC automatically loads the library �le every time it is invoked. IC
may be con�gured to load di�erent library �les as its default.

Functions in this appendix apply to software distribution disk 2.0
and later.

A.1.1 Time Commands

System code keeps track of time passage in milliseconds. The time
variables are implemented using the long integer data type. Standard
functions allow use of oating point variables when using the timing
functions.

void reset system time()

Resets the count of system time to 0 milliseconds.

long mseconds()

Returns the count of system time in milliseconds. Time count is
reset by hardware reset (i.e., pressing the RESET switch on board)
or the function reset system time(). mseconds() is implemented
as a C primitive (not as a library function).

float seconds()

Returns the count of system time in seconds, as a oating point
number. Resolution is 1 millisecond.

86

void sleep(float sec)
Waits for an amount of time equal to or slightly greater than sec

seconds. sec is a oating point number. For example:

/* wait for 1.5 seconds */
sleep(1.5);

void msleep(long msec)
Waits for an amount of time equal to or greater than msec mil-

liseconds. msec is a long integer. Example:

/* wait for 1.5 seconds */
msleep(1500L);

A.1.2 Tone Functions

Several commands control the production of tones using the piezo
beeper.

void beep()

Produces a tone of 500 Hertz for a period of 0.3 seconds.

void tone(float frequency, float length)

Produces a tone at pitch frequency Hertz for length seconds.
Both frequency and length are oats.

void set beeper pitch(float frequency)

Sets the beeper tone to be frequency Hz. The beeper on() func-
tion is then used to turn on the beeper. Change beeper pitch while
the beeper is on to produce warbling tones.

void beeper on()

Turns on the beeper at the frequency set beeper pitch last se-
lected.

void beeper off()

Turns o� the beeper.

A.1.3 Sensor Input

int digital(int nth)

Returns the state of the nth input bit of digital I/O Port A. Bits
1 and 2 are unassigned inputs. Bits 0 and 7 are inputs connected to
the left and right shaft encoders, respectively. Bits 3, 4, 5, and 6 are

87

outputs. For example, calling digital(0) should return the same
value as left shaft().

int analog(int p)

Returns the value of sensor port numbered p. The result is an
integer between 0 and 255.

Analog ports are mapped to the 6811's Port E pins. Analog(0)
corresponds to PE0, analog(1) to PE1, and so on. Lines PE6 and
PE7 are available on the expansion connector for user customization.
If the optional pyro sensor has not been installed, line PE5 (available
on the pyro connector) may also be used.

int analog(photo right | photo left)

Returns the value of the right or left photo cell, respectively.
Lower numbers indicate brighter light.

int analog(microphone)

Returns the instantaneous value of the A/D input connected to
the microphone. When no sound is present analog(microphone)

returns a value of approximately 128. When sound is detected by the
microphone the value may be more or less than 128. To determine
a meaningful value for sound level the microphone must be sampled
frequently and averaged.

int analog(pyro)

Returns the value of the optional pyro sensor. This value is more
or less constant with time unless a heat edge passes the pyro sensor.

int bumper()

Returns a 3-bit value corresponding to the closed bumper switches.
If the bump switches are labeled A, B, and C, then bit 0 set corre-
sponds to A closed, bit 1 set corresponds to switch B closed, and bit 2
set corresponds to switch C closed. For example, if bumper() returns
`3' it means that switches A and B are closed.

int ir detect()

Returns a 2-bit value with the following meanings: 0 { no obsta-
cles detected, 1 { obstacle detected on right side, 2 { obstacle detected
on left side, and 3 { obstacle detected on both sides. This test requires
at least 2 milliseconds to complete.

int leds(int n)

Set the debugging LEDs to the binary value of the four least

88

signi�cant bits of n. If the LEDs are labeled from 0 to 3 starting on
the right of the board then bit 0 of n corresponds to LED 0, bit 1
to LED 1, and so on. Note that the debugging LEDs are connected
in parallel with the motor direction bits and the IR emitters. Thus
the LEDs cannot be activated without also activating these other
functions and vice versa.

A.1.4 Motor Functions

Rug Warrior's drive motors are velocity controlled. This feature
means that it is possible to specify the speed at which each motor
is to run, rather than just whether the motor is on or o�. The primi-
tives described below provide only open loop control. However, using
these primitives it is possible to construct a closed loop velocity con-
trol system.

int init motors()

This function initializes several registers that allow velocity control
of the motors. It is called automatically on reset but may need to be
called again if the MC68HC11 registers OC1M, TCTL1, TOC1, or
DDRD are altered.

void motor(int index, int speed)

This function is a primitive for controlling motor velocity. Index
= 0 accesses the left motor; index = 1 accesses the right motor. Speed
is an integer number between -100 and +100. Speed represents the
percentage of full speed at which the motor operates. Before software
distribution 2.0 speed was implemented as a oat number.

void drive(float trans vel, float rot vel)

This function is used to control robot velocity and direction. Trans vel

is an integer number between -100 and 100 specifying robot velocity
as a percentage of maximum velocity (negative numbers cause the
robot to back up). rot vel is a number between -100 and 100 spec-
ifying the robot's rotational velocity as a percentage of maximum
velocity. Positive numbers correspond to counterclockwise rotation.
Drive speci�es only the open loop velocities. Before software distribu-
tion 2.0 trans vel and rot vel were implemented as oat numbers.

89

A.1.5 Shaft Encoders

Unlike other library routines, most functions that monitor the shaft
encoders are not loaded automatically. These functions must be in-
cluded explicitly by loading shaft.lis. This �le loads speed.icb

and shaft.c. The former �le enables an interrupt routine that moni-
tors the shaft encoder connected to line PA0. The latter �le provides
a low level user interface in the form of functions get left clicks()

and get right clicks(). Each time one of these routines is called it
returns the number of shaft encoder clicks since the last time it was
called. This number is proportional to the distance the wheel has
turned during that interval.

To measure robot velocity, arrange to have the get clicks func-
tions called at regular intervals. For example, this arrangement could
be accomplished by setting up a process that calls a get clicks func-
tion, writes the value to a variable, and then sleeps for a certain
amount of time. How frequently the process should call get clicks

depends on the number of black to white stripe transitions (16 for the
Brawn Kit) on your wheel and the velocity resolution that you require.
Note that the shaft encoders ignore the direction of rotation|the
get clicks functions count up whether the wheel is turning clock-
wise or counterclockwise.

void init velocity()

Initializes the routines that enable velocity monitoring. This func-
tion must be called before the results returned by get left clicks(),
and get right clicks() become meaningful.

int get left clicks()

Accesses a variable maintained by a lower level interrupt routine
(de�ned in speed.asm). The interrupt routine is associated with 6811
pin PA0. The value returned is the number of clicks since the previous
call to get left clicks.

int get right clicks()

Accesses the pulse counter register associated with 6811 pin PA7.
The value returned is the number of clicks since the previous call to
get right clicks.

For programming convenience the following two functions are present
in the Rug Warrior library.

left shaft()

Returns the current state of the left shaft encoder; 1 if a white

90

12

345

678

Gnd RxDTxD

M acintosh seri al

connector, fem al e

RxDGndTxD

 Top vi ew of Rug

W arri or phone j ack

Gnd

12345

6789

Gnd TxD RxD

IBM 9-pi n connector

123456789

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

Gnd RxD TxD

IBM 25-pi n

 connector

123456789

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

TxD RxD

M acintosh

 25-pi n

 m odem

connector

stripe is sensed, 0 otherwise.

right shaft()

Returns the current state of the right shaft encoder; 1 if a white
stripe is sensed, 0 otherwise.

A.2 Serial Connection

Figure A.7 is provided for informational purposes. The �gure will be
helpful if you choose to construct your own cable to make a direct
connection to Rug Warrior from either a Macintosh DIN-8 connector
or an IBM PC 9-pin connector.

Figure A.7: The Rug Warrior connector requires only three signals,
Ground, Transmit, and Receive (Gnd, TxD, and RxD respectively).

The drawing shows several common host computer connectors in-
dicating the salient pins. Wire your cable in such a way that Gnd,
TxD, and RxD on your host are connected to the respective signals
on the Rug Warrior phone jack. Depending on your serial card, it
may be necessary to wire together pins 5, 6, and 20 of the IBM 25-

91

pin connector or pins 4, 6, and 8 of the IBM 9-pin connector. Pins 4
and 8 of the Macintosh serial connector must be connected.

A.3 Selected Rug Warrior Speci�cations

The following are typical speci�cations for Rug Warrior robots con-
structed from the Expanded Kit.

Component Typical Min Max Units
Logic supply 5.0 4.6 7.0 Volts
Motor supply 5.0 4.0 9.0 Volts
Microprocessor clock freq. 2.0 MHz
Serial line speed 9600 baud
IR osc. freq. 40 38 42 KHz
Obstacle detection range 15 inches
Robot speed 0.67 ft/sec
Encoder clicks per rotation 16 Units
Robot weight (no batteries) 27 Oz
Motor current (each motor) 1.0 Amp
Wheel diameter 2.5 inches
Robot diameter 7.3 inches
Robot height 4.75 inches

IR obstacle detection range assumes a at white object and opti-
mal oscillator tuning.

92

