
Calcul formel
et

Mathématiques
avec

la HP49G
en mode algébrique

Renée De Graeve
Mâıtre de Conférence à Grenoble I

Remerciements

Je remercie:

• Bernard Parisse pour ses précieux conseils et ses remarques sur ce texte,

• Sylvain Daudé pour sa relecture,

• Jean Tavenas pour l’intérêt porté à l’achèvement de ce guide,

• les élèves de Terminale du lycée Notre-Dame des Victoires de Voiron, ainsi que leur pro-
fesseur Jean Marc Paucod, pour leur participation au test du sujet de bac avec la HP49.

c© 09/1999 Renée De Graeve, degraeve@fourier.ujf-grenoble.fr 1

Reproduction, translation and redistribution of this document either stored on an electronic sup-
port or written on paper are granted for non-commercial purposes only. Any commercial use
of this document is prohibited without prior written permission of the copyright holder. This
documentation is provided“as is”, without warranty of any kind. In no event the copyright holder
will be liable for damages arising out of the use of this document.

Its contents don’t imply in any event the responsibility of either the Hewlett-Packard Com-
pany or its distributors.

This document is also available at the following Internet address:

http://www-fourier.ujf-grenoble.fr/~degraeve/usflan.pdf

1Translation c©03/2001 Ivan Cibrario Bertolotti.
Subject to the same licensing terms and conditions as the original.

1

Foreword

Sometimes, I am asked this question: why put symbolic manipulation capabilities into a
calculator, while specialized computer software for this is now either cheap, or available for free?

In my opinion, a calculator is the most effective way to integrate calculation aids with the
teaching of mathematics, because it is both easy to carry out with you and to use in a classroom.

However, using a symbolic manipulation software package is not as simple as its interface
could suggest. . . Therefore, having an adequate documentation for it is important. The HP49G
user guide describes the computer algebra system very briefly, so this manual is its essential
complement:

it describes the HP49G from the point of view of someone that “wants to do maths”.
In fact, readers interested in maths can read only this book as well, because the author

starts with an introduction to the calculator, describes in more detail the computer algebra
system commands arranged by purpose (the index allows the reader to find all commands in
alphabetical order), and then focuses on programming the calculator in algebraic mode.

Each command is demonstrated by an example, and many of them are leveraged to solve a
“baccalaureat” problem. The programming section has several programs, arithmetic programs in
particular.

Briefly, this is the manual I should have written if I had enough patience! I thank Renée for
carrying it out.

Bernard Parisse
Mâıtre de Conférences à l’Université de Grenoble I
Author of the Computer Algebra System of the HP49G

1 Getting started

1.1 Introduction

1.1.1 Turning on the calculator

Press the ON key.
When the calculator is turned on, the same key exits an application: it acts as either EXIT or
CANCEL.
To turn off the calculator, press red-shift and then ON.
If the calculator does not respond in despite of several ON (CANCEL), press both ON and F3
simultaneously to reinitialize it.

1.1.2 What am I looking at?

From top to bottom, you can see:
1. the screen

1.a the calculator status

1.b the calculation history

2

1.c a menu containing some commands

2. the keyboard

1. The screen:

1.a The calculator status describes the current calculator modes:

• RAD if the calculator is working in radians, DEG if it is working in degrees.

• XYZ shows that rectangular coordinates are in use.

• HEX shows that binary integers prefixed by # are displayed in base 16.

• R if the calculator is in REAL mode, C if it is in COMPLEX mode.

• = if the calculator is in EXACT mode (symbolic calculations), ∼ if the calculator is in
APPROXIMATE mode (numeric calculations).

• ’X’ denotes the name of the current variable stored in VX: usually it is ’X’.

• ALG if the calculator is in ALGEBRAIC mode, RPN if it is in RPN mode.

• {HOME} or {HOME ESSAI} to show the name of the current directory (for example, the main
directory HOME or the ESSAI subdirectory).

1.b The calculation history:
General principle: on the screen, the input expression (prefixed by :) is displayed left-justified,
and the result is right-justified.

1.c The menu:
Menu commands are accessed using the following keys:
F1 F2 F3 F4 F5 F6.
When the menu has more than 6 commands, press the NXT key to display the next portion of the
menu. The menu can also contain subdirectories (which, in turn, contain a set of commands):
they can be recognized because their menu item has a small bar across the upper-left corner. To
execute a menu command, simply press the corresponding Fi key.

2. The keyboard:
You should find:

• the ON key, to turn on the calculator, and to interrupt a calculation while it is in progress.
To turn off the calculator, press red-shift and then ON.

• two “shift” keys, one blue and one red; they allow a single key to have more than one
function.

• the ALPHA key, to enter alphabetical characters (uppercase by default). To keep alphabetic
mode active for more than one subsequent keystroke, it is necessary to press ALPHA twice. To
exit this mode, press ALPHA again. To toggle between uppercase and lowercase alphabetic
entry modes, press blue-shift ALPHA while the calculator is in alphabetic entry mode.

• the ENTER key; it either enters or confirms a command.

• four arrow keys (left, right, up, down); they move the cursor when you are either in the
editor or in a command list.

3

1.2 Calculator modes

The calculator can work in several modes.
You can choose: -algebraic or reverse poland notation mode (ALG or RPN)
-real or complex mode (R or C)
-exact or approximate mode (= or ∼)
-immediate or step-by-step mode...
Warning: this book assumes that the calculator is in algebraic, real, exact, immediate mode
(R = ALG).

Type: CASCFG (Computer Algebra System ConFiG) to set the calculator in real, exact, im-
mediate mode. While working, you can type CASCFG to restore this configuration (the calculator
automatically changes mode -asking you for a permission- when it is appropriate!).

Check
Check now that your calculator is indeed in algebraic, real, exact mode. In order to do this:

press MODE to check that the operating mode really is algebraic; if it is not, select algebraic
either with the choos menu item, or pressing the +/− key.

While you are in the MODE screen, activate the cas menu item and check that neither numeric,
nor approx, nor complex are enabled. If one ore more of these modes are enabled, disable them
all using the chk menu item.
Notice: for pedagogic applications, it is often interesting to enable the step/step mode, to make
the calculator execute its calculations step by step.

Now select the ok menu item to confirm all changes made in cas, and then ok again to confirm
the choices you made in MODE.

Now you are in algebraic, real, exact mode.
Warning:
this book assumes that the calculator is in this mode.

You are now in the HOME directory.
You can simply type in the calculation you want executed, for example: 1+1, and then press

ENTER
The result is displayed (right justified), and the input expression 1 + 1, preceded by :, goes

up in the history area (left justified).
It is possible to copy this expression in the command line by pressing the HIST key (the up

arrow allows you to select the expression to copy, and the echo menu item copies and simplifies
it).

It is also possible to reuse the last result (denoted ANS(1)) using the ANS (red-shift ENTER)
key, as well as previous results (denoted ANS(2)) and so on.

You can do both exact calculations and approximate ones; for example:√
2 followed by ENTER does not evaluate

√
2 and keeps the result exact, but the same expression

followed by red-shift ENTER (→NUM) returns the approximate value of
√

2 with 12 significant
digits, keeping the calculator in exact mode.

Of course, if you want to do only numeric calculations, you can enable approx mode (MODE
key, and then cas menu item); in this mode, the ENTER key does the calculation numerically,
evaluating both constants and variables.

4

1.3 Notation

In this book, the four arrow keys are represented by the following four triangles:

4 � � 5

The delete arrow (deletion of the character to the left of the cursor) is represented by:

⇐

The red arrow over the 0 (zero) key is represented by:

→

The STO key is represented, in a program, by:

STO . or .

The carriage return (in red, over the decimal point key), is represented by:

←↩

1.4 Flags

The vary majority of commands takes system flags into account.
Each flag has its own unique number, and has a default value. If you want to change the value of
a flag, you can do it by pressing the MODE key, then F1 to select the flags menu item and enter
the flag management screen.

When you toggle the flag you want changed, its new function appears on the screen.
If you know in advance the flag number, you can also change its value with the SF and CF

commands.
For example, to change flag number −117 (that is, the flag controlling the display of menus),

you type:
SF(-117) (most menus are now displayed across the bottom of the screen, instead of using pop-
up command lists). After this command:
FS?(-117) returns 1. and FC?(-117) is 0.
To have most menus displayed using pop-up command lists again, you type:
CF(-117) (FS?(-117) is now 0. and FC?(-117) is 1.).

2 Important keys

2.1 The APPS key

This key, when pressed, displays a list of all calculator’s application.

2.1.1 Plot functions

This command list has the following items:
Equation entry. This item acts the same as the key sequence blue-shift F1 (Y=3D).
Plot window. This item acts the same as the key sequence blue-shift F2 (WIN).

5

Graph display. This item acts the same as the key sequence blue-shift F3 (GRAPH).
Plot setup. This item acts the same as the key sequence blue-shift F4 (2D/3D).
Table setup. This item acts the same as the key sequence blue-shift F5 (TBLSET).
Table display. This item acts the same as the key sequence blue-shift F6 (TABLE).
For more information, refer to chapter 3.

2.1.2 I/O functions

This list contains the commands that allow your calculator to interface with a computer.
For example, the fifth item is: Transfer.

If you press 5, and then ok, the calculator opens the Transfer window and displays:
Port : Wire
Type : Kermit (or XModem)
This window allows you to transfer a file interactively. You can do the same thing from the
command line, too; for example, these are the steps you should follow to use the Linux kermit
program:
-Connect both the calculator and the computer to the serial link cable.
-On the computer, type:
kermit
and then serv
-On the HP49G type:
SEND(’NOM’)
to copy the NOM variable from your HP49G to your computer.
-Or else,
On the HP49G type:
KGET(’NOM’)
to copy the NOM variable from your computer to your HP49G.

2.1.3 Constants library

This item displays a list of 40 physical constants.
These constants are denoted by their symbol and either their name or their value (if the value
menu item is selected).
They are followed by their measurement units, if the unit menu item is selected.
They can also be copied on the command line, by pressing the ->stk menu key.

2.1.4 Numeric solver

This item acts the same as the sequence of keys: red-shift 7 (NUM.SLV).

2.1.5 Time & date

This item acts the same as the sequence of key: red-shift 9 (TIME).

2.1.6 Equation writer

This item acts the same as the EQW key.
See section 2.1 for more details.

6

2.1.7 File manager

This item acts the same as the sequence of keys: blue-shift APPS (FILES).
See section 2.5 for more details.

2.1.8 Matrix writer

This item acts the same as the sequence of keys: blue-shift EQW (MTRW).
See section 2.2 for more details.

2.1.9 Text editor

This item opens the command line: notice that it is possible to write on more than one line (by
pressing red− shift • (←↩) to open a new line).

2.1.10 Math menu

This item acts the same as the sequence of keys: blue-shift SYMB (MTH).

2.1.11 CAS menu

This item opens a command list with the following entries:
1.ARITHMETIC corresponding to the blue-shift 1 (ARIT) menu
2.ALGEBRA corresponding to the red-shift 4 (ALG) menu
3.COMPLEX corresponding to the red-shift 1 (CMPLX) menu
4.CALCULUS corresponding to the blue-shift 4 (CALC) menu
5.EXP&LN corresponding to the blue-shift 8 (EXP&LN) menu
6.SYMBOLIC SOLVER corresponding to the blue-shift 7 (S.SLV) menu
7.MATRICES corresponding to the blue-shift 5 (MATRICES) menu
8.CONVERT corresponding to the blue-shift 6 (CONVERT) menu
9.TRIGONOMETRIC corresponding to the red-shift 8 (TRIG) menu
Refer to chapter 4 for more information.

2.2 The MODE key

This key allows you to tune the operating mode of your calculator: Algebraic or RPN mode, to
examine and change the calculator’s flags (F1 key), to tune the cas (F3 key), and to change
the way your calculator displays data on the screen with disp (F4 key).

For example (see also page 5) the flag -117 can be either:
choose boxes to have the calculator display its menus using popup windows
or
soft menu to have the calculator display its menus across the bottom of the screen.

2.3 The TOOL key

This key displays a menu containing:
edit, to edit the first line of the history (or the highlighted line).
view, to view the first line of the history (or the highlighted line).
rcl, the same as the key sequence blue− shift STO . (RCL) (see page 15).
sto . the same as the key STO..

7

purge, the same as the command PURGE (see page 15).
clear, to delete the current command line, leaving the cursor at the beginning of the line (this
isn’t the same as CANCEL that kills the current command line!).
Beware, when the command line is not active, clear deletes the whole history; in this case, it is
the same as red− shift ← (CLEAR).

2.4 The UNDO key (red-shift HIST)

This key is very useful, because it undoes the last command executed.

2.5 The VAR key

This key displays, across the bottom of the screen, a menu containing the names of all variables
in the current directory (press NXT to view them all!).
See section 2.4 for more information.

2.6 The EQW key

This key invokes the equation editor.
It can always be used, even in the matrix editor.
Also, from the equation editor it is possible to access the history (see 1.11). For more information,
see section 2.1.

2.7 The MTRW key (blue-shift EQW)

This key invokes the matrix editor, to enter a matrix. If you want to enter a vector instead,
make sure that the vect menu option is selected.

To enter a matrix:
you enter the first line, then you move the cursor to the beginning of the next line; when you
finish entering the following lines, the cursor automatically wraps around.

See section 2.2 for more details.

2.8 The SYMB key

This key opens a menu containing the most basic symbolic functions, divided by category.
The sub-menus contain the cas functions an high-school student usually needs. These functions,
and many others, can be found in the corresponding cas menus, too.

Example:
The SYMBOLIC ARITH MENU is a portion of the INTEGER sub-menu of ARITH (blue-shift 1).

2.9 The MTH (blue-shift SYMB) key

This key opens the mathematics functions menu.
There are:
The hyperbolic functions (sub-menu 4), like:
SINH ASINH COSH ACOSH TANH ATANH
The functions:

8

EXPM(X)=EXP(X)-1 LNP1(X)=LN(X+1)
and some functions used on real numbers (sub-menu 5), like:
FLOOR(X), returning the largest integral value not grater than X.
CEIL(X), returning the smallest integral value not less than X.
RND(X,n), that rounds X to n decimal digits.
TRNC(X,n), that truncates X to n decimal digits.

2.10 The UNITS (red-shift 6) key

The UNITS menu has 127 measurement units, divided by category.
To use a measurement unit, you must write the unit preceded by _ (red-shift -).
You can convert from one measurement unit to another using the CONVERT function (you can
find it into the Tools sub-menu of the UNITS menu).
Example:
Enter:
CONVERT(12_cm,1_m)
The result is:
0.12_m

2.11 The HIST key

This key allows you to access the history while you are typing a command. The same key allows
also to access the history from inside either the equation editor, or the matrix editor.
It is important to know that the object copied from the history is both copied AND evaluated.
If you want to use a result again without reevaluating it, you must use:
ANS(1) or ANS(2)...(red-shift ENTER (ANS(1)).
If you want to reuse a command, you can also press blue-shift HIST (CMD); this key gives you
a list containing the last commmands you used.

3 Data entry

3.1 The equation editor

3.1.1 Entering the equation writer

The EQW key (EQuationWriter) allows you to enter the equation editor at any time, from the
command line. It is a very efficient editor useful to write, simplify and work on mathematical
expressions.

While you are in the equation editor you can type expressions in, knowing that any operator
you type always operates either on the expression next to the cursor, on on the selected expression.

You must not be worried about entering parentheses, you simply select!

You must imagine that mathematical expressions are like a tree, (not necessarily a binary
one), and understand that the four arrow keys allow you to visit the tree in a natural way (the
right and left keys allow you to go from a sub-tree to another, the up and down keys allow you
to go up and down in the tree hierarchy, the “shifted” right and left keys allow you to accomplish
various selections; see the second example on page 10).

9

3.1.2 How to select?

You can enter selection mode in two ways:

• The 4 key enters selection mode and selects the expression element next to the cursor.
Then, you can enlarge the selection to the sub-tree located immediately to the right of your
present selection, by pressing �.

• The � key enters selection mode and selects the sub-tree next to the cursor.

• Warning: if you are entering a function with more than one argument, (like, for example,∑
,
∫

or AND), the � arrow allows you go from one argument to another. Therefore, you
must always use the 4 key to start selection mode in this case (see 2.1.4).

Equation writer examples:

• Example 1
Type:

2 + X ∗ 3 − X

You obtain:
2 + X · 3− X

ENTER ENTER gives the following result:

2 + 2 · X

Type:
2 + X � ∗ 3 − X

You obtain:
(2 + X) · 3− X

ENTER ENTER gives the following result:

6 + 2 · X

Type:
2 + X � ∗ 3 4 − X

You obtain:
(2 + X) · (3− X)

ENTER ENTER gives the following result:

−(X2 − X− 6)

• Example 2
If you want to enter:

X2 − 3 · X + 1

You type:
X yx 2 � − 3 X + 1

10

• Example 3
You want to enter:

1
2

+
1
3

+
1
4

+
1
5

Here, the root of the tree is a +, and there are four sub-trees; each sub-tree has a ÷ as
root, and has two leaves.

First of all, you must press EQW, and then you enter the first sub-tree:

1÷ 2

Then, you select this sub-tree with
�

press
+

and enter the second sub-tree:
1÷ 3

Then, you select this sub-tree with
�

press
+

and enter the third sub-tree:
1÷ 4

Then, you select this sub-tree with
�

press
+

and enter the fourth sub-tree:
1÷ 5

Last, press
�

again to select the last sub-tree you entered.

Now, the expression you want:
1

2
+

1

3
+

1

4
+

1

5

has been entered into the equation writer, and 1
5

is selected.

Visit the tree to select:
1

3
+

1

4

You must press
�

to select 1
4
; next,

red− shift�

11

allows you to extend the selection to two contiguous sub-trees, in this example:

1

3
+

1

4

Notice that:

You can evaluate the selected portion of the expression with:

red− shift SYMB (EVAL)

You obtain:
1

2
+

7

12
+

1

5

Now, if you want to evaluate
1
2

+
1
5

first of all you must do a permutation in order to make 1
2

and 1
5

adjacent, pressing

blue− shift�

thus exchanging the selected element with his left neighbor.

You obtain:
7

12
+

1

2
+

1

5

and 7
12

is selected. Then,
�red− shift�

selects
1

2
+

1

5

You can now do EVAL again.

3.1.3 How to modify an expression

To replace the selection with another expression, you can directly type the new expression.
To remove a selection without deleting the selected expression, press:

⇐

To delete the selected expression, press:

red− shift ⇐ (CLEAR)

To delete the unary operator at the root of the selected sub-tree, press:

blue− shift ⇐ (DEL)

For example, to replace sin(expr) with cos(expr), you delete sin (selecting sin(expr) and
pressing blue− shift ⇐), then you enter: cos.

To delete a binary operatoy, you must use the edit menu option, make the correction in the
command-line editor, and return to the equation writer with ENTER.

The HIST key (when used inside the equation editor) allows you to enter the history and to
copy a history element into the equation writer with the echo menu option.

12

3.1.4 How to enter AND,
∫

and
∑

To enter AND, you type it in alpha mode and you press �.
To enter the

∫
symbol, you press:

red− shift TAN (
∫

)

To enter the
∑

symbol, you press:

red− shift SIN (
∑

)

The cursor automatically moves where input is required, and you can move it using

�

The expressions you enter follow the selection rules explained above, but you must use 4 to
enter selection mode.

Warning: do not use the index variable i in summations, because i denotes the complex
number that solves the equation x2 + 1 = 0.

You must also understand that
∑

is able to calculate symbolically the summations of ratio-
nal fractions, and the hypergeometric series admitting a discrete primitive (starting from ROM
version 1.11).

In numeric mode,
∑

performs approximate calculations (for example,
∑4

k=0
1
k! = 2.70833333334,

instead of 1+ 1
1! +

1
2! +

1
3! +

1
4! = 65

24) (the ! symbol can be typed in pressing alpha red− shift 2).

3.1.5 Cursor mode

Cursor mode allows you to select a big expression fast:
press red-shift EQW (’) to enter cursor mode (or press on the curs menu option). Next, use
the arrows to enclose your selection in a box and press ENTER to select the box contents, or
CANCEL to cancel the operation.

3.1.6 To view all

Pressing on the big menu option, you make the font used to display the expression either bigger
or smaller: sometimes, making the font smaller allows you to view a big expression as a whole
on the screen.

If this is not yet enough, select the view option of the TOOL menu.

3.2 The matrix writer

To invoke the matrix writer, press: blue-shift EQW (MTRW).

You can then enter the elements belonging to the first line of the matrix by pressing ENTER
after each entry (you can use the equation editor to write them, too!). Next, you move the cursor
to the beginning of the second line with the arrow keys (the cursor automatically wraps around
when you finish entering the following lines).

13

To enter a negative number, for example −2, enter +/− 2.

If you want to enter a vector, make sure that the vect menu option is selected.

Notice that in Algebraic mode you must enter the matrix elements one at a time (pressing
ENTER after each element), but in RPN mode you can write more than one element separating
them with spaces; pressing ENTER then enters them all.

3.3 The text editor

This is the line that opens under the history to type a command in.
It is a full-fledged text editor, where you can: select an expression (with BEGIN END), either cut
it (CUT) or copy it (COPY) into a buffer, and then paste it at the current cursor position (PASTE).

Notice also that these commands work in EQW and MTRW, too.

3.3.1 BEGIN END

Move the cursor on the first character of the text you want to select, then press: red-shift
APPS (BEGIN).

Then, move the cursor on the character that follows the last character to select, and press:
red-shift MODE (END).

Your selection will be highlighted.

3.3.2 COPY

red-shift VAR (COPY) copies the selection into a buffer.

3.3.3 CUT

red-shift STO (CUT) copies the selection into a buffer, and deletes it from the command line.

3.3.4 PASTE

red-shift NXT (PASTE) pastes the contents of the buffer at the current cursor position (you
must have previously done either COPY, or CUT, to put something into the buffer).

3.4 Variables

You can store objects into variables, and reference them using the variable name.

Be sure to notice the difference between A et ’A’ :
A is evaluated (it denotes the execution of variable contents), while ’A’ is not (it denotes the
variable name).

For example:
STO(B,’A’): stores the contents of B into A.
STO(’B’,’A’): means that B and A will have the same contents from now on.
VAR displays a menu listing all variables you have created in the current directory, as well as all

14

its subdirectories (you can distinguish variables from subdirectories because subdirectories have
a small bar across the upper-left corner of their menu item).

The blue-shift APPS (FILES) application displays the whole variable tree starting from
HOME, as well as the archive memory, and greatly simplifies variable management.

3.4.1 STO

STO allows you to create a variable and to store an object into it.
Warning: STO is prefixed if you type it in alpha mode, and is infixed if you use the STO key.
(from now on, this key will be denoted by either STO. or .).

Examples:
Type:
STO(1,’A’)
or
use the STO. key, displayed on screen with . :
to enter:
1 STO . A (1 . A).

Notice that, in the latter case, you don’t put ’ ’ around A.

The variable A is created, and it contains 1.

Enter:
� 12� STO . P
P is a varialbe containing the program � 12� , that displays 12.

3.4.2 RCL

RCL takes a variable name, surrounded by ’ , as argument, and displays the variable contents.

To recall the contents of a variable, entering the variable name is enough, unless the variable
contains a program (because, in the latter case, the program is executed).

In the last examples:
A displays 1 and P displays 12
but:
RCL(’A’) displays 1 and RCL(’P’) displays � 12� .

3.4.3 PURGE

PURGE allows you to delete a variable and its contents.
You can find PURGE in the TOOL menu.

Example:
PURGE(’A’)

15

3.4.4 Predefined variables

The name of the current symbolic variable is stored in VX (and it will usually be X), therefore
you should either not use X as an ordinary variable, or purge X before doing symbolic calculations.

EPS holds the value of epsilon used by the EPSX0 command (see 4.20.1).

EQ holds the last equation you plotted.

MATRIX holds the last matrix used as argument to either JORDAN, EGV or EGVL.

MODULO holds the value of p when you do symbolic calculations in the Z/p.Z ring.

PERIOD holds the period of the function of which you want to calculate the Fourier coefficients
(see 4.7.16).

PRIMIT holds the antiderivative of the last function you asked the calculator to integrate.

REALASSUME holds the names of the symbolic variables you want the calculator assume to be
reals (by default, X, t and all auxiliary integration variables used).

SYSTEM holds the last system of equations used as argument to either rref or RREF, if the
system has at least a parameter.

3.5 Directories

At the beginning, you only have the HOME directory; it is the ancestor of any other directory you
will create in the future.

3.5.1 Creating a directory

Press blue-shift APPS (FILES) to display the tree structure of your directories.

Select the directory you want to be the parent directory (for example HOME) and press ok.

A menu containing edit copy move... is displayed; press NXT and select new (new variable
or directory) with F3.

Do not fill the Object field, but fill Name instead (to do this, simply type the name you chose,
and then press ok of the menu.

Then, select Directory with F3 (chk), and press ok of the menu.

Last, press CANCEL to return in HOME.

Check, by pressing VAR, that your directory has actually been created.

You can also create a directory with the CRDIR command.

16

You make the parent directory current, and then type:
CRDIR(’NOMREP’)
to create a subdirectory named NOMREP.

3.5.2 Working in a directory

Working in a directory is simple: simply press VAR to display the subdirectory names in the menu
area, and then open the subdirectory you want by pressing on the Fi corresponding to its name,
followed by ENTER.

To climb up in the directory tree, press:
blue-shift VAR (UPDIR)

3.5.3 Deleting, renaming, moving a directory

Press blue-shift APPS (FILES) to display your directory tree.
Select the directory you want to delete, rename, move, and press the ok menu key.

A menu containing edit copy move...purge rename... is displayed.

purge deletes the directory, if it is empty.
rename gives the directory a new name.
copy copies the directory (the arrow keys are used to indicate the destination, and ok con-

firms).
move moves the directory (the arrow keys are used to indicate the destination, and ok con-

firms).

4 Plotting graphs

4.1 Plot windows

4.1.1 Equation entry

This window is activated with the following sequence of keys:
blue-shift F1 (Y=). It allows you to define the equation to be plotted.

4.1.2 Plot window

This window is activated with the following sequence of keys:
blue-shift F2 (WIN).
It allows you to define the plot window and to enter the lower and upper boundaries of the
independent plot variable.
If boundaries are set to Default, they are assumed to be equal to the horizontal size of the plot
window.
To reset a parameter to Default, you must press NXT, and then press the reset menu key.

4.1.3 Graph display

This window is activated with the following sequence of keys:
blue-shift F3 (GRAPH).
It allows you to draw the plot when you have set all its parameters.

17

4.1.4 Plot setup

This window is activated with the following sequence of keys:
blue-shift F4 (2D/3D).
It allows you to choose the plot type, the equation to be plotted and the plot variables.

4.1.5 Table setup

This window is activated with the following sequence of keys:
blue-shift F5 (TBLSET).
It allows you to initialize a table.

4.1.6 Table display

This window is activated with the following sequence of keys:
blue-shift F6 (TABLE).
It displays the table you initialized with TBLSET.

4.2 Plot setup

4.2.1 Plot type

You can select the plot type using the choos menu key of the PLOT SETUP (blue-shift F4
(2D/3D)) window.

Here, the most common plot types will be described, such as:

Function to plot a function in cartesian coordinates.

Polar to plot a function in polar coordinates.

Parametric to plot a parametric function.

Truth to plot the solutions of an equation (the pixel at (x,y) is turned on iff EQ is true).
Diff Eq to plot the solutions of the differential equation y′ = f(x, y).

You can plot the solution satisfying y(x0) = y0 on the interval [a, b].
To do this, put in H-View the values of a and b, then x0 into Init and y0 into Init-Soln.
The solution is plotted in two steps: first, set Final to b to plot the solution on [x0,= b], draw
the plot, then set Final to a to plot the solution on [a, x0] and draw the plot again.

Slopefield to draw the slope field of the differential equation y′ = f(x, y).

Fast3D to plot a surface defined by z = f(x, y).
The plot can be rotated using NXT, TOOL and the arrow 4 � � 5 keys, to have a good view of
the surface.

4.2.2 The equation

You can enter the equation in many ways:
-you can store it into the EQ variable.
-you can enter it in the window opened by blue-shift F1 (Y=).
-you can enter it in the EQ field of the PLOT SETUP window, opened by blue-shift F4 (2D/3D).

18

-you can also use the cas function PLOT. It has a functions as argument, stores it into EQ and
opens the PLOT SETUP window.

Notice that EQ can be a list of equations; in this case, all of them will be plotted on the same
graphic.

You can also add en equation to the list of equations stored in EQ, with the aid of the cas
function PLOTADD.

4.2.3 Independent variable and equation types

The equation type depends on the plot type you have selected and on the independent variable
you chose.

Depending on this, you enter an equation of type:
f(x) to plot y = f(x) in cartesian coordinates, if x is the independent variable and the plot type
is Function.

f(t) to plot r = f(t) in polar coordinates, if t is the independent variable and the plot type
is Polar.

x(t) + i.y(t) to plot (x = x(t), y = y(t)) in parametric coordinates, if t is the independent
variable and the plot type is Parametric.

f(x, y) > 0 to highlight the corresponding portion of the x, y plane, if x and y are the inde-
pendent variables and the plot type is Truth.

f(t, y) to plot the solutions of the differential equation y′ = f(t, y) if t is the independent
variable, y is the solution variable and the plot type is Diff Eq.

f(t, y) to plot the slope field of the differential equation y′ = f(t, y), if t is the independent
variable, y is the solution variable and the plot type is Slopefield.

f(x, y) to plot the surface defined by z = f(x, y) if x and y are the independent variables and
the plot type is Fast3D.

Sometimes, the name of the second independent variable can be changed; by default its name
is y. This name is always tagged by Depend, even if it does correspond to an independent variable!
Do not take the word Depend into account in this case.

4.3 Drawing the plot

Before drawing a plot, you must set up many parameters.
When you have set all parameters up, to draw a plot press on:
erase draw (if tou want to erase the last plot you made) or
draw (if you want yo keep the last plot you made).

Using the menu of one of the following windows:
PLOT SETUP (blue-shift F4 (2D/3D))
PLOT (blue-shift F1 (Y=3D))

19

PLOT WINDOW (blue-shift F2 (WIN)).

You can also press:
blue-shift F3 (GRAPH) to draw the new plot without erasing the previous one.

You can review the last plot you made by pressing on �.

5 Symbolic calculations

5.1 Integers (and Gauss integers)

In this chapter, all integers can be freely replaced by Gauss integers, as an argument for all
functions described here.

5.1.1 Infinite-precision integers

The calculator can handle infinite-precision integers, for example:

100!

The symbol ! can be obtained either pressing alpha red− shift 2, or using red-shift
CAT (CHARS).

In the latter case, you select ! in CHARS (with the arrow keys), and then copy it into the
command line using the echo1 menu key.

Since the decimal representation of 100! is very long, you can view the result using the TOOL
key, followed by the view menu key.

The HIST and the up arrow keys allow you to climb up through the history, and the view
menu key allows you to review previous results.

5.1.2 DEFINE

Consider the following exercise:
Calculate the first six Fermat numbers Fk = 22k

+ 1 for k = 1..6, and check whether they are
prime.

Type the expression:
222

+ 1

to find 17, then invoke the ISPRIME?() command with ANS(1) as argument.
You can find this command in the ARITH (blue-shift 1) menu, sub-menu 1 INTEGER (or

you can type it in α mode).
The answer is 1., meaning true.
With the aid of the history, (HIST) you can copy the expression 222

+ 1 into the command
line, and modify it to read as:

223
+ 1

Otherwise, you can type the expression 22K

+ 1 STO FK, then do 3 STO K, and so on...

Otherwise, and it is the better choice, you can define the function F(K) with the aid of DEF
(blue-shift 2), entering:

DEFINE(F(K) = 22
K

+ 1)

20

The result is NOVAL and F is added to the variables (press on VAR to check this).

For K = 5 you enter:
F(5)

obtaining:
4294967297

You can factorize F5 with FACTOR ; you find it in the ALG (red-shift 4) menu.

Type:
FACTOR(F(5))

You obtain:
641 · 6700417

For F(6) you find:
18446744073709551617

Factorizing the result with FACTOR, the result is:

274177 · 67280421310721

Notice the difference in notation between:

2.5 =
5
2

and
2 · 5 = 10

5.1.3 GCD

GCD denotes the greatest common divisor of two integers (or of two lists of integers with the same
size).
Enter:

GCD(18, 15)

You obtain:
3

Enter:
GCD({18, 28}, {15, 21})

You obtain:
{3, 7}

because GCD(18, 15) = 3 and GCD(28, 21) = 7.

5.1.4 LGCD

LGCD denotes the greatest common divisor of a list of integers.
Enter:

LGCD({18, 15, 21, 36})

You obtain:
3

21

5.1.5 SIMP2

SIMP2 has two integers as arguments (or two lists of integers). These integers are assumed to
represent a fraction: the first element of the list is the fraction’s numerator, the second is the
denominator. SIMP2 returns a list of two integers representing, under the same assumptions, the
input fraction simplified.
Enter:

SIMP2(18, 15)

You obtain:
{6, 5}

Enter:
SIMP2({18, 28}, {15, 21})

You obtain:
{6, 5, 4, 3}

5.1.6 LCM

LCM denotes the least common multiple of two integers (or of two lists of integers).
Enter:

LCM(18, 15)

You obtain:
90

5.1.7 FACTOR

FACTOR factorizes its argument into a product of prime factors.
Enter:

FACTOR(90)

You obtain:
2.32.5

5.1.8 FACTORS

FACTORS does the same, but the result is given as a list, containing the prime factors and their
exponents.
Type:

FACTORS(90)

You obtain:
{2, 1., 3, 2., 5, 1.}

5.1.9 DIVIS

DIVIS returns a list containing all divisors of a given integer.
Type:

DIVIS(36)

You obtain:
{1, 3, 9, 2, 6, 18, 4, 12, 36}

22

5.1.10 IQUOT

IQUOT returns the integer quotient of the euclidean division of two integers.
Type:

IQUOT(148, 5)

You obtain:
29

5.1.11 IREMAINDER MOD

IREMAINDER returns the integer remainder of the euclidean division of two integers.
You type:

IREMAINDER(148, 5)

or
148 MOD 5

You obtain:
3

The difference between IREMAINDER and MOD is that the former works with both integers and
Gauss integers.
Try:

IREMAINDER(148!, 5! + 2)

(you obtain ! with alpha red-shift 2).

5.1.12 IDIV2

IDIV2 returns a list containing the quotient and the remainder of the euclidean division between
two integers, in that order.
Type:

IDIV2(148, 5)

You obtain:
{29, 3}

In step-by-step mode, the calculator shows the division process like it is taught at school.

5.1.13 ISPRIME?

ISPRIME?(N) returns 1. (true) if N is pseudo-prime, and returns 0. (false) if N is not prime.
Definition: For all integers less than 1014 pseudo-primality and primality are the same! ...beyond
1014 a pseudo-prime integer has a very high probability to be prime (see the Rabin algorithm in
section 7.6).
Type:

ISPRIME?(13)

You obtain:
1.

Type:
ISPRIME?(14)

You obtain:
0.

23

5.1.14 NEXTPRIME

NEXTPRIME(N) returns the smallest pseudo-prime number greater than N.
Type:

NEXTPRIME(75)

You obtain:
79

5.1.15 PREVPRIME

PREVPRIME(N) returns the largest pseudo-prime number less than N.
Type:

PREVPRIME(75)

You obtain:
73

5.1.16 IEGCD

IEGCD(A,B) returns the extended GCD (Bézout identity) of two integers, that is, IEGCD(A,B)
returns {D,U,V} so that AU+BV=D and D=GCD(A,B).
Type:

IEGCD(48, 30)

You obtain:
{6, 2,−3}

In fact:
2 · 48 + (−3) · 30 = 6

5.1.17 IABCUV

IABCUV(A,B,C) returns {U ,V} so that AU+BV=C.
C must be a multiple of GCD(A,B) for a solution to exist.
Type:

IABCUV(48, 30, 18)

You obtain:
{6,−9}

5.1.18 ICHINREM

ICHINREM([A,P],[B,Q]) returns a vector [X, N] so that:
X=A (mod P) and X=B (mod Q).
The solution X exists if P and Q are mutually prime, and all solutions are congruent modulo
N = P · Q
Example:
Solve: {

X = 3 (mod 5)
X = 9 (mod 13)

Type:
ICHINREM([3, 5], [9, 13])

24

You obtain:
[−147, 65]

that is, X=-147 (mod 65)

5.1.19 PA2B2

PA2B2 decomposes a prime integer p, congruent to 1 modulo 4, as follows: p = a2 + b2. The
calculator returns the result as a + b · i
Type:

PA2B2(17)

You obtain:
4 + i

that is, 17 = 42 + 12

5.1.20 EULER

EULER denotes the Euler’s totient function of an integer.
EULER(n) is the number of integers less than n and prime with n.
Type:

EULER(21)

you obtain:
12

In fact, the set:
E={2,4,5,7,8,10,11,13,15,16,17,19} is the set of integers less than 21 and prime with 21, and it
has 12 elements.

5.2 Rationals

Type:
123
12

+
57
21

and then ENTER; the answer is:
363
28

with red-shift ENTER (→NUM) the answer is:

12.9642857143

If you mix both representations, for example:

1
2

+ 0.5

the calculator demands to enable approx mode to carry out the calculation; you should answer
yes to obtain:

1.

Now, return to exact mode (MODE cas menu keys, and so on...).

25

5.2.1 PROPFRAC

PROPFRAC(A/B) rewrites the fraction A
B as:

Q +
R

B
with 0 ≤ R < B

Type:
PROPFRAC(43÷ 12)

You obtain:
3 +

7

12

5.2.2 FXND

FXND has a fraction as argument, and returns a list containing the fraction’s numerator and
denominator simplified.
Type:

FXND(42÷ 12)

You obtain:
{7, 2}

5.2.3 SIMP2

SIMP2 (see 4.1.5) has a list of two integers representing a fraction as argument and, like FXND,
returns a list containing the fraction’s numerator and denominator simplified.
Type:

SIMP2({42, 12})

You obtain:
{7, 2}

5.3 Reals

Type:
EXP(π ∗

√
20)

followed by ENTER; the answer is:
EXP(2 ∗

√
5 ∗ π)

with red-shift ENTER (→NUM) the answer is:

1263794.7537

5.4 Complex numbers

Type:
(1 + 2.i)2

follower by ENTER.
If you aren’t in complex mode, the calculator asks for a mode change: you should answer yes

to obtain the answer:
−(3− 4 · i)

26

Notice that this expression is not simplified beforehand (all results always put in evidence
complex numbers with a positive real part in exact mode).

In the red-shift 1 (CMPLX) menu you will find the following functions, having a complex-
valued expression as argument:
ARG returns the argument of its input.
ABS returns the modulo of its argument.
CONJ returns the conjugate of its argument.
RE returns the real part of its argument.
IM returns the imaginary part of its argument.
NEG returns the opposite of its argument.
SIGN returns the quotient between its argument and its argument’s modulo.
For example:
Type:

ARG(3 + 4 · i)

you obtain:

ATAN(
4

3
)

5.5 Algebraic expressions

5.5.1 FACTOR

FACTOR factorizes the expression given as argument.
Example:
Factorize

x4 + 1

Type:
FACTOR(X4 + 1)

You can find FACTOR in the ALG (red-shift 4) menu (or you can type it in α mode).
In real mode, the answer is:

(X2 +
√
2 · X + 1) · (X2 −

√
2 · X + 1)

In complex mode (to enable this mode, press MODE, then the cas menu key, then check the
complex field with chk and press ok ok) the answer is:

(2 · X + (1 + i) ·
√
2) · (2 · X− (1 + i) ·

√
2) · (2 · X + (1− i) ·

√
2) · (2 · X− (1− i) ·

√
2)

16

5.5.2 EXPAND EVAL

EXPAND and EVAL have an expression as argument; they expand and simplify their input.
Example:
Doing EXPAND(ANS(1)), you obtain again

X4 + 1.

27

5.5.3 SUBST

SUBST has two arguments: an expression depending on a parameter, and an equality (parame-
ter=substitution value).
SUBST does the commanded substitution in the input expression, and returns the result.
Type:

SUBST(A2 + 1, A = 2)

You obtain:

22 + 1

5.5.4 PREVAL

PREVAL has three arguments: an expression (F(VX)) depending on the variable stored in VX and
two expressions: A and B .
PREVAL evaluates F(B)-F(A).
PREVAL is useful to compute a definite integral given an antiderivative: you evaluate the an-
tiderivative between the upper and lower limits of the integral.
Type:

PREVAL(X2 + X, 2, 3)

You obtain:

12− 6

5.6 Functions

5.6.1 DERVX

Let f(x) be:

f(x) =
x

x2 − 1
+ ln(

x + 1
x− 1

)

Determine the derivative of f .
You can find DERVX in the menu:

CALC (blue-shift 4), sub-menu 1.DERIV. & INT..., third position (or you can type it in
mode α).

Type either:

DERVX(
X

X2 − 1
+ LN(

X + 1

X− 1
))

or, if you have previosuly stored f(x) into F:

DERVX(F)

or, if you have defined F (X) using DEFINE: (DEFINE(F(X) = X
X2−1

+ LN(X+1
X−1

)))

DERVX(F(X))

28

The result is an involved expression that you can simplify by copying it into the command
line (4 ENTER ENTER)).
You obtain:

− 3 · X2 − 1

X4 − 2 · X2 + 1

5.6.2 DERIV

DERIV has two arguments: an expression (or a functions), and a variable (or a vector containing
more than one variable name) (see multivariate functions, paragraph 4.16.1).
DERIV returns the derivative of the expression (or function) with respect to the given variable(s)
(useful to calculate partial derivatives!).
Example:
Suppose you should calculate:

∂(x · y2 · z3 + x · y)
∂z

Type:
DERIV(X · Y2 · Z3 + X · Y , Z)

You obtain:
3 · X · Y2 · Z2

5.6.3 INTVX

Let f(x) be:

f(x) =
x

x2 − 1
+ ln(

x + 1
x− 1

)

Determine an antiderivative of f .
You can find INTVX in the CALC (blue-shift 4) menu, 1. DERIV. & INT... sub-menu,
eighth position (or you can type it in α mode).
You type either:

INTVX(
X

X2 − 1
+ LN(

X + 1

X− 1
))

or, if you have previously stored f(x) into F:

INTVX(F)

or, if you have defined F (X) using DEFINE (DEFINE(F(X) = X
X2−1

+ LN(X+1
X−1

)):

INTVX(F(X))

You obtain:
X · LN(X + 1

X− 1
) +

3

2
· LN(|X− 1|) +

3 =
2
· LN(|X + 1|)

Exercise 1
Calculate: ∫

2
x6 + 2 · x4 + x2

dx

Type:

INTVX(
2

X6 + 2 · X4 + X2
)

29

You obtain:
−3 · ATAN(X)− 2

X
− X

X2 + 1

Notice:
You can also enter the expression using the equation writer (EQW key):∫ X

1

2

X6 + 2 · X4 + X2
dX

This gives the same result, barring an integration constant equal to

3 · π + 10
4

Exercise 2
Calculate: ∫

1
sin(x) + sin(2 · x)

dx

Type:

INTVX(
1

SIN(X) + SIN(2 · X)
)

You find:

−1
6
· LN(|COS(X)− 1|) +

1

2
· LN(|COS(X) + 1|) +

−2
3
· LN(|2 · COS(X) + 1|)− LN(2)

5.6.4 LIMIT

Find, for n > 2, the limit when x approaches 0 of:

n× tan(x)− tan(n× x)
sin(n× x)− n× sin(x)

You can use the LIMIT command, found in the menu:
CALC (blue-shift 4), sub-menu 2 LIMIT & SERIES (or you can type it in α mode).
Type:

LIMIT

(
N · TAN(X)− TAN(N · X)
SIN(N · X)− N · SIN(X)

, 0

)
You obtain:

2

Find the limit, when x approaches +∞, of:√
x +

√
x +
√

x−
√

x

Type:

LIMIT(

√
X +

√
X +
√
X−
√
X,+∞)

After a moment, you obtain:
1
2

Notice that you obtain +∞ pressing:

+/−
+/− ∞ (blue− shift 0)

30

5.6.5 LIMIT and
∫

Find the limit, when a approaches +∞, of:∫ a

2

(
x

x2 − 1
+ ln(

x + 1
x− 1

)) dx

In the equation writer, type: ∫ +∞

2

(
X

X2 − 1
+ LN(

X + 1

X− 1
)) dX

Notice that tou obtain +∞ pressing:

+/−
+/− ∞ (blue− shift 0)

You obtain:

+∞− 7.LN(3)
2

and, after simplification:
+∞

5.6.6 IBP

IBP has two arguments: an expression you can write as u(x) · v′(x) and v(x).
IBP returns a list containing u(x)·v(x) and −v(x)·u′(x), that is, the two terms you must calculate
when doing an integration by parts.
You must then integrate the second term and add the result to the first term to obtain an
antiderivative of u(x) · v′(x) (this is handy in RPN mode!).
Type:

IBP(LN(X), X)

You obtain:
{X.LN(X),−1}

Notice: If the first argument of IBP is a list of two elements, IBP only operates on the last element
of the list, and adds the integration result to the first element (so that it is easy to invoke IBP
multiple times in algebraic mode).

5.6.7 RISCH

RISCH has two arguments: an expression and the name of a variable.
RISCH returns an antiderivative of the first argument with respect to the variable given as the
second argument.
Type:

RISCH((2 · X2 + 1) · EXP(X2 + 1), X)

You obtain:
X · EXP(X2 + 1)

31

5.7 Trigonometric expressions

5.7.1 TEXPAND

TEXPAND has a trigonometric expression as argument.
TEXPAND expands this expression with respect to sin(x) and cos(x).
Example 1:
Type:

TEXPAND(COS(X + Y))

You obtain:

COS(Y) · COS(X)− SIN(Y) · SIN(X)

Example 2:
Type:

TEXPAND(COS(3 · X))

You obtain:

4 · COS(X)3 − 3 · COS(X)

Example 3:
Type:

TEXPAND(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X)
)

You obtain, after one simplification step (4 ENTER) :

4 · COS(X)2 − 2

5.7.2 TLIN

TLIN has a trigonometric expression as argument.
TLIN linearizes this expression in function of sin(n · x) and cos(n · x).
Example:
Type:

TLIN(COS(X) · COS(Y))

You obtain:

1

2
· COS(X− Y) +

1

2
· COS(X + Y)

Example 2:
Type:

TLIN(COS(X)3)

You obtain:

1

4
· COS(3 · X) +

3

4
· COS(X)

32

Example 3:
Type:

TLIN(4 · COS(X)2 − 2)

You obtain:

2 · COS(2 · X)

5.7.3 TCOLLECT

TCOLLECT has a trigonometric expression as argument.
TCOLLECT linearizes this expression in function of sin(n · x) and cos(n · x), then collects in real
mode sines and cosines of the same angle.
Type:

TCOLLECT(SIN(X) + COS(X))

You obtain:

√
2 · COS(X− π

4
)

5.7.4 ACOS2S

ACOS2S has a trigonometric expression as argument.
ACOS2S rewrites this expression replacing arccos(x) with π

2 − arcsin(x).
Type:

ACOS2S(ACOS(X) + ASIN(X))

You obtain:

π

2

5.7.5 ASIN2C

ASIN2C has a trigonometric expression as argument.
ASIN2C rewrites this expression replacing arcsin(x) with π

2 − arccos(x).
Type:

ASIN2C(ACOS(X) + ASIN(X))

You obtain:

π

2

33

5.7.6 ASIN2T

ASIN2T has a trigonometric expression as argument.
ASIN2T rewrites this expression replacing arcsin(x) with arctan(x√

1−x2).
Type:

ASIN2T(ASIN(X))

You obtain:

ATAN(
X√

1− X2
)

5.7.7 ATAN2S

ATAN2S has a trigonometric expression as argument.
ATAN2S rewrites this expression replacing arctan(x) with arcsin(x√

1+x2).
Type:

ATAN2S(ATAN(X))

You obtain:

ASIN(
X√

X2 + 1
)

5.7.8 SINCOS

SINCOS accepts as argument an expression containing complex exponentials.
SINCOS rewrites this expression in function of sin(x) and cos(x).
Type:

SINCOS(EXP(i.X))

You obtain:

COS(X) + i.SIN(X)

5.7.9 TAN2SC

TAN2SC has a trigonometric expression as argument.
TAN2SC rewrites this expression replacing tan(x) with sin(x)

cos(x) .
Type:

TAN2SC(TAN(X))

You obtain:

SIN(X)
COS(X)

34

5.7.10 TAN2SC2

TAN2SC2 has a trigonometric expression as argument.
TAN2SC2 rewrites this expression replacing tan(x) with sin(2·x)

1+cos(2·x) (or with 1−cos(2·x)
sin(2·x) if you prefer

sines, that is, when flag -116 is set to Prefer sin(); see 0.4 for more details).
Type:

TAN2SC2(TAN(X))

You obtain:

SIN(2 · X)
1 + COS(2 · X)

5.7.11 HALFTAN

HALFTAN has a trigonometric expression as argument.
HALFTAN rewrites sin(x), cos(x) and tan(x) terms of the expression in function of tan(x

2).
Type:

HALFTAN(
SIN(2 · X)

1 + COS(2 · X)
)

You obtain, after simplification:

TAN(X)

Type:

HALFTAN(SIN(X)2 + COS(X)2)

You obtain (SQ(X) = X2): (
2 · TAN(X

2
)

SQ(TAN(X
2
)) + 1

)2

+
(
1− SQ(TAN(X

2
))

SQ(TAN(X
2
)) + 1

)2

You obtain, after simplification:

1

5.7.12 TRIG

TRIG has a trigonometric expression as argument.
TRIG simplifies this expression using the identity: sin(x)2 + cos(x)2 = 1.
Type:

TRIG(SIN(X)2 + COS(X)2 + 1)

You obtain:

2

35

5.7.13 TRIGSIN

TRIGSIN has a trigonometric expression as argument.
TRIGSIN simplifies this expression using the identity: sin(x)2 + cos(x)2 = 1, privileging and pre-
serving sin(x) terms.
Type:

TRIGSIN(SIN(X)4 + COS(X)2 + 1)

You obtain:

SIN(X)4 − SIN(X)2 + 2

5.7.14 TRIGCOS

TRIGCOS has a trigonometric expression as argument.
TRIGCOS simplifies this expression using the identity: sin(x)2 + cos(x)2 = 1, privileging and pre-
serving cos(x) terms.
Type:

TRIGCOS(SIN(X)4 + COS(X)2 + 1)

You obtain:

COS(X)4 − COS(X)2 + 2

5.7.15 TRIGTAN

TRIGTAN has a trigonometric expression as argument.
TRIGTAN simplifies this expression using the identity: sin(x)2 + cos(x)2 = 1, privileging and pre-
serving tan(x) terms.
Type:

TRIGTAN(SIN(X)4 + COS(X)2 + 1)

You obtain:

2 · TAN(X)4 + 3 · TAN(X)2 + 2

TAN(X)4 + 2 · TAN(X)2 + 1

5.7.16 FOURIER

FOURIER has two arguments: an expression f(x) and an integer n.
FOURIER returns the Fourier coefficient cn of f(x). f(x) is assumed to be a periodic function
defined on the interval [0, T], with period T . (T is the current value of the PERIOD variable).
If f is piecewise continuous:

f(x) =
+∞∑

n=−∞
cne

2inxπ
T

Example: Find the Fourier coefficients of the function f ; the period of f is 2.π, and f is defined
on [0 2.π[as f(x) = x2.
Type:

2 · π STO . PERIOD

36

FOURIER(X2, N)

You obtain after simplification:
2 · i · N · π + 2

N2

So, if n 6= 0:

cn =
2 · i ·N · π + 2

N2

Then, type:
FOURIER(X2, 0)

You obtain:
4 · π2

3

So, if n = 0:

c0 =
4 · π2

3

5.8 Exponentials and Logarithms

5.8.1 EXPLN

EXPLN has a trigonometric expression as argument.
EXPLN rewrites the trigonometric expression in terms of exponentials and logarithms without
linearization.
EXPLN demands to put the calculator in complex mode.
Type:

EXPLN(SIN(X))

You obtain:

EXP(i · X)− 1
EXP(i·X)

2 · i

5.8.2 LIN

LIN has an expression containing exponentials and trigonometric functions as argument.
LIN linearizes the expression (that is, it rewrites the expression in terms of exp(n · x)).
LIN demands to put the calculator in complex mode when the input expression contains trigono-
metric functions.

Example 1 :
Type:

LIN((SIN(X))

You obtain:

−(
i

2
· EXP(i · X)) +

i

2
· EXP(−(i · X))

37

Example 2 :
Type:

LIN((COS(X)2)

You obtain:

−(
1

4
· EXP(2 · i · X)) +

1

2
+

1

4
· EXP(−(2 · i · X))

Example 3 :
Type:

LIN((EXP(X) + 1)3)

You obtain:

3 · EXP(X) + 1 + 3 · EXP(2 · X) + EXP(3 · X)

5.8.3 LNCOLLECT

LNCOLLECT has an expression containing logarithms as argument.
LNCOLLECT collects the logarithmic terms. Therefore, it is better to use it on a factorized expres-
sion (using FACTOR beforehand).
Type:

LNCOLLECT(LN(X + 1) + LN(X− 1))

You obtain:

LN((X + 1)(X− 1))

5.8.4 TSIMP

TSIMP has an expression as argument; it simplifies the expression rewriting it in function of
complex exponentials (enabling complex mode in the process), and then reducing the number of
variables as returned by LVAR (see section 4.20.2).
Use TSIMP only as a last resort.
Type:

TSIMP(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X)
)

You obtain after simplification (that is, after copying the result 2 times):

EXP(i · X)4 + 1

EXP(i · X)2

5.9 Polynomials

5.9.1 GCD

GCD returns the gcd (greatest common divisor) of two polynomials (or of two lists of polynomials
with the same length).
Type:

GCD(X2 + 2 · X + 1, X2 − 1)

38

You obtain:
X + 1

Type:
GCD({X2 + 2 · X + 1, X3 − 1}, {X2 − 1, X2 + X− 2})

You obtain:
{X + 1, X− 1}

5.9.2 LGCD

LGCD denotes the gcd (greatest common divisor) of a list of polynomials.
LGCD returns a list containing the given list of polynomials and the GCD of all polynomials of the
list.
Type:

LGCD({X2 + 2 · X + 1, X3 + 1, X2 − 1, X2 + X})

You obtain:
{{X2 + 2 · X + 1, X3 + 1, X2 − 1, X2 + X} , X + 1}

5.9.3 SIMP2

SIMP2 has two polynomials (or two lists of polynomials with the same length) as arguments.
These two polynomials are considered as representing a rational fraction. SIMP2 returns the
simplified rational fraction, represented as a list of two polynomials.
Type:

SIMP2(X3 − 1, X2 − 1)

You obtain:
{X2 + X + 1, X + 1}

5.9.4 LCM

LCM returns the lcm (least common multiple) of two polynomials (or of two lists of polynomials
with the same length).
Type:

LCM(X2 + 2 · X + 1, X2 − 1)

You obtain:
(X2 + 2 · X + 1) · (X− 1)

5.9.5 FACTOR

FACTOR has either a polynomal or a list of polynomials as argument.
FACTOR factors its input.
Type:

FACTOR(X2 + 2 · X + 1)

You obtain:
(X + 1)2

Type:
FACTOR(X4 − 2.X2 + 1)

39

You obtain:
(X− 1)2.(X + 1)2

Type:
FACTOR({X3 − 2.X2 + 1, X2 − X})

You obtain:

{ (X− 1) · (2 · X +−1 +
√
5) · (2 · X− (1 +

√
5))

4
, X · (X− 1)}

5.9.6 FACTORS

FACTORS has either a polynomial or a list of polynomials as argument.
FACTORS returns a list containing the factors of the polynomial and their exponents.
Type:

FACTORS(X2 + 2 · X + 1)

you obtain:
{X + 1, 2.}

Type:
FACTORS(X4 − 2 · X2 + 1)

You obtain:
{X− 1, 2. , X + 1, 2.}

Type:
FACTORS({X3 − 2 · X2 + 1, X2 − X})

You obtain:
{{X− 1, 1. , 2 · X +−1 +

√
5, 1. , 2 · X− (1 +

√
5), 1. , 4,−1.},

{X, 1. , X− 1, 1.}}

5.9.7 DIVIS

DIVIS has either a polynomial or a list of polynomials as argument, and returns the list of its
divisors.
Type:

DIVIS(X4 − 1)

You obtain:

{1, X2 + 1, X− 1, X3 − X2 + X− 1, X + 1, X3 + X2 + X + 1, X2 − 1, X4 − 1}

5.9.8 QUOT

QUOT returns the quotient of the division between two polynomials.
Type:

QUOT(X2 + 2 · X + 1, X)

You obtain:
X + 2

40

5.9.9 REMAINDER

REMAINDER returns the remainder of the division between two polynomials.
Type:

REMAINDER(X3 − 1, X2 − 1)

you obtain:
X− 1

5.9.10 DIV2

Returns a list containing both the quotient and the remainder of the division between two
polynomials.
Type:

DIV2(X2 + 2 · X + 1, X)

You obtain:
{X + 2, 1}

The step-by-step mode can be of interest here, because it displays the intermediate steps of the
division process.

5.9.11 EGCD

This command applies the Bézout identity (Extended Greatest Common Divisor). EGCD(A[X], B[X])
returns {D[X], U[X], V[X]}, where D,U, V satisfy the following relation:

D[X] = U[X] ∗ A[X] + V[X] ∗ B[X]

Type:
EGCD(X2 + 2 · X + 1, X2 − 1)

You obtain:
{2 · X + 2, 1,−1}

5.9.12 ABCUV

This command applies the Bézout identity like EGCD but, now, the arguments are three polyno-
mials, A,B,C (C must be a multiple of GCD(A,B)):
ABCUV(A[X], B[X], C[X]) returns {U[X], V[X]}, where U, V satisfy the following:

C[X] = U[X] ∗ A[X] + V[X] ∗ B[X]

Type:
ABCUV(X2 + 2 · X + 1, X2 − 1, X + 1)

You obtain:
{1
2
,
−1
2
}

Type:
ABCUV(X2 + 2 · X + 1, X2 − 1, X3 + 1)

You obtain:

{X
2 − X + 1

2
,−X

2 − X + 1

2
}

41

5.9.13 HORNER

HORNER has two arguments: a polynomial P [X] and a number a; it returns a list containing Q[X]
(quotient of P [X] divided by X − a), a, and P [a].
Type:

HORNER(X4 + 2 · X3 − 3 · X2 + X− 2, 1)

You obtain:
{X3 + 3 · X2 + 1 , 1 , −1}

5.9.14 PTAYL

Rewrites a polynomial P [X] in function of the powers of X − a.
PTAYL has two arguments: a polynomial P and a number a.
Type:

PTAYL(X2 + 2 · X + 1, 2)

you obtain the polynomial Q[X]:
X2 + 6 · X + 9

Warning, notice that:
P(X) = Q(X− 2)

5.9.15 ZEROS

ZEROS has two arguments: a polynomial P and a variable name.
ZEROS returns a list containing the zeros of P with respect to the given variable, without their
multiplicity.
Type:

ZEROS(X4 − 1, X)

You obtain:
-in real mode

{−1 , 1}

-in complex mode
{−1 , 1 , −i , i}

5.9.16 PROOT

PROOT is the numeric command of the HP48.
PROOT has a vector containing the coefficients of a monovariate polynomial (ordered by decreasing
powers of the polynomial’s variable) as argument.
PROOT returns a vector whose elements are the roots of the polynomial.
To find the roots of P [x] = x5 − 2 · x4 + x3, type:

PROOT([1,−2, 1, 0, 0, 0])

You obtain:
[0., 0., 0., 1., 1.]

The result means that 0 is a triple root, and 1 is a double root of P [x].

42

5.9.17 FROOTS

FROOTS has a rational function F [x] as argument.
FROOTS returns a vector whose components are the roots and the poles of F [x], followed by their
multiplicity.
Type:

FROOTS(
X5 − 2 · X4 + X3

X− 2
)

You obtain:
[2,−1., 0, 3., 1, 2.]

The result means that: 2 is a pole of order 1, 0 is a triple root, and 1 is a double root of
F [x] = x5−2·x4+x3

x−2 .

5.9.18 PCOEF

PCOEF is the numeric command of the HP48.
PCOEF has a vector containing the roots of a polynomial P [x] as argument.
PCOEF returns a vector whose components are the coefficients of the polynomial P [x] (ordered
by decreasing powers of the polynomial’s variable).
Type:

PCOEF([1, 2, 0, 0, 3])

You obtain:
[1.,−6., 11.,−6., 0., 0.]

This means that P [x] = (x− 1) · (x− 2) · x · x · (x− 3) is equal to:
x5 − 6 · x4 + 11 · x3 − 6 · x2.

5.9.19 FCOEF

FCOEF has as argument a vector whose components are the roots and poles of a rational function
F [x], followed by their multiplicity.
FCOEF returns the rational function F [x].
Type:

FCOEF([1, 2, 0, 3, 2,−1])

You obtain:
X5 − 2 · X4 + X3

X− 2

since (x− 1)2 · x3 = x5 − 2 · x4 + x3

5.9.20 CHINREM

CHINREM has two vectors as arguments; each vector has two polynomials as components.
CHINREM returns a vector with two polynomials as components.
CHINREM([A[X],R[X]],[B[X],Q[X]]) finds the polyonimals P[X] and S[X] satisfying the fol-
lowing relations:
S[X] = R[X] · Q[X],
P[X] = A[X](modR[X]) and P[X] = B[X](modQ[X]).
There always is a solution P[X] if R[X] and Q[X] are mutually primes, and all solutions are

43

congruent modulo S[X] = R[X] · Q[X].
Find the solutions P [X] of: {

P [X] = X (mod X2 + 1)
P [X] = X − 1 (mod X2 − 1)

Type:
CHINREM([X, X2 + 1], [X− 1, X2 − 1])

You obtain:

[−X
2 − 2 · X + 1

2
,−X

4 − 1

2
]

that is, P [X] = −X2−2·X+1
2 (mod − X4−1

2)

5.9.21 TRUNC

TRUNC truncates a polynomial to a given order.
TRUNC has two arguments: a polynomial and Xn.
TRUNC returns the polynomial truncated to order n− 1 (no terms of order ≥ Xn).
Type:

TRUNC((1 + X +
1

2
· X2)

3

, X4)

You obtain:
4 · X3 +

9

2
· X2 + 3 · X + 1

5.9.22 LAGRANGE

LAGRANGE has as argument a matrix with two rows and n columns:
the first row corresponds to the abscissa values xi, and the second row corresponds to ordinate
values yi (i = 1..n).
LAGRANGE returns the polynomial P of degree n− 1, so that P (xi) = yi.
Type:

LAGRANGE([[1, 3], [0, 1]])

You obtain:
X− 1

2

in fact x−1
2 = 0 for x = 1 and x−1

2 = 1 for x = 3

5.9.23 LEGENDRE

LEGENDRE has as argument an integer value n.
LEGENDRE returns the non trivial polynomial solution of the differential equation:

(x2 − 1) · y′′ − 2 · x · y′ − n(n + 1) · y = 0

Type:
LEGENDRE(4)

You obtain:
35 · X4 − 30 · X2 + 3

8

44

5.9.24 HERMITE

HERMITE has as argument an integer value n.
HERMITE returns the Hermite polynomial of degree n.
Type:

HERMITE(6)

You obtain:
64 · X6 − 480 · X4 + 720 · X2 − 120

5.9.25 TCHEBYCHEFF

TCHEBYCHEFF has as argument an integer value n.
If n > 0, TCHEBYCHEFF returns the polynomial Tn:

Tn[x] = cos(n · arccos(x))

If n < 0 TCHEBYCHEFF returns the the polynomial Tn:

Tn[x] =
sin(n · arccos(x))
sin(arccos(x))

Type:
TCHEBYCHEFF(4)

You obtain:
8 · X4 − 8 · X2 + 1

in fact:
cos(4 · x) = Re((cos(x) + i · sin(x))4)
cos(4 · x) = cos(x)4 − 6 · cos(x)2 · (1− cos(x)2) + ((1− cos(x)2)2.
cos(4 · x) = T4(cos(x)).
Type:

TCHEBYCHEFF(−4)

You obtain:
8 · X3 − 4 · X

in fact:
sin(4 · x) = sin(x) · (8 · cos(x)3 − 4 · cos(x)).

5.9.26 REORDER

REORDER has two arguments: an expression and a vector containing an ordered list of variables.
REORDER reorders the input expression following the order of variables given by its second argu-
ment.
Type:

REORDER(X2 + 2 · X · A + A2 + Z2 − X · Z, [A, X, Z])

You obtain:
A2 + 2 · X · A + X2 − Z · X + Z2

45

5.10 Rational fractions

5.10.1 FXND

FXND has a rational fraction as argument, and returns a list containing the simplified numerator
and denominator of this fraction.
Type:

FXND(
X2 − 1

X− 1
)

You obtain:
{X + 1, 1}

5.10.2 SIMP2

SIMP2 has two polynomials (or two lists of polynomials with the same length) as arguments.
These two polynomials are considered as representing a rational fraction.
SIMP2 simplifies the rational fraction and returns the result as a list of two polynomials.
Type:

SIMP2(X3 − 1, X2 − 1)

You obtain:
{X2 + X + 1, X + 1}

5.10.3 PROPFRAC

PROPFRAC has a rational fraction as argument.
PROPFRAC rewrites the rational fraction to put its integer part in evidence and returns the result.
In other words, PROPFRAC(A(X)/B(X)) rewrites the rational fraction A[X]

B[X] as:

Q[X] +
R[X]
B[X]

where R[X] = 0 or 0 ≤ deg(R[X]) < deg(B[X]).
Type:

PROPFRAC(
(5 · X + 3) · (X− 1)

X + 2
)

You obtain:
5 · X− 12 +

21

X + 2

5.10.4 PARTFRAC

To decompose into partial fractions a rational fraction like

x5 − 2× x3 + 1
x4 − 2× x3 + 2× x2 − 2× x + 1

you can use the PARTFRAC command.
You can find this command in the ARITH (blue-shift 1) menu, sub-menu 2.POLYNOMIAL...,
position 14 (or you can type it in α mode).
Type:

PARTFRAC(
X5 − 2 ∗ X3 + 1

X4 − 2 ∗ X3 + 2 ∗ X2 − 2 ∗ X + 1
)

46

In real mode, you obtain:

X + 2 +
−1
2

X− 1
+

X−3
2

X2 + 1

In complex mode, you obtain instead:

X + 2 +
1−3.i

4

X + i
+

−1
2

X− 1
+

1+3.i
4

X− i

5.11 Modular calculations

You can do calculations “modulo p”, that is, in either Z/pZ or Z/pZ[X].
Warning: for some commands, p must be a prime number.
The calculator uses the symmetrical representation of elements (-1 instead of 6 modulo 7).
The value of p must be stored into the MODULO variable in the HOME directory.
All the following examples assume that p=13.

5.11.1 MODSTO

To store into MODULO the value of p (for example p=13) you can use either:
MODE cas MODULO ..., or 13 STO . MODULO (if the current directory is HOME), or MODSTO(13).
MODSTO allows you to change the value of the MODULO variable in the HOME directory.
For example, you will type: MODSTO(5) or 5 STO . MODULO to do your calculations modulo 5.
All the following examples assume that p=13.

5.11.2 ADDTMOD

ADDTMOD performs an addition in Z/pZ[X].
Type:

ADDTMOD(11X + 5, 8X + 6)

You obtain:
6X− 2

5.11.3 SUBTMOD

SUBTMOD peforms a subtraction in Z/pZ[X].
Type:

SUBTMOD(11X + 5, 8X + 6)

You obtain:
3X− 1

5.11.4 MULTMOD

MULTMOD performs a multiplication in Z/pZ[X].
Type:

MULTMOD(11X + 5, 8X + 6)

You obtain:
−(3X2 − 2X− 4)

47

5.11.5 DIV2MOD

The arguments of DIV2MOD are two polynomials A[X] and B[X]. The result is a list containing
both the quotient and the remainder of the euclidean division of A[X] by B[X] in Z/pZ[X].
Type:

DI2VMOD(X3 + X2 + 1, 2X2 + 4)

Since:
X3 + X2 + 1 = (2X2 + 4) · (X + 1

2
) +

5X − 4
4

you obtain:

{X + 1

2
,
5X− 4

4
}

Then, with

EXPANDMOD({X + 1

2
,
5X− 4

4
})

you obtain:
{−(6X + 6) , −(2X + 1)}

5.11.6 DIVMOD

The arguments of DIVMOD are two polynomials A[X] and B[X]. The result is the rational fraction
A[X]
B[X] simplified in Z/pZ[X].
Type:

DIVMOD(2X2 + 5, 5X2 + 2X− 3)

You obtain:
5X + 3

6X + 6

5.11.7 POWMOD

POWMOD(X,N) returns X raised to N in Z/pZ[X].
The current value p of MODULO must be a prime number less than 100.
Type:

POWMOD(2X + 1, 5)

You obtain:
6 · X5 + 2 · X4 + 2 · X3 + X2 − 3 · X + 1

because:
10 = −3 (mod 13) 40 = 1 (mod 13) 80 = 2 (mod 13 =) 32 = 6 (mod 13).

5.11.8 INVMOD

INVMOD has an integer as argument.
INVMOD returns the reciprocal of this integer in Z/pZ.
Type:

INVMOD(5)

You obtain (since 5×−5 = −25 = 1 (mod 13)) :

−5

48

5.11.9 GCDMOD

GCDMOD has two polynomials as arguments.
GCDMOD returns the GCD of the polynomials in Z/pZ[X].
Type:

GCDMOD(2X2 + 5, 5X2 + 2X− 3)

You obtain:
−(4X− 5)

5.11.10 EXPANDMOD

EXPANDMOD has a polynomial expression as argument.
EXPANDMOD expands this expression in Z/pZ[X].
Type:

EXPANDMOD((2X2 + 12).(5X− 4))

You obtain:
−(3X3 − 5X2 + 5X− 4)

5.11.11 FACTORMOD

FACTORMOD has a polynomial as argument.
FACTORMOD factorizes the polynomial in Z/pZ[X] if p ≤ 97 and p is prime.
Type:

FACTORMOD(−(3X3 − 5X2 + 5X− 4))

You obtain:
−((3X− 5)(X2 + 6))

5.11.12 RREFMOD

RREFMOD solves a system of linear equations AX = B in Z/pZ.
The argument is the matrix A augmented with the vector B as its rightmost column. The result
is a matrix composed of A1 and B1, where A1 has zeros both above and under its principal
diagonal, and the system A1X = B1 is equivalent to AX = B.
Type:

RREFMOD([[1, 2, 9][3, 10, 0]])

to solve {
x + 2 · y = 9

3 · x + 10 · y = 0

You obtain: [
2 0 6
0 4 −1

]
that is, 2.X = 6 and 4.Y = −1 or, which is the same, X = 3 Y = 3 (since −4 ∗ 3 = 1 (mod13)).

49

5.12 Limited and asymptotic expansions

5.12.1 DIVPC

DIVPC has three arguments: two polynomials A(X), B(X) (with B(0) 6= 0) and an integer n.
DIVPC returns the quotient Q(X) of the division of A(X) by B(X), with deg(Q) ≤ n or Q = 0.
That is, Q[X] is the series expansion, limited to order n, of A[X]

B[X] about X = 0.
Type:

DIVPC(1 + X2 + X3, 1 + X2, 5)

You obtain:
1 + X3 − X5

Warning: the calculator demands to enable the“increasing powers”mode; answer yes to proceed.

5.12.2 TAYLOR0

TAYLOR0 has only one argument: a function of x to be expanded, and returns its Taylor expansion,
limited to relative order 4, about x = 0 (where x is the current CAS variable).
Type:

TAYLOR0(
TAN(P · X)− SIN(P · X)
TAN(Q · X)− SIN(Q · X)

)

You obtain:
P5 − Q2 · P3

4 · Q3
· X2 +

P3

Q3

Warning: “relative order 4” means to expand up to relative order 4 both numerator and denom-
inator (here, absolute order 5 for both numerator and denominator); this gives an expansion of
order 2 (5-3), because X3 can be factored out in both the expanded numerator and denominator.

5.12.3 TAYLR

Determine a limited Taylor expansion of order 2 near x = 0 of:

3× tan(x)− tan(3× x)
x× (1− cos(3× x))

Since the denominator has order 3, to obtain a limited expansion of order 2 about x = 0,
it is necessary to expand the numerator near x = 0 up to order 5. To do this, use the TAYLR
command; you can find it in the CALC (blue-shift 4) menu, sub-menu 2. LIMITS & SER...
at position 5 (or you can type it in α mode).
TAYLR is compatible with the HP48.
Type:

TAYLR(
3 · TAN(X)− TAN(3 · X)
X · (1− COS(3 · X))

, X, 5)

You obtain:
−16

9
· (1 +

19

4
· X2)

50

5.12.4 SERIES

• expansion about x=a
Example:
Determine a series expansion limited to order 4 about x = π

6 of cos(2× x)2.

You use the SERIES command; you can find it in the CALC (blue-shift 4) menu, position
8 (or you can type it in α mode).

Type:
SERIES(COS(2 · X)2, X =

π

6
, 4)

You obtain:
{{Limit :

1

4
Equiv :

1

4

Expans : (−8
3
h4 +

8
√
3

3
h3 + 2h2 −

√
=3h +

1

4
)

Remain :
h5

4
} h = X− π

6
}

• expansion about x=+∞ or x=-∞
Example 1:
Determine an expansion of arctan(x), of order 5, about x=+∞, assuming h = 1

x .
Type:

SERIES(ATAN(X), X = +∞, 5)

You obtain:
{{Limit :

π

2
Equiv :

π

2

Expans : (
π

2
− h +

h3

3
− h5

5
) Remain :

πh6

2
} h =

1

X
}

Example 2 :
Determine an expansion of (2x− 1)e

1
x−1 , of order 2, about x=+∞, assuming h = 1

x .
Type:

SERIES((2X− 1) · EXP(1

X− 1
), X = +∞, 3)

You obtain:
{{Limit : +∞ Equiv :

2

h

Expans : (
2 + h + 2h2 + 17h3

6

h
) Remain : 2h3} h =

1

X
}

Example 3 :
Determine en expansion of (2x− 1)e

1
x−1), of order 2, about x=-∞, assuming h = − 1

x .
Type:

SERIES((2X− 1) · EXP(1

X− 1
), X = −∞, 3)

You obtain:
{{Limit : −∞ Equiv : −2

h

Expans : (
−2 + h− 2h2 + 17h3

6

h
) Remain : −2h3} h = −1

X
}

51

• unidirectional expansions
You must give a positive real number (for example 4.) as the order to do an unidirectional
expansion about the point x = a with x > a, and a negative real number (for example -4.)
to do an unidirectional expansion about x = a with x < a .
Example 1 :

Determine an expansion of (1+X)
1
X

X3 , of order 2, about X = 0+.
Type:

SERIES(
(1 + X)

1
X

X3
, X, 2.)

You obtain:

{{Limit : +∞ Equiv :
e

h3
Expans : (−e · h− 2 · e

2 · h3
) Remain :

e

h
} h = X}

Example 2:

Determine an expansion of (1+X)
1
X

X3 , of order 2, about X = 0−.
Type:

SERIES(
(1 + X)

1
X

X3
, X,−2.)

You obtain:

{{Limit : −∞ Equiv :
e

h3
Expans : (−e · h− 2 · e

2 · h3
) Remain :

e

h
} h = X}

Example 3 :

Determine an expansion of (1+X)
1
X

X3 , of order 2, about X = 0.
Type:

SERIES(
(1 + X)

1
X

X3
, X, 2)

You obtain:

{{Limit :∞ Equiv :
e

h3
Expans : (−e · h− 2 · e

2 · h3
) Remain :

e

h
} h = X}

5.12.5 LIMIT

LIMIT has as arguments an expression depending on a variable, and an equality (the variable
equated to the value at which you want to calculate the limit of the expression).

Often, it is better to surrond the expression with quotes, to avoid a preliminary transformation
of the expression into normal form (thus, avoiding a rational simplification) before the limit
computation actually takes place.
For example, type:

LIMIT(′(2X− 1) · EXP(1

X− 1
)′, X = +∞)

You obtain:
+∞

52

5.13 Matrices

5.13.1 TRAN

TRAN has a matrix A as argument.
TRAN returns the input matrix A transposed.
Type:

TRAN(
[

1 2
3 4

]
)

You obtain: [
1 3
2 4

]
5.13.2 TRN

TRN has a matrix A as argument.
TRN returns the adjoint of A (transpose of the conjugate) of A (this is the HP48 command).
Type:

TRN(
[

i 1 + i
1 1− i

]
)

After simplification, you obtain: [
−i 1

1− i 1 + i

]
5.13.3 MAD

MAD has a square matrix A, of order n, as argument.
MAD returns a list containing the determinant of A, the inverse of A, a list containing the matrix
coefficients of a polynomial Q, and of the characteristic poloynomial P of A.
We have:

P (x) = (−1)n · det(A− x · I)

The polynomial with matrix coefficients P (A)− P (x) · I is divisible by A− x · I (since its value
is zero for x = A). Let Q(x) be their quotient.
Since P (A) = 0, we have P (A)− P (x) · I = −P (x) · I = (A− x · I) ·Q(x).
Therefore, Q(x) is also the co-matrix of A− x · I and the following holds:
Q(x) = I · xn−1 + ... + B0, where B0 is the co-matrix of A (with the sign exchanged if n is
even!).
Type:

MAD(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:

{8,

 1
8 − 1

4
3
8

1
4

1
2

1
4

− 3
8 − 1

4
7
8

 ,

{

 1 0 0
0 1 0
0 0 1

 ,

 −2 1 −2
1 −4 −1
2 1 −6

 ,

 1 −2 3
−2 4 2
−3 −2 7

},
X3 − 6 · X2 + 12 · X− 8}

53

5.13.4 HADAMARD

HADAMARD has two matrices A and B, with the same size, as arguments.
HADAMARD returns the element-by-element product between A and B.
Type:

HADAMARD(
[

1 2
3 4

]
,

[
5 6
7 8

]
)

You obtain: [
5 12
21 32

]
5.13.5 AXM

If given a symbolic matrix as argument, AXM returns an equivalent (but approximate) numeric
matrix, and vice versa.
Type:

AXM([[1/2, 2], [3, 4]])

You obtain:
[[0.5, 2], [3, 4]]

5.13.6 AXL

When AXL is given a matrix as argument, it returns the same matrix rewritten as a list of lists.
Vice versa, AXL transforms a list of lists into a matrix.
Type:

AXL([[1, 2], [3, 4]])

You obtain:
{{1, 2}{3, 4}}

Type:
AXL({{1, 2}{3, 4}})

You obtain:
[[1, 2], [3, 4]]

5.13.7 EGVL

EGVL has a matrix A, of order n, as argument.
EGVL returns a vector containing the n eigenvalues of A.
Notice: If A is a symbolic matrix, you will obtain only the eigenvalues that the CAS is able to
determine (because it is necessary to symbolically factorize the characteristic polynomial!)
Type:

EGV(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
[2, 2, 2]

54

5.13.8 EGV

EGV has a matrix A, of order n, as argument.
EGV returns a list containing the matrix of the n column eigenvectors of A and the vector of the
n eigenvalues of A (the same notice given for EGVL is valid here, too).
Type:

EGV(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:

{

 1 2 1
0 1 0
1 2 0

 , [2, 2, 2]}

5.13.9 PCAR

PCAR has a matrix A, of order n, as argument.
PCAR returns the characteristic polynomial P of A (P [x] = (−1)n · det(A− x · I)) Type:

PCAR(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
X3 − 6 · X2 + 12 · X− 8

5.13.10 JORDAN

JORDAN has a matrix A, of order n, as argument.
JORDAN returns a list composed by the minimal polynomial M of A, the characteristic polynomial
P of A, the list of the eigenvectors and characteristic vectors (each vector is preceded by its
characteristic value), and the vector of the n eigenvalues of A.
Type:

JORDAN(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:

{X3 − 6X2 + 12X− 8, X3 − 6X2 + 12X− 8,

{Char : 2 : [1, 0, 0], Char : 2 : [2, 1, 2], Eigen : 2 : [1, 0, 1]}, [2, 2, 2]}

5.13.11 HILBERT

HILBERT has an integer n as argument.
HILBERT returns the square Hilbert matrix of order n whose elements are given by:

ai,j =
1

i + j − 1

Type:
HILBERT(4)

55

You obtain: 
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


5.13.12 VANDERMONDE

VANDERMONDE has as argument a vector whose components are denoted by xi.
VANDERMONDE returns the corresponding Vandermonde matrix (the k-th row of the matrix is the
vector whose components are xk−1

i).
Type:

VANDERMONDE([A, B, C])

You obtain:  1 1 1
A B C
A2 B2 C2


5.13.13 LCXM

LCXM has as arguments two integers, n and p, and a program accepting as arguments i (a row
number) and j (a column number) and yielding the value of ai,j .
LCXM returns a n · p matrix having coefficients ai,j . Type:

LCXM(2, 3,�→ I J � I + J� �)

You obtain: [
2 3 4
3 4 5

]

5.14 Vectors

In the blue-shift SYMB (MTH) menu, you can find the functions to compute:
-the absolute value of a vector: ABS
-the dot product of two vectors: DOT
-the cross product of two vectors: CROSS

5.15 Quadratic forms

5.15.1 QXA

QXA has two arguments: a quadratic form q and a vector whose components are the form’s
variables.
QXA returns a list of two elements: the matrix A associated with q and the vector denoting the
variables of the quadratic form.
Type:

QXA(2 · X · Y , [X, Y])

You obtain:

{
[

0 1
1 0

]
, [X, Y]}

56

5.15.2 AXQ

AXQ has two arguments: a symmetric matrix A representing a quadratic form q and a vector
whose components are the quadratic form’s variables.
AXQ returns a list of two elements: the quadratic form q and the vector denoting the form’s
variables.
Type:

AXQ([[0, 1], [1, 0]] , [X, Y])

You obtain:
{2 · X · Y , [X, Y]}

5.15.3 GAUSS

GAUSS has two arguments: a quadratic form q and a vector whose components are the quadratic
form’s variables.
GAUSS returns a list of 4 elements: the diagonal elements of a diagonal matrix B (obtained
expressing q as a sum of squares), the matrix of change of base Q, q expressed as a sum of
squares, and the vector denoting the form’s variables.
We have (if we denote as A the matrix associated with q) :

tQ ·B ·Q = A

Type:
GAUSS(2 · X · Y , [X, Y])

You obtain:

{[1
2
,−2] ,

[
1 1
− 1

2
1
2

]
, −2.(Y− X

2
)2 +

1

2
.(Y + X)2 , [X, Y]}

5.15.4 SYLVESTER

SYLVESTER has one argument: a symmetric matrix representing a quadratic form q.
SYLVESTER returns a list of two elements: the diagonal elements of the diagonal matrix B (ob-
tained expressing q as a sum of squares) and the matrix of change of base Q.
We have:

tQ ·B ·Q = A

Type:
SYLVESTER([[0, 1], [1, 0]])

You obtain:

{[1
2
,−2] ,

[
1 1
− 1

2
1
2

]
}

5.16 Functions of multiple variables

5.16.1 DERIV

DERIV has two arguments: an application F from Rn in R and a vector of Rn denoting the
variable names.
DERIV returns the gradient of F ([∂F

∂X , ∂F
∂Y , ∂F

∂Z] if n = 3).
Type:

DERIV(2 · X2 · Y− X · Z3, [X, Y, Z])

57

After simplification, you obtain:

[4 · Y · X− Z3, 2 · X2,−(3 · Z2 · X)]

5.16.2 LAPL

LAPL has two arguments: an application F from Rn in R and a vector of Rn denoting the variable
names.
LAPL returns the laplacian of F (∂2F

∂X2 + ∂2F
∂Y 2 + ∂2F

∂Z2 if n = 3).
Type:

LAPL(2.X2.Y− X.Z3 , [X, Y, Z])

You obtain:
4.Y− 6.X.Z

5.16.3 HESS

HESS has two arguments: an applications F from Rn in R and a vector of Rn denoting the
variable names.
HESS returns a list containing the hessian of F , the gradient of F and the vector of the variable
names.
Type:

HESS(2.X2.Y− X.Z , [X, Y, Z])

You obtain:

{

 4.Y 4.X −1
4.X 0 0
−1 0 0

 , [4.X.Y− Z, 2.X2,−X] , [X, Y, Z]}

Now, to obtain the critical points of F , in RPN mode you can type:

SOLVE

directly, because on the stack you have: [4.X.Y− Z, 2.X2,−X] and [X, Y, Z]
In ALGEBRAIC mode, you must enter instead:

SOLVE([4.X.Y− Z, 2.X2,−X] , [X, Y, Z])

5.16.4 DIV

DIV has two arguments: a vectorial function F (application from Rn in Rn) and a vector of Rn

denoting the variable names.
DIV returns the divergence of F .

DIV([A, B, C], [X, Y, Z]) =
∂A

∂X
+

∂B

∂Y
+

∂C

∂Z
(here n = 3)

Type:
DIV([X · Z,−Y2, 2 · XY], [X, Y, Z])

You obtain:
Z− 2 · Y

58

5.16.5 CURL

Here n = 3.
CURL has two arguments: a vectorial function F (application from R3 in R3) and a vector of R3

denoting the variable names.
CURL returns the rotor of F .

CURL([A, B, C], [X, Y, Z]) = [
∂C

∂Y
− ∂B

∂Z
,
∂A

∂Z
− ∂C

∂X
,
∂B

∂X
− ∂A

∂Y
]

Type:
CURL([X.Z,−Y2, 2.XY], [X, Y, Z])

You obtain:
[2.X2, X− 2.Y.2X, 0]

5.17 Equations

5.17.1 EXLR

EXLR has an equation as argument.
EXLR returns a list containing the left and right hand sides of the equation.
Type:

EXLR(A = B)

You obtain:

{A, B}

5.17.2 SOLVEVX

SOLVEVX has as argument either an equation between two expression of the variable stored in VX,
or an expression (=0 is assumed then).
SOLVEVX solves the equation.
Example 1:
Type:

SOLVEVX(X4 − 1 = 3)

In real mode, you obtain:

{X = −
√
2, X =

√
2}

In complex mode, you obtain:

{X = −
√
2, X =

√
2, X = −(i ·

√
2), X = i ·

√
2}

Example 2:
Type:

SOLVEVX((X− 2).SIN(X))

In real mode, you obtain:

{X = −(2 · π · n1), X = 2 · π · n1, X = 2}

59

5.17.3 SOLVE

SOLVE has as argument either an equation between two expressions or an expression (=0 is as-
sumed then), and the name of a variable.
SOLVE can also solve a system of equations: to do this, put the equations into a vector and the
variable names into another vector.
SOLVE solves either the equation or the system of equations.
Example 1:
Type:

SOLVE(X4 − 1 = 3, X)

In real mode, you obtain:

{X = −
√
2, X =

√
2}

In complex mode, you obtain:

{X = −
√
2, X =

√
2, X = −(i ·

√
2), X = i ·

√
2}

Example 2:
Type:

SOLVE([X + Y = 1, X− Y], [X, Y])

You obtain:

{[X =
1

2
, Y =

1

2
]}

5.17.4 ISOL

ISOL isolates a variable in an expression or equation (the variable must appear only once). This
command is the same as the HP48 one.
ISOL has two arguments: either an expression or an equation, and the name of the variable to
isolate.
Type:

ISOL(X4 − 1 = 3, X)

In real mode, you obtain:

{X = −
√
2, X =

√
2}

In complex mode, you obtain:

{X = −
√
2, X =

√
2, X = −(i ·

√
2), X = i ·

√
2}

Warning: if flag 01 (Principal value) is set, ISOL always returns only one solution.

5.18 Linear systems

In this paragraph, we call “augmented matrix” of the system A ·X = B (or matrix “representing”
the system A · X = B), the matrix obtained augmenting the matrix A to the right with the
column vector B.

60

5.18.1 REF

REF solves a linear system of equations written in matrix form:

A · X = B

The REF command is in the MATRICES (blue-shift 5) menu, 5 LINEAR SYST... sub-menu.
The argument of REF is the augmented matrix of the system (the matrix obtained augmenting
matrix A to the right with the column vector B).
The result is a matrix [A1,B1] : A1 has zeros under its principal diagonal, and the solutions of:

A1 · X = B1

are the same as:
A · X = B

For example, to solve the system: {
3 · x + y = −2
3 · x + 2 · y = 2

Type (using blue-shift EQW (MTRW) to enter the matrix):

REF([[3, 1,−2][3, 2, 2]])

You obtain: [
1 1

3
−2
3

0 1 4

]
5.18.2 rref

rref solves a linear system of equations written in matrix form:

A · X = B

The rref command is in the MATRICES (blue-shift 5) menu, 5 LINEAR SYST... sub-menu.
The argument of rref is the augmented matrix of the system (the matrix obtained augmenting
matrix A to the right with the column vector B).
The result is a list containing the list of pivot elements used by the command and a matrix
[A1,B1] : A1 has zeros both above and under its principal diagonal, and the solutions of:

A1 · X = B1

are the same as:
A · X = B

It is interesting to use rref in step-by-step mode, setting the Step/Step (MODE cas chk) flag.
For example, to solve the system: {

3 · x + y = −2
3 · x + 2 · y = 2

Type (using blue-shift EQW (MTRW) to enter the matrix) :

rref([[3, 1,−2][3, 2, 2]])

You obtain: {
Pivots : {1 1.}

[
3 0 −6
0 1 4

]}

61

5.18.3 RREF

RREF is the same as rref, but it does not return the pivots.
RREF is the HP48 command; this is its result in step-by-step mode, on the HP49, to solve the
system: {

3 · x + y = −2
3 · x + 2 · y = 2

Type (using blue-shift EQW (MTRW) to enter the matrix):

RREF([[3, 1,−2][3, 2, 2]])

You obtain:

L2 = L2 − L1[
3 1 −2
3 2 2

]
after ok:

L1 = L1 − L2[
3 1 −2
0 1 4

]
after ok:

Reduction result:[
3 0 −6
0 1 4

]
after ok the result (with all 1 on the diagonal of A1) is stored in the history:[

1 0 −2
0 1 4

]
5.18.4 LINSOLVE

LINSOLVE solves a linear system of equations.
The LINSOLVE command is in the MATRICES (blue-shift 5), 5.LINEAR SYST... sub-menu,
position 1.
Type:

LINSOLVE()

Then, enter MATRIXWRITER by pressing blue-shift EQW (MTRW) (with the cursor positioned
between the two parentheses of LINSOLVE).

Set the vect menu option (if it isn’t already set), and enter the equations (possibly with the
help of EQW).

2 · X + Y + Z = 1 ENTER

X + Y + 2 · Z = 1 ENTER

X + 2 · Y + Z = 4 ENTER

62

ENTER
Then, enter the unknown variables:

[X Y Z]

and ENTER

If step-by-step mode is enabled (MODE cas Step/Step), you obtain:
L2=2L2-L1 2 1 1 −1

1 1 2 −1
1 2 1 −4


after ok:
L3=2L3-L1 2 1 1 −1

0 1 3 −1
1 2 1 −4


an so on... Last, you obtain: Result 8 0 0 4

0 8 0 −20
0 0 8 −4


after ok,

{X = −1
2
Y =

5

2
Z = −1

2
}

is stored into the history.

5.19 Differential equations

5.19.1 LDEC

LDEC directly solves linear differential equations; in order to do this, LAP and ILAP (see 4.19.3)
are used internally.

For second order linear equations, the arguments are the second member of the equation and
the characteristic equation.

For first order systems of linear equations, the arguments are the second member of the equa-
tion (a vector) and the matrix of the system.
Example 1:

Solve:

y′′ − 6 · y′+ 9 · y = x · e3·x

Type:
LDEC(X · EXP(3 · X), X2 − 6 · X + 9)

You obtain:

(
X3

6
− (3 · C0− C1) · X + C0) · EXP(3 · X)

C0 and C1 are arbitrary integration constants (y(0) = C0, y′(0) = C1).
Example 2:

63

Solve:

Z ′ =
[

0 1
−9 6

]
.Z +

[
0

X.EXP (3.X)

]
This is the same example as before, with Z = [y, y′].
Type:

LDEC([0, X · EXP(3 · X)], [[0, 1][−9, 6]])
You obtain:

[(
X3

6
− (3 · V1− V2) · X + V1) · EXP(3 · X),

(
X3

2
+

X2

2
− (9 · V1− 3 · V2) · X + V2) · EXP(3 · X)]

V1 and V2 are arbitrary integration constants (Z(0) = [V1, V2]).

5.19.2 DESOLVE and SUBST

The DESOLVE command is in the S.SLV (blue-shift 7) menu, at position 1, or in the CALC
(blue-shift 4) menu, DIFFERENTIAL EQNS... sub-menu.
DESOLVE solves other types of differential equations.
Its arguments are: the differential equation (here y′ is written as d1Y(X) and y is written as
Y(X)).
Example 1 :
Solve:

y′′ + y = cos(x) y(0) = c0 y′(0) = c1

Type:
DESOLVE(d1d1Y(X) + Y(X) = COS(X), Y(X))

You obtain:
Y(X) = C0 · COS(X) +

X + 2 · C1
2

· SIN(X)

Now, you can assign a value to the integration constants, using the SUBST command; you can
find it in the ALG (red-shift 4) menu, at position 6. If you want the solutions that satisfy
y(0) = 1, you type:

SUBST(Y(X) = C0 · COS(X) +
X + 2 · C1

2
· SIN(X), C0 = 1)

You obtain:

Y(X) =
2 · COS(X) + (X + 2 · C1) · SIN(X)

2
Example 2 :

Solve:
y′′ + y = cos(x) y(0) = 1 y′(0) = c1

To have the solutions satisfying y(0) = 1 you can also directly type:

DESOLVE([d1d1Y(X) + Y(X) = COS(X), Y(0) = 1], Y(X))

In this case, you obtain:

Y(X) = COS(X) +
X + 2 · C1

2
· SIN(X)

64

5.19.3 LAP ILAP

You can find these commands in the CALC (blue-shift 4) menu, 3.DIFFERENTIAL... sub-
menu, at positions 2 and 3. Laplace tranform (LAP) and inverse Laplace transform (ILAP) are
useful to solve linear differential equations with constant coefficients, for example:

y′′+ p.y′+ q.y = f(x) y(0) = a y′(0) = b

The following relations hold:

LAP(Y)(P) =
∫ +∞

0

e−P.XY(X)dX

ILAP(F)(T) =
1

2.i.π

∫
C

eZ.TdZ

where C is a closed contour enclosing the poles of F
The following property is used:

LAP(Y′)(P) = −Y(0) + P · LAP(Y)(P)

The solution is then:

ILAP(
LAP(F(X)) + (X + P) · A + B

X2 + P · X + Q
)

Example:
Solve:

y′′ − 6 · y′+ 9 · y = x · e3·x

y(0) = a

y′(0) = b

Type:
LAP(X · EXP(3 · X)) ENTER

You obtain:
1

X2 − 6 · X + 9
Type:

ILAP(
ANS(1) + (X− 6) · A + B

X2 − 6 · X + 9
)

You obtain the solution y :

(
X3

6
− (3 · A− B) · X + A) · EXP(3 · X)

5.20 Other functions

5.20.1 EPSX0

EPSX0 has as argument an expression; in the expression, it replaces all numeric values whose
magnitude is smaller than EPS with zero and returns the result.
Type:

EPSX0(0.001 + X)

You obtain (when EPS=0.01) :
0 + X

You obtain (when EPS=0.0001) :
.001 + X

65

5.20.2 LVAR

LVAR has an expression as argument, and returns a list containing the expression and a vector
whose components are the independent variables of the expression.
Type:

LVAR(X.Y.SIN(X))

You obtain:
{X.Y.SIN(X), [SIN(X), X, Y]}

5.20.3 LNAME

LNAME has an expression as argument, and returns a vector whose components are the symbolic
variable names the expression contains.
Type:

LNAME(X.Y.SIN(X))

You obtain:
[X, Y]

5.20.4 XNUM

XNUM has either an expression or an array as argument.
XNUM enables approximate mode and returns the numeric approximation of its argument.
Type:

XNUM(
√
2)

You obtain:
1.41421356237

5.20.5 XQ

XQ has a real numeric expression as argument.
XQ enables exact mode and returns either a rational or a real approximation of the expression.
Type:

XQ(1.41422)

You obtain:
66441

46981

Type:
XQ(1.414213562)

You obtain: √
2

5.21 New commands

5.21.1 qr

qr has a square matrix as argument.
qr factors the matrix as Q*R, where Q is an orthogonal matrix and R is a triangular matrix.
For example, enter:

qr(
[

3 5
4 5

]
)

66

You obtain:

{
[

3
5

4
5

4
5 − 3

5

]
,

[
5 7
0 1

]
}

5.21.2 GRAMSCHMIDT

GRAMSCHMIDT has two arguments: a vector representing a base of a vectorial space and the
definition of a scalar product in that space, expressed as a function.
GRAMSCHMIDT returns an orthonormal base of the vectorial space with respect to the given scalar
product.
Example:
In the vectorial space of polynomials of degree less than 2, we consider the scalar product defined
by:

P ·Q =
∫ 1

−1

P (x) ·Q(x)dx

We first express the scalar product as a function named PS :
�→ P Q� PREVAL(INTVX(P ∗ Q),−1, 1)� � STO . PS
Next, we type:

GRAMSCHMIDT([1, 1 + X], RCL(′PS′))

We obtain:

[
1√
2
,

√
6 · X
2

]

5.21.3 SYST2MAT

SYST2MAT has two arguments: a vector containing a system of linear equations, and a vector
whose elements are the system’s variables.
SYST2MAT rewrites the system in matrix notation, and returns the matrix.
For example, type:

SYST2MAT([X + Y, X− Y = 2], [X, Y])

You obtain: [
1 1 0
1 −1 −2

]
Warning: you must purge the system’s variables (X and Y in this example) beforehand.

5.21.4 CHOLESKY

CHOLESKY has as argument a square matrix M, positive by definition.
CHOLESKY returns an upper triangular matrix P so that:
tP ∗ P = M
For example, type:

CHOLESKY(
[

1 1
1 5

]
)

You obtain: [
1 1
0 2

]

67

5.21.5 DIAGMAP

DIAGMAP has two arguments: a diagonalizable matrix and a function defining an holomorphic
operator.
DIAGMAP applies the operator to the matrix, and returns the result.
Warning! The matrix must be diagonalizable.
For example, we define the function PH as follows :
�→ M� EXP(M)� � STO . PH
Next, we type:

DIAGMAP(
[

1 1
0 2

]
,�→ M� EXP(M)��)

or :

DIAGMAP(
[

1 1
0 2

]
, RCL(′PH′))

We obtain: [
EXP(1) −EXP(1) + EXP(2)

0 EXP(2)

]
5.21.6 ISOM

ISOM has as argument a matrix representing a two or three-dimensional linear isometry.
ISOM returns the list of the isometry’s characteristics elements and either +1 (for direct isometries)
or -1 (for indirect isometries).
For example, type:

ISOM(

 0 0 1
0 1 0
1 0 0

)

You obtain:
{[1 0 − 1] − 1}

This result means that the isometry is a simmetry with respect to the plane x − z = 0.
If you type:

ISOM(
√
2

2

[
1 −1
1 1

]
)

You obtain:
{π
4

, 1}

therefore, this isometry is a rotation of
π

4
radians.

5.21.7 MKISOM

In a three-dimensional space, MKISOM has the list of the characteristics elements of an isometry,
and either +1 (denoting a direct isometry) or -1 (denoting an indirect isometry) as arguments,
In a two-dimensional space, MKISOM has the characteristic element of an isometry (either an angle
or a vector) and either +1 (denoting a direct isometry) or -1 (denoting an indirect isometry) as
arguments.
MKISOM returns the matrix representing the given isometry.
For example, type:

MKISOM({[−1, 2,−1], π}, 1)

68

You obtain the matrix of a rotation with axis [−1, 2,−1] and angle π:

1

3

 −2 −2 1
−2 1 −2

1 −2 −2


For example, type:

MKISOM({π},−1)

You obtain the matrix of a symmetry with respect to the origin: −1 0 0
0 −1 0
0 0 −1


Type:

MKISOM({[1, 1, 1], π

3
},−1)

You obtain the matrix of a rotation with axis [1, 1, 1] and angle π
3 combined with a symmetry

with respect to the plane x + y + z = 0: 0 −1 0
0 0 −1
−1 0 0


Type:

MKISOM(
π

2
, 1)

You obtain the matrix of a rotation of π
2 radians in two dimensions:[

0 −1
1 0

]
Type:

MKISOM([1, 1],−1)

You obtain the matrix of a symmetry with respect to y = x in two dimensions:[
0 −1
−1 0

]
5.21.8 KER

KER has as argument a matrix representing a linear application f in terms of the standard basis.
KER returns a list of vectors; they are a basis of the kernel of f .
For example, type:

KER(

 1 1 2
2 1 3
3 1 4

)

You obtain:
{[1, 1,−1]}

69

5.21.9 IMAGE

IMAGE has as argument a matrix representing a linear application f in terms of the standard
basis.
IMAGE returns a list of vectors; they are a basis of the image of f .
For example, type:

IMAGE(

 1 1 2
2 1 3
3 1 4

)

You obtain:
{[1, 0,−1], [1, 1, 2]}

5.21.10 IBASIS

IBASIS has as arguments two lists of vectors, defining two vectorial spaces.
IBASIS returns a list containing the vectors of a basis of the intersection between these two
vectorial spaces.
For example, type:

IBASIS({[1, 2]}, {[2, 4]})

You obtain:
{[1, 2]}

5.21.11 BASIS

BASIS has as argument a list of vectors, defining a vectorial subspace of Rn.
BASIS returns a list containing the vectors of a basis of the vectorial subspace.
For example, type:

BASIS({[1, 2, 3], [1, 1, 1], [2, 3, 4]})

You obtain:
{[1, 0,−1], [0, 1, 2]}

5.21.12 AUGMENT

AUGMENT has as arguments two vectors, or two lists, or a list and an element.
AUGMENT concatenates its arguments.
For example, type:

AUGMENT({1, 2}, 3)

You obtain:
{1 2 3}

5.21.13 CYCLOTOMIC

CYCLOTOMIC has an integer n as argument.
CYCLOTOMIC returns the cyclotomic polynomial of order n. This is a polynomial having the n-th
pritmitive roots of the unity as zeros.
For example, when n = 4 the fourth roots of the unity are: {1, i,−1,−i};
among them, the primitive roots are: {i,−i}.
Therefore, the cyclotomic polynomial of order 4 is (X − i).(X + i) = X2 + 1.
Another example; if you type:

CYCLOTOMIC(20)

70

You obtain:
X8 − X6 + X4 − X2 + 1

5.21.14 STURM

STURM has a polynomial P as argument.
STURM returns a list containing the Sturm’s sequences of P and their multiplicities.
The Sturm sequence R1, R2, ... can be obtained from a square-free factor F of P as follows:
R1 is the opposite of the remainder of the euclidean division of F by F ′;
then, R2 is the opposite of the remainder of the euclidean division of F ′ by R1,
and so on, until Rk = 0.
For example, type:

STURM(X3 + 1)

You obtain:
{[1], −1., [X3 + 1, −3X2 − 1], 1.}

The first element of the list denotes that the denominator of P (that is, the element with −1
power), is 1.

5.21.15 STURMAB

STURMAB has three arguments: a polynomial P and two numbers: a and b.
STURMAB returns a list containing an element with the same sign as P (a) and the number of zeros
of P in [a, b[.
For example, type:

STURMAB(X2 · (X3 + 2),−2, 0)

You obtain:
{−6, 1}

5.21.16 P2C

Permutations are defined with the image list {P (1), P (2)...P (n)}.
For example, definining the permutation P as P = {3, 2, 1} means that:
P (1) = 3, P (2) = 2, P (3) = 1.
A cycle is denoted with a list containing the images of an element through the cycle; for example,
defining a cycle C as C = {3, 2, 1} means that:
C(3) = 2, C(2) = 1, C(1) = 3.
Accordingly, a decomposition into cycles is denoted with a list of lists.
P2C has a permutation as argument.
P2C returns its decomposition into cycles and its signature.
For example, type:

P2C({3, 4, 5, 2, 1})

You obtain:
{{{1, 3, 5}, {2, 4}},−1}

71

5.21.17 C2P

C2P has a list of cycles as argument.
C2P returns the permutation having the input list as decomposition into cycles (see also P2C).
For example, type:

C2P({{1, 3, 5}, {2, 4}})

You obtain:
{3, 4, 5, 2, 1}

5.21.18 CIRC

CIRC has two permutations as arguments.
CIRC returns the permutation obtained by composition: (1stargument ◦ 2ndargument).
For example, type:

CIRC({3, 4, 5, 2, 1}, {2, 1, 4, 3, 5})

You obtain:
{4, 3, 2, 5, 1}

5.21.19 FDISTRIB

FDISTRIB performs a full distribution of multiplication with respect to addition in a single step.
For example, type:

FDISTRIB((X + 1) · (X + 2) · (X + 3))

You obtain:
X3 + 6 · X2 + 11 · X + 6

5.21.20 DISTRIB

DISTRIB applies the distributive property of multiplication with respect to addition once.
DISTRIB, when invoked multiple times, allows you to perform a full distribution of multiplication
with respect to addition step-by-step.
For example, type:

DISTRIB((X + 1) · (X + 2) · (X + 3))

You obtain:
X · (X + 2) · (X + 3) + 1 · (X + 2) · (X + 3)

5.21.21 POWEXPAND

POWEXPAND rewrites a power as a product.
For example, type:

POWEXPAND((X + 1)3)

You obtain:
(X + 1) ∗ (X + 1) ∗ (X + 1)

You can also expand (x+1)3 step-by-step, by invoking DISTRIB many times on the result obtained
above.

72

5.21.22 SIMPLIFY

SIMPLIFY attempts to simplify the expression given as argument automatically.
Like all other automatic simplification tools, you should not demand miracles to this command.
For example, type:

SIMPLIFY(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X)
)

After simplification, you obtain:

4 · COS(X)2 − 2

5.21.23 EXP2POW

EXP2POW rewrites an expression like

exp(n× ln(x))

as a power of x.
For example, type:

EXP2POW(EXP(N ∗ LN(X)))

You obtain:
XN

Notice the difference with respect to LNCOLLECT :
We have:
LNCOLLECT(EXP(N ∗ LN(X))) = EXP(N ∗ LN(X))
LNCOLLECT(EXP(LN(X)/3)) = EXP(LN(X)/3)
But:
EXP2POW(EXP(LN(X)/3)) = X

1
3

5.21.24 MSLV

MSLV solves numerically a system of non-polynomial equations.
MSLV has three vectors as arguments: a vector containing the equations, a vector containing the
system’s variables, and a vector containing an initial guess for the solution.
MSLV returns a vector containing an approximate solution of the given system of equations.
While the command is running, the first display line shows the last estimate −→V , and the second
line shows the modulo of ∆−→V
For example, type:

MSLV([′SIN(X) + Y′,′ X + SIN(Y) = 1′], [X, Y], [0, 0])

You obtain:
[1.82384112611, −.968154636174]

5.21.25 PMINI

PMINI has a matrix A as argument.
PMINI returns another matrix, whose first “non-zero row” is the minimal polynomial of A.
For example, type:

PMINI([[1, 0], [0, 1]])

73

In step-by-step mode, you obtain:
L2=L2-L1 1 0 0 1 1

1 0 0 1 X
1 0 0 1 X2


L3=L3-L1 1 0 0 1 1

0 0 0 0 X − 1
1 0 0 1 X2


Reduction result 1 0 0 1 1

0 0 0 0 X − 1
0 0 0 0 X2 − 1


So, the minimal polynomial of A:

[
1 0
0 1

]
is:

X− 1

5.21.26 IBERNOULLI

IBERNOULLI has an integer n as argument.
IBERNOULLI returns the nty Bernoulli’s number B(n).
The following relation holds:

t

et − 1
=

+∞∑
n=0

B(n)
n!

tn

Remember that the Bernoulli’s polynomials Bk are defined as:

B0 = 1

Bk
′(x) = kBk−1(x)∫ 1

0

Bk(x)dx = 0

Bernoulli’s numbers are defined as:
B(n) = Bn(0)
For example, type:

IBERNOULLI(6)

You obtain:
1

42

5.21.27 GAMMA

Returns the value of the Γ function at the given point.
The Γ function is defined as:

Γ(x) =
∫ +∞

0

e−ttx−1dt

We have:
Γ(1) = 1

74

Γ(x + 1) = x · Γ(x)

For example, type:
GAMMA(5)

You obtain:
24

Type:

GAMMA(
1

2
)

You obtain: √
π

5.21.28 PSI

PSI has two numbers a and n as arguments.
PSI returns the value of the n-th derivative of the Digamma function at a. The Digamma function
is defined as the derivative of ln(Γ(x)).
For example, type:

PSI(3, 1)

You obtain:
−5
4

+
1

6
.π2

5.21.29 Psi

Psi has as argument a number, a.
Psi returns the value of the Digamma function at a.
The Digamma function is defined as the derivative of ln(Γ(x)), so we have: PSI(a,0)=Psi(a).
For example, type:

Psi(3)

You obtain:
.922784335098

5.21.30 RESULTANT

RESULTANT has two polynomials as arguments.
RESULTANT returns the resultant of the two polynomials. The resultant of two polynomials is the
last non-null remainder of the Euclide algorithm, and is also the determinant of their Sylvester
matrix S.
The Sylvester matrix S of two polynomials A[X] =

∑i=n
i=0 aiX

i and B[X] =
∑i=m

i=0 aiX
i is a

square matrix with m + n rows and columns; its first m rows are made from the coefficients of
A[X]: 

s11 = an s12 = an−1 · · · s1(n+1) = a0 0 · · · 0
s21 = 0 s22 = an · · · s2(n+1) = a1 s2(n+2) = a0 · · · 0

...
...

...
. . .

...
. . .

...
sm1 = 0 sm2 = 0 · · · sm(n+1) = am−1 sm(n+2) = am−2 · · · a0



75

and the following n rows are made in the same way from the coefficients of B[X]:(
s(m+1)1 = bm s(m+1)2 = bm−1 · · · s(m+1)(m+1) = b0 0 · · · 0

...
...

...
. . .

...
. . .

...

)

For example, type:
RESULTANT(X3 − p ∗ X + q, 3X2 − p)

You obtain:
−4p3 + 27q2

5.21.31 SEVAL

SEVAL has an expression as argument.
SEVAL simplifies the expression, operating on all but the top-level operator of the expression.
For example, type:

SEVAL(SIN(3 · X− X) + SIN(X + X))

You obtain:
SIN(2 · X) + SIN(2 · X)

5.21.32 SIGMA

SIGMA has two arguments: the first argument is a function f(x) of a variable x given as the
second argument. SIGMA returns the discrete antiderivative of the input function, that is, the
function G that satisfies the relation: G(x + 1)−G(x) = f(x).
For example, type:

SIGMA(X · X!, X)

You obtain:
X!

5.21.33 SIGMAVX

SIGMAVX has as argument a function f of the current variable VX.
SIGMAVX returns the discrete antiderivative of the input function, that is a function G that
satisfies the relation: G(x + 1)−G(x) = f(x).
For example, type:

SIGMAVX(X2)

You obtain:
2.X3 − 3.X2 + X

6

5.21.34 VER

VER returns the version number of your CAS.
Type:
VER
You obtain:

4.20000124

This result means that you have a version 4 CAS, dated 24 January 2000.
Instead, VERSION returns the version number of the calculator’s ROM as a whole.

76

Type:
VERSION
You obtain:

{“Version HP49− B←↩ Revision #1.17− 4′′ “Copyright HP 1999′′}

5.21.35 TABVAR

TABVAR has as argument an expression whose derivative is rational.
TABVAR returns the variation table of the expression with respect to the current variable.
Type:

TABVAR(LN(X) + X)

In step-by-step mode you obtain:
F =: (LN(X) + X)

F′ =: (
1

X
+ 1)

→:
X + 1

X
Variation table : [

−∞ ? 0 + +∞ X
? ? −∞ ↑ +∞ F

]
5.21.36 SIGNTAB

SIGNTAB has a rational expression as argument.
SIGNTAB returns the sign table of the expression with respect to the current variable.
Type:

SIGNTAB(X2 + X)

You obtain:
{−∞ + −1 − 0 + +∞}

5.21.37 TABVAL

TABVAL has an expression and a list of numbers as arguments.
TABVAL stores the input expression into the EQ variable and returns a list. This list holds the
expression itself and a list of values; the latter list contains the value the expression assumes
when the current CAS variable is replaced by the list of numbers given as input.
For example, type:

TABVAL(X2 + X, {1, 2, 3})

You obtain:
{X2 + X, {{1, 2, 3}, {2, 6, 12}}}

5.21.38 PLOT

PLOT has an expression as argument.
PLOT stores the input expression into the EQ variable and opens the PLOT SETUP window.
For example, type:

PLOT(X2 + X)

77

Now, by pressing ERASE DRAW, you obtain the plot of the expression stored in EQ, and

X2 + X

is stored into the history.

5.21.39 PLOTADD

PLOTADD has an expression as argument.
PLOTADD appends this expression to the list of equations currently stored in EQ and opens the
PLOT SETUP window.
Type:

PLOTADD(X2 − X)

Now, by pressing ERASE DRAW, you draw the plots of all expressions stored in EQ one over another,
and

X2 − X

is stored into the history.

5.21.40 SCROLL

SCROLL has a graphics object as argument.
SCROLL displays the graphics object, without touching PICT.
For example, suppose you have just plotted the function F(X). The plot is automatically stored
into the reserved variable PICT.
Therefore, PICT contains the current graphics variable. You can save its contents, typing:

RCL(PICT) STO . GRF

Next, if you type:
SCROLL(GRF)

you display the plot of F(X) again.

5.21.41 GROBADD

GROBADD has two graphics objects as arguments.
GROBADD concatenates its arguments and returns the result.
For example, if you previously saved the plot of F(X) into GRF, and the plot of H(X) into GRH, you
can type:

GROBADD(GRF, GRH) STO . GRFH

This command stores into GRFH a graphics object containing the plots of both F(X) and H(X), one
below the other.

6 Bac 99 and HP49G

6.1 Introduction

First of all, enter CASCFG (Computer Algebra System ConFiG) to put the calculator in algebraic
mode and to initialize it.

78

The commands you will use can be found in the menu displayed by the SYMB key, and in the
following sub-menus:
ALGEBRA (FACTOR LIN SUBST)
ARITHMETIC (IEGCD ISPRIME? PROPFRAC)
CALCULUS (DERIVX DERIV INTVX INT LIMIT)
GRAPH (SIGNTAB TABVAR)
TRIGONOMETR (TEXPAND)
and in the red-shift 1 (CMPLX) menu:
RE IM
Remember that after entering each command, it is necessary to press ENTER to execute it; this
notice will often be omitted in the following.

Here, you find the mathematics test of the “Bac”2 1999 test (S series) solved.
Effort has been made to leverage the HP49G capabilities as much as possible, but you will notice
that it is still the student’s duty to explain and justify his/her calculations, and to make a bit of
reasoning.

6.2 Exercise 1

The goal of this exercise is to plot the curve Γ represented by M : 1
2 · z

2− z when m, represented
by z, is a circle C of center O and radius 1. Let t be a real in [−π, π] and m the point of C
corresponding to z = ei·t.

1. Calculation of the coordinates of M :
With the help of EQW, we enter the expression 1

2 · z
2 − z.

We type:

EQW alpha Z yx 2 � ÷ 2 � − alpha Z ENTER

The expression is now in the command line, and we store it into the variable M:

STO . M

Since z = ei·t we type:
SUBST(M, Z = EXP(i× t))

the answer is:
EXP(i · t)2 − 2 · EXP(i · t)

2
Now, we linearize the expression, using the history to copy the previous expression down:

LIN(HIST ENTER) ENTER

the answer is:
1

2
· EXP(2 · i · t) +−1 · EXP(i · t)

Notice that by copying the expression down, the calculator simplifies it, too:

4 ENTER ENTER

gives:
EXP(2 · i · t)− 2 · EXP(i · t)

2
2Translator’s note: In France, the “Bac” (short form of “Baccalauréat”) certificate is awarded to students that

successfully complete the upper secondary school course, at about age 18.

79

• Now we want to look at the real part of this expression:

RE(HIST ENTER) ENTER

the answer is:
COS(t · 2)− 2 · COS(t)

2

At this point, we can define the function x(t), by typing:

DEFINE (X(t) = HIST ENTER) ENTER

• Then, we calculate the imaginary part (we must climb up in the history to retrieve
the original expression EXP(2·i·t)−2·EXP(i·t)

2
), typing:

IM(HIST 4 4 4 4 ENTER) ENTER

the answer is:
SIN(t · 2)− 2 · SIN(t)

2

To define the function y(t), we must now type:

DEFINE(Y(t) = HIST ENTER)ENTER

2. To determine an axis of symmetry of Γ, we want to calculate x(−t) and y(−t); for this, we
type:

X(−t) ENTER

the answer is:
COS(t · 2)− 2 · COS(t)

2

Therefore: x(−t) = x(t)
after this, we type:

Y(−t) ENTER

the answer is:
−SIN(t · 2) + 2 · SIN(t)

2

Therefore: y(−t) = −y(t)
If M1(x(t), y(t)) is on Γ, M2(x(−t), y(−t) is on Γ, too.
We have just showed that M1 and M2 are symmetric with respect to Ox; from this we
conclude that the Ox axis is an axis of symmetry of Γ.

3. Calculation of x′(t) :
We type:

DERIV(X(t), t)

the answer is:
2 · (−2 · SIN(t · 2))− 2 · (−SIN(t))

4

that is, after simplification (4 ENTER ENTER):

−(SIN(t · 2)− SIN(t))

80

We now expand the expression (transformation of SIN(2 · t)); we type:

TEXPAND(HIST ENTER) ENTER

the answer is:
−(SIN(t) · 2 · COS(t)− SIN(t))

Now we factorize:
FACTOR(HIST ENTER) ENTER

the answer is:
−SIN(t) · (2 · COS(t)− 1)

At last, we can define x′(t) by typing:

DEFINE(X1(t) = HIST ENTER) ENTER

4. Calculation of y′(t) :
We type:

DERIV(Y(t), t)

the answer is:
2 · (2 · COS(t · 2))− 2 · COS(t)

4

that is, after simplification (4 ENTER ENTER):

COS(t · 2)− COS(t)

We now expand the expression (transformation of COS(2 · t)); we type:

TEXPAND(HIST ENTER) ENTER

the answer is:
2 · COS(t)2 − 1− COS(t))

Now we factorize:
FACTOR(HIST ENTER) ENTER

the answer is:
(COS(t)− 1) · (2 · COS(t) + 1)

At last, we can define y′(t) by typing:

DEFINE(Y1(t) = HIST ENTER) ENTER

5. Variations of x(t) and y(t)
To do this we draw on the same plot both x(t) and y(t); we type:
blue-shift F4 (2D/3D): the PLOT SETUP window opens.
We choose function as plot type, with the help of the choos menu key.
Then, we enter

{X(t), Y(t)}

into the equation (EQ) field, and t as independent variable, followed by ENTER.
Afterwards, we type blue-shift F2 (WIN), to set the plot window parameters.

81

6. Trace of Γ:

• Values of x(t) and y(t)
We calculate the values of x(t) and y(t) for t = 0, π

3 , 2·π
3 , π, by typing:

X(0) ENTER

answer: −1
2

X(π ÷ 3) ENTER

answer: −3
4

X(2× π ÷ 3) ENTER

answer: 1
4

X(π) ENTER

answer: 3
2

Y(0) ENTER

answer: 0
Y(π ÷ 3) ENTER

answer: −
√

3
4

Y(2× π ÷ 3) ENTER

answer: −3·
√

3
4

Y(π) ENTER

answer: 0

• Slope of tangents (m = y′(t)
x′(t))

We calculate the values of y′(t)
x′(t) for t = 0, π

3 , 2·π
3 , π, by typing:

LIMIT(Y1(t)/X1(t), t = 0) ENTER

answer: 0
LIMIT(Y1(t)/X1(t), t = π ÷ 3) ENTER

answer: ∞
LIMIT(Y1(t)/X1(t), t = 2× π ÷ 3) ENTER

answer: 0
LIMIT(Y1(t)/X1(t), t = π) ENTER

answer: ∞
These are the variations of x(t) and y(t)

t 0 π
3

2π
3 π

x′(t) 0 − 0 + ? + 0
x(t) −1

2 ↓ −3
4 ↑ 1

4 ↑ 3
2

y(t) 0 ↓
√

3
4 ↓ −3

√
3

4 ↑ 0
y′(t) 0 − ? − 0 + ?
m 0 ∞ 0 ∞

82

• Plotting Γ:
We now plot the parametric curve.
We type:
blue-shift F4 (2D/3D) and the PLOT SETUP opens up.
We choose the parametric plot type, with the help of the choos menu key. Then, we
enter

X(t) + i× Y(t)

into the equation (EQ) field and t as independent variable, followed by ENTER.
We then press blue-shift F2 (WIN) to set the plot window parameters.

6.3 Exercise 2 (specialized)

Let be, for a natural n:

an = 4× 10n − 1, bn = 2× 10n − 1 and cn = 2× 10n + 1

We type:
DEFINE(A(N) = 4 · 10N − 1)

DEFINE(B(N) = 2 · 10N − 1)

DEFINE(C(N) = 2 · 10N + 1)

1. • a) Calculate a1, b1, c1, a2, b2, c2, a3, b3, c3 :
It suffices to type:

A(1)

answer 39
B(1)

answer 19
C(1)

answer 21
A(2)

answer 399
B(2)

answer 199
C(2)

answer 201
A(3)

answer 3999
B(3)

answer 1999
C(3)

answer 2001

83

• b) number of digits and divisibility
Here, the calculator is useful only to do some evaluation trials for different values of
n...
We know that integers n satisfying:

10n ≤ n < 10n+1

have (n + 1) digits when they are written using the decimal representation.
We have:

3 · 10n < an < 4 · 10n

10n < bn < 2 · 10n

2 · 10n < cn < 3 · 10n

so the decimal representation of an, bn, cn has (n + 1) digits.

Moreover, dn = 10n − 1 is divisible by 9, since all digits of its decimal representation
are 9.
We have

an = 3 · 10n + dn

and
cn = 3 · 10n − dn

so an and cn are divisible by 3.

• c) b3 is prime
We type:

ISPRIME?(B(3))

the answer is:
1.

that means true
To show that b3 = 1999 actually is prime, we only have to test if 1999 is divisible by
all prime numbers less than or equal to

√
1999.

Since 1999 < 2025 = 452, we check the divisibility of 1999 with n = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41.
Since 1999 is not divisible by any of these numbers, we conclude that 1999 actually is
prime.

• d) an = bn × cn

We type:
B(N) · C(N)

The answer is:
4 · (10N)2 − 1

that is the same value as an

Factorization of a6 into prime factors
We type:

FACTOR(A(6))

The answer is:
3 · 23 · 29 · 1999

84

• e) bn et cn are mutually prime.
Here, the calculator is useful only to do some evaluation trials for different values of
n...
To show that cn and bn are mutually prime, we observe that:

cn = bn + 2

So, the common divisors of cn and bn are the common divisors of bn and 2, and are
the common divisors of cn and 2, too. bn and 2 are mutually prime, because bn is a
prime number not equal to 2. Therefore,

GCD(cn, bn) = GCD(cn, 2) = GCD(bn, 2) = 1

2. Consider the equation:
b3 · x + c3 · y = 1

• a) There is at least a solution, because we can apply the Bézout identity. In fact, the
Bézout theorem states that:
If a and b are mutually prime, two values x and y do exist so that:

a · x + b · y = 1

Therefore, the equation:
b3 · x + c3 · y = 1

has at least a solution.

• b)We type:
IEGCD(B(3), C(3))

the answer is:
{1, 1000,−999}

this means that:
1 = b3 × 1000 + c3 × (−999)

so, we have just found a (particular) solution:
x = 1000, y = −999.
By hand, we write:
c3 = b3 + 2 and b3 = 999 × 2 + 1
so, b3 = 999 × (c3 − b3) + 1 and:

b3 × 1000 + c3 × (−999) = 1

• c) Here, the calculator cannot find the general solution.
We have:

b3 · x + c3 · y = 1

and
b3 × 1000 + c3 × (−999) = 1

subtracting the second equation from the first, we have:

b3 · (x− 1000) + c3 · (y + 999) = 0

85

and then:
b3 · (x− 1000) = −c3 · (y + 999)

Applying the Gauss theorem: c3 is prime with b3, so c3 divides (x− 1000).
Therefore, it exists k ∈ Z so that:

(x− 1000) = k × c3

and
−(y + 999) = k × b3

Reciprocally, let be:
x = 1000 + k × c3

and
y = −999 − k × b3 for k ∈ Z

We have:
b3 · x + c3 · y = b3 × 1000 + c3 × (−999) = 1

The general solution therefore is: for any k ∈ Z :

x = 1000 + k × c3

y = −999 − k × b3

6.4 Exercise 2 (not specialized)

Let us consider the succession

un =
∫ 2

0

2x + 3
x + 2

e
x
n dx

1. • a) Variations of g(x) = 2x+3
x+2 for x ∈ [0, 2]

We type:

DEFINE(G(X) =
2X + 3

X + 2
)

then, we type:
TABVAR(G(X))

We obtain:
−∞ + −2 + +∞ X
2 ↑ ∞ ↑ 2 F

The first line gives the sign of f’(x) depending on x, and the second one gives the
variations of f(x).
From this result, we conclude that g(x) increases in the interval [0, 2].
Notice that if the calculator is in step-by-step mode (to enable this mode, you must
press on MODE, then on the cas menu key, and set Step/Step using the chk menu key
followed by ok ok), we obtain (the input function is denoted by F):

F :=
2 · X + 3

X + 2

86

After pressing the ok menu key, we obtain:

F′ :=
2 · (X + 2)− (2 · X + 3)

SQ(X + 2)

and, using the 5 arrow key to scroll the screen:

→ 1

(X + 2)2

At last, pressing the ok menu key again displays the variation table.

If the step-by-step mode is disabled, it is possible to calculate the derivative with:

DERVX(G(X))

We want to calculate g(0) and g(2); to do this we type:

G(0)

answer 3
2

G(2)

answer 7
4

3
2
≤ g(x) ≤ 7

4
for x ∈ [0, 2]

• b) Here the calculator is not useful at all... it is enough to notice that:

e
x
n ≥ 0 for x ∈ [0, 2]

to show that, for x ∈ [0, 2], we have:

3
2
e

x
n ≤ g(x)e

x
n ≤ 7

4
e

x
n

• c) We integrate the inequality written above, typing:∫ 2

0

e
X
N dX

We obtain:
N · e 2

N − N

From this, we conclude that:

3
2
(ne

2
n − n) ≤ un ≤

7
4
(ne

2
n − n)

To justify the previous calculation, we must also say that a primitive of e
x
n is n · e x

n .
If we don’t know this, we can always type:

INTVX(EXP(X÷ N))

and the answer is: N · e X
N

87

• d) We look for the limit of (ne
2
n − n) when n→ +∞:

LIMIT(N · EXP(2÷ N)− N , N = +∞)

We obtain:
2

To explain this result, we must say that:

lim
x→0

ex − 1
x

= 1

and, as a consequence:

lim
n→+∞

e
2
n − 1

2
n

= 1

or, also:
lim

n→+∞
(e

2
n − 1) · n = 2

If L does exist, letting n go towards +∞ in the inequalities of point 1b), we obtain:

3
2
· 2 ≤ L ≤ 7

4
· 2

2. • a) g(x) = 2− 1
x+2 and calculation of I =

∫ 2

0
g(x)dx

We type:
PROPFRAC(G(X))

We obtain:
2− 1

X + 2

To calculate I, we type in the equation editor (EQW key):∫ 2

0

G(X)dX

We obtain:
−(LN(2)− 4)

Doing it by hand, we have 2x + 3 = 2(x + 2)− 1, so

g(x) = 2− 1
x + 2

We now integrate term by term between 0 et 2, obtaining:∫ 2

0

g(x)dx = [2x− ln(x + 2)]x=2
x=0

that is, since ln 4 = 2 ln 2: ∫ 2

0

g(x)dx = 4− ln 2

88

• b) Here, the calculator is not useful... it is enough to notice that e
x
n increases for

x ∈ [0, 2], to obtain the inequality:

1 ≤ e
x
n ≤ e

2
n

then, since g(x) is positive on [0, 2], we have:

g(x) ≤ g(x)e
x
n ≤ g(x)e

2
n

integrating we have:
I ≤ un ≤ e

2
n I

• c) Convergence of un

We look for the limit of e
2
n when n→ +∞ :

LIMIT(EXP(2÷ N) , N = +∞)

We obtain:
1

Actually, 2
n goes towards 0 when n goes towards +∞, so e

2
n goes towards e0 = 1 when

n goes towards +∞.
When n goes towards +∞, un stays between I and a quantity that goes towards I
(see the inequalities in point 2b)).
Therefore, un converges and its limit is I.
We have shown that:

L = I = 4− ln 2

6.5 Problem

Part A
Let a function f be defined on]0, +∞[as

f(x) =
(

1− 1
x

)
(lnx− 2)

We type (using the Equation Writer):

DEFINE(F(X) = (1− 1÷ X)× (LN(X)− 2))

This is, in detail, the sequence of keys we must press (/ represents the cursor):

DEFINE(F(X) = /)

To enter the expression that follows, using the equation editor, we press the EQW key.
We now are in the equation editor; we type:

1 − 1 ÷ X � � � × LN(X) � − 2 ENTER

In the command line, we have:

DEFINE(F(X) = (1− 1

X
) · (LN(X)− 2))

At this point, we press ENTER to execute it.
F is added to the variable’s menu and NOVAL is displayed in the screen.
To check our work, we type F(X); we should obtain:

(X− 1) · LN(X)− (2 · X− 2)
X

89

1. Limit of f in +∞ and 0.
We type:

LIMIT(F(X),+∞)

answer +∞
then,

LIMIT(F(X), 0)

answer ∞

2. Calculation of f ′(x).
We type:

DERVX(F(X))

We obtain:
LN(X) + X− 3

X2

3. u(x) = lnx + x− 3
Now, we type:

DEFINE(U(X) = LN(X) + X− 3)

• a) Variations of u.
We type:

TABVAR(U(X))

The calculator asks to enable complex mode: answer YES.
We obtain:

−∞ + −1 − 0 + +∞ X
−∞ ↑ iπ − 4 ↓ −∞ ↑ +∞ F

Warning!!!!
Only the portion of table in which x > 0 must be taken into account (when x < 0 the
calculator assumes ln(x) exists, and has a complex value).

• b) u(x) = 0 has an unique solution α in [2, 3].
From a) u increases in]0, +∞[.
We type:

U(2) red− shift ENTER

answer −0.306...
then,

U(3) red− shift ENTER

answer 1.098...
Thereafter, we calculate:

U(2.20) red− shift ENTER

answer −0.306...
and

U(2.21) red− shift ENTER

answer −0.306...
From the theorem of intermediate values (u is both increasing and continuous in [2, 3],

90

therefore u zeroes itself exactly once between 2 et 3 (since u(2) < 0 and u(3) > 0)).
So, if we call α the unique zero of u in [2, 3], we have:

2.20 < α < 2.21

since u(2.20) < 0 and u(2.21) > 0.

• c) Sign of u(x) in]0, +∞[
The sign of u(x) can be deducted from the variation table of u; we have: u(x) < 0 for x < α

u(x) = 0 for x = α
u(x) > 0 for x > α

4. • a) Variations of f .
We must do the variation table by hand, because the derivative of f is not a rational
function... and the calculator is not yet able to handle this case!
Since the sign of f ′(x) is the same as of u(x), we have:

f ′(x) 0 − α + +∞
f(x) +∞ ↓ α−1

α (ln(α)− 2) ↑ +∞

• b)f(α) = − (α−1)2

α
We have:
u(α) = 0, so ln(α) = 3− α
We type in the equation writer:

(1− 1

A
)(LN(A)− 2)

then we highlight LN(A),
open the ALG (red-shift 4) menu,
press the (SUBST) key
to complete the command SUBST(LN(A), LN(A) = 3− A),
and press ENTER ENTER.
We obtain:

−A
2 − 2 · A + 1

A

Now,

FACTOR(−A
2 − 2 · A + 1

A
)

returns

− (A− 1)2

A

We type:

DERIV(− (A− 1)2

A
, A)

We obtain:

− (A2 − 1)
A2

So, the function v(x) = − (x−1)2

x decreases for x >= 1.
We obtain a bounded approximation of f(α) calculating:

91

v(2.21) and v(2.20).
We type:

− (1.21)2

2.21
red− shift ENTER

answer −0.662488

− (1.2)2

2.2
red− shift ENTER

answer −0.65454...
so, we have:

−0.663 < f(α) < −0.654

This is an approximation with tolerance 9 · 10−3(since 0.663− 0.654 = 9 · 10−3)
or, again:

−0.67 < f(α) < −0.65

that is an approximation with tolerance 2 · 10−2(since 0.67− 0.65 = 2 · 10−2)

5. • a) Sign of f
We notice that f(1) = 0 and that f(e2) = 0
We type:

F(1)

answer : 0
F(EXP(2))

answer : 0
These are the variations of f and the sign of f(x) :

f ′(x) 0 − 1 − α + e2 + +∞
f(x) +∞ ↓ 0 ↓ α−1

α (ln(α)− 2) ↑ 0 ↑ +∞
f(x) +∞ + 0 − ' −0.66 − 0 + +∞

• b) Plot C of f
We open the PLOT SETUP (blue_shift F4) menu, we choose function and F(X)
for EQ, then we set the window parameters in WIN (blue_shift F2)

Part B
Let H be the antiderivative of f in]0, +∞[and Γ its plot.
Be careful with the notations; they are not the same as those of the textbook!

1. • a) Variations of H
Since H ′(x) = f(x) we have the following variation table:

f(x) 0 + 1 − e2 + +∞
H(x) ? ↑ 0 ↓ ? ↑ ?

• b) Tangent lines for x = 1 and x = e2

It is f(1) = 0 and f(e2) = 0. The tangents of Γ for the abscissas 1 and e2 have a zero
slope, and are therefore horizontal.

2. Calculation of H(x)

92

• a) Calculation of
∫ x

1
ln tdt

In the equation editor, we type: ∫ X

1

LN(T)dT

We obtain:
X · LN(X)− (X− 1)

We can also ask for the antiderivative of lnx, we type:

INTVX(LN(X))

We obtain:
X · LN(X)− X

By hand, we set u = ln(t) and dv = dt, so du = dt
t and v = t we have:∫ x

1

ln t dt = [t · ln t]t=x
t=1 −

∫ x

1

t · dt

t
= x · lnx−

∫ x

1

dt = x · lnx− (x− 1)

• b) Expanding the expression of f(x) we obtain:

f(x) = lnx− lnx

x
+

2
x
− 2

• c) Expression of H(x)
We type (using the equation writer):

DEFINE(H(X) =
∫ X

1

F(T)dT)

then,
H(X) ENTER

We obtain:

−LN(X)
2 − (2 · X + 4) · LN(X) + 6 · X− 6

2

We do the calculation by hand, integrating term by term the expression of f(x) found
in 2b); we have: ∫ x

1

ln t dt = x lnx− x + 1

−
∫ x

1

ln t

t
dt = − (lnx)2

2∫ x

1

2
t

dt = 2 lnx

that’s why:

H(x) = x lnx− x + 1− (lnx)2

2
+ 2 ln x− 2x + 2

H(x) = − (lnx)2

2
+ (x + 2) lnx− 3x + 3

93

3. • a) We type
LIMIT(LN(X)/X, X = 0)

answer 0
From the course, we know that “x dominates lnx”; this explains the result!
We type:

LIMIT(H(X), X = 0)

answer −∞
We have:

H(x) = x lnx + lnx
(4− lnx)

2
− 3x + 3

When x goes towards 0, the first term of H(x) goes towards 0, its second term goes
towards −∞ (because lnx goes towards −∞ when x goes towards 0), and the following
terms go towards 3.
Threrefore,

lim
x→0

H(x) = −∞

• b) We type:
LIMIT(H(X), X = +∞)

answer +∞
We put in evidence x lnx at the beginning of H(x), obtaining:

H(x) = x lnx(1− lnx

2x
+

2
x
− 3

lnx
) + 3

lim
x→+∞

x lnx = +∞

and the term within paretheses goes towards 1 when x goes towards +∞, so

lim
x→+∞

H(x) = +∞

• c) Variations of H(x)
We calculate H(e2)
We type:

H(EXP(2))

The result is the expression obtained replacing, in H(X), X with EXP(2).
We copy this expression to simplify it: (4 ENTER ENTER), obtaining:

−(EXP(2)− 5)

then,
4 ENTER red− shift ENTER

answer -2.38905...
We have also an approximate value of H(e2).
We recall the table already worked out in 1a)

f(x) 0 + 1 − e2 + +∞
H(x) −∞ ↑ 0 ↓ ' −2.39 ↑ +∞

94

• d) Plot C of f and plot Γ of H
We open the PLOT SETUP (blue_shift F4) window, choose function and put
{F(X),H(X)} in the EQ field, then we set the window parameters using WIN (blue_shift
F2) .

4. Area calculation
We have calculated: ∫ e2

1

f(x)dx

obtaining:
−(EXP(2)− 5)

this integral is negative because the function is below the x axis between 1 and e2. Since
the measurement unit is 2cm, the area expressed in cm2 is therefore equal to −4H(e2)cm2,
that is :

4 · (EXP(2)− 5) cm2

that is,
A = (4e2 − 20) cm2

or
9.55 cm2 < A < 9.56 cm2

6.6 Conclusion

We have showed that a good leverage of the HP49G calculator’s capabilities enabled us to solve
a large portion of the problems...
However, we must also notice that for arithmetic problems, more reasoning is needed: then, the
calculator is useful to do checks and verifications...

7 Programming

7.1 Programming in algebraic mode

7.1.1 Entering a program

You write a program in the command line, between delimiters � and �

7.1.2 Saving a program

It is enough to append
STO . NOMDUPROGRAMME

after the last � delimiter.

7.1.3 Editing a program

When entering a program, if the program syntax is bad, the calculator automatically places the
command line cursor where the compiler has detected the error, so you can immediately fix it!!!

Instead, if the error is detected during program execution, you must enter:
VISIT(’NOMDUPROGRAMME’) to edit the program stored in the NOMDUPROGRAMME variable.
You can then edit it; ENTER saves the edited program.

95

7.1.4 Executing a program

If the program has no parameters, you type its name in the command line; if it has one or
more parameters, the program name must be followed by its arguments, enclosed in brackets
and delimited by commas.

Example: PGCD(45,75)

7.1.5 Modifying a program and saving it with another name

You type:
RCL(’NOMDUPROGRAMME’) and press the edit menu key.

Then, you modify the program as you wish, and append

STO . NOUVEAUNOM

after the last � delimiter.

7.2 Program comments

It is a good habit to put comments in programs.
In algorithmic language a comment starts with // and ends at the end of the line.
On the HP49G, a comment starts with @ and ends at the end of the line or when another @ is

encountered.
You obtain the @ character by pressing red-shift ENTER.
Warning!!! The compiler deletes all comments so, to preserve your comments, you should

store the program as a text string and then compile it with STR→; this makes things a little
more difficult, though...

7.3 Variables

7.3.1 Variable names

Variables are places where you can store values, numbers, expressions and any other object.

7.3.2 Local variables

The HP49G has local variables. Local variables are both declared and initialized (the initialization
is mandatory!) with → (red− shift 0)

In RPN mode, you can define and initialize more than one variable at once, for example:

� 1 2 → A B� subprogrambody��

In Algebraic mode, each definition must be followed by a subprogram (with delimiters ��).

The arrow must be surrounded by spaces (these spaces are automatically inserted when the
calculator is not in α mode).
Example :

� 3.14 → PI� 2 ∗ PI ∗ R�� STO . PER

In this example, we have written a program named PER.
PI is a local variable defined and initialized by the code fragment 3.14 → PI. The scope of this

96

variable is limited to the subprogram that follows its definition (here, � 2 ∗ PI ∗ R�).
On the other hand, R is a global variable (it must exist before the program PER is executed).
If, during the execution of a program, you want to store a value into a variable (either local or
global), you must use the STO. operator.

7.3.3 Parameters

When you define a function, it is possible to use parameters.
For example, if you want R to be a parameter of function PER, you should write:

� → R� 3.14 → PI� 2 ∗ PI ∗ R��� STO . PER

Parameter R behaves the same as local variables; the only difference is that it is initialized when
the function is invoked.
The invocation is done when, for example, you evaluate: PER(5).
To define a function with two argument, the correct syntax, in both RPN and Algebraic modes
is:

� → A B� ...

7.4 Data input

7.4.1 Translation in algorithmic language

To denote that the user enters a value into variable A during the execution of a program, in
algorithmic language you write: input A
To input values into A and B you write: input A,B

7.4.2 Translation for the HP49G in RPN mode

’A’ PROMPTSTO
or
"A" "" INPUT STR-> EVAL ’A’ STO

7.4.3 Translation for the HP49G in Algebraic mode

To input a value into a local variable A, you type:
....0 → A� PROMPTSTO(′A′)...� or
....0 → A� PROMPTSTO(′A′); 0 → B� PROMPTSTO(′B′).....� �

If you enter only:
...PROMPTSTO(’A’), A is then a global variable, or
...PROMPTSTO(’A’); PROMPTSTO(’B’), A and B are then global variables.
You can use INPUT, too. For example, if a local variable A must contain a character string, you
can enter:

INPUT(′′A =′′,′′ ′′) → A

or, if A must contain a number:
.....INPUT(′′A =′′,′′ ′′)→ A
� OBJ→ (A) → A
��
�

97

7.5 Data output

7.5.1 Translation in algorithmic language

In algorithmic language, you write:
print "A=",A

7.5.2 Translation for the HP49G in RPN mode

Usually it is enough to push results into the stack, so that you can reuse them; if this is the case,
you simply write:
A B
You can also tag the result, as follows:
A "A=" ->TAG
HALT halts the program.

7.5.3 Translation for the HP49G in Algebraic mode

Only the last result is written into the history.
To display intermediate results, you can use either:

DISP(”A = ” + A, 3)

here, 3 is the line number on which the result is displayed, or:

MSGBOX(”A = ”+→ STR(A))

CLEAR clears the screen.
FREEZE(7) stops the program and freezes the screen so that you can see the results you have
previously written on it.

7.6 Sequence of instructions, or “block”

A “block” is a sequence of one or more instructions.

7.6.1 Translation in algorithmic language

In algorithmic language, you can use either the space or a newline to terminate an instruction.

7.6.2 Translation for the HP49G in RPN mode

Like the algorithmic language, spaces and newlines act as instruction separators.

7.6.3 Translation for the HP49G int algebraic mode

When the HP49G works in algebraic mode, ; acts as instruction separator.
You can type ; pressing red-shift SPC simultaneously.

7.7 Store instruction

The store instruction is used to store a value or an expression into a variable.

98

7.7.1 Translation in Algorithmic language

In algorithmic language, the store operation is denoted, for example, by:
2*A->B to store 2*A into B.

7.7.2 Translation for the HP49G in RPN mode

When the HP49G works in RPN mode, you must use the postfix notation and the STO command:
2 A * ’B’ STO

7.7.3 Translation for the HP49G in Algebraic mode

when the HP49G works in algebraic mode, you use the STO key, that is displayed on the calculator
screen as: . (and will be denoted here by STO.).

7.8 Conditional branch instructions

7.8.1 Translation in algorithmic language

if condition then action end if
if condition then action1 else action2 end if
Example :
if A = 10 or A < B then B-A->B else A-B->A end if

7.8.2 Translation for the HP49G in RPN mode

IF condition THEN action END
IF condition THEN action1 action2 END
Warning : you must use the postfix notation and == to denote the equality test operator.
The above mentioned example can be written as:
IF A 10 == A B < OR THEN B A - ’B’ STO ELSE A B - ’A’ STO END
you can also write:
IF ’A==10’ ’A < B’ OR THEN ...

7.8.3 Translation for the HP49G in Algebraic mode

IF condition THEN action END
IF condition THEN action1 ELSE action2 END
Example : Pay attention to always use == to denote the equality test!
IF A == 10 OR A < B THEN B-A STO. B ELSE A-B STO. A END

7.9 “For” loops

7.9.1 Translation in algorithmic language

for I from A to B do action end for
for I from A to B (step P) do action end for

7.9.2 Translation for the HP49G in RPN mode

A B FOR I action NEXT
A B FOR I action P STEP

99

7.9.3 Translation for the HP49G in Algebraic mode

FOR (I , A , B) action NEXT
FOR (I , A , B) action STEP P

It is not necessary to declare the loop variable I in advance.
I is automatically declared and initialized by: FOR (I,.,.)...

7.10 “While” loops

7.10.1 Translation in algorithmic language

while condition do action end while

7.10.2 Translation for the HP49G in RPN mode

WHILE condition REPEAT action END

7.10.3 Translation for the HP49G in Algebraic mode

WHILE condition REPEAT action END

7.11 Boolean (or conditional) expressions

A boolean (or conditional) expression is a function having a boolean value, that is, either true
or false.

7.11.1 Translation in algorithmic language

To express a simple condition you use the following operators: = < > ≤ ≥ 6=

7.11.2 Translation for the HP49G in RPN mode

Warning, you must use the postfix notation and == to denote the equality test operator.

7.11.3 Translation for the HP49G in Algebraic mode

Warning, for the HP49G, the equality test operator is denoted by: ==

7.12 Logical operators

7.12.1 Translation in algorithmic language

To express complex conditions, you can use the following logical operators: or, and, and not.

7.12.2 Translation for the HP49G in RPN mode

Warning, you must use the postfix notation.
or, and, and not are denoted, respectively, by OR, AND, and NOT.

7.12.3 Translation for the HP49G in Algebraic mode

or, and, and not are denoted on the HP49G by OR, AND, and NOT.

100

7.13 Functions

In a function, you do not perform data entry explicitly:
instead, you use function parameters, that are automatically initialized when the function is
called.
In a function, you must be able to reuse the result at will:
in algorithmic language, you use the return command instead of print.

7.13.1 Translation in algorithmic language

You can write, for example:

function addition(A,B)
return A+B
end function

This means that:

• The result of the function will be displayed when the function is executed.

• The function can be used in an expression.

7.13.2 Translation for the HP49G in RPN mode

When the HP49G works in RPN mode, it is assumed that function arguments are on the stack
when the function is invoked.

Inside the function, the arguments become local variables initialized with the topmost ele-
ments of the stack. The result of the function is pushed on the stack.
The example above can be written as:
�→ A B
� A B + �
�
’ADDITION’ STO

To invoke the function you must push the intended values of A and B on stack levels 2 and 1;
after the execution of ADDITION their sum will be on stack level 1.

7.13.3 Translation for the HP49G in Algebraic mode

The example above can be written as:
�→ A B
� A + B�
�
STO . ADDITION

To invoke the function, you enter:

ADDITION(4, 5)

101

7.14 Lists

7.14.1 Translation in algorithmic language

In the algorithmic language, { and } are used as list delimiters.
For example, {} denotes the empty list, and {1, 2, 3} is a list of 3 elements.
The + operator can be used to concatenate two lists together or a list with an element:
{1, 2, 3}->TAB
TAB + 4 ->TAB (now TAB contains {1, 2, 3, 4})
TAB[2] denotes the second element of TAB, 2 in this example.

7.14.2 Translation for the HP49G in RPN mode

It is not necessary to declare the maximum length of a list in advance.
The list delimiters are { and }. For example {1 2 3} is a list of 3 elements, and {} is an empty
list.
You can retrieve the P-th element of list L and put it on the stack using:
L P GET or ’L’ P GET
To update the P-th element of L (for example, set it to 0) you must enter:
’L’ P 0 PUT or L P 0 PUT ’L’ STO
Actually, L P 0 PUT leaves the updated list on the stack, and:
’L’ P 0 PUT updates list L in-place instead.
The + operator can be used to concatenate two lists together or a list with an element.

7.14.3 Translation for the HP49G in algebraic mode

It is not necessary to declare the maximum length of a list in advance.
The list delimiters are { and }. For example {1 2 3} is a list of 3 elements, and {} is an empty
list.
You can retrieve the P-th element of list L using:
L[P] or GET (L, P)
To update the P-th element of L (for example, set it to 0) you must enter:
PUT(L, P, 0) STO. L
or
PUT(’L’, P, 0)
Actually, PUT(L, P, 0) returns the updated list, and:
PUT (’L’, P, 0) updates list L in-place instead.
The + operator can be used to concatenate two lists together or a list with an element. The SEQ
command allows you to create a list; for example, if you type:

SEQ(′X ∗ X′,′ X′, 4, 10, 1)

you obtain:
{16, 25, 36, 49, 64, 81, 100}

7.15 Example: The sieve of Erastothenes

7.15.1 Description

To find the prime numbers less than or equal to N :

1. Put the numbers from 1 to N into a list.

102

2. Mark 1 and store 2 into the variable P .

If P · P ≤ N we must process all elements from P to N .

3. Mark all multiples of P starting from P · P .

4. Increment P by 1

If P ·P is less than or equal to N , we must process the non-marked elements from P to N .

5. Store into P the smallest non-marked elements of the list.

6. Repeat steps 3, 4 and 5 while P · P is less than or equal to N .

7.15.2 Algorithmic language

function crible(N)
local TAB PREM I P
// TAB and PREM are lists
{} ->TAB
{} ->PREM
for I from 2 to N do
TAB+I -> TAB

end for
0 +TAB -> TAB
2 -> P
// Done steps 1 and 2
// marking has been implemented replacing the element to be marked with 0
// TAB is the list 0 2 3 4 ...N

while P*P ≤ N do

for I from P to int(N/P) do
0 -> TAB[I*P]

end for
// We marked all multiples of P starting from P*P
P+1 -> P

// We search the smallest number <= N, not marked, between P and N

while (P*P ≤ N) and (TAB[P]=0) do

P+1 -> P
end while

end while
// We copy the result into PREM
for I from 2 to N do

if TAB[I] 6= 0 then

PREM +I -> PREM
end if

end for
return PREM

103

7.15.3 HP49G, RPN mode

This is the program CRIBLE:
N is the parameter whose actual value must be on the stack.
The local variables are:
P and I (integers),
TA and PREM (lists).

%%HP: T(3)A(R)F(.); � {} {} 2 1 → N TA PREM P I
� 0 ′X′ ′X′ 2 N 1 SEQ + ′TA′ STO

WHILE P P * N ≤ REPEAT
P N P / FLOOR FOR I

TA I P * 0 PUT ’TA’ STO
NEXT
1 ’P’ STO+
WHILE P P * N ≤ TA P GET 0 == AND REPEAT

1 ’P’ STO+
END

END
2 N FOR I

IF TA I GET 0 6= THEN
I ’PREM’ STO+

END
NEXT
PREM

�
�

7.15.4 HP49G, Algebraic mode

This is the program CRIBLE; the user must type, for example:
CRIBLE(100), to execute it.

� → N
� 0+SEQ(’I’,’I’,1,N,1) → TA
� 2 → P
� WHILE P ∗ P ≤ N REPEAT

FOR (I , P , FLOOR(N/P))
PUT(’TA’,I*P,0)

NEXT;
P + 1 STO . P;
WHILE P*P ≤ N AND GET(TA,P) == 0 REPEAT

P + 1 STO . P
END

END;
{2} → PREM
� FOR (I, 3, N)

IF TA(I) 6= 0 THEN
PREM + I STO . PREM;

END
NEXT;

104

PREM
�

�
�

�
� STO . CRIBLE

8 Arithmetic programs

8.1 Calculating the GCD using the Euclide’s algorithm

This algorithm is rooted on the recursive definition of GCD:

GCD(A, 0) = A

GCD(A,B) = GCD(B,A mod B) if B 6= 0

The algorithm can be described as follows:
we carry out this sequence of euclidean divisions:

A = B ×Q1 + R1 0 ≤ R1 < B

B = R1 ×Q2 + R2 0 ≤ R2 < R1

R1 = R2 ×Q3 + R3 0 ≤ R3 < R2

.......

After a finite number of steps, it exists an integer n so that: Rn = 0.
We obtain then:
GCD(A,B) = GCD(B,R1) = ...
GCD(Rn−1, Rn) = GCD(Rn−1, 0) = Rn−1

8.1.1 Algorithmic language

• Iterative implementation
If B 6= 0 we calculate R=A mod B then, using B instead of A (storing B into A) and R
instead of B (storing R into B) we repeat the process until B=0; when this happens, the
GCD is A.

function GCD(A,B)
local R

while B 6= 0 do

A mod B->R
B->A
R->B

end while
return A
end function

• Recursive implementation
We simply write out the recursive definition given above.

105

function GCD(A,B)

if B 6= 0 then

return GCD(B,A mod B)
else
return A

end if
end function

8.1.2 HP49G, RPN mode

• Iterative implementation
� 0→ A B R
� WHILE B 0 6= REPEAT

A B MOD ’R’ STO
B ’A’ STO
R ’B’ STO

END
A

�
�

• Recursive implementation
� 0→ A B
� IF B 0 6= THEN

B A B MOD PGCDR
ELSE

A
END

�
�
The program must be stored into variable PGCDR.

8.1.3 HP49G, Algebraic mode

• Iterative implementation
� → A, B
� 0 → R
� WHILE B 6= 0 REPEAT

A MOD B STO . R;
B STO . A;
R STO . B

END;
A

�
�

� STO . PGCD
To execute the program you enter, for example, PGCD(45,75).

106

• Recursive implementation
� → A, B
� IF B 6= 0 THEN

PGCDR(B, A MOD B)
ELSE

A
END

�
� STO . PGCDR
To execute the program you enter, for example, PGCDR(45,75).
Notice:
If you use the symbolic function IREMAINDER instead of MOD in the programs above, PGCD
(or PGCDR) can then have Gauss integers as arguments, too.

8.2 Bézout identity using the Euclide’s algorithm

In this section, the function Bezout(A,B) returns the list {U, V, GCD(A,B)}, where U and V
satisfy: A× U + B × V = GCD(A,B).

8.2.1 Iterative implementation without lists

The Euclide’s algorithm allows us to find a pair U and V satisfying:
A× U + B × V = GCD(A,B)
Actually, if we denote A0 and B0 the starting values of A and B, we have:

A = A0 × U + B0 × V with U = 1 and V = 0
B = A0 ×W + B0 ×X with W = 0 and X = 1

Next, we make A, B, U , V , W , X evolve so that the above relations continue to be satisfied.
If:
A = B ×Q + R 0 ≤ R < B (R = A mod B and Q = E(A/B))
We can write:

R = A−B ×Q = A0 × (U −W ×Q) + B0 × (V −X ×Q) =
A0 × S + B0 × T with S = U −W ×Q and T = V −X ×Q

We must now repeat the process with B in place of A (B->A W->U X->V) and R in place of
B (R->B S->W T->X).

We can write the whole algorithm as follows:

function Bezout (A,B)
local U,V,W,X,S,T,Q,R
1->U 0->V 0->W 1->X

while B 6= 0 do

A mod B->R
E(A/B)->Q
//R=A-B*Q
U-W*Q->S
V-X*Q->T
B->A W->U X->V

107

R->B S->W T->X
end while
return {U, V, A}
end function

8.2.2 Iterative implementation with lists

The algorithm above can be simplified using less variables: in order to do this, we introduce the
lists LA, LB, and LR to store the terns {U, V, A}, {W, X, B} and {S, T, R}.

function Bezout (A,B)
local LA LB LR
{1, 0, A}->LA
{0, 1, B}->LB

while LB[3] 6= 0 do

LA-LB*E(LA[3]/LB[3])->LR
LB->LA
LR->LB
end while
return LA
end function

8.2.3 Recursive version with lists

The Bezout function can be defined recursively by: Bezout(A, 0) = {1, 0, A} If B 6= 0 we must
define Bezout(A,B) in function of Bezout(B,R), where R = A−B ×Q and Q = E(A/B).

We have:

Bezout(B,R) = LT = {W,X, gcd(B,R)}
with W ×B + X ×R = gcd(B,R)

Therefore:

W ×B + X × (A−B ×Q) = gcd(B,R) or, again,
X ×A + (W −X ×Q)×B = gcd(A,B).

So, if B 6= 0 and Bezout(B,R) = LT we have:
Bezout(A,B) = {LT [2], LT [1]− LT [2]×Q, LT [3]}.

function Bezout (A,B)
local LT Q R

if B 6= 0 do

E(A/B)->Q
A-B*Q->R
Bezout(B,R)->LT
return {LT[2], LT[1]-LT[2]*Q, LT[3]}
else return {1, 0, A}
end if
end function

108

8.2.4 HP49G, RPN mode

• Iterative implementation with lists.
At the very beginning, A et B contain the two numbers for which we are seeking the Bézout
identity, later they denote the lists LA and LB mentioned in the algorithm.
%%HP: T(3)A(R)F(.); � {} → A B R
� {1 0} ′A′ STO+
{0 1} ′B′ STO+
WHILE B 3 GET 0 6= REPEAT

A B A 3 GET B 3 GET / FLOOR * - ’R’ STO
B ’A’ STO
R ’B’ STO

END
A
�

�

• Recursive implementation with lists
%%HP: T(3)A(R)F(.); � {} → A B T
� IF B 0 6= THEN

B A B MOD BEZOUR ’T’ STO
T 2 GET DUP A B / FLOOR *
T 1 GET SWAP -
T 3 GET + + +

ELSE
{1 0} A +

END
�

�
This program must be stored into the variable BEZOUR.

8.2.5 HP49G, Algebraic mode

• Iterative implementation with lists.
At the very beginning, A et B contain the two numbers for which we are seeking the Bézout
identity, later they denote the lists LA and LB mentioned in the algorithm.
� → A, B
� {} → R
� {1, 0, A} STO . A;
{0, 1, B} STO . B;
WHILE B[3] 6= 0 REPEAT

A− B ∗ FLOOR(A[3]/B[3]) STO . R;
B STO . A;
R STO . B

END
A

�
�

� STO . BEZOUT

109

To execute the program you type, for example, BEZOUT(45,75).

• Recursive implementation with lists
� → A, B
� {} → T
� IF B 6= 0 THEN

BEZOUR(B, A MOD B) STO . T;
{T[2], T[1]− T[2] ∗ FLOOR(A/B), T[3]}

ELSE
{1, 0, A}

END
�

�
� STO . BEZOUR
To execute the program you type, for example, BEZOUR(45,75).
Notice :
If you use the symbolic function IREMAINDER instead of MOD in the programs above, PGCD
(or PGCDR) can then have Gauss integers as arguments, too.

8.3 Factorization

8.3.1 Algorithms and their translations

• First algorithm
We check, for all integers D from 2 to N, whether N is divided by D.
If D divides N, we search the factors of N/D ... and so on.
All factors are stored into the list FACT.

function facprem(N)
local D FACT
2 -> D
{} -> FACT

while N 6= 1 do

if N mod D = 0 then
FACT + D -> FACT
N/D -> N
else
D+1 -> D

end if
end while
return FACT
end function

• First improvement
We only check potential factors between 2 and E(

√
N).

function facprem(N)
local D FACT

110

2 -> D
{} -> FACT

while D*D ≤ N do

if N mod D = 0 then
FACT + D -> FACT
N/D-> N
else
D+1 -> D

end if
end while
FACT + N -> FACT
return FACT
end function

• Second improvement
We check if 2 divides N, then we check only odd potential factors D between 3 and E(

√
N).

In the FACT list, each factor is now followed by its exponent:
facprem(12)={2,2,3,1}.

function facprem(N)
local K D FACT
{}->FACT
0 -> K
while N mod 2 = 0 do

K+1 -> K
N/2 -> N

end while

if K 6=0 then

FACT + {2 K} -> FACT
end if
3 ->D

while D*D ≤ N do

0 -> K
while N mod D = 0 do
K+1 -> K
N/D -> N

end while

if K 6=0 then

FACT + {D K} -> FACT
end if
D+2 -> D

end while

111

if N 6= 1 then

FACT + {N 1} -> FACT
end if
return FACT
end function

8.3.2 HP49G, RPN mode

%%HP: T(1)A(R)F(.); This is the translation of the second improvement:
� 0 3 {} → N K D FACT
� WHILE N 2 MOD 0 == REPEAT

1 ’K’ STO+
’N’ 2 STO/

END
IF K 0 6= THEN

{2 K} ’FACT’ STO
END
WHILE N D D * ≥ REPEAT

0 ’K’ STO
WHILE N D MOD 0 == REPEAT

1 ’K’ STO+
’N’ D STO/

END
IF K 0 6= THEN

{D K} ’FACT’ STO+
END
2 ’D’ STO+

END
IF N 1 6= THEN

{N 1} ’FACT’ STO+
END

�
�

8.3.3 HP49G, algebraic mode

� → N
� 0 → K
� WHILE N MOD 2 == 0 REPEAT

K + 1 STO . K;
N/2 STO . N

END;
{} → FACTO
� IF K 6= 0 THEN

FACTO + {2, K} STO . FACTO
END;
3 → D
� WHILE D ∗ D ≤ N REPEAT

0 STO . K;

112

WHILE N MOD D == 0 REPEAT
K + 1 STO . K;
N/D STO . N;

END;
IF K 6= 0 THEN

FACTO + {D, K} STO . FACTO
END;
D + 2 STO . D

END;
IF N 6= 1 THEN

FACTO + {N, 1} STO . FACTO
END;
FACTO;

�
�

�
�

� STO . FACTEUR
To execute the program you type, for example, FACTEUR(45).

8.4 Calculation of AP mod N

8.4.1 Algorithmic language

• First algorithm
We use local variables PUIS et I.
We make an iterative program so that at each step, PUIS represents AI (mod N).

function puismod (A, P, N)
local PUIS, I
1->PUIS
for I from 1 to P do
A*PUIS mod N ->PUIS

end for
return PUIS
end function

• Second algorithm
We use only one local variable, PUI, but we update P so that at each iteration step we
always have:
result = PUI ∗AP (mod N)

function puismod (A, P, N)
local PUI
1->PUI
while P>0 do
A*PUI mod N ->PUI
P-1->P

end while
return PUI

113

end function

• Third algorithm
We can improve the previous program by noticing that:
A2∗P = (A ∗A)P .
So, when P is even, the following is true:
PUI ∗AP = PUI ∗ (A ∗A)P/2 (mod N)
and when P is odd, the following is true:
PUI ∗AP = PUI ∗A ∗AP−1 (mod N).
The result is a fast algorithm to compute AP (mod N).

function puismod (A, P, N)
local PUI
1->PUI
while P>0 do
if P mod 2 =0 then
P/2->P
A*A mod N->A

else
A*PUI mod N ->PUI
P-1->P

end if
end while
return PUI
end function

We can also notice that if P is odd, then P-1 is even.
We can write:

function puismod (A, P, N)
local PUI
1->PUI
while P>0 do
if P mod 2 =1 then
A*PUI mod N ->PUI
P-1->P

end if
P/2->P
A*A mod N->A
end while
return PUI
end functions

• Recursive program
We can leverage the following recurrence relation:
A0 = 1 AP+1 (mod N) = (AP (mod N)) ∗A (mod N)

function puimod(A, P, N)
if P>0 then
return puimod(A, P-1, N)*A mod N

114

else
return 1
end if
end function

• Fast, recursive program

function puimod(A, P, N)
if P>0 then
if P mod 2 =0 then
return puimod(A*A, P/2, N)

else
return puimod(A, P-1, N)*A mod N

end if
else
return 1
end if
end function

8.4.2 HP49G, RPN mode

The user must push on the stack :
A, P, N to obtain AP mod N .
This is the translation of the fast, iterative algorithm:
� 1 → A P N PUI
� WHILE P 0 > REPEAT

IF P 2 MOD 1 == THEN
A PUI * N MOD ’PUI’ STO
’P’ STO-

END
P 2 / ’P’ STO
A A * N MOD ’A’ STO

END
PUI

�
�

We can store the program into PUIMOD (using ’PUIMOD’ STO).

8.4.3 HP49G, Algebraic mode

This is the translation of the fast, iterative algorithm:
� → A P N
� 1 → PUI
� WHILE P > 0 REPEAT

IF P MOD 2 == 1 THEN
A ∗ PUI MOD N STO . PUI
P− 1 STO . P;

END;
P/2 STO . P;

115

A ∗ A MOD N STO . A;
END;
PUI

�
�

� STO . PUIMOD
We can type, for example, PUIMOD(45,32,13) to execute it.

8.5 The function “isprime”

8.5.1 Algorithmic language

• First algorithm

We are about to write a boolean function of N, returning TRUE if N is prime, and FALSE
if it is not.

In order to do this, we check whether N has a factor 6= 1 and ≤ E(
√

N) (integer part of
the square root of N).

The special case N = 1 is handled separately!

We use a boolean variable PREM, initially set to TRUE and changed to be FALSE when
we find a factor of N.

function isprime(N)
local PREM, I, J

E(
√

N) ->J

if N = 1 then
FALSE->PREM
else
TRUE->PREM

end if
2->I

while PREM and I ≤J do

if N mod I = 0 then
FALSE->PREM
else
I+1->I

end if
end while
return PREM
end function

• First improvement

We notice that first of all, we can check if N is even and, if it is not, only check whether it
has odd factors.

116

function iswprime(N)
local PREM, I, J

E(
√

N) ->J
if (N = 1) or (N mod 2 = 0) and N6=2 then

FALSE->PREM
else
TRUE->PREM

end if
3->I

while PREM and I ≤J do

if N mod I = 0 then
FALSE->PREM
else
I+2->I

end if
end while
return PREM
end function

• Second improvement

We check if N cen be divided by 2 or by 3, else we check whether N has a factor that can
be expressed as either 6× k − 1 or 6× k + 1.

function isprime(N)
local PREM, I, J

E(
√

N) ->J

if (N = 1) or (N mod 2 = 0) or (N mod 3 = 0) then
FALSE->PREM
else
TRUE->PREM

end if
if N=2 or N=3 then
TRUE->PREM
end if
5->I

while PREM and I ≤J do

if (N mod I = 0) or (N mod I+2 =0) then
FALSE->PREM
else
I+6->I

end if
end while
return PREM
end function

117

8.5.2 HP49G, RPN mode

We translate the last algorithm listed above: the result is either 0 (false) or 1 (true).
� DUP √ FLOOR 0 5 → N J PREM I
� IF N 1 == N 2 MOD 0 = 3D = 3D OR N 3 MOD 0 == OR THEN

0 ’PREM’ STO
ELSE

1 ’PREM’ STO
END
IF N 2 == N 3 == OR THEN

1 ’PREM’ STO
END
WHILE PREM I J ≤ AND REPEAT

IF N I MOD 0 == N I 2 + MOD 0 == OR THEN
0 ’PREM’ STO

ELSE
I 6 + ’I’ STO

END
END
PREM
�
�

8.5.3 HP49G. Algebraic mode

� → N
� 0 → P
� IF N MOD 2 == 0 OR N MOD 3 == 0 OR N == 1THEN

0 STO . P
ELSE;

1 STO . P;
END;
IF N == 2 OR N == 3 THEN

1 STO . P;
END;
FLOOR(

√
N) → J

� 5 → I
� WHILE I ≤ J AND P REPEAT

IF N MOD I == 0 OR N MOD (I + 2) == 0 THEN
0 STO . P;

ELSE;
I + 6 STO . I;

END;
END;
P

�
�

�
�

� STO . PREM?

118

to execute this program you type, for example, PREM?(45789).

8.6 Rabin’s probabilistic method

If N is prime, all integers K less that N are prime with N; therefore, applying the Fermat theorem
we can state that:

KN−1 = 1 (mod N)
for all integers K less than N. Instead, if N is not prime, integer values K satisfying:
KN−1 = 1 (mod N)
are rare.

To be more precise, it can be shown that if N > 4, the probabilty to randomly find such an
integer K is less than 0.25.

An integer N satisfying KN−1 = 1 (mod N) for 20 random trials of K is a preudo-prime
integer.

The Rabin’s probabilistic method consists of randomly generate an integer K (1 < K < N)
and calculate :

KN−1 (mod N)
If KN−1 = 1 (mod N) we repeat the process with a different value of K; if, instead, KN−1 6=

1 (mod N) we are sure that N is not prime.
If KN−1 = 1 (mod N) for 20 random trials of K we can state that N is prime with a small

probability of error, less than 0.2520, that is about 10−12.
Of course, this method is very fast, and is widely used to check whether very big integers are

pseudo-prime.

8.6.1 Algorithmic language

We assume that: Hasard(N) returns a random integer between 0 and N-1.
We calculate:
KN−1 mod N
using the fast power algorithm described above (see page 113).
We denote as:
puismod(K, P, N) the function calculating and returning KP mod N .

function isprime(N)
local K, I, P
1->I
1->P
while P = 1 and I < 20 do
hasard(N-2)+2->K
puismod(K, N-1, N)->P
I+1->I
end while
if P =1 then
return TRUE
else
return FALSE
end if
end function

119

8.6.2 HP49G, RPN mode

%%HP: T(3)A(R)F(.); We assume that the function PUIMOD, taking from the stack three
arguments A, K, N, and returning AKmod N is already available.
� 1 0 1 → N I K P
� 0 RDZ
WHILE P 1 == 20 I > AND REPEAT

1 ’I’ STO+
RAND N 2 - * FLOOR 2 + ’K’ STO
K N 1 - N PUIMOD ’P’ STO

END
IF P 1 == THEN

1
ELSE

0
END
�
�

8.6.3 HP49G, Algebraic mode

� → N
� 1 → I
� 0 → K
� 1 → P
� RDZ(0);

WHILE P == 0 AND I < 20 REPEAT
1 + I STO . I;
FLOOR((N− 2) ∗ RAND) + 2 STO . K;
PUIMOD(K, N− 1, N) STO . P;

END;
IF P == 1 THEN

1
ELSE

0
END;
P

�
�

�
�

� STO . RABIN
To execute this program you can type, for example, RABIN(45313).

Notice:
We can also use the built-in command POWMOD and write:

• In RPN mode:
N MODSTO
K N 1 - POWMOD ’P’ STO

120

instead of:
K N 1 - N PUIMOD ’P’ STO

• In Algebraic mode :
MODSTO(N);
POWMOD(K,N-1) STO. P
instead of:
PUIMOD(K,N-1,N) STO. P

121

Index

4 � � 5, 5
⇐, 5
←↩, 5
→, 5
. STO. , 5
= ∼, 4

ABCUV, 41
ABS, 27, 56
ACOS2S, 33
ADDTMOD, 47
ARG, 27
ASIN2C, 33
ASIN2T, 34
ATAN2S, 34
AUGMENT, 70
AXL, 54
AXM, 54
AXQ, 57

BASIS, 70

C2P, 72
CASCFG, 4
CF, 5
CHINREM, 43
CHOLESKY, 67
CIRC, 72
CLEAR, 98
CONJ, 27
COPY, 14
CROSS, 56
CURL, 59
CUT, 14
CYCLOTOMIC, 70

DEFINE, 20
DERIV, 29, 57
DERVX, 28
DESOLVE, 64, 129
DIAGMAP, 68
DISP, 98
DISTRIB, 72
DIV, 58
DIV2, 41
DIV2MOD , 48
DIVIS, 22, 40
DIVMOD, 48

DIVPC, 50
DOT, 56

EGCD, 41
EGV, 55
EGVL, 54
EPSX0, 65
EULER, 25
EVAL, 27, 127
EXLR, 59
EXP2POW, 73
EXPAND, 27, 127
EXPANDMOD, 49
EXPLN, 37

FACTOR, 22, 27, 39, 127
FACTORMOD, 49
FACTORS, 22, 40, 127
FC?, 5
FCOEF, 43
FDISTRIB, 72
FOURIER, 36
FREEZE, 98
FROOTS, 43
FS?, 5
FXND, 26, 46

GAMMA, 74
GAUSS, 57
GCD, 21, 38
GCDMOD, 49
GET, 102
GRAMSCHMIDT, 67
GROBADD, 78

HADAMARD, 54
HALFTAN, 35
HERMITE, 45
HESS, 58
HILBERT, 55
HORNER, 42

IABCUV, 24
IBASIS, 70
IBERNOULLI, 74
IBP, 31
ICHINREM, 24
IDIV2, 23

122

IEGCD, 24
ILAP, 65, 129
IM, 27
IMAGE, 70
INPUT, 97
INTVX, 29
INVMOD, 48
IQUOT, 23
IREMAINDER, 23, 126
ISOL, 60
ISOM, 68
ISPRIME?, 20, 23

JORDAN, 55

KER, 69

LAGRANGE, 44
LAP, 65, 129
LAPL, 58
LCM, 22, 39, 127
LCXM, 56
LDEC, 63
LEGENDRE, 44
LGCD, 21, 39
LIMIT, 30, 31, 52, 127
LIN, 37
LINSOLVE, 62
LNAME, 66
LNCOLLECT, 38
LVAR, 66

MAD, 53
MKISOM, 68
MOD, 23, 126
MODSTO, 47
MSGBOX, 98
MSLV, 73
MULTMOD, 47

NEG, 27
NEXTPRIME, 24

P2C, 71
PA2B2, 25
PARTFRAC, 46
PASTE, 14
PCAR, 55
PCOEF, 43
PLOT, 19, 77
PLOTADD, 19, 78

PMINI, 73
POWEXPAND, 72
POWMOD, 48
PREVAL, 28
PREVPRIME, 24
PROMPTSTO, 97
PROOT, 42, 128
PROPFRAC, 26, 46
PSI, 75
Psi, 75
PTAYL, 42
PURGE, 15
PUT, 102

qr, 66
QUOT, 40
QXA, 56

RCL, 15
RE, 27
REF, 61
REMAINDER, 41
REORDER, 45
RESULTANT, 75
RISCH, 31
RREF, 62
rref, 61
RREFMOD, 49

SCROLL, 78
SEQ, 102
SERIES, 51
SEVAL, 76
SF, 5
SIGMA, 76
SIGMAVX, 76
SIGN, 27
SIGNTAB, 77
SIMP2, 22, 26, 46
SIMPLIFY, 73
SINCOS, 34, 127
SOLVE, 60
SOLVEVX, 59
STO, 15
STURM, 71
STURMAB, 71
SUBST, 28, 64, 129
SUBTMOD, 47
SYLVESTER, 57
SYST2MAT, 67

123

TABVAL, 77
TABVAR, 77
TAN2SC, 34
TAN2SC2, 35
TAYLOR0, 50
TAYLR , 50
TCHEBYCHEFF, 45
TCOLLECT, 33
TEXPAND, 32
TLIN, 32
TRAN, 53
TRIG, 35
TRIGCOS, 36
TRIGSIN, 36
TRIGTAN, 36
TRN, 53
TRUNC, 44
TSIMP, 38

VANDERMONDE, 56
VER, 76
VISIT, 95

XNUM, 66
XQ, 66

ZEROS, 42

124

Contents

0.1 Introduction 2
0.1.1 Turning on the calculator 2
0.1.2 What am I looking at? . . 2

0.2 Calculator modes 4
0.3 Notation 5
0.4 Flags 5

1 Important keys 5
1.1 The APPS key 5

1.1.1 Plot functions 5
1.1.2 I/O functions 6
1.1.3 Constants library 6
1.1.4 Numeric solver 6
1.1.5 Time & date 6
1.1.6 Equation writer 6
1.1.7 File manager 7
1.1.8 Matrix writer 7
1.1.9 Text editor 7
1.1.10 Math menu 7
1.1.11 CAS menu 7

1.2 The MODE key 7
1.3 The TOOL key 7
1.4 The UNDO key (red-shift HIST) 8
1.5 The VAR key 8
1.6 The EQW key 8
1.7 The MTRW key (blue-shift EQW) 8
1.8 The SYMB key 8
1.9 The MTH (blue-shift SYMB) key 8
1.10 The UNITS (red-shift 6) key . . 9
1.11 The HIST key 9

2 Data entry 9
2.1 The equation editor 9

2.1.1 Entering the equation
writer 9

2.1.2 How to select? 10
2.1.3 How to modify an ex-

pression 12
2.1.4 How to enter AND,

∫
and∑

. 13
2.1.5 Cursor mode 13
2.1.6 To view all 13

2.2 The matrix writer 13
2.3 The text editor 14

2.3.1 BEGIN END 14
2.3.2 COPY 14
2.3.3 CUT 14
2.3.4 PASTE 14

2.4 Variables 14
2.4.1 STO 15
2.4.2 RCL 15
2.4.3 PURGE 15
2.4.4 Predefined variables . . . 16

2.5 Directories 16
2.5.1 Creating a directory . . . 16
2.5.2 Working in a directory . . 17
2.5.3 Deleting, renaming,

moving a directory 17

3 Plotting graphs 17
3.1 Plot windows 17

3.1.1 Equation entry 17
3.1.2 Plot window 17
3.1.3 Graph display 17
3.1.4 Plot setup 18
3.1.5 Table setup 18
3.1.6 Table display 18

3.2 Plot setup 18
3.2.1 Plot type 18
3.2.2 The equation 18
3.2.3 Independent variable

and equation types 19
3.3 Drawing the plot 19

4 Symbolic calculations 20
4.1 Integers (and Gauss integers) . . 20

4.1.1 Infinite-precision integers 20
4.1.2 DEFINE 20
4.1.3 GCD 21
4.1.4 LGCD 21
4.1.5 SIMP2 22
4.1.6 LCM 22
4.1.7 FACTOR 22
4.1.8 FACTORS 22
4.1.9 DIVIS 22
4.1.10 IQUOT 23
4.1.11 IREMAINDER MOD 23
4.1.12 IDIV2 23
4.1.13 ISPRIME? 23
4.1.14 NEXTPRIME 24
4.1.15 PREVPRIME 24
4.1.16 IEGCD 24
4.1.17 IABCUV 24
4.1.18 ICHINREM 24
4.1.19 PA2B2 25
4.1.20 EULER 25

125

4.2 Rationals 25
4.2.1 PROPFRAC 26
4.2.2 FXND 26
4.2.3 SIMP2 26

4.3 Reals 26
4.4 Complex numbers 26
4.5 Algebraic expressions 27

4.5.1 FACTOR 27
4.5.2 EXPAND EVAL 27
4.5.3 SUBST 28
4.5.4 PREVAL 28

4.6 Functions 28
4.6.1 DERVX 28
4.6.2 DERIV 29
4.6.3 INTVX 29
4.6.4 LIMIT 30
4.6.5 LIMIT and

∫
. 31

4.6.6 IBP 31
4.6.7 RISCH 31

4.7 Trigonometric expressions 32
4.7.1 TEXPAND 32
4.7.2 TLIN 32
4.7.3 TCOLLECT 33
4.7.4 ACOS2S 33
4.7.5 ASIN2C 33
4.7.6 ASIN2T 34
4.7.7 ATAN2S 34
4.7.8 SINCOS 34
4.7.9 TAN2SC 34
4.7.10 TAN2SC2 35
4.7.11 HALFTAN 35
4.7.12 TRIG 35
4.7.13 TRIGSIN 36
4.7.14 TRIGCOS 36
4.7.15 TRIGTAN 36
4.7.16 FOURIER 36

4.8 Exponentials and Logarithms . . 37
4.8.1 EXPLN 37
4.8.2 LIN 37
4.8.3 LNCOLLECT 38
4.8.4 TSIMP 38

4.9 Polynomials 38
4.9.1 GCD 38
4.9.2 LGCD 39
4.9.3 SIMP2 39
4.9.4 LCM 39
4.9.5 FACTOR 39
4.9.6 FACTORS 40
4.9.7 DIVIS 40
4.9.8 QUOT 40

4.9.9 REMAINDER 41
4.9.10 DIV2 41
4.9.11 EGCD 41
4.9.12 ABCUV 41
4.9.13 HORNER 42
4.9.14 PTAYL 42
4.9.15 ZEROS 42
4.9.16 PROOT 42
4.9.17 FROOTS 43
4.9.18 PCOEF 43
4.9.19 FCOEF 43
4.9.20 CHINREM 43
4.9.21 TRUNC 44
4.9.22 LAGRANGE 44
4.9.23 LEGENDRE 44
4.9.24 HERMITE 45
4.9.25 TCHEBYCHEFF 45
4.9.26 REORDER 45

4.10 Rational fractions 46
4.10.1 FXND 46
4.10.2 SIMP2 46
4.10.3 PROPFRAC 46
4.10.4 PARTFRAC 46

4.11 Modular calculations 47
4.11.1 MODSTO 47
4.11.2 ADDTMOD 47
4.11.3 SUBTMOD 47
4.11.4 MULTMOD 47
4.11.5 DIV2MOD 48
4.11.6 DIVMOD 48
4.11.7 POWMOD 48
4.11.8 INVMOD 48
4.11.9 GCDMOD 49
4.11.10EXPANDMOD 49
4.11.11FACTORMOD 49
4.11.12RREFMOD 49

4.12 Limited and asymptotic expan-
sions 50
4.12.1 DIVPC 50
4.12.2 TAYLOR0 50
4.12.3 TAYLR 50
4.12.4 SERIES 51
4.12.5 LIMIT 52

4.13 Matrices 53
4.13.1 TRAN 53
4.13.2 TRN 53
4.13.3 MAD 53
4.13.4 HADAMARD 54
4.13.5 AXM 54
4.13.6 AXL 54

126

4.13.7 EGVL 54
4.13.8 EGV 55
4.13.9 PCAR 55
4.13.10JORDAN 55
4.13.11HILBERT 55
4.13.12VANDERMONDE 56
4.13.13LCXM 56

4.14 Vectors 56
4.15 Quadratic forms 56

4.15.1 QXA 56
4.15.2 AXQ 57
4.15.3 GAUSS 57
4.15.4 SYLVESTER 57

4.16 Functions of multiple variables . 57
4.16.1 DERIV 57
4.16.2 LAPL 58
4.16.3 HESS 58
4.16.4 DIV 58
4.16.5 CURL 59

4.17 Equations 59
4.17.1 EXLR 59
4.17.2 SOLVEVX 59
4.17.3 SOLVE 60
4.17.4 ISOL 60

4.18 Linear systems 60
4.18.1 REF 61
4.18.2 rref 61
4.18.3 RREF 62
4.18.4 LINSOLVE 62

4.19 Differential equations 63
4.19.1 LDEC 63
4.19.2 DESOLVE and SUBST . . . 64
4.19.3 LAP ILAP 65

4.20 Other functions 65
4.20.1 EPSX0 65
4.20.2 LVAR 66
4.20.3 LNAME 66
4.20.4 XNUM 66
4.20.5 XQ 66

4.21 New commands 66
4.21.1 qr 66
4.21.2 GRAMSCHMIDT 67
4.21.3 SYST2MAT 67
4.21.4 CHOLESKY 67
4.21.5 DIAGMAP 68
4.21.6 ISOM 68
4.21.7 MKISOM 68
4.21.8 KER 69
4.21.9 IMAGE 70
4.21.10IBASIS 70

4.21.11BASIS 70

4.21.12AUGMENT 70

4.21.13CYCLOTOMIC 70

4.21.14STURM 71

4.21.15STURMAB 71

4.21.16P2C 71

4.21.17C2P 72

4.21.18CIRC 72

4.21.19FDISTRIB 72

4.21.20DISTRIB 72

4.21.21POWEXPAND 72

4.21.22SIMPLIFY 73

4.21.23EXP2POW 73

4.21.24MSLV 73

4.21.25PMINI 73

4.21.26IBERNOULLI 74

4.21.27GAMMA 74

4.21.28PSI 75

4.21.29Psi 75

4.21.30RESULTANT 75

4.21.31SEVAL 76

4.21.32SIGMA 76

4.21.33SIGMAVX 76

4.21.34VER 76

4.21.35TABVAR 77

4.21.36SIGNTAB 77

4.21.37TABVAL 77

4.21.38PLOT 77

4.21.39PLOTADD 78

4.21.40SCROLL 78

4.21.41GROBADD 78

5 Bac 99 and HP49G 78

5.1 Introduction 78

5.2 Exercise 1 79

5.3 Exercise 2 (specialized) 83

5.4 Exercise 2 (not specialized) . . . 86

5.5 Problem 89

5.6 Conclusion 95

127

6 Programming 95
6.1 Programming in algebraic mode . 95

6.1.1 Entering a program . . . 95
6.1.2 Saving a program 95
6.1.3 Editing a program 95
6.1.4 Executing a program . . . 96
6.1.5 Modifying a program

and saving it with an-
other name 96

6.2 Program comments 96
6.3 Variables 96

6.3.1 Variable names 96
6.3.2 Local variables 96
6.3.3 Parameters 97

6.4 Data input 97
6.4.1 Translation in algorith-

mic language 97
6.4.2 Translation for the

HP49G in RPN mode . . 97
6.4.3 Translation for the

HP49G in Algebraic mode 97
6.5 Data output 98

6.5.1 Translation in algorith-
mic language 98

6.5.2 Translation for the
HP49G in RPN mode . . 98

6.5.3 Translation for the
HP49G in Algebraic mode 98

6.6 Sequence of instructions, or“block” 98
6.6.1 Translation in algorith-

mic language 98
6.6.2 Translation for the

HP49G in RPN mode . . 98
6.6.3 Translation for the

HP49G int algebraic mode 98
6.7 Store instruction 98

6.7.1 Translation in Algorith-
mic language 99

6.7.2 Translation for the
HP49G in RPN mode . . 99

6.7.3 Translation for the
HP49G in Algebraic mode 99

6.8 Conditional branch instructions . 99
6.8.1 Translation in algorith-

mic language 99
6.8.2 Translation for the

HP49G in RPN mode . . 99
6.8.3 Translation for the

HP49G in Algebraic mode 99
6.9 “For” loops 99

6.9.1 Translation in algorith-
mic language 99

6.9.2 Translation for the
HP49G in RPN mode . . 99

6.9.3 Translation for the
HP49G in Algebraic mode 100

6.10 “While” loops 100
6.10.1 Translation in algorith-

mic language 100
6.10.2 Translation for the

HP49G in RPN mode . . 100
6.10.3 Translation for the

HP49G in Algebraic mode 100
6.11 Boolean (or conditional) expres-

sions 100
6.11.1 Translation in algorith-

mic language 100
6.11.2 Translation for the

HP49G in RPN mode . . 100
6.11.3 Translation for the

HP49G in Algebraic mode 100
6.12 Logical operators 100

6.12.1 Translation in algorith-
mic language 100

6.12.2 Translation for the
HP49G in RPN mode . . 100

6.12.3 Translation for the
HP49G in Algebraic mode 100

6.13 Functions 101
6.13.1 Translation in algorith-

mic language 101
6.13.2 Translation for the

HP49G in RPN mode . . 101
6.13.3 Translation for the

HP49G in Algebraic mode 101
6.14 Lists 102

6.14.1 Translation in algorith-
mic language 102

6.14.2 Translation for the
HP49G in RPN mode . . 102

6.14.3 Translation for the
HP49G in algebraic mode 102

6.15 Example: The sieve of Eras-
tothenes 102
6.15.1 Description 102
6.15.2 Algorithmic language . . 103
6.15.3 HP49G, RPN mode . . . 104
6.15.4 HP49G, Algebraic mode . 104

128

7 Arithmetic programs 105
7.1 Calculating the GCD using the

Euclide’s algorithm 105
7.1.1 Algorithmic language . . 105
7.1.2 HP49G, RPN mode . . . 106
7.1.3 HP49G, Algebraic mode . 106

7.2 Bézout identity using the Eu-
clide’s algorithm 107
7.2.1 Iterative implementation

without lists 107
7.2.2 Iterative implementation

with lists 108
7.2.3 Recursive version with lists108
7.2.4 HP49G, RPN mode . . . 109
7.2.5 HP49G, Algebraic mode . 109

7.3 Factorization 110

7.3.1 Algorithms and their
translations 110

7.3.2 HP49G, RPN mode . . . 112
7.3.3 HP49G, algebraic mode . 112

7.4 Calculation of AP mod N 113
7.4.1 Algorithmic language . . 113
7.4.2 HP49G, RPN mode . . . 115
7.4.3 HP49G, Algebraic mode . 115

7.5 The function “isprime” 116
7.5.1 Algorithmic language . . 116
7.5.2 HP49G, RPN mode . . . 118
7.5.3 HP49G. Algebraic mode . 118

7.6 Rabin’s probabilistic method . . 119
7.6.1 Algorithmic language . . 119
7.6.2 HP49G, RPN mode . . . 120
7.6.3 HP49G, Algebraic mode . 120

129

	Introduction
	Turning on the calculator
	What am I looking at?

	Calculator modes
	Notation
	Flags
	Important keys
	The APPS key
	Plot functions
	I/O functions
	Constants library
	Numeric solver
	Time & date
	Equation writer
	File manager
	Matrix writer
	Text editor
	Math menu
	CAS menu

	The MODE key
	The TOOL key
	The UNDO key (red-shift HIST)
	The VAR key
	The EQW key
	The MTRW key (blue-shift EQW)
	The SYMB key
	The MTH (blue-shift SYMB) key
	The UNITS (red-shift 6) key
	The HIST key

	Data entry
	The equation editor
	Entering the equation writer
	How to select?
	How to modify an expression
	How to enter AND, and
	Cursor mode
	To view all

	The matrix writer
	The text editor
	BEGIN END
	COPY
	CUT
	PASTE

	Variables
	STO
	RCL
	PURGE
	Predefined variables

	Directories
	Creating a directory
	Working in a directory
	Deleting, renaming, moving a directory

	Plotting graphs
	Plot windows
	Equation entry
	Plot window
	Graph display
	Plot setup
	Table setup
	Table display

	Plot setup
	Plot type
	The equation
	Independent variable and equation types

	Drawing the plot

	Symbolic calculations
	Integers (and Gauss integers)
	Infinite-precision integers
	DEFINE
	GCD
	LGCD
	SIMP2
	LCM
	FACTOR
	FACTORS
	DIVIS
	IQUOT
	IREMAINDER MOD
	IDIV2
	ISPRIME?
	NEXTPRIME
	PREVPRIME
	IEGCD
	IABCUV
	ICHINREM
	PA2B2
	EULER

	Rationals
	PROPFRAC
	FXND
	SIMP2

	Reals
	Complex numbers
	Algebraic expressions
	FACTOR
	EXPAND EVAL
	SUBST
	PREVAL

	Functions
	DERVX
	DERIV
	INTVX
	LIMIT
	LIMIT and
	IBP
	RISCH

	Trigonometric expressions
	TEXPAND
	TLIN
	TCOLLECT
	ACOS2S
	ASIN2C
	ASIN2T
	ATAN2S
	SINCOS
	TAN2SC
	TAN2SC2
	HALFTAN
	TRIG
	TRIGSIN
	TRIGCOS
	TRIGTAN
	FOURIER

	Exponentials and Logarithms
	EXPLN
	LIN
	LNCOLLECT
	TSIMP

	Polynomials
	GCD
	LGCD
	SIMP2
	LCM
	FACTOR
	FACTORS
	DIVIS
	QUOT
	REMAINDER
	DIV2
	EGCD
	ABCUV
	HORNER
	PTAYL
	ZEROS
	PROOT
	FROOTS
	PCOEF
	FCOEF
	CHINREM
	TRUNC
	LAGRANGE
	LEGENDRE
	HERMITE
	TCHEBYCHEFF
	REORDER

	Rational fractions
	FXND
	SIMP2
	PROPFRAC
	PARTFRAC

	Modular calculations
	MODSTO
	ADDTMOD
	SUBTMOD
	MULTMOD
	DIV2MOD
	DIVMOD
	POWMOD
	INVMOD
	GCDMOD
	EXPANDMOD
	FACTORMOD
	RREFMOD

	Limited and asymptotic expansions
	DIVPC
	TAYLOR0
	TAYLR
	SERIES
	LIMIT

	Matrices
	TRAN
	TRN
	MAD
	HADAMARD
	AXM
	AXL
	EGVL
	EGV
	PCAR
	JORDAN
	HILBERT
	VANDERMONDE
	LCXM

	Vectors
	Quadratic forms
	QXA
	AXQ
	GAUSS
	SYLVESTER

	Functions of multiple variables
	DERIV
	LAPL
	HESS
	DIV
	CURL

	Equations
	EXLR
	SOLVEVX
	SOLVE
	ISOL

	Linear systems
	REF
	rref
	RREF
	LINSOLVE

	Differential equations
	LDEC
	DESOLVE and SUBST
	LAP ILAP

	Other functions
	EPSX0
	LVAR
	LNAME
	XNUM
	XQ

	New commands
	qr
	GRAMSCHMIDT
	SYST2MAT
	CHOLESKY
	DIAGMAP
	ISOM
	MKISOM
	KER
	IMAGE
	IBASIS
	BASIS
	AUGMENT
	CYCLOTOMIC
	STURM
	STURMAB
	P2C
	C2P
	CIRC
	FDISTRIB
	DISTRIB
	POWEXPAND
	SIMPLIFY
	EXP2POW
	MSLV
	PMINI
	IBERNOULLI
	GAMMA
	PSI
	Psi
	RESULTANT
	SEVAL
	SIGMA
	SIGMAVX
	VER
	TABVAR
	SIGNTAB
	TABVAL
	PLOT
	PLOTADD
	SCROLL
	GROBADD

	Bac 99 and HP49G
	Introduction
	Exercise 1
	Exercise 2 (specialized)
	Exercise 2 (not specialized)
	Problem
	Conclusion

	Programming
	Programming in algebraic mode
	Entering a program
	Saving a program
	Editing a program
	Executing a program
	Modifying a program and saving it with another name

	Program comments
	Variables
	Variable names
	Local variables
	Parameters

	Data input
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Data output
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Sequence of instructions, or ``block''
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G int algebraic mode

	Store instruction
	Translation in Algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Conditional branch instructions
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	``For'' loops
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	``While'' loops
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Boolean (or conditional) expressions
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Logical operators
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Functions
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Lists
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in algebraic mode

	Example: The sieve of Erastothenes
	Description
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

	Arithmetic programs
	Calculating the GCD using the Euclide's algorithm
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

	Bézout identity using the Euclide's algorithm
	Iterative implementation without lists
	Iterative implementation with lists
	Recursive version with lists
	HP49G, RPN mode
	HP49G, Algebraic mode

	Factorization
	Algorithms and their translations
	HP49G, RPN mode
	HP49G, algebraic mode

	Calculation of AP mod N
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

	The function ``isprime''
	Algorithmic language
	HP49G, RPN mode
	HP49G. Algebraic mode

	Rabin's probabilistic method
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

