
User's Guide For RPN:
An RPN Interface for the TI89 and TI92+

RPN Version 2.02

Program by Lars Frederiksen

User's guide by Doug Burkett
Created 1 May 2000

Revised 23 September 2000

RPN program © 2000 Lars Frederiksen
User's Guide © 2000 Doug Burkett

Contents

78Alphabetic list of functions .

75Supported key functions .

74Special characters and the CHAR menu

68Constants, units and unit conversion

65Custom Key Assignments .

63Custom Menus .

55TOOLS Menu .

53RCL Menu .

34MATH Menu .

32MODE Menu .

30Menu operation .

29Algebraic mode operation .

28Using delayed evaluation and constraints

24Executing functions, programs and commands . . .

23Using built-in 89/92+ applications

21Saving, recalling and deleting variables

14The command line and stack operations

9Basic operations in RPN mode

7Running and exiting RPN .

5Installing and uninstalling RPN

3Revisions .

2Introduction .

Page 1

RPN is an interface program which lets you operate a TI89 or TI92+ calculator using an RPN
interface, instead of the normal algebraic interface. RPN is a stack-based interface, which is often
faster to use than algebraic entry, especially for complicated expressions. RPN is an acronym for
reverse Polish notation, which describes the method used to enter operators and operands.

RPN has been written for TI calculator users who prefer an RPN interface, or for those who want to
learn to use RPN.

RPN is not a 'shell' or a 'kernel'. RPN should not be run with shells or kernels, or you will probably
crash your calculator and loose all the memory contents.

This manual uses square brackets to indicate keys on the calculator. For example, [ENTER] means
the ENTER key. [DIAMOND] means the green diamond key. [LEFT], [RIGHT], [UP] and [DOWN]
refer to the cursor movement keys, which are on the blue cursor control on the 92+. [BACKSPACE]
means the backspace key. N: means the contents of stack element N; for example, 2: means the
contents of the second stack location. [SHIFT] is the alpha keyboard 'shift' key; that is, the key that
results in A instead of a.

I assume that you are familiar with normal operation of your calculator. For example, I refer to shifted
key functions such as [DIAMOND] [UNITS] as just [UNITS].

Since RPN is both the name of the program and the name of an operation method, some confusion
may result. The meaning is usually clear from the context.

I sometimes refer to 'normal' or 'normal-mode' operation of the 89/92+. This means the operating
mode when RPN is not running, and you are using the built-in algebraic interface.

If you have questions, comments or bug reports about RPN, you may email Lars at

ltf@post8.tele.dk

Please do not ask for more programs.

Lars and I also thank the beta testers: Art Belmonte, Rafael Humberto Padilla Velazquez, and TiArc
Jason.

This manual is distributed as an Acrobat Reader PDF file. The file is bookmarked extensively, in
more detail than the table of contents. If the bookmarks are not automatically shown in a window at
the left in Acrobat Reader, use the icon in the menu bar to display the bookmarks.

{Manual author's note: I would like to thank Lars for letting me try out RPN, as well as write this
manual. I would also like to thank him for considering and implementing my suggestions.}

Important!

RPN 2.02 does not run reliably on HW2 calculators with AMS 2.05. See
the Crashes section below, in Installing and Uninstalling RPN.

Introduction

Page 2

Functional changes to RPN program version 2.02 from version 1.01:

y RPN will crash on HW2 calculators with AMS 2.05. This is caused by TI's 24K ASM program limit.
There is no known fix.

y [COPY] can be used on marked expressions in the stack.

y These keys operate on command-line expressions: [COPY], [CUT], [PASTE], [SHIFT][LEFT],
[SHIFT][RIGHT], [SHIFT][UP], [SHIFT][DOWN].

y You can use [COPY] and [PASTE] to copy expressions between normal-mode and RPN.

y [SHIFT][UP] and [SHIFT][DOWN] can be used to scroll large stack expressions.

y [ON], [OFF] and [DIAMOND][ON] can be used to turn the calculator off.

y The [APPS] key opens the normal-mode applications menu. All built-in applications can be used
from RPN. [2nd] [APPS] displays the previous active application. [DIAMOND] [APPS] displays the
Flash applications menu.

y On the TI92+, these keys can be used to start the normal-mode applications from RPN: [MEM],
[CATALOG], [Y=], [WINDOW], [GRAPH], [TblSet], [TABLE], [VAR-LINK]. These keys can also be
used on the TI89 unless certain line menus are shown.

y RPN assumes the role of the Home screen while running. The [HOME] key switches between RPN
and the last open application.

y There is a new type of command that is identified by '..,n', which takes a variable number of
arguments from the stack, and a number-of-arguments argument 'n' from the command line, or
from stack level 1:.

y The old Var-Link menu has been moved to the [RCL] menu. The [RCL] menu can now include
programs.

y The [MODE] menu has changed. The Other menu item starts the normal-mode Mode settings
menu. The Customize menu item includes new options: 'Enable undo', and 'Enable system MATH'.
The 'Enable system MATH' option lets you use the normal-mode Math menu, but only in algebraic
mode.

y RPN now has an UNDO feature that restores the stack contents prior to the last operation. Up to
10 operations can be undone. Execute UNDO by pressing [INS], or from the Math Stack menu.

y The double-quote key ["] now automatically switches from RPN to algebraic mode. RPN mode is
enabled when there are an even number of double-quotes in the command line.

y The Custom menu can now include programs.

y The Math menu has changed. The Matrix operations are organized in submenus. The LU and QR
functions have been added. New menus for List, Stat and Prob functions are added.

y There are keyboard shortcuts for the Math menus: [DIAMOND][1] - [DIAMOND] [9] and [2nd][7].

y There are new functions in the Math Stack menu: PICK 2, PICK n, ROLL 2, ROLL n, DEL, DEL
..,n.

y You can now run TIbasic and assembly programs from RPN. Assembly programs must be no-stub
and include a 'number of arguments' test. Most assembly programs are not compatible with RPN.
Running an incompatible assembly program will probably crash your calculator, hard.

Revisions

Page 3

y You can debug TIbasic programs from RPN.

y A new Tools menu is shown by pressing [DIAMOND][(-)]. This menu includes these submenus:
Graphics, Var, Folder, NewData ..,n, and NewProb. The functions in these menus are identical to
the normal-mode functions of the same names. There are lots of new functions and commands
here.

y The [DEL] key now opens a menu to delete variables. These functions act on variable names in
the stack.

y The [ANS] key now enters 'ans(1)' in the command line. Push [ENTER] to copy the expression in
the normal-mode history display, at level 1:, to RPN stack level 1:. You can also edit the '1' to
some other number to retrieve expressions from different levels in the history display.

y The Custom menu and [RCL] menu now display all variable types. If a variable type cannot be
evaluated (for example, a PIC variable), then the variable name is pushed on the stack.

y Built-in commands can be run from the command line. TIbasic programs and functions can also be
executed from the command line. The programs and functions may be archived.

y Expressions can be graphed from the stack. Use [DIAMOND][(-)] to open the Tools menu, select
the Graph menu, then use the appropriate menu item.

y You can now make custom key assignments. Assignments can be functions, programs or
expressions. You can also assign a command-line menu to a key. Programs or functions named
as key-code names are executed by assigned keys.

y RPN does not run under any assembly shells. Trying to do so will probably result in a crash.

y RPN will not run if it is not archived.

y Auto mode (as compared to Exact and Approx) is now completely functional.

y The calculator will automatically turn off if the cursor is in stack display.

Changes to manual:

y The manual has been substantially rewritten to reflect the changes to RPN 2.02. No errors have
been corrected from the 1.01 version.

Page 4

Installing RPN

To install RPN, use newfold() to create the folder in which you want to install RPN. For example,

QHZIROG�USQF�

creates the folder USQF and makes it the current folder. Use GraphLink to send these files to the
folder you created:

If you have an 89, send: rpn.89z
rpn_202.89z

If you have a 92+, send: rpn.9xz
rpn_202.9xz

Because the screen sizes and keyboards are different on the 89 and 92+, you must install the correct
version of RPN. These programs rpn() and rpn_202() are shown as type ASM files in Var-Link. For
the examples in this manual, I will assume that the program is installed in folder \rpnc.

rpn() can be put in any folder. rpn_202() must be put in the \main folder, or a folder with the name
\rpnc.

RPN requires about 39,200 bytes of free RAM for installation. Both rpn and rpn_202 must be
archived. RPN will not start if it is not archived.

After installing RPN, use these steps to archive the program:

1. Push [2nd] [VAR-LINK] to display the Var-Link screen.

2. Push [F2] (View) the display the Var-Link View dialog box. Select the folder in which you
installed RPN, and press [ENTER] to close the dialog box.

3. Push [F5] (All), then push [1] (Select All) to select both rpn() and rpn_202().

4. Push [F1] (Manage), then push [8] (Archive Variable). RPN is now archived.

You can check which version is installed when RPN is running by pressing [MODE] [4]. An "about"
screen is displayed which shows the version number, calculator version and the author's email
address.

Uninstalling RPN

To uninstall RPN, delete all the variables in the folder you created when you installed RPN. Delete
the folder. Delete the list variable rpnsk in the Main folder. RPN is now uninstalled.

Crashes

There are three known conditions under which RPN will 'crash' the calculator, or cause it to 'freeze
up' or 'lock up'.

Installing and uninstalling RPN

Page 5

The first condition is not caused by a bug in RPN, but instead by corrupt or invalid system settings,
which result in a crash when you try to run various assembly language programs, and not just RPN.
One cause for this condition is restoring a hardware version 1 backup file to a hardware version 2
calculator. The only known solution is to reset all memory and restore your programs and variables
individually, without using the GraphLink Send Backup command.

The second condition applies only to a HW2 TI92+. A crash may occur if rpn() and rpn_201() are not
archived. The solution is to archive RPN before running it for the first time.

RPN was not designed or intended to be run under assembly shells, and it probably will not run. RPN
is known not to run under DoorsOS. There are no plans to make RPN compatible with any assembly
shells. If you try to run RPN from such a shell, you will probably crash your calculator and loose all
the memory contents.

The third condition applies to HW2 calculators and AMS 2.05. RPN will crash on a TI89 or TI92+ with
HW2 with AMS 2.05. The crash appears to be caused by the 24K ASM program size limit
incorporated on AMS 2.05. The crash will occur when there is less than about 148K of free RAM.

One possible fix is to use the HW2PATCH v2.20 program written by Julien Muchembled. You can get
this patch from www.ticalc.org. Martin Daveluy reports that installing the patch apparently fixes the
crash problem. Some users prefer not to install patches like this because of possible reliability
problems. While there are no known problems with HW2PATCH, patches like these are written
without formal documentation from TI. These comments are not intended to criticize Mr. Muchembled
or his work, but instead to alert you to possible problems.

Neither Lars nor I can recommend that you use the HW2PATCH to run RPN. It is truly unfortunate
that RPN will not run on the latest TI hardware and software. Future developments may solve this
problem.

It seems that RPN will run reliably if more than 148K of free RAM is available. This has not been
proven. If you are willing to risk a crash, you can try this launcher:

NEGSUJP���
3UJP
�/DXQFKHU IRU 531 Z�5$0 FKHFN
���VHS���GEXUNHWW#LQILQHW�FRP
LI JHW&RQIJ��>��@!������ WKHQ
USQF?USQ��

HOVH
GLDORJ
WH[W �&DQ
W VWDUW 531��
WH[W �QRW HQRXJK IUHH 5$0�

HQGGORJ
HQGLI
(QG3UJP

This program is executed by pressing [DIAMOND] [2]. It will start RPN if there is more than about
148K of RAM available. Otherwise, it will display the error message. This launcher does not
guarantee that RPN will run reliably. This launcher is not necessary with HW1 calculators.

To reduce the amount of RAM that is used, archive everything that can be archived. Don't create
large variables, and delete unused variables as soon as you are done with them.

Page 6

Running RPN

To run RPN, make the installation folder the current folder. Use the Current Folder item in the MODE
menu, or use

VHWIROG�USQF�

then enter this at the command line:

USQ��

RPN will start, and you will see the stack display screen:

Note that the status indicators are shown in the status line, as in normal 89/92+ operation. In the
example above, the current folder is RPNC, the angle mode is RAD, and the calculation mode is
APPROX.

The command line in RPN serves the same purpose as in normal-mode operation: you use it to enter
the commands and operations you want to perform. In this manual I show the command line below
the stack with horizontal lines, like this:

3: a
2: b
1: c

d

In this example, a, b, and c are on the stack, and d is in the command line.

You can also start RPN from any current folder by specifying the installation folder. For example, if
RPN is installed in a folder called rpnc, then enter this at the command line:

USQF?USQ��

Running and exiting RPN

Page 7

Exiting RPN

To exit RPN, press [QUIT], and you will return to the normal 89/92+ environment. The stack and all
settings are saved when you exit RPN. You can also exit RPN by pressing [DIAMOND] [OFF], which
turns the calculator off. RPN will run the next time you turn the calculator on.

Turning the calculator off from RPN

[ON], [OFF] and [DIAMOND][ON] can all be used to turn the calcuator off from RPN. When you next
turn the calculator on, RPN resumes running.

RPN exits (stops running) if you have switched to normal mode and turn the calculator off.

A keyboard program for starting RPN

If you often switch back and forth between normal operation and RPN, you may want to use this
short program to start RPN:

NEGSUJP���
3UJP
�531 ODXQFKHU
USQF?USQ��
(QG3UJP

Since this program is one of the special 'keyboard' programs, you can run it from any folder with

>',$021'@ >�@

To use another key instead of [2] to start RPN, change the '2' in kbdprgm2 to some other number
from 1 to 9. kbdprgm2() must be in the main folder. See page 314 of the TI89/TI92+ Guidebook for
more details on keyboard programs.

Page 8

RPN may be operated in one of two modes: RPN, or algebraic. This section discusses RPN mode.
The current mode is always shown in the status line just under the first stack level display. In RPN
mode, the RPN is shown; in algebraic mode, ALG is shown.

This section is a very basic description of RPN operation. If you are familiar with RPN calculators,
you can probably skip this section: RPN operates like they all do.

Most keys perform the same function in RPN as they do in normal-mode operation. Function names
are the same, as well as the arguments to the functions.

As an example, press

� >(17(5@ � �

The screen now shows

and you have just added 2 and 4, with a result of 6. This example shows all the basic principles of
RPN:

1. Operations are performed on expressions on the stack or in the command line.

2. You push expressions onto the stack with the [ENTER] key

3. It is not always necessary to press [ENTER] to finish an operation.

Considering our example, keystroke by keystroke:

2 enters 2 on the command line
[ENTER] pushes 2 onto stack level 1:
4 enters 4 on the command line
+ adds the contents of stack levels 1: and 2: which are 2 and 4

A stack is a data structure in which expressions are 'pushed on' from the bottom, and 'dropped off'
from the bottom. The [ENTER] key is the means for pushing expressions onto the stack. For
example, this keystroke sequence

� >(17(5@ � >(17(5@ � >(17(5@ � >(17(5@

Basic operations in RPN mode

Page 9

results in this stack:

4: 1
3: 2
2: 3
1: 4

The numbers to the left of the colons in the stack display are only labels to identify the stack levels.
You don't really use these numbers for anything.

Math functions require one or more arguments. In RPN, the arguments are taken from the stack. If a
function requires two arguments, they are taken from stack levels 1: and 2:. If a functions requires
one argument, it is taken from stack level 1:

Here are some examples of how you would enter some simple problems involving two arguments:

� � � � >(17(5@ � �
� � � � >(17(5@ � �
�
 � � >(17(5@ �

� � � � >(17(5@ � �
� A � � >(17(5@ � A

Here are some examples of problems involving one argument:

VLQ��� � >6,1@
OQ���� �� >/1@

One common mistake made by new RPN users is using [ENTER] when it is not necessary. For
example, you could evaluate 2 + 4 like this:

� >(17(5@ � >(17(5@ �

This will work, but the second [ENTER] is not necessary. You never need to press [ENTER] before
pressing a function or operator key.

Substantial keystroke savings result on complicated expressions, because you don't need to enter
and keep track of the parenthesis as you would with algebraic entry. For example, consider this
calculation:

1− sin(.7)
(2.3−4.6)2

4
7
3

((1.2−1)
�5) �

(6�2.1−4)

The basic principle in solving any complicated expression is to enter the expressions and operators in
the same order as if you were solving the problem by hand. This means starting at the inner-most
expressions. So, the keystrokes to solve this problem are:

� >(17(5@
�� >6,1@
��� >(17(5@ ��� �
� A � � �
� >(17(5@ � >(17(5@ � � A
��� >(17(5@ � � �
 �
� >(17(5@ ���
 � �
 �

Page 10

Note that the left-hand display of the stack shows the expression as it is being entered, so you can
verify that you are doing it correctly. The right-hand side of the stack display shows intermediate
results, which can also help you find mistakes faster.

While RPN is good for entering numeric expressions, it is also very useful for entering symbolic
expressions. This expression

a
b2 + c

d2

2

ln(sin(b2−d2))

is entered with these keystrokes

D >(17(5@ E >(17(5@ � A �
F >(17(5@ G >(17(5@ � A � � � A
E >(17(5@ � A G >(17(5@ � A � >6,1@ >/1@ �

Note that you can verify each step, since the intermediate results are displayed.

This version of RPN does not have a true AUTO mode. In particular, RPN will not automatically set
the mode when using the zeros(), cZeros(), Solve(), cSolve() and integral functions. However, AUTO
mode will result in an approximate evaluation if there is a floating point value in one of the
expressions.

Use [DIAMOND] [ENTER] to evaluate the last input in the opposite mode. For example, if the mode
is set to EXACT, pressing [DIAMOND] [ENTER] will evaluate the last entry in APPROXIMATE mode.

RPN assumes the role of the normal-mode HOME screen while it is running. This means that
pressing [HOME] returns control to RPN, when a built-in application has been started from RPN. See
the section Using built-in 89/92+ applications for examples.

Using UNDO in RPN

RPN supports an UNDO feature, but only in RPN mode, not algebraic mode. The purpose of the
UNDO feature is to restore the stack and command line contents prior to the last operation. The undo
feature is executed by pressing [INS], or by selecting UNDO from the MATH STACK menu. You can
undo up to 10 stack operations.

For example,

� >(17(5@ � >�@

results in 6 in stack level 1:. If you use UNDO at this point, then 2 is restored to stack level 1: and 4 is
restored to the command line.

As another example, suppose you use these keystrokes to create a list:

� >(17(5@ � >(17(5@ � >(17(5@ � 6WDFN¯/LVW

Page 11

Using UNDO at this point results in this stack and command line:

�� �
�� �
�� �
����������
�
����������

You can enable and disable the UNDO feature in the MODE Customize menu, with the Enable
UNDO setting.

Cut, Copy, Paste and marking text

RPN supports cut, copy and paste features where appropriate. On the TI89, you use the labelled
[CUT], [COPY] and [PASTE] keys. The TI92+ does not have labelled keys; instead, use these
shortcuts:

[DIAMOND] [X] is Cut
[DIAMOND] [C] is Copy
[DIAMOND] [V] is Paste

All of these operations work on expressions in the command line. Only Copy can be used when an
expression in the stack is marked. Mark the text to cut or copy with [SHIFT] and [LEFT] or [RIGHT].
[SHIFT] [UP] and [SHIFT] [DOWN] also mark text. [SHIFT] [UP] marks the text from the cursor to the
beginning of the line. [SHIFT] [DOWN] marks the text from the cursor to the end of the line.

Note that Copy and Paste can be used to move expressions between RPN and the normal-mode
command line. Just copy the expression in RPN, exit RPN, then paste the expression in the
command line.

Copying stack expressions to the command line

To copy an expression from the stack display to the command line, use [UP] to choose the
expression. Then use Copy to copy the expression. Use [DOWN] to move the cursor back to the
command line, and paste the expression with Paste.

Another method is:

1. Push [F6] to switch to algebraic mode.

2. Use [UP] and [DOWN] to highlight the desired expression.

3. Push [ENTER] to copy the expression to the command line.

4. Push [F6] to switch back to RPN mode.

Entering conditional expressions

Some operations require conditional expressions, for example, x>0. To enter this conditional
expression, use

[>(17(5@ � !

Page 12

The with operator, |, is just as useful in RPN as it is in algebraic mode. In RPN, with is an operator
like any other. It combines the expression in stack level 2: with the constraint in stack level 1:. To
create an expression with this operator, enter the expression, then enter the constraint, then press [|].
For example, to enter

�
[��_[�

use these keystrokes:

>�@ >(17(5@ >[@ >
@ >�@ >�@
>[@ >(17(5@ >�@ > @
>_@

Using RPN stack results in normal-mode operation

You may want to use an RPN stack result in 'normal' 89/92+ operation. The easiest method is to
copy the expression in RPN, exit RPN, and paste the expression in the normal mode command line.

You can also define this function:

H[SU�PDLQ?USQVN>GLP�PDLQ?USQVN��QQ
���@��DQVUSQ�QQ�

DQVUSQ�QQ� returns the expression in stack level nn to the command line in 'normal' mode. For
example, if the stack contains

�� ��
�� ��
�� ��

then DQVUSQ��� returns 11, and DQVUSQ��� returns 33. Since the stack is saved in a list called
PDLQ?USQVN, you can also use the normal-mode Data/Matrix editor (under the [APPS] key) to copy
and paste stack expressions.

Using normal-mode history results in RPN

You can copy the contents of the normal-mode history display to the RPN stack, by using the ans()
function. Enter the number of the history entry on stack level 1:, then execute ans(). For example,
suppose that you have the expression ax2 + b on the normal-mode history display level 1. Use this

� >(17(5@
DQV >(17(5@

and ax2 + b is pushed on the RPN stack on level 1:.

You can also copy the expression from the history area or command line in normal-mode operation,
and paste the expression in RPN.

Finally, you can use the [ANS] key to paste DQV��� to the command line, the push [ENTER]. This
pushes the expression in the normal-mode history level 1: to stack level 1:.

Page 13

You can edit entries in the command line until [ENTER] is pressed. The [LEFT] and [RIGHT] cursor
keys move the cursor left and right. [BACKSPACE] deletes the character to the left of the cursor.
[2nd] [LEFT] and [2nd] [RIGHT] move the cursor to the beginning and end of the entry.

In the command line, the [CLEAR] key operates as usual:

1. The current entry is deleted if the cursor is at the end of the expression.
2. Characters to the right of the cursor are deleted if the cursor is not at the end of the

expression.

Use [BACKSPACE] when the command line is empty to delete the expression on stack level 1:.

The entire stack is cleared by pressing [DIAMOND] [CLEAR].

To copy the expression on stack level 1: to stack level 2:, press [ENTER] when the command line is
empty. This is useful when you may want to repeat a calculation in a differnent mode, or with different
argument.

Use the [UP] and [DOWN] cursor keys to display and select items that are on the stack, in the same
way that the normal 89/92+ history display is used. When an item is highlighted in the stack display,
you can use these keys:

y [ENTER] copies the highlighted expression to stack level 1:.
y [BACKSPACE] and [CLEAR] delete the highlighted expression and drop the remaining stack

entries.
y [LEFT] and [RIGHT] scroll through expressions that are too large to be completely displayed.
y [2nd] [LEFT] and [2nd] [RIGHT] move the cursor to the beginning and end of large expressions.
y [SHIFT] [UP] and [SHIFT] [DOWN] scroll through large expressions on the stack.
y The Copy feature ([COPY] on the TI89, [DIAMOND] [C] on the TI92+) copies the marked stack

expression.

RPN supports Exact, Auto and Approximate modes as used in normal-mode operation. Use
[DIAMOND] [ENTER] to repeat a calculation in the opposite calculation mode. If the mode setting is
Approx, then pressing [DIAMOND] [ENTER] will evaluate the expression on stack level 1: in Exact
mode. If the mode setting is Auto, expressions are evaluated in either Exact or Approximate mode
according to the same rules used in normal-mode operation. [DIAMOND] [ENTER] also operates in
Auto mode. These two examples assume that the mode is set to Auto:

13 [ENTER] 7 / results in 13/7 in stack level 1:
[DIAMOND] [ENTER] results in 1.857 in stack level 1:

13. [ENTER] 7 / results in 1.857 in stack level 1:
[DIAMOND] [ENTER] results in 13/7 in stack level 1:

Note that the decimal point with 13 in the second example forces evaluation in Approx mode.

The size of the stack is limited by the available memory. The stack is saved when RPN is exited, but
the maximum size of the saved stack is about 16K.

The command line and stack operations

Page 14

Entering strings

Strings are entered with the double-quote ["] key, as in normal-mode operation. However, RPN will
automatically switch between RPN and algebraic mode as the string is being entered, so that all
strings can be entered.

If the command line has no double quotes, or an even number of double quotes, then pressing ["]
switches to algebraic mode. If the command line has an odd number of double quotes, then pressing
["] switches to RPN mode.

For example, enter the string "1+2=3":

["] RPN switches to algebraic mode
1 + 2 = 3 Command line now shows "1+2=3
["] RPN switches to RPN mode; the command line shows "1+2=3"
[ENTER] "1+2=3" is pushed on stack level 1:

As in normal-mode operation, double-quotes are embedded in strings by 'doubling' the double
quotes. For example, to enter the string "1+2="3"", use

["] 1 + 2 = ["] ["] 3 ["] ["] ["] [ENTER]

Swap function

It is often convenient to be able to swap the expressions on stack levels 1: and 2:. This operation is
commonly called swap on RPN calculators. Function key [F7] is the Swap key. Swap can also be
found in the MATH STACK menu.

For example, if the stack is

3: 3
2: 2
1: 1

and you press [F7], the stack becomes

3: 3
2: 1
1: 2

swap also works when the cursor is in the stack. In this case, swap exchanges the expression on the
current level with the expression above. Again, if the stack is

3: 3
2: 2
1: 1

and the cursor is on level 2:, then swap results in this stack:

3: 2
2: 3
1: 1

Page 15

Converting between lists, matrices and stack expressions

RPN has two functions to manipulate lists and matrices:

OLVW¯VWN

VWN¯OLVW

These are both found in the MATH STACK menu.

list¯stk decomposes a list or matrix into stack elements, and stk¯list builds list elements into a stack
or matrix. These functions must be used from the MATH STACK menu; they cannot be typed in.

To decompose a list on 1:, just execute list¯stk. The number of list elements is returned to stack level
1:, and the list elements are returned on the other stack levels. For example, if the stack is

1: {d,c,b,a}

then list¯stk returns

5: d
4: c
3: b
2: a
1: 4

If stack level 1: is a matrix, then list¯stk returns the matrix rows as lists. For example, if stack level 1:
is

1: [[a,b][c,d]]

then list¯stk returns

3: {a,b}
2: {c,d}
1: 2

Note that when list¯stk is used on a matrix, the number of rows is returned in 1:, not the total number
of elements in the matrix.

stk¯list performs the opposite function of list¯stk: it converts individual stack elements to a list or
matrix. To convert stack elements to a list, enter the list elements, then the number of list elements.
For example, to convert the elements a, b, c and d to a list, the stack is

5: a
4: b
3: c
2: d
1: 4

then executing stk¯list results in

1: {a,b,c,d}

Page 16

To convert a set of lists to a matrix, enter the matrix rows as lists, then enter the number of rows,
then execute stk¯list. For example, to build the matrix

a b
c d

enter this on the stack

3: {a,b}
2: {c,d}
1: 2

then execute stk¯list.

Duplicating stack expressions

RPN has two functions that duplicate expressions on the stack: DUP2 and DUPN. These are in the
[MATH] STACK menu. Use these to copy stack arguments before executing functions, in case you
want to execute the function again in a different mode. To copy just the expression on stack level 1:,
press [ENTER], and the expression is copied to stack level 2:.

DUP2 duplicates the expressions in 1: and 2:. For example, if the stack is

2: b
1: a

then executing DUP2 results in

4: b
3: a
2: b
1: a

DUPN is similar to DUP2, but DUPN duplicates the number of stack elements in (1:). For example, to
duplicate the three stack elements a, b and c, the stack is

4: c
3: b
2: a
1: 3

then executing DUPN results in

6: c
5: b
4: a
3: c
2: b
1: a

Page 17

PICK functions

The pick functions copy a stack level expression and push it onto stack level 1:. RPN has two PICK
functions, PICK 2 and PICK n. PICK 2 takes no arguments and pushes the expression in stack level
2: to stack level 1. PICK n takes an argument 'n' in the command line, and pushes stack expression
n: to stack level 1.

For example, if the stack is

4: 3
3: 3 3: 2
2: 2 and PICK 2 is executed, then the stack becomes 2: 1
1: 1 1: 2

As another example, pick the third stack expression with PICK n. Suppose the stack is

3: 3
2: 2
1: 1

then enter 3 in the command line, execute PICK n, then the stack is

4: 3
3: 2
2: 1
1: 3

Both PICK 2 and PICK n are in the MATH STACK menu. The argument for PICK n must be in the
command line. If there is no expression in the command line, PICK n has no effect.

ROLL functions

The ROLL functions cut an expression from the stack, and push it on stack level 1:. The term roll is
used because the effect is to roll the stack expressions without adding another expression to the
stack. There are two ROLL functions, ROLL 3 and ROLL n. Both are found in the MATH STACK
menu. ROLL 3 rolls the expression on stack level 3: to stack level 1:. ROLL n rolls the nth stack
expression to stack level 1:.

As an example of ROLL 3, suppose the stack is

3: 3
2: 2
1: 1

When ROLL 3 is executed, the stack becomes

3: 2
2: 1
1: 3

Page 18

As an example of ROLL n, if the stack is

5: 5
4: 4
3: 3
2: 2
1: 1

and 4 is entered on the command line, this is equivalent to ROLL 4. When ROLL n is executed, the
stack becomes

5: 5
4: 3
3: 2
2: 1
1: 4

The argument n for ROLL n may be in the command line or the stack. If the command line is empty,
the argument n is dropped from the stack before ROLL n is executed.

Delete functions

RPN has two functions to delete stack expressions: DEL and DEL n. DEL deletes the expression in
stack level 1:, and drops the remaining stack elements. DEL n deletes n stack elements, and drops
the remaining stack elements. Both of these functions are in the MATH STACK menu.

For example, if the stack is

3: 3
2: 2
1: 1

and DEL is executed, then the stack becomes

3:
2: 3
1: 2

The argument n for DEL n can be taken from the command line. For example, if the stack is

5: 5
4: 4
3: 3
2: 2
1: 1

Page 19

and you want to delete the bottom three stack elements, enter 3 in the command line, and execute
DEL n. The stack becomes

5:
4:
3:
2: 5
1: 4.

The argument n for DEL n may be in the command line or in stack level 1:. If the command line is
empty, n is taken from stack level 1:. n is dropped from the stack before DEL n is executed.

Page 20

To save the expression on stack level 1: in a variable, enter the variable name on the command line
and press [STO]. For example, if 1.234 is on stack level 1:, then this

YDU� >672@ RU YDU� >(17(5@ >672@

stores 1.234 in var1 in the current folder.

To recall a variable to the stack, enter the variable name and press [ENTER]. Another way to recall a
variable is to use the [RCL] menu, described below in the [RCL] Menu section. Variables can also be
saved and recalled with custom menus. See the Custom Menus section.

There are two ways to delete variables in RPN. One method is to switch to algebraic mode with [F6],
and use the delvar instruction as in normal-mode operation. The other method is to use the RPN
DelVar functions. These two functions are executed from the RPN DelVar menu, which is displayed
when [DEL] is pressed. DelVar deletes a single variable, and DelVar ..,n deletes n variables.

To use the DelVar functions, the variable names must be pushed on the stack. This is accomplished
by:

1. Setting the [RCL] menu to line mode, with the MODE Customize menu.

2. Setting the [RCL] menu to display the variables.

3. Using [DIAMOND] [F1 - F5] to push the variable names on the stack.

4. Using DelVar or DelVar ..,n to delete the variables.

Push [DEL] to display the DelVar menu. The DelVar menu has two options:

1:DelVar
2:DelVar ..,n

These steps show how to set the [RCL] menu to a line menu, and select the Variables display:

1. Press [MODE], then [3] to choose Customize.

2. Press [2] to choose RCL menu.

3. Press [2] to choose Line, then press [ENTER].

4. Press [ESC], [ESC] to close the menus.

5. Press [RCL] to display the RCL menu.

6. Press the function key corresponding to the desired folder. For example, if the /main folder is
shown as [F1] on my calculator, I press [F1].

7. Press [F1] to choose the VAR (variable) display.

At this point you can push the variable names on the stack with [DIAMOND] [F1] through [DIAMOND]
[F5]. Use [DIAMOND] [LEFT] and [DIAMOND] [RIGHT] to scroll through the list of variables in the
line menu.

For example, suppose you have five variables a, b, c, d and e in your /main folder. The Variable
command line menu looks like this:

F1-a F2-b F3-c F4-d F5-e

Saving, recalling and deleting variables

Page 21

If you push [DIAMOND] [F3], then the variable name c is pushed on the stack. Then, if you execute
DelVar, the variable c is deleted.

To delete all five of these variables, you press

[DIAMOND] [F1]
[DIAMOND] [F2]
[DIAMOND] [F3]
[DIAMOND] [F4]
[DIAMOND] [F5]

and the stack is

5: a
4: b
3: c
2: d
1: e

Then use

[5] enter 5 on the command line, to delete 5 variables
[DEL] display the DelVar menu
[2] choose DelVar ..,n

Page 22

You can run most of the built-in 89/92+ applications from RPN. Push [APPS], and the application
menu is shown:

1:FlashApps
2:Y= Editor
3:Window Editor
4:Graph
5:Table
6:Data/Matrix Editor
7:Program Editor
8:Text Editor
9:Numeric Solver
A:Home

Execute any of these applications by choosing them from the menu. To return to RPN, press
[HOME]. [HOME] will also switch to the previous application from RPN. The previous application is
shown by pressing [2ND] [APPS].

You can start these applications by pressing the associated key:

[MEM] memory display
[VAR-LINK] VAR-LINK screen
[CATALOG] built-in and user-defined functions and programs

On the TI92+, these keys can be used to start the normal-mode applications from RPN:

[Y=] Y= editor
[WINDOW] graph window settinss
[GRAPH] graph window
[TblSet] table settings
[TABLE] table editor

These keys cannot always be used to start the applications on the TI89, because the keys are also
the [DIAMOND] [F1] - [DIAMOND] [F5] function keys. In general, [F1] - [F5] can start the applications
only when the keys are not otherwise in use. [F1] - [F5] are in use when:

1. The [RCL] line menu is active. In this case, [DIAMOND] [F1] - [DIAMOND] [F5] push the
variable name on the stack.

2. The [UNIT] line menu is active. In this case, [DIAMOND] [F1] - [DIAMOND] [F5] are used for
unit conversion.

When algebraic mode is active on the TI89, [DIAMOND] [F1] - [DIAMOND] [F5] always start the
applications.

Using built-in 89/92+ applications

Page 23

From RPN, you can execute functions, programs and commands. A function is a routine that may
take arguments from the stack, and may return a result to the stack. A program may take arguments
from the stack, but cannot return a result to the stack. A command is similar to a function. In
normal-mode operation, a command takes arguments, but those arguments are not enclosed in
parenthesis. Commands do not return results to the stack (or the history area, in normal-mode
operation), but instead save the results to user variables or system variables. For example, LU and
QR are commands, as are all the built-in regressions.

Using functions

In RPN, functions take their arguments from the stack. So, to find the sine of 1, enter

� >6,1@

If a function takes more than one argument, all the arguments must be entered on the stack. To
evaluate function func1(a1,a2,a3), use

D� >(17(5@ D� >(17(5@ D�

to put the arguments a1, a2 and a3 on the stack, then execute func1.

There are three ways to specify a function in RPN. If the function is assigned to a key, like sine or
cosine, it is evaluated by pressing the key. If the function is not assigned to a key, it can be executed
by selecting it from the function menus. Or, the function can be executed simply by typing its name
after the arguments are entered on the stack. For example, to use nint() to numerically integrate x2

from 0 to 1, use

[>(17(5@ � A

[>(17(5@

� >(17(5@

� >(17(5@

>Q@ >L@ >Q@ >W@ >(17(5@

Before nint() is executed, the stack looks like this:

�� [�

�� [
�� �
�� �

User functions are executed in the same way as built-in functions: put the arguments on the stack,
then execute the function by typing the function name and pressing [ENTER]. You can also execute
user functions by choosing them from the [RCL] menu, the [CAT] menu, or from a custom menu.

RPN can execute all built-in 89/92+ functions, even if those functions are not assigned to a key or in
a menu. The function is executed by simply typing the function name at the command line. Any
function arguments are on the stack as usual. For example, to execute the avgRC() function for
sin(x), use

[>(17(5@ >6,1@
[>(17(5@

Executing functions, programs and commands

Page 24

DYJUF >(17(5@

In general, the stack arguments are specified as shown in the 89/92+ Guidebook. Optional
arguments are not supported for functions that can only be entered by typing the function name. For
example, the avgRC() function is specified as

avgRC(expression,var,[h])

where h is an optional step value. Before executing avgRC(), the stack contents are

2: expression
1: var

and you cannot use the optional step size h.

Running TIBasic programs

You can run TIBasic programs from the command line, from the [RCL] menu, from a custom menu
and from the [CATALOG] screen.

For example, suppose that the user program is called aprog(). To run the program from the
command line, use

DSURJ >(17(5@

Include a folder name, if the program is not in the current folder. For example, if the program is in
folder abc, use

DEF?DSURJ >(17(5@

To run the program from the [RCL] menu, start the menu by pressing [RCL]. Select the folder;
choose PROG, to choose PROGrams; then choose the program. The actual keystrokes used
depend on whether the [RCL] menu is set as a line menu or a pop-up menu. Refer to the [RCL] Menu
section for more details.

To run a program from the [CATALOG] screen, press [CATALOG] to display the screen, then press
[F4] to choose User-Defined. Finally, choose the program with the [UP] and [DOWN] keys, press
[ENTER] to paste the program name to the command line, then press [ENTER].

The programs execute as they would in normal-mode operation. When the program finishes, RPN
resumes.

You can also debug TIBasic programs from RPN. If the program causes an error, or you stop the
program with [ON], a dialog box is displayed. To edit the program, choose the Enter=GOTO option in
the dialog box. The program is now loaded in the editor, but RPN resumes. To open the program
editor, press [HOME]. The cursor is positioned at the line that caused the error, or the the line at
which the program was stopped with [ON].

You cannot run a program that is open in the program editor, while the program editor is also open.
You can use these methods to close the program editor:

1. Press [QUIT] to close the program editor.

2. Use [APPS] [7] to open a different program or function in the editor (or create a new one).

Page 25

3. Use the [APPS] key to switch to a different built-in application, such as the Home screen.

Executing commands

RPN can execute most built-in 89/92+ commands. Commands can be executed from the command
line, or from the MATH and Tools menus. If you run a command from the menus, the stack
arguments correspond to the order given in the 89/92+ GuideBook. For example, if the general form
of a command is

command arg1,arg2,arg3

then the arguments are pushed on the stack like this:

3: arg1
2: arg2
3: arg3

Note that most commands only take variable names as arguments, and not expressions. The [RCL]
menu section describes how to push the variable names on the stack.

You can run commands from the command line, and the arguments must also be in the command
line. For example, the execute the linreg linear regression command on lists xlist and ylist, enter this
in the command line:

linreg xlist,ylist

To run linreg from the menu, enter this stack:

2: xlist
1: ylist

then use [MATH] Stat Regres Lin LinReg ,.

Running assembly programs

RPN can run assembly programs in the same way as TIBasic programs. However, assembly
programs that run from RPN must include a function argument test, which looks like this:

if(Number_of_Arguments < Required_Arguments)
ER_throwVar (930);

Programs that do not include this test will not run reliably from RPN. Most assembly programs do not
include this test, and cannot be run from RPN. Only no-stub assembly programs can be used. You
should only use assembly programs that state RPN compatibility in the program documentation.

RPN is distributed with two examples of compatible assembly programs:

Laplace(f(var),var) Laplace transform function

cexpand(f(var),var) Complex partial fraction expansion

Page 26

This information is provided to enable assembly programmers to write compatible programs.

Commands with variable number of arguments: ..,n

Some RPN functions can take a variable number of arguments from the stack. These commands are
identified in the menus by the ..,n notation. n is the number of arguments. Some examples of this
type of function are

DelVar ..,n
SortA ..,n
SortD ..,n
NewData ..,n

The number-of-arguments n is taken from the command line, or from stack level 1: if the command
line is empty.

Consider using DelVar ..,n to delete the four variables a, b, c and d. If you enter the variable names
to create this stack:

5: a
4: b
3: c
2: d
1: 4

and execute DelVar ..,n with an empty command line, the DelVar ..,n drops 4 from stack level 1:, and
deletes the four variables whose name are now on stack levels 1: to 4: Alternatively, you can create
this stack:

4: a
3: b
2: c
1: d

4

and enter 4 in the command line as shown, and execute DelVar ..,n. The four variables in stack
levels 1: to 4: are deleted.

Keep in mind that ..,n function drop the stack to get n if the command line is empty. Repeating the
example above, but with n in the stack, the stack looks like

5: a
4: b
3: c
2: d
1: 4

Page 27

RPN uses a setting called delayed evaluation to execute expression with constraints. The [F8]
function key switches delayed evaluation on and off. Delayed evaluation is shown on the stack
display with the « character. For example, if delayed evaluated is switched off, the stack display
looks like

3:
2:
1: 2*x+4

and when delayed evaluation is switched on, the stack display looks like

3:
2:
1« 2*x+4

Use delayed evaluation to evaluate expressions with constraints. Delayed evaluation prevents the
expression from being evaluated until you have added the constraints. This example shows the
keystrokes and stack display to find the minimum of z3 - 3z2 - 5z + 3 for z > 0, in APPROX mode.

Build the expression:

z [ENTER] 3 [^] 1: z3

z [ENTER] 2 [^] 3 [x] [-] 1: z3 - 3z2

5 [ENTER] z [x] [-] 3 [+] 1: z3 - 3z2 - 5z + 3

Turn delayed evaluation on:

[F8] 1« z3 - 3z2 - 5z + 3

Apply fmin() function:

z [MATH] [4] [5] 1« fmin(z3 - 3z2 - 5z + 3,z)

Build the constraint z>0:

z [ENTER] 0 [>] 2« fmin(z3 - 3z2 - 5z + 3,z)
1: z>0

Apply the constraint:

[|] 1« fmin(z3 - 3z2 - 5z + 3,z)|z>0

Turn delayed evaluation off:

[F8] 1: 2.63299

Although I used the fmin() function as an example, you can use delayed evaluation with other
functions that use constraints, such as solve(), nSolve() and others.

Using delayed evaluation and constraints

Page 28

While the purpose of RPN is to provide an RPN shell for the 89/92+, you may prefer to do some
operations in algebraic mode. RPN supports an algebraic mode. You can switch between the two
modes by pressing [F6], or by pressing [MODE], [9], [2]. To switch back to RPN mode, press [F6], or
press [MODE], [8], [1].

You perform operations in algebraic mode just as you would in normal 89/92+ operation. All menus
and functions work in both modes. In algebraic mode, choosing a function places the function name
text at the insertion point in the command line. In RPN mode, choosing a function immediately
executes the function.

Some operations which might be more convenient in algebraic mode include creating lists and
matrices, and deleting variables.

You may also use algebraic mode to copy an expression on the stack to the command line, to edit it
or use it again. See Basic Operations in RPN Mode, above.

Algebraic mode operation

Page 29

Many features and functions in RPN are available through these menus.

[MODE] Customize formats and calculation modes
[MATH] Math functions
[RCL] Recall variables and variable names to the stack
[CUSTOM] Display custom menu created by the user
[DEL] Delete Variable menu
[UNIT] Units, constants and unit conversion

The menus are described in detail in the following sections. This section explains general menu
operation.

RPN supports two types of menus: pop-up menus and command line menus. Pop-up menus appear
over the stack display during use, then disappear after the item is selected. Command line menus, or
just 'line menus', are shown in the menu line at the bottom of the display.

Pop-up Menus

A pop-up menu is displayed by pressing the appropriate key as shown above. Select items in the
menu by pressing the number key associated with the menu item, or by selecting the menu item with
[UP] and [DOWN], then pressing [ENTER]. You can press escape [ESC] at any time to remove the
menu display, without making any changes. If a submenu is shown, pressing [ESC] displays the
previous menu.

After a menu item is selected, another menu may be shown. In this case, make your choice from the
new menu.

Command line menus

A command line menu is displayed at the bottom of the stack display. A command line menu is
always displayed, unlike a pop-up menu, which disappears after you make a selection. The command
menu line is divided in five sections. Each section corresponds to one of the function keys [F1]
through [F5]. Pressing the displayed function key executes the menu item.

You can choose between pop-up and command line menus with MODE menu item A:Customise.
Refer to the MODE menu section below for more details. For example, if the MATH menu type is set
to Line, them pressing [MATH] results in this line menu, instead of a pop-up menu:

F1-Number F2-Test F3-Algebra F4-Calc F5-Complex

The first menu item is F1-Number. The small down-arrowhead after the menu label means that a
sub-menu is available. So, in this case, pressing [F1] does not execute a function, but instead
displays another line menu: F1-Exact, F2-abs, F3-round(,), and so on. Pressing F2:abs executes the
abs function.

Only five menu items are displayed at once. If there are more menu items, small left- and
right-arrowheads are shown at the ends of the menu line. Use [DIAMOND] [LEFT] and [DIAMOND]
[RIGHT] to scroll through the menu items.

Menu operation

Page 30

If a sub-menu is displayed, press [DIAMOND] [UP] or [DIAMOND] [DOWN] to go back to the
previous menu.

You can create custom menus that display your own functions and variables. Refer to the section
Custom Menus below.

Page 31

The MODE menu consists of these menu items:

1: Other display the normal-mode MODE menu
2: RPN/ALG (F6) switch between RPN and algebraic modes
3: Customize set menus to pop-up or line, and other settings
4: About display version number, author's email address

The rest of this section describes these menus.

1: Other
This menu item starts the normal-mode MODE display. RPN uses all of the appropriate settings in this
mode. For example, use this mode menu to set the current folder, the display digits, the complex
format, and all the other settings in the normal MODE screen. To close this screen, use [ENTER] or
[ESC] as usual.

2: RPN/ALG [F6]
Use this menu item to switch between RPN mode and algebraic mode. The menu items are

1: RPN use RPN mode
2: ALG use algebraic mode

You can also use function key [F6] to switch between the two modes.

3: Customise
Use this menu item to customize the display of the menu items. This menu has these items:

1: Math menu set [MATH] menu type to pop-up or command line
2: RCL menu set [RCL] menu type to pop-up or command line
3: Custom menu set [CUSTOM] menu type to pop-up or command line
4: CHAR menu set [CHAR] menu type to pop-up or command line
5: Show calculations enable calculations display on left-hand side of stack display
6: Enable undo enable UNDO feature
7: Enable system MATH enable normal-mode MATH menu in algebraic mode

The first four menu items all display this sub-menu:

1: Pop Up
2: Line

Select ��3RS 8S if you want the chosen menu to display as a pop-up menu. Select �� /LQH if you
want the menu items to be displayed as a command line menu at the bottom of the display.

Menu item ��6KRZ FDOFXODWLRQV is used to enable the display of the entries on the left-hand side of
the stack display. Select Yes if you want the entries displayed, or No if you do not.

Menu item ��(QDEOH undo is used to enable and disable the UNDO feature. Choose Yes to enable
the UNDO feature, and No to disable UNDO.

MODE Menu

Page 32

Menu item ��(QDEOH V\VWHP 0$7+ lets you choose to use the normal-mode MATH menu, instead of
the default RPN MATH menu, but only when RPN is operating in algebraic mode. Choose Yes to use
the normal-mode menu, or No to use the RPN menu.

These are the default Customize menu settings for RPN as it is distributed:

Math menu Pop-up
RCL menu Line
Custom menu Line
CHAR menu Line
Show calculations Yes
Enable undo Yes
Enable system MATH No

4: About
This menu item shows a screen that includes the RPN version number, which calculator version is
installed (89 or 92+), and the author's email address.

Page 33

Display the MATH menu by pressing [MATH]. The [MATH] menu may be shown as a pop-up menu or
a command line menu. This menu consists of these items:

1: Number Number functions
2: Test Conditional test functions
3: Algebra CAS algebra functions
4: Calc Calculus functions
5: Complex Complex number functions
6: Angle Degree and radian symbols; vector components
7: Stack Stack manipulation functions
8: List List functions
9: Matrix Matrix functions
A: Stat Statistics functions
B: Prob Probability functions
C: Hyperbol Hyperbolic functions
D: log log() and ln() functions
E: Base Number base functions

In general, the function names are the same as those in normal 89/92+ operation, so you can use the
89/92+ User's Manual for details. This manual section briefly describes the supported functions and
specifies the stack arguments for the functions. In general, the stack arguments follow the same order
as the arguments in normal-mode. For example, this function in normal algebraic mode

arcLen(expression, var, start, end)

would be executed with this stack:

4: expression
3: var
2: start
1: end

Most of the MATH menus can be shown with keyboard shortcuts:

[DIAMOND] [1] Number
[DIAMOND] [2] Test
[DIAMOND] [3] Algebra
[DIAMOND] [4] Calc
[DIAMOND] [5] Complex
[DIAMOND] [6] Stack
[DIAMOND] [7] Matrix
[DIAMOND] [8] Stat
[DIAMOND] [9] Prob
[2nd] [7] Int (integration)

You can use the normal-mode MATH menu, but only if RPN is operating in algebraic mode. Use
>02'(@� ��&XVWRPL]H� ��(QDEOH V\VWHP 0$7+ to set this option.

The remainder of this section lists the submenu items in the MATH menu. The notation (n:) means the
expression in stack level n:. For example, (1:) means the expression in stack level 1:. Boolean means
true or false.

MATH Menu

Page 34

1: Number Number functions

1: exact Exact evaluation functions:
1: exact() Evaluate (1:) in exact mode, regardless of current mode setting
2: exact(,) Evaluate (2:) in exact mode, with tolerance in (1:)

2: abs Return absolute value of (1:)
3: round(,) Round (2:) to digits after decimal point in (1:)
4: iPart Return integer part of (1:)
5: fPart Return fractional part of (1:)
6: floor Return floor of (1:)
7: ceiling Return ceiling of (1:)
8: sign Return sign of (1:)
9: mod Return (1:) modulo (2:)
A: remain Return remainder of (1:) with respect to (2:)
B: lcm Return least common multiple of (1:) and (2:)
C: gcd Return greatest common denominator of (1:) and (2:)

2: Test Conditional test functions

1: > Return Boolean of (2:) greater than (1:)
2: < Return Boolean of (2:) less than (1:)
3: � Return Boolean of (2:) greater than or equal to (1:)
4: } Return Boolean of (2:) less than or equal to (1:)
5: = Return Boolean of (1:) equal to (2:)
6: ~ Return Boolean of (1:) not equal to (2:)
7: not Return Boolean of NOT(1:)
8: and Return Boolean (1:) AND (2:)
9: or Return Boolean of (1:) OR (2:)
A: xor Return Boolean of (1:) exclusive-OR (2:)
B: isPrime Return true if (1:) is prime; false otherwise

3: Algebra Algebra and CAS functions

1: solve Solve (2:) for real solutions of (1:). If (2:) and (1:) are lists, solve system of
equations in list in (2:) for variables in list in (1:)

2: Factor Factor functions:
1: factor() Return factors of (1:) if (1:) is a rational number,

otherwise return (1:) factored with respect to all variables
2: factor(,) Return (2:) factored with respect to (1:)

3: Expand Expand functions:
1: expand() Return (1:) expanded with respect to all its variables
2: expand(,) Return (2:) expanded with respect to (1:)

4: zeros Return real values of (1:) which are zeros of (2:) if (1:) and (2:) are not lists,
otherwise return real values of list elements of (1:) which are zeros of
expressions in list in (2:)

5: approx Evaluate (1:) in Approximate mode, regardless of current mode setting

Page 35

6: comDen Common denominator functions:
1: comDenom() Return (1:) as reduced ratio of expanded numerator over denominator
2: comDenom(,) Return (2:) as reduced ratio of expanded numerator over denominator

with respect to (1:)

7: Prop Proper fraction functions:
1: propFrac() If (1:) is a rational number, return (1:) as sum of an integer and proper

fraction, otherwise return (1:) as a proper fraction expression with
respect to the most main variable.

2: propFrac(,) Return (2:) expanded as a proper fraction with respect to (1:)

8: nSolve Numerically solve (2:) for variable or guess in (1:)
(Use delayed evaluation to apply constraints)

9: Trig Trigonometric expansion and collection functions:
1: tExpand Return trigonometric expansion of (1:)
2: tCollect Return trigonometric collection of (1:)

A: Complex Complex solve and factor functions:
1: cSolve Solve (2:) for complex solutions of (1:). If (2:) and (1:) are lists, solve

system of equations in list in (2:) for variables in list in (1:).

2: cZeros Return candidate real and complex solutions to (2:) for variables in (1:). If
(2:) and (1:) are lists, returns solutions to system of equations in list in
(2:) for variables in list in (1:).

3: cFactor() Return (1:) factored with respect to all variables over a common
denominator

4: cFactor(,) Return (2:) factored with respect to (1:)

B: Extract Symbolic expression extraction functions
1: getNum Return numerator of (1:)
2: getDenom Return denominator of (1:)
3: left() Return left-hand side of conditional expression in (1:)
4: right() Return right-hand side of conditional expression in (1:)

4: Calc Calculus functions

1: Int Integration functions:
1: ���� Return anti-derivative of (2:) with respect to (1:)
2: ����� Return anti-derivative of (3:) with respect to (2:) with constant of

integration (1:)
3: ������ Return integral of (4:) with respect to (3:) with lower bound of (2:) and

upper bound of (1:)
4: nInt Return numerical integral of (4:) with respect to (3:) from lower bound (2:)

to upper bound (1:)

2: Limit Limit functions:
1: limit(,,) Return limit of (3:) with respect to (2:) at point (1:)
2: limit(,,,) Return limit of (4:) with respect to (3:) at point (2:) in direction (1:)

3: p Return sum of (4:) with respect to (3:) from (2:) to (1:)
4: m Return product of (4:) with respect to (3:) from (2:) to (1:)
5: fMin Return values for variable in (1:) that minimize (2:)

Page 36

6: fMax Return values for variable in (1:) that minimize (2:)
7: arcLen Return arc length of (4:) with respect to (3:) from (2:) to (1:)

8: Taylor Taylor series functions:
1: taylor(,,) Return Taylor series expansion of (3:) with respect to variable (2:)

of order (1:). Zero is the evaluation point.
2: taylor(,,,) Return Taylor series expansion of (4:) with respect to variable (3:)

of order (2:) evaluated at point (1:)

9: nDeriv Numerical derivative functions:
1: nDeriv(,) Return numerical derivative of (2:) with respect to (1:), with step value

of 0.001
2: nDeriv(,,) Return numerical derivative of (3:) with respect to (2:) with step value (1:)

A: nInt Return numerical integral of (4:) with respect to (3:) from lower bound (2:)
to upper bound (1:)

B: deSolve Return solution to 1st or 2nd order ODE in (3:) with independent variable (2:)
and dependent variable (1:)

5: Complex Complex number functions

1: conj Return complex conjugate of (1:). (1:) may be an expression, list or matrix
2: real Return real part of (1:). (1:) may be an expression, list or matrix
3: imag Return imaginary part of (1:). (1:) may be an expression, list or matrix
4: angle Return the angle of (1:), where (1:) is a complex number.

(1:) may be an expression, list or matrix
5: abs Return the absolute value of (1:). (1:) may be an expression. list or matrix.

If (1:) is complex, abs() returns the modulus.

6: Angle Angle units and conversion functions:

1: � In Radian angle mode, multiply (1:) by n/180. (1:) is unchanged in degree mode
2: z In Degree angle mode, multiply (1:) by 180�n. (1:) is unchanged in radian

mode

3: P¯Rx Return the x-coordinate of (r,j) vector, with r in (2:) and j in (1:). (1:) and (2:)
may be expressions, lists or matrices. Returns r*cos(j).

4: P¯Ry Return the y-coordinate of (r,j) vector, with r in (2:) and j in (1:). (1:) and (2:)
may be expressions, lists or matrices. Returns r*sin(j).

5: R¯Pr Return the r-coordinate of (x,y) vector, with x in (2:) and \ in (1:). (1:) and (2:)

may be expressions, lists or matrices. Returns x2 + y2

6: R¯Pj Return the j-coordinate of (x,y) vector, with x in (2:) and \ in (1:). (1:) and (2:)
may be expressions, lists or matrices. (1:) and (2:) may be expressions, lists or
matrices. In Degree mode, returns . In Radian mode,90 � sign(y) − tan−1 x

y

returns
��sign(y)

2 − tan−1 x
y

Page 37

7: ¯DMS Return (1:) expressed as an angle in DMS format DDDDDD°MM'SS.ss". (1:)
may be an expression, list or matrix. Converts to degrees if Angle mode is
radians.

8: ¯DD Return (1:) expressed as a decimal angle, where (1:) is in DMS format. (1:)
may be an expression, list or matrix. (1:) is interpreted as radians or degrees
depending on the Angle mode setting.

7: Stack Stack functions (there are no equivalent 89/92+ functions)

These functons are described in detail in the section The command line and stack operations above.

1: DUP 2 Duplicate (1:) and (2:): copy (1:) to (3:) and (2:) to (4:).
2: SWAP Swap the contents of (1:) and (2:). You can also use [F7].
3: PICK 2 Copy (2:) and push it on (1:)
4: ROLL 3 Cut (2:) and push it on (1:)
5: DEL Delete (1:) and drop the stack.
6: DUP n Duplicate number of stack elements in (1:)
7: PICK n Copy (n:) and push it on (1:)
8: ROLL n Cut (n:) and push it on (1:)
9: DEL n Delete the bottom n stack expressions and drop the stack
A: UNDO Undo the most recent operation by restoring the stack to its previous contents.
B: /LVW¯6WN Decompose a list or matrix in (1:) to individual stack expressions.
C: 6WN¯/LVW Combine stack expressions to a list or matrix. The number of elements in the

list is in the command line, or in (1:) if the command line is empty

8: List List functions

1: newList Create a new list with n elements. n is taken from the command line, or from
1: if the command line is empty. The list elements are all zero.

2: seq Sequence functions:

1: seq(,,,) Returns a list from these stack arguments:

4: expr
3: var
2: low
1: high

where expression expr is evaluated for each value of var, as var is
incremented from low through high by 1. var is not changed, and may not
be a system variable.

2: seq(,,,,) Returns a list from these stack arguments:

5: expr
4: var
3: low
2: high
1: step

Page 38

where expression expr is evaluated for each value of var, as var is
incremented from low through high by step. var is not changed, and may
not be a system variable.

3: min Return the minimum of two expressions, a list, or a matrix:

1: min() If (1:) is a list, return the minimum element of the list.
If (1:) is a matrix, return a row vector where each element is the minimum
of each matrix column.

2: min(,) Return the minimum of the expressions in (1:) and (2:). If (1:) and (2:) are
lists or matrices, return a list or matrix whose elements are the minimum
of each corresponding pair of elements.

4: max Return the maximum of two expressions, a list or a matrix:

1: max() If (1:) is a list, return the maximum element of the list.
If (1:) is a matrix, return a row vector where each element is the maximum
of each matrix column.

2: max(,) Return the maximum of the expressions in (1:) and (2:). If (1:) and (2:) are
lists or matrices, return a list or matrix whose elements are the maximum
of each corresponding pair of elements.

5: SortA Sort elements of list or vector variables in ascending order:

1: SortA Sort list or vector elements in ascending order. The variable name is in (1:)

2: SortA ..,n Sort list or vector elements in ascending order. The number of lists or
vectors is in (1:) or the command line. The list or vector names are in (1:)
to (n:) if n is in the command line. The list or vector names are in (2:) to
((n+1):) if n is in (1:).

Here is an example of sorting three lists list1, list2 and list3, with n on the
stack:

4: list1
3: list2
2: list3
1: 3

When SortA ..,n is executed with this stack, the elements list1 are sorted
in ascending order, and the corresponding elements of list2 and list3 are
moved to match the position of the corresponding elements in list1.

Here is the same example, with the argument n in the command line:

3: list1
2: list2
1: list3

3

Page 39

6: SortD Sort elements of list or vector variables in descending order:

1: SortD Sort list or vector elements in descending order. The variable name is in (1:)

2: SortD ..,n Sort list or vector elements in descending order. The number of lists or
vectors is in (1:) or the command line. The list or vector names are in (1:)
to (n:) if n is in the command line. The list or vector names are in (2:) to
((n+1):) if n is in (1:).

Here is an example of sorting three lists list1, list2 and list3, with n on the
stack:

4: list1
3: list2
2: list3
1: 3

When SortA ..,n is executed with this stack, the elements list1 are sorted
in descending order, and the corresponding elements of list2 and list3 are
moved to match the position of the corresponding elements in list1.

Here is the same example, with the argument n in the command line:

3: list1
2: list2
1: list3

3

7: sum If (1:) is a list, return the sum of the list elements. If (1:) is a matrix, return a
row vector whose elements are the sum of the matrix column elements.

8: cumSum If (1:) is a list, return a list whose elements are the cumulative sum of the
elements of the list in (1:). If (1:) is a matrix, return a matrix whose columns are
the cumulative sums of the column elements of (1:), from top to bottom.

9: product If (1:) is a list, return the product of the elements in the list. If (1:) is a matrix,
return a row vector whose elements are the products of the column elements of
(1:).

A: left(,) If (2:) is a list and (1:) is an expression, return the left-most (1:) elements of (2:)
If (2:) is a string and (1:) is an expression, return the left-most (1:) characters
of (1:).

B: mid(,,) Return middle elements of a string or list. In general, (3:) is a string, list, or list of
strings. (2:) is a start expression and (1:) is a count expression.

If (3:) is a string, return count characters starting with the character at start. If
count is zero, return an empty string. If count is greater than the number of
characters in the string, return the entire string.

Page 40

If (3:) is a list, return count elements starting with the element at start. If count is
zero, return an empty list. If count is greater than the number of elements in (3:),
return the entire list.

If (3:) is a list of strings, return count strings beginning at element start.

C: right(,) If (2:) is a list and (1:) is an expression, return the right-most (1:) elements of (2:)
If (2:) is a string and (1:) is an expression, return the right-most (1:) characters
of (1:).

D: polyeval (2:) is a list of expressions interpreted as the coefficients of a descending-degree
polynomial. (1:) may be an expression or a list. If (1:) is an expression, return the
expression found by evaluating the polynomial for (1:). For example, executing
polyeval with this stack

2: {3,2,1}
1: x

returns 3*x2 + 2*x + 1.

If (1:) is a list, return a list whose elements are the polynomial evaluated at each
element of (1:). For example, executing polyeval with this stack

2: {3,2,1}
1: {x,y}

returns {3*x2 + 2*x + 1,3*y2 + 2*y + 1}

E: list¯m Convert lists to matrices:

1: list¯mat() Convert a list in (1:) to a row vector.

2: list¯mat(,) Convert a list in (2:) to a matrix with (1:) elements in each row. Zeros are
added if there are not enough list elements to fill the matrix.

F:mat¯list Return a list whose elements are the elements of the matix in (1:), row by row.

9: Matrix Matrix functions:

The matrix menu functions are organized in these sub-menus:

1: Solve transpose, determinants, ref, rref and simult
2: Extr diagonals, eigenvalues and vectors, LU and QR, submatrices, norms and dim
3: New identity, random matrix, new matrix and fill
4: Ops row, element and vector operations
5: augment matrix augment functions

Matrix Solve functions

1: z Return complex conjugate transpose of matrix in (1:)

Page 41

2: det Return determinant of square matrix in (1:):
1: det() Square matrix is in (1:)
2: det(,) Square matrix is in (2:), tolerance is in (1:)

3: ref Return row echelon form of matrix in (1:):
1: ref() Matrix is in (1:)
2: ref(,) Matrix is in (1:), tolerance is in (2:)

4: rref Return reduced row echelon form of matrix in (1:)
1: rref() Matrix is in (1:)
2: rref(,) Matrix is in (2:), tolerance is in (1:)

5: simult(,) Return column vector that is solution to simultaneous equation system:
1: simult(,) Square coefficient matrix in (2:) and constant vector in (1:)
2: simult(,,) Square coefficient matrix in (3:), constant vector in (2:), tolerance in (1:)

Matrix Extr functions

1: diag If (1:) is a list, row matrix or column matrix, return square matrix with (1:) as
diagonal elements.
If (1:) is a square matrix, return row matrix which is main diagonal of (1:)

2: eigVl Return list of the eigenvalues of square matrix in (1:)

3: eigVc Return matrix of eigenvectors for square matrix in (1:)

4: LU Perform Dolittle lower-upper decomposition on a real or complex matrix

1: LU ,,, These are the stack arguments:

4: matrix
3: lMatName
2: uMatName
1: pMatName

matrix is the matrix on which the LU decomposition is done. lMatName is the
name of the matrix in which the lower-triangular matrix is stored. uMatName is
the name of the matrix in which the upper triangular matrix is stored.
pMatName is the name of the matrix in which the permutation matrix is stored.
The LU decomposition results in matrices that satisfy this equation:

lMatName * uMatName = pMatName * matrix

2: LU ,,,, These are the stack arguments:

5: matrix
4: lMatName
3: uMatName
2: pMatName
1: tol

matrix is the matrix on which the LU decomposition is done. lMatName is the
name of the matrix in which the lower-triangular matrix is stored. uMatName is

Page 42

the name of the matrix in which the upper triangular matrix is stored.
pMatName is the name of the matrix in which the permutation matrix is stored.
Any matrix less than tol is treated as zero.

The LU decomposition results in matrices that satisfy this equation:

lMatName * uMatName = pMatName * matrix

5: QR Perform Householder QR factorization of a real or complex matrix:

1: QR ,, The stack arguments are

3: matrix
2: qMatName
1: rMatName

matrix is the matrix on which the QR factorization is performed. The unitary Q
matrix is stored to qMatName. The upper triangular R matrix is stored to
rMatName.

2: QR ,,, The stack arguments are

4: matrix
3: qMatName
2: rMatName
1: tol

matrix is the matrix on which the QR factorization is performed. The unitary Q
matrix is stored to qMatName. The upper triangular R matrix is stored to
rMatName. Elements are treated as zero if they are less than tol.

6: subMat Return specified submatrix of matrix in (1:). Defaults for start row and start
column are 1. Defaults for end row and end column are the last row
and column

1: subMat(,) Return submatrix of matrix in (2:) and start row in (1:)
2: subMat(,,) Return submatrix of matrix in (3:), start row in (2:) and start column in (1:)
3: subMat(,,,) Return submatrix of matrix in (4:), start row in (3:), start column in (2:)

and end row in (1:)
4: subMat(,,,,) Return submatrix of matrix in (5:), start row in (4:), start column in (3:),

end row in (2:) and end column in (1:)

7: norms Matrix norms functions:

1: norm Return Frobenius norm of matrix in (1:)

2: rowNorm Return the maximum of the sums of the absolute values of elements of the
rows of matrix in (1:)

3: colNorm Return the maximum of the sums of the absolute values of elements of the
columns of matrix in (1:)

8: Dim Matrix and list dimension functions:

Page 43

1: dim If (1:) is a list, return number of elements of (1:)
If (1:) is a matrix, return number of rows and columns as list {rows, columns}
If (1:) is a string, return number of characters in (1:)

2: rowDim Return the number of rows of matrix in (1:)

3: colDim Return the number of columns of matrix in (1:)

Matrix New functions

1: identity Return identity matrix with dimension of expression in (1:)

2: randMat Return a matrix with integer random elements between -9 and 9, with (1:) rows
and (2:) columns

3: newMat Return a matrix with zero elements of (1:) columns and (2:) rows

4: Fill Fill a matrix or list with an expression. The matrix or list must already exist. The
expression is in (2:), and the list or matrix name is in (1:).

Matrix Ops functions

1: Row Matrix row swap and arithmetic functions:

1: rowSwap Return matrix in (3:) with rows (2:) and (1:) swapped

2: rowAdd Return matrix in (3:) with row (2:) replaced by sum of rows (2:) and (1:)

3: mRow Return matrix in (2:) with row (1:) multiplied by expression in (3:)

4: mRowAdd Return matrix in (3:) with each element of row (1:) replaced with
(4:) * (2:) + (1:). For example, if the stack is

4: n
3: [a,b;c,d]
2: 1
1: 2

then mRowAdd returns
a b

a � n + c b � n + d

2: Element Matrix element arithmetic:

1: .+ Return matrix which is (2:) + (1:). If (1:) and (2:) are both matrices then the
returned matrix is the sum of the corresponding elements of the matrices. If
(1:) or (2:) is an expression, then the returned matrix is the sum of the
expression and each element of the matrix.

2: .- Return matrix which is (2:) - (1:). If (1:) and (2:) are both matrices then the

Page 44

returned matrix is the difference between the corresponding elements. If (1:)
or (2:) is an expression, then the returned matrix is the difference between
each element of the matrix and the expression.

3: .* Return matrix which is (2:) * (1:). If (1:) and (2:) are both matrices then the
returned matrix is the product of the corresponding elements. If (1:) or (2:) is
an expression, then the returned matrix is the difference between each
element of the matrix and the expression.

4: ./ Return matrix which is (2:) / (1:). If (1:) and (2:) are both matrices then the
returned matrix is the quotient of the corresponding elements. If (1:) or (2:)
is an expression, then the returned matrix is the quotient of each element of
the matrix and the expression.

5: .^ Return matrix which is (2:) ^ (1:). If (1:) and (2:) are both matrices then the
elements of (2:) are the exponents for the elements in (1:) If (1:) is a matrix
and (2:) is an expression, then (2:) is the exponent of each element in (1:). If
(1:) is an expression and (2:) is a matrix, then the elements of (2:) are the
exponents of (2:).

3: Vector Vector functions and conversions:

1: unitV Return unit vector for vector in (1:). (1:) must be a single-column or single-
row matrix.

2: crossP Return cross product of (1:) and (2:). Returns a list if (1:) and (2:) are lists.
Returns a vector is (1:) and (2:) are vectors, which are single-row or single-
column matrices.

3: dotP Return dot product of (1:) and (2:). Returns a list if (1:) and (2:) are lists.
Returns a vector is (1:) and (2:) are vectors, which are single-row or single-
column matrices.

4: ¯Polar Return polar form of (1:). (1:) may be a row- or column-vector of dimension
2, or a complex value.

5: ¯Rect Return rectangular form of (1:). (1:) may be a complex value, or a row- or
column vector of dimension 2 or 3.

6: ¯Cylind Return cylindrical form of (1:). (1:) must be a row or column vector of
dimension 3.

7: ¯Sphere Return spherical form of (1:). (1:) must be a row or column vector of
dimension 3.

Matrix augment functions

1: augment(,) If (1:) and (2:) are lists, append elements of (2:) to (1:)
If (1:) and (2:) are matrices, append (2:) to (1:) as columns

2: augment(;) Append matrix (1:) to matrix (2:) as rows.
If (1:) and (2:) are lists, return list which is (2:) appended to (1:)
If (1:) and (2:) are matrices, append (2:) to (1:) as columns

Page 45

A: Stat functions

1: OneVar Calculate one-variable statistics and update the system statistics variables

1: OneVar (1:) is the list for which the statistics are calculated.

2: OneVar , (2:) is the list for which the statistics are calculated.
(1:) is the list of frequencies

3: OneVar ,, (3:) is the list for which the statistics are calculated.
(2:) is the list of frequencies
(1:) is the list of category codes

4: OneVar ,,, (4:) is the list for which the statistics are calculated.
(3:) is the list of frequencies
(2:) is the list of category codes
(1:) is the category include list

2: Two Var Calculate two-variable statistics and update the system statistics variables

1: TwoVar , (2:) is the xlist
(1:) is the ylist

2: TwoVar ,, (3:) is the xlist
(2:) is the ylist
(1:) is the list of frequencies

3: TwoVar ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the list of frequencies
(2:) is the list of category codes
(1:) is the category include list

3: Regres Calculate regression equation coefficients

1: Lin Linear regression y = a + b*x

1: LinReg , (2:) is the xlist
(1:) is the ylist

2: LinReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: LinReg ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

Page 46

2: Exp Exponential regression y = a*bx

1: ExpReg , (2:) is the xlist
(1:) is the ylist

2: ExpReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: ExpReg ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

3: Quad Quadratic regression y = a*x2 + b*x + c

1: QuadReg , (2:) is the xlist
(1:) is the ylist

2: QuadReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: QuadReg ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

4: Power Power regression y = a*xb

1: PowerReg , (2:) is the xlist
(1:) is the ylist

2: PowerReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: PowerReg ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

5: Ln Logarithmic regression y = a + b*ln(x)

1: LnReg , (2:) is the xlist
(1:) is the ylist

2: LnReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

Page 47

3: LnReg ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

6: MedMed Median-median line regression y = a + b*x

1: MedMed , (2:) is the xlist
(1:) is the ylist

2: MedMed ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: MedMed ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

7: Cubic Cubic regression y = a*x3 + b*x2 + c*x + d

1: Cubic , (2:) is the xlist
(1:) is the ylist

2: Cubic ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: Cubic ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

8: Quart Quartic regression y = a*x4 + b*x3 + c*x2 + d*x + c

1: QuartReg , (2:) is the xlist
(1:) is the ylist

2: QuartReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the frequency list

3: QuartReg ,,,, (5:) is the xlist
(4:) is the ylist
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

9: Sin Sine regression y = a*sin(b*x + c) + d

Page 48

1: SinReg , (2:) is the xlist
(1:) is the ylist

2: SinReg ,, (3:) is the xlist
(2:) is the ylist
(1:) is the maximum number of iterations

3: SinReg ,,, (4:) is the xlist
(3:) is the ylist
(2:) is the maximum number of iterations
(1:) is the estimate for the period

4: SinReg ,,,,, (6:) is the xlist
(5:) is the ylist
(4:) is the maximum number of iterations
(3:) is the estimate for the period
(2:) is the category code list
(1:) is the category include list

A: Logistic Logistic regression equation y = a/(1+ b*e^(c*x)) + d

1: Logistic , (2:) is the xlist
(1:) is the ylist

2: Logistic ,, (3:) is the xlist
(2:) is the ylist
(1:) is the maximum number of iterations

3: Logistic ,,, (4:) is the xlist
(3:) is the ylist
(2:) is the maximum number of interations
(1:) is the frequency list

4: Logistic ,,,,, (6:) is the xlist
(5:) is the ylist
(4:) is the maximum number of interations
(3:) is the frequency list
(2:) is the category code list
(1:) is the category include list

4: mean If (1:) is a list, return the mean of all the list elements.
If (1:) is a matrix, return a row vector of the means of the column elements.

5: variance If (1:) is a list, return the variance of the list elements.
If (1:) is a matrix, return a row vector of the variances of the column elements.

6: stdDev If (1:) is a list, return the standard deviation of the list elements.
If (1:) is a matrix, return a row vector of the standard deviations of the column
elements.

7: median If (1:) is a list, return the median of the list elements.
If (1:) is a matrix, return a row vector of the medians of the column elements.

Page 49

8: ShowStat Show the dialog box containing the last computed statisics results, if valid. The
statistics results are cleared if the data that generated them has changed.

B: Prob Probability functions

1: ! Return the factorial of (1:). (1:) may be an expression, list or matrix.

2: nPr Number of permutations. The stack is

(2:) expr1
(1:) expr2

expr1 and expr2 can be integers or expressions. If expr1 � expr2 � 0, then nPr
returns the number of permutations of expr1 items taken expr2 at a time.

If expr2 = 0, then nPr returns 1.

If expr2 is a negative integer, then nPr returns

1/(expr1 + 1) * (expr1 + 2) * ... * (expr1 - expr2)

If expr2 is a positive integer, then nPr returns

expr1 * (expr1 - 1) * (expr1 - 2) * ... * (expr1 - expr2 + 1)

If expr2 is a non-integer, then nPr returns

expr1! / (expr1 - expr2)!

If (1:) and (2:) are lists, return a list of permutations of the corresponding pairs of
elements in the two lists.

If (1:) and (2:) are matrices, return a matrix of permuatations of the corresponding
pairs of elements in the two matrices.

3: nCr Number of combinations (binomial coefficient). The stack is

(2:) expr1
(1:) expr2

expr1 and expr2 can be expressions or integers. If expr1 � expr2 � 0, then nCr
returns the number of combinations of expr1 items taken expr2 at a time.

If expr2 = 0, then nCr returns 1.

If expr2 is a negative integer, then nCr returns 0.

If expr2 is a positive integer, the nCr returns

expr1 * (expr1 - 1) * ... * (expr1 - expr2 + 1) / expr2!

If expr2 is a non-integer, then nCr returns

expr1! / ((expr1 - expr2)! * expr2)

Page 50

If expr1 and expr2 are lists, nCr returns a list of combinations of the corresponding
elements of the lists.

If expr1 and expr2 are matrices, nCr returns a matrix of combinations of the
corresponding matrix elements.

4: rand Return a random integer n in the interval specified by (1:). If n > 0, the interval
is [1,n]. If n < 0, the interval is [-n, -1]. To return a random number on the
interval [0,1], execute rand from the command line.

5: randNorm Return normally distributed random number specified by

2: mean
1: stdDev

6: randSeed Reseed random number generator. If (1:) is 0, reseed to factory defaults. If (1:) is
not equal to zero, use (1:) to generate two seeds stored in system variables
seed1 and seed2.

7: randMat Return matrix of random numbers between -9 and 9, based on stack arguments:

2: numberOfRows
1: numberOfColumns

8: randPoly Return a polynomial based on these stack arguments:

2: var
1: order

var is the polynomial variable, and order is the order of the polynomial. The
coefficients are from -9 to 9, and the leading coefficient is not zero.

C: Hyperbol Hyperbolic trigonometric functions:

1: sinh Return hyperbolic sine of (1:)
2: cosh Return hyperbolic cosine of (1:)
3: tanh Return hyperbolic tangent of (1:)
4: sinh-1 Return inverse hyperbolic sine of (1:)
5: cosh-1 Return inverse hyperbolic cosine of (1:)
6: tanh-1 Return inverse hyperbolic tangent of (1:)

D: log Logarithms:

1: ln Return natural logarithm of (1:). If (1:) is an expression or list, return the natural
logarithm of the expression, or each expression in the list. If (1:) is a square
diagonalizable matrix, return the matrix natural logarithm. This is not the same
as the natural logarithm of each matrix element.

2: log Return base-10 logarithm of (1:). If (1:) is an expression or list, return the
base-10 logarithm of the expression, or each expression in the list. If (1:) is a

Page 51

square diagonalizable matrix, return the matrix base-10 logarithm. This is not
the same as the base-10 logarithm of each matrix element.

E: Base Base conversion functions:

1: ¯Bin Convert integer in (1:) to binary (base 2)
2: ¯Dec Convert integer in (1:) to decimal (base 10)
3: ¯Hex Convert integer in (1:) to hexadecimal (base 16)

Page 52

The RCL menu provides basic operations for variables and folders. The RCL menu takes its name
from the fact that it is displayed by pressing [RCL], and it is used to recall items to the stack. It is not
intended to replace the VAR-LINK menu in normal 89/92+ operation, with all of its functions. You can
use the RCL menu to

y Change the current folder
y Recall user variables and variable names to the stack
y Execute user functions and programs

The RCL menu can be set to be shown as a pop-up menu or a line menu. Choose the menu type by
pressing [MODE], Customize, RCL menu, then choosing Pop Up or Line.

The RCL menu operates the same as a pop-up or line menu, with one exception. To push a variable
name to the stack, instead of the variable contents, you must use the RCL menu in line mode.

For the remainer of this description I assume that the RCL menu is shown as a pop-up menu.

Display the RCL menu by pressing [RCL]. The folders menu is displayed, for example

1: aaa
2: main
3: rpnc
4: test

In this case four folders are available: aaa, main, rpnc and test. Choose one of these menu items to
make the folder current. Next, this menu is shown:

1: VAR
2: FUNC
3: PROG

Choose VAR to display the variables, FUNC to display the functions, and PROG to display the
programs in the current folder. If the RCL menu is shown as a line menu, you can use [DIAMOND]
[LEFT] and [DIAMOND] [RIGHT] to scroll through the line menu items.

If the RCL menu is shown as a line menu, you can use [DIAMOND] [UP] or [DIAMOND] [DOWN] to
display the previous menu level. For example, if you have the variables displayed, and you want to
see your functions, press [DIAMOND] [UP], then this line menu is shown:

F1-VAR F2-FUNC F3-PROG

Push [F2] for the functions menu.

To change the current folder:

Push [RCL] to display the folders menu. Choose the folder you want. This folder is made current. If
you are using the line menu, no further action is needed. If you are using the pop-up menu, choose
VAR, FUNC or PROG. Push [ESC] as needed to close all the menus. The folder you chose is now the
current folder.

RCL Menu

Page 53

Note that you can also use [MODE], Other to use the built-in mode screen to change the current
folder.

To recall a variable to the stack:

Push [RCL] to display the folders menu. Choose the folder for the variable you want. Choose VAR.
Choose the variable from the menu. The variable's value is pushed onto stack level 1:.

To recall a variable name to the stack:

This can only be done if the RCL menu is shown as a line menu. Push [RCL] to display the folders
menu. Choose the folder for the variable you want, then choose F1:VAR. Push [DIAMOND], then the
function key for the desired variable. The variable name, not the value, is pushed onto stack level 1:.
You can also use this method to push a folder name on the stack.

To run a user function or program:

Push [RCL] to display the folders menu. Choose the folder for the function you want. Choose FUNC
for functions, PROG for programs. Choose the function or program from the menu. Functions are
executed with the input arguments taken from the stack and the results returned to the stack.
Programs are executed, the RPN resumes when the program finishes.

As an example, suppose I have a function called func1() in my test folder. This function has three
input arguments a, b and c. The function concatenates the three arguments as strings. To call
func1("a","b","c"), put the arguments on the stack:

3: "a"
2: "b"
1: "c"

then when func1() is executed, the result is returned to the stack:

1: "abc"

Page 54

The TOOLS menu is displayed by pushing [DIAMOND] [(-)]. The TOOLS menu consists of functions
for graphics, variables, and folders, as well as NewData and NewProb commands. The main menu is

1: Graphics
2: Var
3: Folder
4: NewData ..,n
5: NewProb

The rest of this sections describes these menus in detail.

Graphics menu

1: Graph

1: Graph x Graph the expression in (1:). The independent variable must be x

2: Graph , Graph an expression which requires two stack arguments. For function
and polar graphing, the stack is

1: expr expression to graph
2: var independent variable

3: Graph ,, Graph an expression which requires three stack arguments. For parametric
graphing, the stack is

3: xExpr the expression for x
2: yExpr the expression for y
1: var the parametric variable

For 3D graphing, the stack is

3: expr the expression to graph
2: xVar the independent x-variable
1: yVar the independent y-variable

2: Draw

1: DrawFunc Draw the expression in (1:), using x as the independent variable

2: DrawInv Draw the inverse of the expression in (1:), by plotting the x-values
on the y-axis and the y-values on the x-axis

3: Parm Draw parametric equation graphs:

1: DrawParm ,

2: DrawParm ,,

3: DrawParm ,,,

TOOLS Menu

Page 55

4: DrawParm ,,,, Draws the graph of two parametric equations with these stack arguments:

5: expr1 (function of t)
4: expr2 (function of t)
3: tmin (minimum value of t)
2: tmax (maximum value of t)
1: tstep (step value of t)

4: Pol Draw polar equation graphs:

1: DrawPol x Draw the polar graph of the expression in (1:), using j as the independent
variable. Use the current window settings.

2: DrawPol , Draw a polar graph with j as the independent variable with these stack
arguments:

2: expr (function of j)
1: jmin (minimum j)

3: DrawPol ,, Draw a polar graph with j as the independent variable with these stack
arguments:

3: expr (function of j)
2: jmin (minimum j)
1: jmax (maximum j)

4: DrawPol ,,, Draw the graph of a polar equation with these stack arguments:

4: expr (function of j)
3: jmin (minimum j)
2: jmax (maximum j)
1: jstep (step value of j)

5: DrawSlp Draw the line through the point (x1,y1) with a specified slope with these
stack arguments:

3: x1
2: y1
1: slope

The equation for the line is y = slope * (x - x1) + y1

6: DrwCtour Draw contours on the current 3D graph at the z-values specified in the list
or expression in (1:). 3D graph mode must be set. The contours drawn by
DrwCtour are added to those specifed by the ncontour window variable.
Set ncontour to zero to turn off the default contours.

3: BldData Build a data variable from the current graph information.

1: BldData Build the data variable and store it in the system variable sysData.

2: BldData x Build the data variable and store it in the variable in (1:).

4: Table Build table operations:

Page 56

1: Table x Build a table from a function or polar function. If the current graph mode is set to
Function, the independent variable must be x. If the current graph mode is set to
Polar, the independent variable must be j.

2: Table , If the graph mode is Function or Polar, build a table from a function or polar
function. In either case, the function is in (2:) and the independent variable is in
(1:).

If the graph mode is parametric, build a a table from these stack arguments:

2: xExpr
1: yExpr

The independent parametric variable must be t.

3: Table ,, Build a table from a parametric function with these stack arguments:

(3:) xExpr (The x-expression)
(2:) yExpr (The y-expression)
(1:) tVar (The parametric independent variable)

5: Clr Clear operations:

1: ClrDraw Clear the Graph screen and reset the 'Smart Graph' feature

2: ClrGraph Clear any functions or expressions graphed with the Graph command or
created with the Table command.

3: ClrHome Clear all items in the normal-mode history display. Reset arbitrary constant and
integer suffix to 1.

4: ClrIO Clear the Program I/O screen.

5: ClrTable Clear all table values.

6: Zoom Graph screen zoom operations

1: ZoomBox Display the graph screen, accept a box that defines a new viewing window, then
updates the window.

2: ZoomData Adjust window settings so that all statistical plot data point are shown, then
displays the Graph screen.

3: ZoomDec Adjust the window settings so that fx = fy = 0.1, and so that the origin is centered
in the graph screen.

4: ZoomFit Display the graph screen and adjust the window settings for the dependent
variable so that all plotted points are shown for the independent variables.

5: ZoomIn Display the graph screen, accept a zoom center point, then update the graph
screen. The zoom magnitude depends on xFact and yFact, and also on zFact in

Page 57

3D mode.

6: ZoomInt Display the graph screen, accept a zoom center point, then adjust the window
settings so that each pixel on all axes is an integer.

7: ZoomOut Display the graph screen, accept a zoom center point, then update the graph
screen. The zoom magnitude depends on xFact and yFact, and also on zFact in
3D mode.

8: ZoomPrev Display the graph screen, restore the window settings prior to the last zoom, then
update the graph screen.

9: ZoomRcl Display the graph screen, restore the windows settings last saved with ZoomSto,
then update the graph screen.

A: ZoomSqr In the 2D graph modes, adjust the x or y axis window settings so each pixel
represents an equal width and height in the coordinate system, then update the
graph screen.

In 3D graph mode, the shortest two axes are lengthened to the same length as the
longest axis.

B: ZoomStd Set the window settings to standard values shown below, then update the graph
screen.

Function graph:
x:[-10,10,1], y:[-10,10,1], xres = 2

Parametric graph:
t:[0,2n,n/24], x:[-10,10,1], y:[-10,10,1]

Polar graph:
j:[0,2n,n/24], x:[-10,10,1], y:[-10,10,1]

Sequence graph:
x:[-10,10,1], y:[-10,10,1], nmin = 1, nmax = 10, plotStrt = 1, plotStep = 1

3D graph:
eyej�=20, eyes�=70, eyet�=0, x:[-10,10,14], y:[-10,10,14], z:[-10,10],
ncontour = 5

Differential equation graph:
t:[0,10,.1,0], x:[-1,10,1], y:[-10,10,1], ncurves = 0, Estep = 1, diftol = .001
fldres = 20, dtime = 0

C: ZoomSto Save the current window settings in the zoom memory. Restore them with
ZoomRcl.

D: ZoomTrig Display the graph screen. Set fx = n/24, xscl = n/2, set the y settings to
[-4,4,5] and update the graph screen.

7: FnOn Function-on operations

1: FnOn Select all Y= functions for the current graph mode

Page 58

2: FnOn ..,n Select specified Y= functions for the current graph mode. Specify the numbers of
the functions to select in the stack, and the number of functions to select in 1:
or the command line. For example, to select Y3(x) and Y(5), enter this stack:

3: 3 function number for Y3(x)
2: 5 function number for Y5(x)
1: 2 total number of Y= functions to select

then execute FnOn ..,n

8: FnOff Function-off operations

1: FnOff Deselect all Y= functions for the current graph mode

2: FnOff ..,n Deselect specified Y= functions for the current graph mode. Specify the numbers
of the functions to deselect in the stack, and the number of functions to deselect in
1: or the command line. For example, to deselect Y3(x) and Y(5), enter this stack:

3: 3 function number for Y3(x)
2: 5 function number for Y5(x)
1: 2 total number of Y= functions to select

then execute FnOff ..,n

Var menu

1: Define Define a function with these stack arguments:

2: func(var) function name and arguments
1: expr function expression

For example, to define f(x) = 1/sin(x), enter this stack

2: f(x)
1: 1/sin(x)

then execute Define.

2: DelVar Delete variable commands

1: DelVar x Delete a single variable whose name is in (1:)

2: DelVar ..,n Delete multiple variables whose names are on the stack, and the number of
variables to delete, n, is in (1:) or the command line. For example, to delete
the three variables a, b and c, enter this stack:

4: a
3: b
2: c
1: 3

then execute DelVar ..,n

Page 59

3: Rename Rename a variable, using this stack:

2: varName name of existing variable
1: newName new name for variable

4: CopyVar Copy a variable, using this stack:

2: varName name of existing variable
1: newName name of copy of variable

5: MoveVar Move a variable to a different folder, using this stack:

3: varName name of variable to move
2: oldFolder name of current folder
1: newFolder name of folder to move varName

Use the [RCL] menu in command line mode with [DIAMOND] [F1] -
[DIAMOND] [F5] to push the folder names on the stack.

6: Lock Variable lock operations

1: Lock x Lock a single variable whose name is in (1:) or the command line.

2: Lock ..,n Lock one or more variables whose names are on the stack, and the number
of variables to lock is in (1:) or the command line. For example, to lock three
variables a, b and c, enter this stack

4: a
3: b
2: c
1: 3

then execute Lock ..,n.

7: Unlock Variable unlock operations

1: Unlock x Unlock a single variable whose name is in (1:) or the command line.

2: Unlock ..,n Unlock one or more variables whose names are on the stack, and the number
of variables to unlock is in (1:) or the command line. For example, to unlock
three variables a, b and c, enter this stack

4: a
3: b
2: c
1: 3

then execute Unlock ..,n.

8: Archive Variable archive operations

1: Archive x Archive a single variable whose name is in (1:) or the command line.

Page 60

2: Archive ..,n Archive one or more variables whose names are on the stack, and the number
of variables to archive is in (1:) or the command line. For example, to archive
three variables a, b and c, enter this stack

4: a
3: b
2: c
1: 3

then execute Archiv ..,n.

9: Unarchiv Variable unarchive operations

1: Unarchiv x Unarchive a single variable whose name is in (1:) or the command line.

2: Unarchiv ..,n Unarchive one or more variables whose names are on the stack, and the
number of variables to unarchive is in (1:) or the command line. For example,
to unarchive three variables a, b and c, enter this stack

4: a
3: b
2: c
1: 3

then execute Unarchiv ..,n.

Folder menu

1: NewFold Create a new folder whose name is in (1:) or the command line.

2: DelFold Delete a single folder whose name is in (1:) or the command line.

3: DelFold ..,n Delete one or more folders whose names are on the stack, and the number
of folders to delete is in (1:) or the command line. For example, to delete three
folders aaa, bbb and ccc, enter this stack:

4: aaa
3: bbb
2: ccc
1: 3

then execute DelFold ..,n

NewData ..,n Create a new data variable whose name and list elements are on the stack, and
the number of arguments is in (1:) or the command line. For example, to create a
data variable called adata with three columns {1,2,3}, {4,5,6} and {7,8,9}, enter
this stack:

5: adata
4: {1,2,3}
3: {4,5,6}

Page 61

2: {7,8,9}
1: 4

then execute NewData ..,n.

NewProb Clear the calculator state without resetting memory. All single-character variable
names are cleared, unless they are locked or archived. Turn off all functions
and statistical plots in the current graph mode. Execute ClrDraw, ClrErr,
ClrGraph, ClrHome, ClrIO and ClrTable.

Page 62

RPN supports custom menus. A custom menu shows only the items that you choose, unlike the RCL
menu, which shows all variables and functions. Each folder may have its own custom menu. The
custom menus can be shown as pop-up or line menus. This description assumes that you have set
the menu to be shown as a pop-up menu. Custom line menus operate in the same way.

The menu is displayed when you press [CUSTOM]. If a variable named custom_ exists in the current
folder, RPN makes a custom menu with the strings in the list in custom_.

For example, to create a custom menu with the variables var1, var2 and var3, and the functions
func1, func2 and func3, use these keystrokes in RPN mode:

^�YDU����YDU����YDU����IXQF����IXQF����IXQF��` >(17(5@
FXVWRPB >672@

Use the \ folder specifier to refer to variables and functions that are not in the current folder. For
example, this custom_ variable

^�IROGHU�?YDU����IROGHU�?YDU����IROGHU�?YDU��`

specifies that the variables are all in folder1.

You can include variables in the custom menu that are not defined. Undefined variables will be shown
in the custom VAR menu. Built-in functions will be shown in the custom FUNC menu. System
commands cannot be shown in the menus.

These variable types are not evaluated when chosen from the menu:

PIC DATA TEXT
GDB MACRO FIGURE

Instead, for these types, the name of the variable is pushed on the stack.

To display the custom menu, press [CUSTOM]. This menu is shown:

1: VAR display variables
2: FUNC display functions
3: PROG disply programs

Choose the appropriate option to display variables, functions or programs, then another menu is
shown which lists those items. For example, if you have defined the variables a, b, and c, then when
VAR is selected, this menu is shown:

1:a
2:b
3:c

Some additional features are available when a custom menu is shown as a line menu. Use
[DIAMOND] [UP] or [DIAMOND] [DOWN] to display the previous menu. With a line menu, you can
either push a variable's contents or its name on the stack. For the example above, the custom
variable menu is displayed as

Custom Menus

Page 63

)��YDU�)��YDU�)��YDU�

To push the contents of var1 on the stack, push [F1]. To push the name var1 on the stack, push
[DIAMOND] [F1]. Pushing the variable name on the stack is convenient for storing new values to
existing variables. The new value can be stored without typing the variable name. For example, to
store 1.234 to the variable var2:

1.234 enter 1.234
[DIAMOND] [F2] push var2 on stack
[STO] store 1.234 to var2

You will also need to push a variable's name on the stack if you want to copy it, rename it, move it,
archive or unarchive it, and lock or unlock it.

You can remove a custom menu by deleting the custom_ variable.

Page 64

The custom key assignment is an RPN feature that lets you assign your own functions to the keys.
This lets you use your calculator more efficiently, by quickly executing functions that you often use.

There are two types of key assignments:

1. You can assign functions to unused keys, then execute the function just by pressing the key.
This is called an unused-key assignment.

2. You can assign functions to any key, then execute the function by pressing [DOWN] [key].
This is called an alternate-key assignment.

The two sections that follow describe each assignment method.

Alternate-key assignments

This is the method to assign custom key functions:

1. Enter the function you want to assign, as a string.

2. Push a keycode variable on the stack, using [2nd] [DOWN] [key], where key is the key you
want to use.

3. Push [STO] to store the string to the keycode variable.

To execute a custom key function, press [DOWN], then the key.

In the examples that follow, I use the TI92+. The procedure is the same on the TI89, except that the
actual key code variable names will be different. For example, the key code variable for the [SIN] key
is rpnc\key259 on the TI92+, and rpnc\key4185 on the TI89.

As an example, assign sinh() to the [SIN] key:

"sinh" [ENTER] enter the function to assign
[2nd] [DOWN] [SIN] get the keycode variable for the [SIN] key
[STO] save the function string in the keycode variable

To use this key assignment to find sinh(1), use

1 [DOWN] [SIN]

which returns 1.1752.

To display a key assignment, use

[2nd] [DOWN] [key] get the keycode variable for [key]
[DIAMOND] [ENTER] recall the key assignment string

For the example above:

[2nd] [DOWN] [SIN] pushes rpnc\key259 to (1:)

Custom key assignments

Page 65

[DIAMOND] [ENTER] displays "sinh" in (1:)

To remove a key assignment, delete the key assignment variable with DelVar:

[2nd] [DOWN] [key] get the keycode variable for [key]
[DIAMOND] [DEL] [1] delete the keycode variable

To delete the sinh() assignment made above:

[2nd] [DOWN] [SIN] get the keycode variable for [SIN]
[DIAMOND] [DEL] [1] delete the keycode variable

In general, almost any function or command that can be executed from the command line can be
assigned to a custom key. This includes user programs and functions in TIbasic or assembly. You can
also assign expressions to a key. You cannot assign built-in commands to a key.

Assignments can be made to modified keys, where the modifiers are [SHIFT], [2nd] and [DIAMOND].
For example, to push the key code variable for [DIAMOND] [8], use

[2nd] [DOWN] [DIAMOND] [8]

which pushes rpnc\key8248 on the stack.

You can create a key menu by assigning a list of strings to a key. In this case, the strings define a
menu that acts much the same as a custom menu. This is called a key menu. The difference is that
key menus are global; not local to a folder as the custom menus are. The key menu is displayed as a
pop-up menu or a line menu depending on the current setting for custom menus, found in [MODE],
Customize, Custom menu. For example, suppose you store this list to the [sin] key code variable:

{"var1", "var2", "func1", "func2", "prog1", "prog2"}

After this assignment, when [DOWN] [SIN] is pressed, this line menu is shown:

F1-VAR F2-FUNC F3-PROG

Choose F1 to display the variables var1 and var2. Choose F2 to display the functions func1 and
func2. Choose F3 to display the programs prog1 and prog2.

In algebraic mode, executing a custom key assignment pastes the text in the command line at the
cursor position.

All custom key definitions are saved in the \rpnc folder.

If a program or function is named with a key code variable name and stored in the \rpnc folder, that
function will run when the custom key is pressed. For example, the key code variable name for the
[SIN] key is rpnc\key259, so if you have a program or function called key259(), it will run when
[DOWN] [SIN] is pressed.

Unused-key assignments

Most of the previous description for alternate-key assignments applies to unused-key assignments, as
well. The assignments are made in the same way, by storing the function string to a key-code

Page 66

variable. However, an unused-key assignment function is executed by just pressing the key, instead
of pressing [DOWN][key].

For example, you may assign a function to [DIAMOND] [A] on the 92+, since that key combination is
not used by RPN or the 92+ in normal mode. However, you cannot assign a function to [DIAMOND]
[1]. Even though that combination is unused by the 92+, it is used by RPN as a shortcut to the MATH
Number menu.

The tables below show unused keys for the TI89 and the TI92+.

TI89 unused keys:

[DIAMOND] [,] [2nd] [ENTER]
[DIAMOND] [UP] [2nd] [UP]
[DIAMOND] [DOWN]
[DIAMOND] [LEFT]
[DIAMOND] [RIGHT]

TI92+ unused keys:

[DIAMOND] [A] [DIAMOND] [MODE] [DIAMOND] [^]
[DIAMOND] [B] [DIAMOND] [ESC] [DIAMOND] [(]
[DIAMOND] [D] [DIAMOND] [STO] [DIAMOND] [)]
[DIAMOND] [H] [DIAMOND] [LEFT] [DIAMOND] [,]
[DIAMOND] [I] [DIAMOND] [RIGHT] [DIAMOND] [/]
[DIAMOND] [J] [DIAMOND] [UP] [DIAMOND] [*]
[DIAMOND] [K] [DIAMOND] [DOWN]
[DIAMOND] [L] [2nd] [ENTER]
[DIAMOND] [M] [DIAMOND] [LN] [2nd] [UP]
[DIAMOND] [N] [DIAMOND] [SIN] [2nd] [4]
[DIAMOND] [O] [DIAMOND] [COS] [2nd] [B]
[DIAMOND] [S] [DIAMOND] [TAN]
[DIAMOND] [U]
[DIAMOND] [Z] [DIAMOND] [j]
[DIAMOND] [SPACE]

Page 67

RPN supports constants, units and unit conversion. In RPN mode, an additional conversion method is
available which is usually faster than using the normal-mode conversion method. The UNIT menu can
only be displayed as a line menu, not a pop-up menu.

In general, the units are the same as those in normal-mode operation. However, RPN includes more
units for area, volume and other categories, and some of the normal-mode categories have been
combined, for example, time and frequency.

In algebraic mode, units are converted in the same way as in normal-mode operation. For example, to
convert three feet to meters, use this key sequence:

3 [UNITS] enter 3 and display the units menu
[F2] select the LENG menu
[DIAMOND] [RIGHT] scroll to the menu that shows the _ft unit
[F1] enter the _ft unit
>Ý@ enter the conversion operator
[F5] enter the _m unit
[ENTER] do the conversion resulting in 0.9144_m

In RPN mode, it is not necessary to use the conversion operator. The units are displayed in a line
menu, and pressing [DIAMOND] before pressing the unit key performs the conversion. Repeating the
example in RPN mode:

3 [UNITS] enter 3 and display the units menu
[F2] select the LENG menu
[DIAMOND] [RIGHT] scroll to the menu that shows the _ft unit
[F1] enters the _ft unit and puts 3_ft on stack level 1:
[DIAMOND] [F5] convert 3_ft to 0.9144_m on stack level 1:

The numeric values that are displayed for constants and units depend on the current Unit System
setting. This can be changed by pressing [MODE] [8], then choosing the desired unit system.

To display the constants/units line menu, press [UNITS]. The menu is:

F1: CONST Constants
F2: LENG Length units
F3: AREA Area units
F4: VOL Volume units
F5: TIME Time and frequency units

F1: SPEED Speed units
F2: MASS Mass units
F3: FORCE Force units
F4: ENRG Energy units
F5: POWR Power units

F1: PRESS Pressure units
F2: TEMP Temperature units
F3: ELECT Electricity units

Constants, units and unit conversion

Page 68

F4: LIGHT Light units
F5: VISC Viscosity units

F1: MAGN Magentism units

Use [DIAMOND] [LEFT] and [DIAMOND] [RIGHT] to scroll the menu displays. The rest of this section
describes the constants and units submenus.

Constants menu

Push [UNITS] [F1] to display the constants menu. Pressing a function key [F1] to [F5] multiplies the
expression in the command line by the constant. If the command line is empty, pressing the function
key for a constant enters the constant.

For example, to enter the speed of light constant, press

[UNITS] select UNITS menu display
[F1] select CONST menu display
[F1] select _c constant

and _c is entered on stack level 1:.

If the command line is not empty when the unit is selected, the expression in the commmand line is
multiplied by the constant. For example,

2 [UNITS] [F1] [F1]

results in 2*_c in stack level 1:.

Note that the units associated with a constant depend on the current Unit System setting, which is
found in the MODE menu. For example, if the Unit System is set to SI, then _c is displayed as
2.998E8 _m/_s. If the Unit System is set to ENG/US, then _c is displayed as 9.836E8 _ft/_s.

These constants are available:

F1: _c Speed of light in a vacuum
F2: _Cc Coulomb constant
F3: _g Acceleration of gravity
F4: _Gc Gravitational constant
F5: _h Planck's constant

F1: _k Boltzman's constant
F2: _Me Electron rest mass
F3: _Mn Neutron rest mass
F4: _Mp Proton rest mass
F5: _Na Avogadro's number

F1: _q Electron charge
F2: _Rb Bohr radius
F3: _Rc Molar gas constant
F4: _Rdb Rydberg constant
F5: _Vm Molar volume

Page 69

F1: _h0 Permittivity of a vacuum
F2: _q Stefan-Boltzmann constant
F3: _s0 Magnetic flux quantum
F4: _�0 Permeability of a vacuum
F5: _�b Bohr magneton

LENG (length) units menu

These units are displayed in the length units menu. They are the same units that are available in
normal mode operation.

F1: _Ang Angstrom F1: _ft foot (ENG/US)
F2: _au astronomical unit F2: _in inch
F3: _cm centimeter F3: _km kilometer
F4: _fath fathom F4: _ltyr light year
F5: _fm fermi F5: _m meter (SI)

F1: _mi mile F1: _rod rod
F2: _mil 1/1000 inch F2: _yd yard
F3: _mm millimeter F3: _� micron
F4: _nm nautical mile F4: _A angstrom
F5: _pc parsec

AREA (area) units menu

These units are displayed in the area units menu. Note that there are more units available here than in
the normal-mode area units menu.

F1: _acre acre F1: _km^2 square kilometer
F2: _cm^2 square centimeter F2: _mi^2 square mile
F3: _ft^2 square foot F3: _mil^2 square mil
F4: _ha hectare F4: _mm^2 square millimeter
F5: _in^2 square inch F5: _m^2 square meter

F1: _yd^2 square yard

VOL (volume) units menu

These units are displayed in the volume units menu. This menu includes a few units that are not
available in normal-mode operation.

F1: _cm^3 cubic centimeter (cc) F1: _gal gallon (US)
F2: _cup cup F2: _galUK gallon (British)
F3: _ft^3 cubic foot F3: _l liter
F4: _floz fluid ounce (US) F4: _m^3 cubic meter
F5: _flozUK fluid ounce (British) F5: _ml milliliter

F1: _mm^3 cubic millimeter F1: _yd^3 cubic yard
F2: _pt pint
F3: _qt quart

Page 70

F4: _tbsp tablespoon
F5: _tsp teaspoon

TIME (time and frequency) units menu

This menu combines the normal-mode time and frequency menus. The available units are

F1: _Hz hertz F1: _�s microseconds
F2: _kHz kilohertz F2: _ms milliseconds
F3: _MHz megahertz F3: _s seconds
F4: _GHz gigahertz F4: _min minutes
F5: _ns nanoseconds F5: _hr hours

F1: _day day
F2: _week week
F3: _year year

SPEED (speed) units menu

This menu is called the velocity menu in normal-mode operation. It is called SPEED in RPN, because
velocity is a actually a vector, and numbers with speed units are not vectors. The speed menu
includes an additional unit not available in normal-mode operation, which is m/s. The available units
are

F1: _knot knot
F2: _kph kilometer per hour
F3: _mph miles per hour
F4: _m/s meters per second

MASS (mass) units menu

F1: _amu atomic mass unit F1: _mol mole (amount of substance)
F2: _gm gram F2: _mton metric ton
F3: _kg kilogram F3: _oz ounce
F4: _lb pound (ENG/US) F4: _slug slug
F5: _mg milligram F5: _ton ton

F1: _tonne metric ton
F2: _tonUK long ton

FORCE (force) units menu

F1: _dyne dyne
F2: _kgf kilogram force
F3: _lbf pound force
F4: _N newton
F5: _tonf ton force

Page 71

ENRG (energy) units menu

F1: _Btu British thermal unit F1: _J joule
F2: _cal calorie F2: _kcal kilocalorie
F3: _erg erg F3: _kWh kilowatt-hour
F4: _eV electron volt F4: _latm liter-atmosphere
F5: __ftlb foot-pound

POWR (power) units menu

F1: -hp horsepower
F2: _kW kilowatt
F3: _W watt

PRESS (pressure) units menu

F1: _atm atmosphere F1: _mmHg millimeters of mercury
F2: _bar bar F2: _Pa pascal
F3: _inH2O inches of water F3: _psi pounds per square inch
F4: _inHg inches of mercury F4: _torr millimeters of mercury
F5: _mmH2O millimeters of water

TEMP (temperature) units menu

F1: _°C degree Celsius
F2: _°F degree Farenheit
F3: _°K degree Kelvin
F4: _°R degree Rankine

ELECT (electricity) units menu

This menu combines several categories of normal mode operation into these submenus:

F1: A F1: _kA kiloampere
(current units) F2: _A ampere

F3: _mA milliampere
F4: _�A microampere

F2: V F1: _kV kilovolt
(voltage units) F2: _V volt

F3: _volt volt
F4: _mV millivolt

F3: R F1: _Mu megaohm
(resistance units) F2: _ku kilo ohm

F3: _ohm ohm
F4: _u ohm

Page 72

F4: C F1: _F farad
(capacitance units) F2: _�F microfarad

F3: _nF nanofarad
F4: _pF picofarad
F5: _coul coulomb

F5: L F1: _henry henry
(inductance units) F2: _mH millihenry

F3: _nH nanohenry
F4: _�H microhenry

F1: 1/R F1: _mho mho
(conductance units) F2: _mmho millimho

F3: _�mho micromho
F4: _seimens seimens

LIGHT (light) units menu

F1: _cd candela

VISC (viscosity) units menu

F1: _P poise (dynamic viscosity)
F2: _St stokes (kinematic viscosity)

MAGN (magnetism) units menu

This menu combines units for magnetic field strength, flux and flux density.

F1: _Oe oersted (magnetic field strength)
F2: _Gs gauss (magnetic flux density)
F3: _T tesla (magnetic flux density)
F4: _Wb weber (magnetic flux)

Page 73

RPN supports special characters, which are entered with the CHAR menu. Press [CHAR] to display
the character menu:

1: Greek Greek alphabet
2: Math Mathematics symbols
3: Punct Punctuation symbols
4: Special Special calculator symbols

These are the four categories of special characters. To enter a character at the cursor position in the
command line, choose the character from the submenu. For example, to enter the b character, press
[CHAR], [1], [1], then b is inserted at the cursor position.

The CHAR menu can be customized as a pop-up menu or a command line menu. Use

[MODE], 3:Customize, 4:CHAR menu

to set this option.

Special characters and the CHAR menu

Page 74

This version of RPN supports these function keys:

[ON] Break a running TIbasic program, or turn the calculator off if no
program is running.

[OFF] Turn the calculator off

[DIAMOND] [ON] Turn the calculator off

[HOME] Switch between RPN and last normal-mode application

[+], [-], [x], [/], [^] Basic arithmetic functions

[x-1] Reciprocal operator (TI92+ only)

[(-)] Negation (change sign)

[EE] Enter exponent

[sin], [cos], [tan], Trigonometric functions
[cos-1], [sin-1], [tan-1]

[�], [ex], [LN], [n] Square root, natural logarithm functions and pi

[�], [�] Differentiation and integration

[=], [<], [>] Conditional test operators
[DIAMOND] [=] Not-equal operator ~
[DIAMOND] [<] Less-than-or-equal operator }
[DIAMOND] [>] Greater-than-or-equal operator �

[|] Conditional "where" operator

[�], [¯], [�], [�], Degree symbol, unit conversion, angle, complex "i", infinity and
[�], [_] units operator

[QUIT] Close a built-in application and return to RPN

[ESC] Close pop-up menus

[BACKSPACE] Delete the character to the left of the cursor

[CHAR] Display the special character menu

[UNITS] Display the units and constants menu

[STO¯] "Store" operator

[RCL] Display the RCL menu

Supported key functions

Page 75

[INS] Perform Undo, if Undo feature is enabled.

[DEL] Display the Delete menu

[ANS] Paste ans(1) in the command line

[COPY] Copy the marked expression in the stack or command line.

[CUT] Cut the marked expression in the command line.

[PASTE] Paste the expression in the command line.

[UP], [DOWN], Cursor movement and stack movement
[LEFT], [RIGHT]

[2nd] [DOWN] [key] Push key code variable name for key in RPN mode.
Paste key code variable name for key in algebraic mode.

[DOWN] [key] Execute custom key assignment for key

[2ND] [LEFT], Move cursor to beginning and end of command line or stack elements
[2ND] [RIGHT]

[SHIFT] [UP] Mark to beginning of line, if cursor is in command line.
Scroll large objects if cursor is in the stack.

[SHIFT] [DOWN] Mark to end of line, if cursor is in command line.
Scroll large objects if cursor is in the stack.

[DIAMOND] [C] COPY on the TI92+
[DIAMOND] [X] CUT on the TI92+
[DIAMOND] [V] PASTE on the TI92+

[DIAMOND] [LEFT], Scroll the command line menu to display more choices
[DIAMOND] [RIGHT]

[DIAMOND] [UP], Move up one menu level in these line menus: RCL, custom, custom key,
[DIAMOND] [DOWN] MATH, UNIT and CHAR.

[DIAMOND] [F1], ... Push the variable name, not the variable value on the stack. This
[DIAMOND] [F5] works in both the custom line menus and the custom key line menus.

[DIAMOND] [CLEAR] Clear stack

[DIAMOND] [ENTER] Evaluate (1:) in Exact mode if mode setting is Approximate, or
in Approximate mode if the setting is Exact. If the mode setting is Auto,
evaluate (1:) in Exact mode if the last evaluation was Approximate, and
vice versa.

Display a custom key assignment if (1:) is a key code variable.

[DIAMOND] [+] Increase display contrast
[DIAMOND] [-] Decrease display contrast

Page 76

[DIAMOND] [(-)] Display the Tools menu

[DIAMOND] [1] Display Math Number menu
[DIAMOND] [2] Display Math Test menu
[DIAMOND] [3] Display Math Algebra menu
[DIAMOND] [4] Display Math Calc menu
[DIAMOND] [5] Display Math Complex menu
[DIAMOND] [6] Display Math Stack menu
[DIAMOND] [7] Display Math Matrix menu
[DIAMOND] [8] Display Math Stat menu
[2nd] [7] Display Math Calc Int menu

[F1], [F2], [F3], Command line menu keys
[F4], [F5]

[F6] Switch between RPN and algebraic modes

[F7] Swap function

[F8] Switch delayed evaluation on and off

[MODE] Display mode settings menu

[MATH] Display MATH menu

[MEM] Display normal-mode memory screen

[VAR-LINK] Display normal-mode Var-Link screen

[CATALOG] Display normal-mode function Catalog screen

[APPS] Display normal-mode APPS screen

[2nd] [APPS] Switch to the previous normal-mode application

[DIAMOND] [APPS] Display the normal-mode Flash applications menu

Note that the five keys below work on the TI89 only if the line menus for RCL, custom and Unit
menus are not active. These keys always work on the TI92+.

[Y=] Display normal-mode Y= editor
[WINDOW] Display normal-mode Window screen
[GRAPH] Display normal-mode Graph screen
[TblSet] Display normal-mode TblSet screen
[TABLE] Display normal-mode Table screen

[CLEAR] Clear command line or delete stack entry

[CUSTOM] Display custom user menu

Page 77

Alphabetic List of Functions

The table below shows all built-in 89/92+ commands, as well as the functions that are only in RPN.
This table serves two purposes: you can find the menu in which an operation can be found, and you
can quickly determine if an 89/92+ operation is supported by RPN. By operation I mean a function or
command.

[keyboard] is shown if the operation is on the 89/92+ keyboard, not in a menu.

[type] is shown if the operation can only be executed by typing the function name.

[command line] is shown if the operation can be executed from the command line.

Some 89/92+ operations are not supported. These operations are used only in TIBasic programming
and are not useful in RPN. Operations that are not implemented are shown in a smaller font size, in
blue, and there is no description beside the function.

Function Menu location

abs() Math Number, Math Complex
and Math Test
AndPic [command line]
angle() Math Complex
ans() [type] Does not support argument; can only return ans(1). Also use [ANS]
approx() Math Algebra
Archive Tools, Archiv
arcLen() Math Calc
augment() Math Matrix Augment
avgRC() [type]

ÝBin Math Base
BldData Tools, Graphics, BldData

ceiling() Math Number
cFactor Math Algebra Complex
char() [type]
Circle [command line]
ClrDraw Tools, Graphics, Clr
ClrErr
ClrGraph Tools, Graphics, Clr
ClrHome Tools, Graphics, Clr
clrIO Tools, Graphics, Clr
ClrTable Tools, Graphics, Clr
colDim() Math Matrix Extr dim
colNorm() Math Matrix Extr norms
comDenom() Math Algebra ComDen
conj() Math Complex
CopyVar Tools Var
cos() [keyboard]
cos-1() [keyboard]
cosh() Math Hyperbol
cosh-1() Math Hyperbol

Page 78

crossP() Math Matrix Ops Vector
cSolve() Math Algebra Complex
CubicReg Math Stat Regress Cubic
cumSum() Math List
CustmOff [command line]
CustmOn [command line]
Custom
Cycle
CyclePic

Ýcylind Math Matrix Ops Vector
cZeros Math Algebra Complex

�() [keyboard]
ÝDD Math Angle
ÝDec Math Base
Define Tools Var
DEL Math Stack
DEL n Math Stack
DelFold Tools Folder
DelVar Tools Var
deSolve() Math Calc
det() Math Matrix Solve
diag() Math Matrix Extr
Dialog

dim() Math Matrix Extr dim
Disp [command line]
DispG [command line]
DispHome [command line]
DispTbl [command line]
ÝDMS Math Angle
dotP() Math Matrix Ops Vector
DrawFunc Tools Graphics Draw
DrawInv Tools Graphics Draw
DrawParm Tools Graphics Draw Parm
DrawPol Tools Graphics Draw Pol
DrawSlp Tools Graphics Draw
DropDown
DrwCtour Tools Graphics Draw
DUP 2 Math Stack
DUP N Math Stack

x [keyboard]
y^() [keyboard]
eigVc Math Matrix Extr
eigVl() Math Matrix Extr
Else
ElseIf
EndCustm
EndDlog
EndFor
EndFunc
EndIf
EndLoop
EndPrgm
EndTBar
EndTry

Page 79

EndWhile
entry() [type] Does not support argument, can only return entry(1)
exact() Math Number exact
Exec
Exit
expÝlist() [type]
expand() Math Algebra
expr() [type]
ExpReg Math Stat Regres Exp

factor() Math Algebra
Fill Math Matrix New
floor() Math Number
fMax() Math Calc
fMin() Math Calc
FnOff Tools Graphics FnOff
FnOn Tools Graphics FnOn
For
format() [type] Does not support format string; uses current display format
fPart() Math Number
Func

gcd() Math Number
Get
GetCalc
getConfg() [type]
getDenom() Math Algebra Extract
getFold() [type]
getKey() [type] Always returns 0
getMode() [type]
getNum() Math Algebra Extract
getType() [type]
getUnits() [type]
Goto
Graph Tools Graphics Graph

ÝHex Math Base

Identity() Math Matrix New
if

imag() Math Complex
Input
InputStr
InString() [type] start argument not supported
int() (same as Floor)
intDiv() [type]
integrate Math Calc Int
iPart() Math Number
isPrime() Math Test
Item

Lbl
lcm() Math Number
left() Math Algebra Extract, or Math List
limit() Math Calc Limit
Line [command line]

Page 80

LineHorz [command line]
LineTan [command line]
LineVert [command line]
LinReg Math Stat Regres Lin
flist [command line]
listÝmat() Math List List¯m
listÝStk Math Stack
ln() [keyboard] or Math log
lnReg Math Stat Regres Ln
Local
Lock Tools Var
log() Math log
Logistic Math Stat Regres Logistic
Loop
LU Math Matrix Extr

matÝlist() Math List
max() Math List
mean() Math Stat
median() Math Stat
MedMed Math Stat Regres MedMed
mid() Math List
min() Math List
mod() Math Number
MoveVar Tools Var
mRow() Math Matrix Ops Row
mRowAdd() Math Matrix Ops Row

nCr() Math Prob
nDeriv() Math Calc
NewData Tools NewData ..,n
NewFold Tools Folder
newList() Math List
newMat() Math Matrix New
NewPic [command line]
NewPlot [command line]
NewProb Tools NewProb
nInt() Math Calc Int
norm() Math Matrix Extr Norms
not Math Test
nPr() Math Prob
nSolve() Math Algebra

OneVar Math Stat
or Math Test
ord() [type]
Output [command line]

PÝRx() Math Angle
PÝRy() Math Angle
part() [type] Does not support 'level' argument
PassErr
Pause
PICK 2 Math Stack
PICK n Math Stack

Page 81

PlotsOff [command line]
PlotsOn [command line]
ÝPolar Math Matrix Ops Vector
polyEval() Math List
PopUp
PowerReg Math Stat Regres Power
Prgm
product() Math List
Prompt
propFrac() Math Algebra Prop
PtChg [command line]
PtOff [command line]
PtOn [command line]
ptTest() [type]
PtText [command line]
PxlChg [command line]
PxlCrcl [command line]
PxlHorz [command line]
PxlLine [command line]
PxlOff [command line]
PxlOn [command line]
pxlTest() [type]
PxlText [command line]
PxlVert [command line]

QR Math Matrix Extr
QuadReg Math Stat Regres Quad
QuartReg Math Stat Regres Quart

RÝPj() Math Angle
RÝPr() Math Angle
rand() Math Prob
randMat() Math Matrix New, also Math Prob
randNorm() Math Prob
randPoly() Math Prob
RandSeed Math Prob
RclGDB [command line]
RclPic [command line]
real() Math Complex
ÝRect Math Matrix Ops Vector
ref() Math Matrix Solve
remain() Math Number
Rename Tools Var
Request
Return
right() Math Algebra Extract, also Math List
ROLL 3 Math Stack
ROLL n Math Stack
rotate() [type] Does not support #ofRotations argument
round() Math Number
rowAdd() Math Matrix Ops Row
rowDim() Math Matrix Extr Dim
rowNorm() Math Matrix Extr Norms
rowSwap() Math Matrix Ops Row
RplcPic [command line]

Page 82

rref() Math Matrix Solve

Send
SendCalc
SendChat
seq() Math List
setFold() [type]
setGraph() [type]
setMode() [type]
setTable() [type]
setUnits() [type]
Shade [command line]
shift() [type] Does not support #ofShifts argument
ShowStat Math Stat
sign() Math Number
simult() Math Matrix Solve
sin() [keyboard]
sin-1() [keyboard]
sinh() Math Hyperbol
sinh-1() Math Hyperbol
SinReg Math Stat Regres Sin
solve() Math Algebra
SortA Math List
SortD Math List
ÝSphere Math Matrix Ops Vector
stdDev() Math Stat
StkÝList Math Stack
StoGDB [command line]
Stop [command line]

StoPic [command line]
Store [keyboard]
string() [type]
Style [command line]
subMat() Math Matrix Extr
sum() Math List
SWAP Math Stack
switch() [type] Does not support window number parameter

{ (transpose) Math Matrix Solve
Table Tools Graphics Table
tan() [keyboard]
tan-1() [keyboard]
tanh() Math Hyperbol
tanh-1() Math Hyperbol
taylor Math Calc Taylor
tCollect() Math Algebra Trig
tExpand() Math Algebra Trig
Text
Then
Title
tmpCnv() [type] or use [DIAMOND] [F1] - [DIAMOND] [F4] in the UNITS TEMP menu
ftmpCnv() [type]
Toolbar
Trace
Try

Page 83

TwoVar Math Stat

Unarchiv Tools Var
UNDO Math Stack or [INS]
unitV() Math Matrix Ops Vector
Unlock Tools Var

variance Math Stat

when() [type] Does not support falseResult or unknownResult arguments
While

"With" | [keyboard]

xor Math Test
XorPic

zeros() Math Algebra
ZoomBox Tools Graphics Zoom
ZoomData Tools Graphics Zoom
ZoomDec Tools Graphics Zoom
ZoomFit Tools Graphics Zoom
ZoomIn Tools Graphics Zoom
ZoomInt Tools Graphics Zoom
ZoomOut Tools Graphics Zoom
ZoomPrev Tools Graphics Zoom
ZoomRcl Tools Graphics Zoom
ZoomSqr Tools Graphics Zoom
ZoomStd Tools Graphics Zoom
ZoomSto Tools Graphics Zoom
ZoomTrig Tools Graphics Zoom

+ [keyboard]
- (subtract) [keyboard]
* [keyboard]
/ [keyboard]
- (negate) [keyboard]
% [command line]
= [keyboard] or Math Test
� [keyboard] or Math Test
< [keyboard] or Math Test
} [keyboard] or Math Test
> [keyboard] or Math Test
� [keyboard] or Math Test
.+ Math Matrix Ops Element
._ Math Matrix Ops Element
.* Math Matrix Ops Element
./ Math Matrix Ops Element
.^ Math Matrix Ops Element
! [keyboard] or Math Prob
& [command line]
�() [keyboard] or Math Calc Int
�() [keyboard]
m() Math Calc
p() Math Calc

Page 84

^ [keyboard]
(indirection) [command line]
z (radian) Math Angle
° (degree) Math Angle
� (angle) [keyboard]
°, ', " [keyboard]
' (prime) [keyboard]
_ (underscore) [keyboard]
Ý (convert) [keyboard]
10^() [keyboard]
x-1 [keyboard]
| "with" [keyboard]
� (store) [keyboard]
� (comment)

0b, 0h [keyboard]

Page 85

	Contents
	Introduction
	Revisions
	Installing and uninstalling RPN
	Installing RPN
	Uninstalling RPN
	Crashes

	Running and exiting RPN
	Running RPN
	Exiting RPN
	Turning the calculator off from RPN
	A keyboard program for starting RPN

	Basic operations in RPN mode
	Using UNDO in RPN
	Cut, Copy, Paste and marking text
	Copying stack expressions to the command line
	Entering conditional expressions
	Using RPN stack results in normal-mode operation
	Using normal-mode history results in RPN

	The command line and stack operations
	Entering strings
	Swap function
	Converting between lists, matrices and stack expressions
	Duplicating stack expressions
	PICK functions
	ROLL functions
	Delete functions

	Saving, recalling and deleting variables
	Using built-in 89/92+ applications
	Executing functions, programs and commands
	Using functions
	Running TIBasic programs
	Executing commands
	Running assembly programs
	Commands with variable number of arguments ..,n

	Using delayed evaluation and constraints
	Algebraic mode operation
	Menu operation
	Pop-up Menus
	Command line menus

	MODE Menu
	1: Other
	2: RPN/ALG [F6]
	3: Customize
	4: About

	MATH Menu
	1: Number
	2: Test
	3: Algebra
	4: Calc
	5: Complex
	6: Angle
	7: Stack
	8: List
	9: Matrix
	Matrix Solve
	Matrix Extr
	Matrix New
	Matrix Ops
	Matrix augment

	A: Stat
	OneVar
	TwoVar
	Regress
	Lin
	EXP
	Quad
	Power
	Ln
	MedMed
	Cubic
	Quart
	Sin
	Logistic

	Mean
	Variance
	stdDev
	median
	ShowStat

	B: Prob
	C: Hyperbol
	D: Log
	E: Base

	RCL Menu
	To change the current folder
	To recall a variable to the stack
	To recall a variable name to the stack
	To run a user function or program

	TOOLS Menu
	Graphics menu
	Graph
	Draw
	BldData
	Table
	Clr
	Zoom
	FnOn
	FnOff

	VAR menu
	Define
	DelVar
	Rename
	CopyVar
	MoveVar
	Lock
	Unlock
	Archive
	Unarchiv

	Folder menu
	NewFold
	DelFold

	NewData ..,n
	NewProb

	Custom Menus
	Custom key assignments
	Alternate-key assignments
	Unused-key assignments

	Constants, units and unit conversion
	Constants menu
	Length units
	Area units
	Volume units
	Time and frequency units
	Speed units
	Mass units
	Force units
	Energy units
	Power units
	Pressure units
	Temperature units
	Electricity units
	Light units
	Viscosity units
	Magnetism units

	Special characters and the CHAR menu
	Supported key functions
	Alphabetic list of functions
	A, B, C
	D, E
	F, G, H, I, L
	M, N, O, P
	Q, R
	S, T
	U, V, W, X, Z, symbols

