
Texas Instruments Holland B.V.
Rutherfordweg 102
3542 CG Utrecht-The Netherlands

Texas Instruments U.S.A.
7800 Banner Dr.
Dallas TX. 75251

www. t i . com/ca l c© 1997 Texas Instruments

TI-89 / TI-92 Plus
Sierra C™ Assembler Reference Manual, Beta Version .02

Back Front
Spine

5.31”

8.07”
Variable

spine

Important information

Texas Instruments makes no warranty, either expressed or implied, including but not limited to
any implied warranties of merchantability and fitness for a particular purpose, regarding any
programs or book materials and makes such materials available solely on an “as-is” basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or
consequential damages in connection with or arising out of the purchase or use of these
materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of
action, shall not exceed the purchase price of this product. Moreover, Texas Instruments shall
not be liable for any claim of any kind whatsoever against the use of these materials by any
other party.

The latest version of this Guide, along with all other up-to-date information for developers, is
available at www.ti.com/calc/developers/.

© 2000, 2001 Texas Instruments

, TI-GRAPH LINK, and TI FLASH Studio are trademarks of Texas Instruments Incorporated.

Sierra C is a trademark of Sierra Systems.

Revision_Information
TI-89/TI-92 Plus Sierra C Assembler Reference ManualEnglishWWW02 Feb 2001, Beta Version .02

i

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Table of Contents

1. General Information..5

1.1. Introduction ..5

1.2. Command Line Wildcard Expansion ..6

1.3. Environment Variables ...7

1.4. Object File Format..8

1.4.1. Definitions and Conventions...10

1.4.1.1. Sections...10

1.4.1.2. Physical and Virtual Addresses ...10

1.4.1.3. C Language COFF File Structures ..10

1.4.2. File Header ...11

1.4.2.1. Magic Number ...11

1.4.2.2. Optional Header Size ..11

1.4.2.3. Flags..12

1.4.3. Optional Header ...12

1.4.4. Section Headers ...13

1.4.5. Relocation Information..14

1.4.5.1. Relocation..15

1.4.5.2. Complex Relocation ..16

1.4.6. Line Number Information ..17

1.4.7. Symbol Table..18

1.4.7.1. Special Symbols ..19

1.4.7.2. Inner Blocks...20

1.4.7.3. Symbols and Functions ...21

1.4.8. Symbol Table Entries ...21

1.4.8.1. Symbol Names ..22

1.4.8.2. Storage Class ..22

1.4.8.3. Storage Classes for Special Symbols..24

1.4.8.4. Symbol Value Field..25

1.4.8.5. Section Number Field ..26

1.4.8.6. Section Numbers and Storage Classes...27

1.4.8.7. Type Entry ...28

ii Table of Contents

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.8. Type Entries and Storage Classes ..30

1.4.9. Auxiliary Table Entries..31

1.4.9.1. Filenames ..32

1.4.9.2. Sections...32

1.4.9.3. Functions ...32

1.4.9.4. Beginning of Blocks and Functions ...33

1.4.9.5. End of Blocks and Functions ...33

1.4.9.6. Arrays ..34

1.4.9.7. Tag Names ..34

1.4.9.8. End of Structures...35

1.4.9.9. Names Related to Structures, Unions, and Enumerations35

1.4.10. String Table ..36

2. Compiler...41

2.1. Introduction ..41

2.2. Invoking the Compiler ..41

2.3. Command Line Flags ...41

2.3.1. Usage ... 42

2.3.2. Default Behavior ...42

2.3.3. Description of Flags..43

2.4. Pragma Directives..51

2.5. Translation Limits ...52

2.6. Reserved Keywords ...53

2.6.1. ASM Keyword...53

2.6.2. ANSI C Keywords...53

2.7. Constants ...54

2.7.1. Floating-Point Constants ..54

2.7.2. Integer Constants ...54

2.7.3. Enumeration Constants ..55

2.7.4. Character Constants...56

2.8. Character Strings ...57

2.9. Types and Representations ...58

2.9.1. Integer Types..59

2.9.2. Integer Representations ...59

Table of Contents iii

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.9.3. Floating-Point Types ..60

2.9.4. Floating-Point Representations..61

2.9.5. Enumeration Types ..63

2.9.6. Bit Field Description ...65

2.9.7. Bit Field Internal Representation..66

2.9.8. Const Type Specifier..67

2.9.9. Volatile Type Specifier ...68

2.9.10. Touch Operator ..69

2.9.11. Void Type Specifier ..69

2.9.12. Void Pointer (void *) ...70

2.10. Conversions ...70

2.10.1. General Considerations ...70

2.10.2. Integer Types ...71

2.10.3. Floating-Point and Integer Types ...71

2.10.4. Floating-Point Types ..72

2.10.5. Usual Arithmetic Conversions ..72

2.10.6. Restrictions ..73

2.11. Function Calling Conventions ..73

2.11.1. Declarations and Definitions ..74

2.11.1.1. Function Prototypes...74

2.11.1.2. Old-Style Declarations ...75

2.11.1.3. Mixing Prototype and Old-Style Declarations ..76

2.11.2. Passing Argument Values..77

2.11.3. Accessing Parameters ...78

2.11.4. Returning Values..79

2.11.5. Register Usage ..81

2.12. Compiler-Generated Function Calls...81

2.12.1. Internal Integer Arithmetic Functions ...82

2.12.2. Internal Floating-Point Functions ...83

2.12.3. Debugging Functions ...86

2.13. Sections ...87

2.14. Static Storage Initialization...87

iv Table of Contents

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.15. Compiler Algorithms...90

2.15.1. Register Allocation ...90

2.15.2. Switch Statements ...92

2.16. The C Preprocessor ...93

2.16.1. Source File Inclusion..94

2.16.2. Conditional Compilation ...94

2.16.3. Macro Replacement ...96

2.16.3.1. Argument Substitution ...96

2.16.3.2. The # Operator (stringizing)...97

2.16.3.3. The ## Operator (concatenation)...97

2.16.3.4. Rescanning and Further Replacement ..97

2.16.4. Macro Redefinition ...97

2.16.5. Macro Examples ..98

2.16.6. Line and Name Control ..99

2.16.7. Error Directive ..100

2.16.8. Pragma Directive..100

2.16.9. Trigraph Sequences...100

2.16.10. Comment Delimiters...101

2.16.11. Predefined Macro Names ..101

2.17. Compiler Error Messages ..102

3. Assembler ..129

3.1. Introduction ..129

3.1.1. Overview ..129

3.1.2. Prerequisite Reading..130

3.1.3. Notational Conventions ..131

3.2. Invocation...131

3.2.1. Command Line Syntax...132

3.2.2. Command Line Flags ...132

3.2.3. File Name Conventions..136

3.2.4. Environment Variables ...136

3.2.5. Invocation Examples ..137

3.3. Assembly Language...137

Table of Contents v

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.1. Overview ..138

3.3.2. Assembler Statements ...138

3.3.2.1. Statement Syntax (asm68) ..138

3.3.2.2. Statement Syntax (asm68k) ..139

3.3.3. Character Set ...140

3.3.4. Sections ...140

3.3.4.1. Section Types ..140

3.3.4.2. Creating Sections ..141

3.3.4.3. Location Counter ...141

3.3.4.4. Structure Templates ..141

3.3.5. Symbols ...141

3.3.5.1. Symbol Syntax...142

3.3.5.2. Labels ..143

3.3.5.3. Symbol Assignment ...143

3.3.5.4. Comm and Lcomm Symbols..144

3.3.5.5. Undefined Symbols..144

3.3.5.6. Compiler Locals ...145

3.3.5.7. Floating-Point Symbols..145

3.3.6. Constants ...145

3.3.6.1. Integer Constants ..145

3.3.6.2. Character Constants..146

3.3.6.3. Floating-Point Constants ...148

3.3.7. Expressions..148

3.3.7.1. Operands ...148

3.3.7.2. Operators...149

3.3.7.3. Expression Evaluation ...150

3.4. Instruction Set ..152

3.4.1. Syntax ..152

3.4.2. Instruction Sizing..152

3.4.3. Instruction Optimization..153

3.5. Effective Addressing Modes...155

3.5.1. Overview ..155

3.5.2. Terminology ...157

3.5.3. Effective Address Syntax ...158

vi Table of Contents

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.5.4. Addressing Mode Selection ...160

3.5.4.1. PC-relative Coercion..160

3.5.4.2. Displacement Sizing ..161

3.5.4.3. Mode selection...162

3.6. Asm68 Assembler Directives ...163

3.6.1. Asm68 Section Directives ..164

3.6.2. Asm68 Symbol Directives ..165

3.6.3. Asm68 Data/Fill Directives ...166

3.6.4. Asm68 Control Directives...167

3.6.5. Asm68 Output Directives ...167

3.6.6. Asm68 Debugging Directives...168

3.6.7. Asm68 Directive Reference ...168

3.7. Asm68k Assembler Directives ...209

3.7.1. Asm68k Section Directives ..210

3.7.2. Asm68k Symbol Directives ..211

3.7.3. Asm68k Data/Fill Directives ...212

3.7.4. Asm68k Control Directives...213

3.7.5. Asm68k Output Directives..214

3.7.6. Asm68k Debugging Directives ...214

3.7.7. Asm68k Directive Reference..215

3.8. Asm68k Macros ...271

3.8.1. User-Defined Macros ...271

3.8.1.1. Macro Definition...271

3.8.1.2. Macro Invocation ...272

3.8.1.3. Parameters ..273

3.8.1.4. Local Labels...274

3.8.1.5. NARG Symbol..274

3.8.1.6. MEXIT Directive...274

3.8.1.7. Macro Examples ..275

3.8.2. Structured Control Macros ...278

3.8.2.1. Structured Control Expressions ...278

3.8.2.2. Macro Invocation ...280

3.8.2.3. Structured Control Reference ..280

Table of Contents vii

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.9. Instruction Set Summary..289

4. Linker ...299

4.1. Introduction ..299

4.2. Link68 Inputs and Outputs ...299

4.3. Options...300

4.3.1. Library Search Options ..300

4.3.2. Option Flags...300

4.4. Object Files ..302

4.4.1. Sections ...302

4.5. Symbols ...302

4.6. Relocation Entries ..303

4.7. Relocation Hole Compression..303

4.8. Reserved Symbols ...305

5. Utilities..309

5.1. Symbol Table Name Utility ...309

5.2. Object File Size Utility ..313

viii Table of Contents

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Figures

Figure 1.1: Partial Sierra C Directory Structure ..7

Figure 2.1: Internal Integer Representations ..60

Figure 2.2: Internal TI BCD Floating-Point Representation ..61

Figure 2.3: Special Internal Floating-Point Representations...63

Figure 2.4: Floating-Point Emulation Code Word ...84

Figure 3.1: Expression Evaluation ..150

Figure 3.2: Instruction Sizing (asm68) ..152

Tables

Table 1.1: Environment Variables...7

Table 1.2: Object File Layout ..9

Table 1.3: File Header Contents ...11

Table 1.4: File Header Flags...12

Table 1.5: Sierra Systems Optional Header Contents ..12

Table 1.6: Section Header Contents...13

Table 1.7: Section Header Flags .. 14

Table 1.8: Relocation Section Contents..15

Table 1.9: Relocation Types ...15

Table 1.10: Complex Relocation Entries...16

Table 1.11: Line Number Grouping...17

Table 1.12: Line Number Section Contents ..17

Table 1.13: COFF Symbol Table ..18

Table 1.14: Special Symbols in the Symbol Table..19

Table 1.15: Example Symbol Table for Functions and Nested Blocks20

Table 1.16: Symbol Table Entry..21

Table 1.17: Storage Classes...23

Table 1.18: Storage Class of Special Symbols...24

Table of Contents ix

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Table 1.19: Storage Class and Value ...25

Table 1.20: Section Number ...26

Table 1.21: Section Number and Storage Class...27

Table 1.22: Fundamental Types ...28

Table 1.23: Derived Types..29

Table 1.24: Type Entries by Storage Class ..30

Table 1.25: Auxiliary Symbol Table Entries ..31

Table 1.26: Auxiliary Symbol Entry for Filenames ..32

Table 1.27: Auxiliary Symbol Entry for Sections ...32

Table 1.28: Auxiliary Symbol Entry for Functions ...33

Table 1.29: Auxiliary Symbol Entry for Beginning of Blocks and Functions................................33

Table 1.30: Auxiliary Symbol Entry for End of Blocks and Functions ...33

Table 1.31: Auxiliary Symbol Entry for Arrays ..34

Table 1.32: Auxiliary Symbol Entry for Tag Names ..34

Table 1.33: Auxiliary Symbol Entry for End of Structures ...35

Table 1.34: Auxiliary Symbol Entry for Structures, Unions, Enumerations35

Table 1.35: Example String Table... 36

Table 2.1: Escape Characters ..56

Table 2.2: Character Constants ..57

Table 2.3: Integer Types ...59

Table 2.4: Determination of Argument Size ..78

Table 2.5: Integer Arithmetic Functions ..82

x Table of Contents

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Section 1: General Information

1. General Information..5

1.1. Introduction ..5

1.2. Command Line Wildcard Expansion ..6

1.3. Environment Variables ...7

1.4. Object File Format..8

1.4.1. Definitions and Conventions ..10

1.4.1.1. Sections..10

1.4.1.2. Physical and Virtual Addresses ..10

1.4.1.3. C Language COFF File Structures...10

1.4.2. File Header ...11

1.4.2.1. Magic Number ...11

1.4.2.2. Optional Header Size ..11

1.4.2.3. Flags..12

1.4.3. Optional Header ...12

1.4.4. Section Headers ...13

1.4.5. Relocation Information..14

1.4.5.1. Relocation..15

1.4.5.2. Complex Relocation ..16

1.4.6. Line Number Information ..17

1.4.7. Symbol Table..18

1.4.7.1. Special Symbols ..19

1.4.7.2. Inner Blocks...20

1.4.7.3. Symbols and Functions ...21

1.4.8. Symbol Table Entries ...21

1.4.8.1. Symbol Names ..22

1.4.8.2. Storage Class ..22

1.4.8.3. Storage Classes for Special Symbols..24

1.4.8.4. Symbol Value Field..25

1.4.8.5. Section Number Field ..26

1.4.8.6. Section Numbers and Storage Classes...27

2 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.7. Type Entry ...28

1.4.8.8. Type Entries and Storage Classes ..30

1.4.9. Auxiliary Table Entries..31

1.4.9.1. Filenames ..32

1.4.9.2. Sections...32

1.4.9.3. Functions ...32

1.4.9.4. Beginning of Blocks and Functions ...33

1.4.9.5. End of Blocks and Functions ...33

1.4.9.6. Arrays ..34

1.4.9.7. Tag Names ..34

1.4.9.8. End of Structures...35

1.4.9.9. Names Related to Structures, Unions, and Enumerations35

1.4.10. String Table ..36

Figures

Figure 1.1: Partial Sierra C Directory Structure ..7

Tables

Table 1.1: Environment Variables...7

Table 1.2: Object File Layout ..9

Table 1.3: File Header Contents ...11

Table 1.4: File Header Flags...12

Table 1.5: Sierra Systems Optional Header Contents ..12

Table 1.6: Section Header Contents...13

Table 1.7: Section Header Flags .. 14

Table 1.8: Relocation Section Contents..15

Table 1.9: Relocation Types ...15

Table 1.10: Complex Relocation Entries...16

Table 1.11: Line Number Grouping...17

Section 1: General Information 3

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Table 1.12: Line Number Section Contents ..17

Table 1.13: COFF Symbol Table ..18

Table 1.14: Special Symbols in the Symbol Table..19

Table 1.15: Example Symbol Table for Functions and Nested Blocks20

Table 1.16: Symbol Table Entry..21

Table 1.17: Storage Classes...23

Table 1.18: Storage Class of Special Symbols...24

Table 1.19: Storage Class and Value ...25

Table 1.20: Section Number ...26

Table 1.21: Section Number and Storage Class...27

Table 1.22: Fundamental Types ...28

Table 1.23: Derived Types..29

Table 1.24: Type Entries by Storage Class ..30

Table 1.25: Auxiliary Symbol Table Entries ..31

Table 1.26: Auxiliary Symbol Entry for Filenames ..32

Table 1.27: Auxiliary Symbol Entry for Sections ...32

Table 1.28: Auxiliary Symbol Entry for Functions ...33

Table 1.29: Auxiliary Symbol Entry for Beginning of Blocks and Functions................................33

Table 1.30: Auxiliary Symbol Entry for End of Blocks and Functions ...33

Table 1.31: Auxiliary Symbol Entry for Arrays ..34

Table 1.32: Auxiliary Symbol Entry for Tag Names ..34

Table 1.33: Auxiliary Symbol Entry for End of Structures ...35

Table 1.34: Auxiliary Symbol Entry for Structures, Unions, Enumerations35

Table 1.35: Example String Table... 36

4 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

5

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1. General Information

1.1. Introduction

This manual describes the Sierra tools, including the compiler, assembler, and
linker invoked by the TI FLASH Studio™ for development of Flash applications
(apps) and Assembly Language Programs (ASMs) for the TI-89 / TI-92 Plus
calculators, and other Plusutilities that are available to the developer. They were
developed by Sierra Systems to support certain Motorola processors and
coprocessors and IEEE format floating-point numbers. Under license from Sierra
Systems, Texas Instruments has modified this software to support TI BCD
floating-point numbers, and support for coprocessors has been removed.
Although the software has not been modified to exclude support for processors
other than the 68000, the 68000 is the only processor supported by Texas
Instruments. The license from Texas Instruments to use these products is
restricted to development of software that is targeted to execute only on TI
calculators.

Typically, the TI FLASH Studio will handle all invocations of the compiler,
assembler, and linker but information is included in the various sections to enable
developers to use them directly from the command line or create their own
makefile if they wish, although this is not encouraged.

Section 1 contains information that applies to all the tools and describes the
format of the object file generated.

Section 2 discusses features of the Sierra Systems C compiler, com68 . These
include number formats, function calls, integer and floating-point arithmetic,
sections, register allocation, macros, possible error messages, and many others.

Section 3 describes both Sierra Systems assemblers: asm68 which is invoked by
the TI FLASH Studio, and asm68k which is included for developers who may
wish to take advantage of the macro support it provides. Explanations of
assembler syntax, symbols, constants, expression evaluation, addressing
modes, and complete descriptions of assembler directives for both assemblers
and the asm68k macros are in this section.

Section 4 is a brief discussion of the Sierra Systems linker, link68 , and some of
its features including relocation hole compression.

Section 5 describes the Sierra Systems utilities nm68 and size68 , provided as
part of the TI-89 / TI-92 Plus SDK for use by developers.

6 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Conventions used throughout this manual include:

• Bold text is used for names of functions, routines, files, keywords, directives,
macros, flags, and registers. It is also used occasionally for emphasis.

• The Courier font is used to distinguish assembly or C program text.

• Italicized text indicates an input parameter that should be replaced by actual
data when used in code or entered on the command line.

• Brackets ([]) enclose optional items.

• The vertical bar (|) indicates that the separated items are alternatives.

1.2. Command Line Wildcard Expansion

A number of Sierra C™ utilities expand wildcards in command line filenames.

Wildcard characters are defined as follows:

* Match zero or more characters, where characters matched may be any
character except the period (.) . Dot-star (.*) at the end of a wildcard
string matches files with and without extensions.

? Match any character except the period (.) .

[char_set] Match any character in the character set char_set. Characters can be
listed individually or as members of a range. A range is denoted by a
hyphen (-) separated pair of characters; it includes the two characters
and all characters lexically between them.

The following are examples of wildcard expansions:

. Match all filenames in the current directory.

* Match all filenames without extensions in the current directory.

.? Match all filenames with extensions in the current directory.

*.c *.s Match all filenames with extensions of .c or .s in the current directory.

*.[cs] Same as *.c *.s

c:\doc\version[0-9a-f].doc

Match all filenames in the subdirectory c:\doc with a base name of
version followed by a hexadecimal digit and a .doc extension.

Section 1: General Information 7

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The following Sierra C utilities support command line wildcard expansion:

nm68 Symbol Table Name Utility

size68 Object File Size Utility

1.3. Environmen t Variables

Some Sierra C utilities need to know the location of certain standard directories
to locate various files. For example, the compiler must know where to search for
files specified by the #include filename preprocessor directive. Since this
information varies depending on the installation, the utilities examine
environment variables to obtain information on the locations of these standard
directories.

Figure 1.1 shows the default standard include (include), standard library (lib),
executable (bin), and temporary (tmp) directories that are created by appending
subdirectory names to the directory specified by the SIERRA environment
variable. The SIERRA environment variable will be set when the setup program
for the TI FLASH Studio is executed. The SIERRA environment variable must be
set before using any of the Sierra utilities.

include lib bin tmp

sierra

 Figure 1 .1: Partial Sierra C Directory Structure

Table 1.1 lists the environment variables referenced by Sierra C utilities together
with the utilities that reference the variables and the files that are referenced.

Variable Utility Files referenced

INCLUDE68 com68 standard include files

LIB68 link68 standard libraries

link68 default configuration file

 Table 1 .1: Environment Variables

Depending on which environment variables are set, the utilities that generate
temporary files will put their files in one of four places. The three environment
variables TMP68, TMP, and SIERRA are searched for in the order listed with the
search terminating after the first defined variable is located. If either TMP68 or
TMP is defined, the directory specified by that environment variable is used to
hold temporary files. If the SIERRA environment variable is the only variable

8 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

defined, the tmp subdirectory located under the directory specified by SIERRA is
used to hold temporary files. If none of the three environment variables is
specified, the current directory is used to hold temporary files.

The C preprocessor searches for the two environment variables INCLUDE68 and
SIERRA in the order listed to determine the locations of the standard include
directories. If INCLUDE68 is defined, the semicolon-separated list of one or more
directory paths defines the standard include directories. If the SIERRA
environment variable is the only variable defined, the include subdirectory
located under the directory specified by SIERRA is used as the standard include
directory.

Utilities that search for files in standard include directories search for the two
environment variables LIB68 and SIERRA in the order listed to determine the
locations of the standard include directories. If LIB68 is defined, the
semicolon-separated list of one or more directory paths defines the standard
library directories. If the SIERRA environment variable is the only variable
defined, the lib subdirectory located under the directory specified by SIERRA is
used as the standard library directory.

1.4. Object File Format

This section describes the Common Object File Format (COFF) used by
TI FLASH Studio. COFF is the format of the object files created by the
assemblers and linker, and recognized by TI FLASH Studio and various object
file examination utilities. COFF is a standard file format and the Sierra Systems
implementation (with extensions disabled, -c assembler command line flag)
completely conforms to the format recognized by the AT&T UNIX System V
operating system.

COFF is ideally suited for developing embedded applications. Space is provided
for symbol and line number information used by debuggers and other
applications. Executable files can be divided into numerous independent sections
to allow support for systems with highly fragmented address spaces.

An object file contains the following:

• A file header ¦ Relocation information

• Optional header information ¦ Line numbers

• A table of section headers ¦ A symbol table

• Data corresponding to the section header ¦ A string table

Section 1: General Information 9

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Table 1.2 shows the overall object file structure.

FILE HEADER

Optional Information

Section 1 Header

 . . .

Section n Header

Raw Data for Section 1

 . . .

Raw Data for Section n

Relocation Info. for Section 1

 . . .

Relocation Info. for Section n

Line Numbers for Section 1

 . . .

Line Numbers for Section n

SYMBOL TABLE

STRING TABLE

 Table 1.2: Object File Layout

Some or all of the last four sections (relocation, line number, symbol table, and
string table) may be missing from the final executable file. If the program is linked
with the -s flag, all four of these sections will be absent. The line number
information does not appear unless the program is compiled with the -q or -q1
debug flag or assembled with the -L line number flag. If there are no unresolved
external symbols after linking, the relocation information is no longer needed and
is thus absent. If there are no symbols with names longer than eight characters,
the string table is not needed and is thus absent.

10 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.1. Definitions and Conventions

Before continuing, you should become familiar with the following terms and
conventions.

1.4.1.1. Sections

A section is the smallest portion of an object file that is relocated and able to be
positioned at an independent location in memory. In the default case, there are
three named sections with the names .text , .data , and .bss . In a Sierra Systems
executable file, there is also usually a fourth section with the name .ld_tbl .
TI-89 / TI-92 Plus apps and ASMs also have a .const section, and the .ld_tbl
section is unused. Additional named and unnamed sections, up to a total of 126,
can also be added.

1.4.1.2. Physical and Virtual Addresses

The address of a section or symbol is the offset of that section or symbol from
address zero of the address space. The physical address is the actual location in
memory where a section is loaded. The virtual address of a section is the
address from which the section's data will execute. When a section's data has to
be copied from ROM to RAM at program startup, the ROM copy (source) of the
section's data is considered to be at the physical address and the RAM copy
(destination) of the section's data is considered to be at the virtual address. The
section header contains two address fields: a physical address and a virtual
address. In the case where a section's data gets copied from ROM to RAM, the
physical and virtual address entries will be different; but in the case where a
program executes out of ROM, the physical and virtual address entries for the
section's data will be the same.

1.4.1.3. C Language COFF File Structures

The C language COFF file structures and macro definitions used internally by the
various Sierra Systems utilities that operate on object files are defined in the file
file_fmt.txt supplied with the TI-89 / TI-92 Plus SDK. Note that structure
members of type (unsigned) char , (unsigned) short , and (unsigned) long are
defined as unsigned char arrays of length 1, 2, and 4, respectively. The
structure members are represented as arrays of unsigned char to facilitate
generating identical object files on host machines with different internal byte
orderings. Machine-dependent macros for reading and writing the structures in
file_fmt.txt are defined in file com_fmt.txt , also supplied with the
TI-89 / TI-92 Plus SDK.

Section 1: General Information 11

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.2. File Header

The file header contains the 20 bytes of information shown in Table 1.3. The last
two bytes are flags that are used by the linker and other object file utilities.
Defined in file_fmt.txt are FILE_HDR and FILE_HDR_SIZE, the typedefs for the
file header structure and file header size, respectively.

Byte s Declaration Name Description

0-1 unsigned short fh_magic Magic number, 0x150

2-3 unsigned short fh_nbr_sections Number of section headers (equals the
number of sections)

4-7 unsigned long fh_time_date Time and date stamp indicating when the
file was created (expressed as the
number of seconds since 00:00:00 GMT,
January 1, 1970)

8-11 unsigned long fh_symtab_ptr File pointer containing the starting offset
of the symbol table

12-15 unsigned long fh_nbr_symtab_ents Number of entries in the symbol table

16-17 unsigned short fh_size_opt_hdr Number of bytes in the optional header

18-19 unsigned short fh_flags Flags (see Table 1.4)

 Table 1.3: File Header Contents

1.4.2.1. Magic Number

The magic number specifies the target machine on which the object file can be
executed. The number 0x150 identifies the object file as a 68000 family
executable file. The number 0x150 is the only number recognized by the various
Sierra Systems utilities; an error will be reported if a file that does not begin with
0x150 is encountered.

1.4.2.2. Optional Header Size

The optional header shown in Table 1.5 is system-dependent and not specified
by the COFF standard. The size of the optional header is specified in the file
header to allow system-independent object file utilities to skip past the optional
header.

12 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.2.3. Flags

The last two bytes of the file header are flags that describe the type of the object
file. The file header flags are described in Table 1.4.

Mnemonic Flag Meaning

FH_REL_STRPD 0x01 Relocation information stripped from file

FH_EXECUTABLE 0x02 File is executable (i.e., no unresolved references)

FH_LNNO_STRPD 0x04 Line numbers stripped from file

FH_LSYMS_STRPD 0x08 Local symbols stripped from file

FH_GSYMS_STRPD 0x10 Global symbols stripped from file

FH_ERR_IN_FILE 0x80 Error in object file

 Table 1.4: File Header Flags

1.4.3. Optiona l Header

The optional header contains information that varies among the systems that use
COFF. Applications place all system-dependent information in the optional
header. As previously stated, system-independent COFF utilities can skip past
the system-dependent optional header to perform tasks such as dumping the
symbol table.

Bytes Declaration Name Description

0-1 unsigned short magic Magic number, 0x107

2-3 unsigned short version Version stamp

4-7 unsigned long tsize Size of text in bytes

8-11 unsigned long dsize Size of initialized data in bytes

12-15 unsigned long bsize Size of uninitialized data in bytes

16-19 unsigned long entry Program entry point

20-23 unsigned long text_start Base address of text

24-27 unsigned long data_start Base address of data

 Table 1.5: Sierra Systems Optional Header Contents

The Sierra Systems optional header is 28 bytes long, and the fields of the
optional header are described in Table 1.5. The optional header is present only
on linked executable files; it is not present on assembler-generated files or
partially linked files (-r flag). Defined in file_fmt.txt are A_OUT_HDR and
A_OUT_HDR_SIZE, the typedefs for the optional header structure and optional
header size, respectively.

Section 1: General Information 13

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.4. Sectio n Headers

Every object file has one section header for each section in the file. The Sierra
Systems object file has at least three section headers. The section headers
describe the organization of data within the file. Table 1.6 describes the fields of
the section header. Defined in file_fmt.txt are SECTION_HDR and
SECTION_HDR_SIZE, the typedefs for the section header structure and section
header size, respectively.

The size of a section is always padded to a multiple of four bytes.

The file pointers are byte offsets from the beginning of the file, and can be used
to locate the start of the data, relocation, or line entries for the section.

Byte s Declaration Name Description

0-7 char sh_name 8-character null-padded section name

8-11 unsigned long sh_phys_addr Physical address of section

12-15 unsigned long sh_virt_addr Virtual address of section

16-19 unsigned long sh_size Section size in bytes

20-23 unsigned long sh_data_ptr File pointer to raw data

24-27 unsigned long sh_reloc_ptr File pointer to relocation entries

28-31 unsigned long sh_line_nbr_ptr File pointer to line number entries

32-33 unsigned short sh_nbr_reloc_ents Number of relocation entries

34-35 unsigned short sh_nbr_line_ents Number of line number entries

36-39 unsigned long sh_flags Flags (see Table 1.7)

 Table 1.6: Section Header Contents

14 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The flags field defines the type of the section. Table 1.7 lists the definitions of the
section header flags.

Mnemonic Flag Meaning

SH_REG 0x000 Regular section: alloc'd, not reloc'd, load'd

SH_DSECT 0x001 Dummy section: not alloc'd, reloc'd, not load'd

SH_NOLOAD 0x002 No load section: alloc'd, reloc'd, not load'd

SH_RESIDENT 0x002 Resident section: alloc'd, reloc'd, not load'd

SH_GROUP 0x004 Grouped section: formed from input sections

SH_PAD 0x008 Padding section: not alloc'd, not reloc'd, load'd

SH_FILLONLY 0x008 Fill only section: filled at run-time

SH_COPY 0x010 Copy section: copied at run-time from destination address to
virtual address

SH_TEXT 0x020 Section contains executable text

SH_DATA 0x040 Section contains initialized data

SH_BSS 0x080 Section contains only uninitialized data

SH_ORG 0x100 Section contains ORG'd (absolute) data

SH_INFO 0x200 Comment section: not alloc'd, not reloc'd, not load'd

SH_OVERT 0x400 Overlay section: not alloc'd, reloc'd, not load'd

SH_LIB 0x800 Library section

 Table 1.7: Section Header Flags

All sections, including sections with uninitialized data such as section .bss (blank
static storage), have an associated section header. Uninitialized sections have
symbols that refer to them and symbols that are defined in them, but they do not
have any relocation entries, line number entries, or data associated with them.
Therefore, uninitialized sections have a section header, but occupy no other
space in the object file. In the case of an uninitialized section, zeroes appear in
the fields for the number of relocation and line number entries, as well as in the
fields for all the file pointers.

1.4.5. Relocatio n Information

Object files have one relocation entry for each relocatable reference in a
text-type or data-type section. The relocation entries are automatically generated
by the assembler, and the information is used by the linker to resolve external
references. Table 1.8 describes the information carried in the object file for each
relocatable reference. Defined in file_fmt.txt are RELOC_INFO and
RELOC_INFO_SIZE, the typedefs for the relocation entry structure and
relocation entry size, respectively.

Section 1: General Information 15

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Bytes Declaration Name Description

0-3 unsigned long r_virt_addr Virtual address of reference

4-7 unsigned long r_sym_index Symbol table index

8-9 unsigned short r_type_info Relocation type (see Table 1.9)

 Table 1.8: Relocation Section Contents

The first field of the relocation entry is the virtual address of the text or data to
which the entry applies. The 1-, 2-, or 4-byte area referenced by this first field is
known as a hole since the assembler cannot resolve the reference. The address
or PC-relative offset is ultimately determined and written to the hole by the linker.
The second field is the index of the symbol table entry for the symbol that is
being referenced. The third field indicates the type of relocation that is to be
applied. Table 1.9 lists the relocation types supported by Sierra Systems.

Mnemonic Flag Meaning

RL_FIXED 0x00 Reference is absolute, no relocation is necessary, the entry
will be ignored

RL_DIR_BYTE 0x0F Direct 8-bit reference to symbol's virtual address

RL_DIR_WORD 0x10 Direct 16-bit reference to symbol's virtual address

RL_DIR_LONG 0x11 Direct 32-bit reference to symbol's virtual address

RL_PC_BYTE 0x12 A PC-relative 8-bit reference to symbol's virtual address

RL_PC_WORD 0x13 A PC-relative 16-bit reference to symbol's virtual address

RL_PC_LONG 0x14 A PC-relative 32-bit reference to symbol's virtual address

RL_CMPLX_OP 0x40 Operator in a complex relocatable expression

RL_CMPLX_ABS 0x50 Absolute operand in a complex relocatable expression

RL_CMPLX_REL 0x60 Relocatable operand in a complex relocatable expression

RL_CMPLX_EXT 0x70 External operand in a complex relocatable expression

 Table 1.9: Relocation Types

1.4.5.1. Relocation

There are two types of relocation: absolute and PC-relative. The assembler
reduces an unresolved reference to an offset from a relocatable section or an
offset from an external symbol. The offset is saved in the hole and the index of
the symbol (external symbol or section name symbol) is saved in the relocation
entry. In addition, if the reference is PC-relative, the address or section-relative
offset of the hole is subtracted from the contents of the hole.

16 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The linker, which knows the addresses of all symbols, adds the address of the
symbol referenced by the r_sym_index field to the contents of the hole. In
addition, if the reference is PC-relative and the hole is in a relocatable section,
the base address of this section is subtracted from the contents of the hole.

In the case of byte or word references (1-byte or 2-byte holes, respectively), it is
possible that the final value determined by the linker will fit in the hole but the
intermediate value to be filled in by the assembler will not fit. Sierra Systems has
added an extension to the COFF standard to remove this deficiency. In the
relocation entry, the higher order byte of the r_type_info field and the highest
order byte of the r_sym_index field (assuming fewer than 16 million symbols)
are unused. In the case of a 1-byte or 2-byte hole, the overflow first goes into the
unused byte in r_sym_index and then into the unused byte in r_type_info
effectively providing the assembler with a 24-bit or 32-bit hole, respectively.

1.4.5.2. Comple x Relocation

A complex relocatable expression is an expression that cannot be reduced at
assembly time to either an absolute value or a section-relative reference. For
example, an expression that references multiple external symbols and/or
symbols from different relocatable sections would be classified complex
relocatable.

A complex relocatable expression is saved in a sequence of auxiliary relocation
entries that follow the primary entry for the relocation hole. A separate entry is
used for each operand and each operator in the expression. Table 1.10
describes the different types of complex relocation entries. The complex
expression contained in the auxiliary relocation entries is subsequently evaluated
by the linker, and the result is placed in the hole referenced by the primary entry.

COFF Relocation Entry

r_virt_addr r_sym_index r_type_info

Primary Entry hole address entry count type and size

Operator operator code – RL_CMPLX_OP

Absolute Operand value – RL_CMPLX_ABS

Reloc Operand section offset section index RL_CMPLX_REL

External Operand – symbol index RL_CMPLX_EXT

 Table 1.10: Complex Relocation Entries

Note that the field r_type_info for the primary entry has the RL_CMPLX_OP bit
set to designate the start of a complex relocatable expression.

Section 1: General Information 17

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.6. Line Number Information

The line number information in the object file is used for source-level debugging.
Line number information is present when C files are compiled with the -q or -q1
debug flag or assembly language files are assembled with the -L line number
flag. When compiled or assembled with one of the above listed flags, a line
number entry is generated for every line of C or assembly language code. The
line number entries are grouped by section and within each section grouping the
entries are grouped by function as shown in Table 1.11.

symbol index 0

virtual address line number

virtual address line number

symbol index 0

virtual address line number

virtual address line number

 Table 1.11: Line Number Grouping

Table 1.12 describes the fields within a line number entry. Defined in file_fmt.txt
are LINE_NBR and LINE_NBR_SIZE , the typedefs for the line number entry
structure and line number entry size, respectively.

Bytes Declaration Name Description

0-3 unsigned long l_sym_index Symbol table index of function

0-3 unsigned long l_phys_addr Address of source line

4-5 unsigned short l_line_nbr Source line number

 Table 1.12: Line Number Section Contents

The first line number entry within a function grouping specifies line number 0 and
has, in place of the virtual address, an index into the symbol table for the entry
containing the name of the function. The subsequent entries have the actual line
numbers relative to the open brace ' { ' that begins the function, and the address
of the text that corresponds to the line number. The line number entries are
ordered by increasing address.

The .bf (begin function) symbol entry immediately follows the auxiliary entry for
the function name symbol. The absolute C source line number of the function's
open brace is specified in the auxiliary entry for the .bf symbol (see section
1.4.9.4 Beginning of Blocks and Functions). Absolute C source line numbers

18 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

for all other lines in a function are computed by offsetting the relative line
numbers in the line number entries by the absolute line number in the .bf
symbol's auxiliary entry.

1.4.7. Symbo l Table

Because of symbolic debugging requirements, the order of the symbols within
the symbol table is very important. The symbols appear in the order shown in
Table 1.13.

filename 1

function 1

local symbols for function 1

function 2

local symbols for function 2

. . .

statics for file 1

. . .

filename 2

local symbols for function 1

. . .

statics for file 2

. . .

all defined global symbols

all undefined global symbols

 Table 1.13: COFF Symbol Table

Local symbols for a function are the symbols that are defined within a function
and accessible only within that function. The term statics as used in Table 1.13
identifies symbols that are C language variables of storage class static defined
outside any function. The symbol table consists of at least one 18-byte entry per
symbol with some symbols followed by one or more auxiliary entries also 18
bytes each. A symbol table entry contains the name of the symbol (or file offset
to the name), the value, the type, and other information.

Section 1: General Information 19

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.7.1. Specia l Symbols

Included in the symbol table are special symbols that are generated by the
compiler and assembler. Most of the special symbols are needed for source-level
debugging. Table 1.14 lists the special symbols.

Symbol Meaning

.file Filename

.text Address of .text section

.data Address of .data section

.bss Address of .bss section

.bb Address of start of inner block

.eb Address of end of inner block

.bf Address of start of function

.ef Address of end of function

.target Pointer to structure or union returned by function

.xfake Dummy tag name for structure, union, or enumeration

.eos End of members of structure, union, or enumeration

_etext Next available address after the end of the output section .text

_edata Next available address after the end of the output section .data

_end Next available address after the end of the output section .bss

 Table 1.14: Special Symbols in the Symbol Table

Six of the special symbols are used in pairs. The .bb and .eb symbols
encapsulate the symbols defined in inner blocks. The .bf and .ef symbols
encapsulate each function. The .xfake and .eos symbols define the limits of
unnamed structures, unions and enumerations. The .eos symbol is also paired
with actual names to define the limits of named structures, unions, and
enumerations.

When a structure, union, or enumeration is defined without a tag, the compiler
automatically generates a name for internal use. The generated name is .xfake ,
where x is a unique decimal number. In the case where a file defined three
unnamed structures, structure tags with the names .0fake , .1fake , and .2fake
would be generated.

20 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.7.2. Inner Blocks

The C language defines a block as a compound statement that begins with an
open brace ' { ' and ends with a balancing close brace ' } '. An inner block is a
block that exists within a function (which is also a block). For each inner block
that has local symbols defined in it, the special symbol .bb is inserted in the
symbol table immediately before the first local symbol of the block. Analogously,
the special symbol .eb is inserted in the symbol table immediately after the last
local symbol of the block. Because inner blocks can be nested to multiple levels,
the .bb – .eb symbol pairs and associated symbols can also be nested.
Table 1.15 shows an example of nested C language blocks and the associated
symbol table.

Nested Blocks Symbol Table

func1(int a) _func1

{ .bf

int b; a

{ b

int c; .bb

{ c

int d; .bb

} d

} .eb

} .eb

.ef

func2(int e) _func2

{ .bf

int f; e

int g; f

{ g

int h; .bb

} h

} .eb

.ef

 Table 1.15: Example Symbol Table for Functions
 and Nested Blocks

Section 1: General Information 21

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.7.3. Symbols and Functions

For each function, a special symbol .bf is put between the function name and the
first local symbol of the function name in the symbol table. Correspondingly, a
special symbol .ef is put immediately after the last symbol of the function in the
symbol table. Associated with the .bf and .ef symbols (as defined by their
auxiliary symbol table entries) are the absolute line numbers of the function's
open brace ' { ' and close brace ' } ', respectively. The example in Table 1.15 (in
addition to showing nested inner blocks) shows a pair of C language functions
and the associated symbol table.

1.4.8. Symbol Table Entries

All symbols, regardless of their type and storage class, use the same symbol
table format. Every symbol table entry occupies 18 bytes. Table 1.16 describes
the fields within a symbol table entry. It should be noted that the indices for
symbol table entries begin with 0 (not 1). Also, auxiliary entries count as symbol
entries for purposes of indexing into the symbol table. Defined in file_fmt.txt are
SYM_ENT and SYM_ENT_SIZE, the typedefs for the symbol table entry
structure and symbol table entry size, respectively.

Byte s Declaration Name Description

0-7 char sym_name 8-character null padded symbol name

0-3 unsigned long sym_zeroes Zero in this field indicates the name is in the
string table

4-7 unsigned long sym_offset Offset of the name in the string table

8-11 unsigned long sym_value Symbol value (storage class dependent)

12-13 unsigned short sym_sec_nbr Section number of symbol

14-15 unsigned short sym_type Basic and derived type information

16 char sym_sclass Storage class of symbol

17 char sym_nbr_aux Number of auxiliary entries

 Table 1.16: Symbol Table Entry

22 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.1. Symbol Names

The symbol name resides either within the 18 byte symbol table entry itself or in
a string table at the end of the object file. The first eight bytes of the symbol table
entry are a union of an eight byte character array and two longs. If the symbol
name is eight or fewer characters in length, the symbol name (null padded) is
stored in the first eight bytes of the symbol table entry. If the symbol name is
longer than eight characters, the entire null-terminated symbol name is stored in
the string table. When the symbol name is stored in the string table, the first four
bytes of the symbol table entry are zero and the second four bytes contain the
offset (relative to the beginning of the string table) of the name in the string table.
Since there cannot be a symbol with a null name, the zeroes in the first four
bytes distinguish a symbol table entry with an offset into the string table from a
symbol table entry with a name in the first eight bytes.

1.4.8.2. Storage Class

The storage class field is assigned one of the values described in Table 1.17.
The mnemonics listed in the table are defined in file_fmt.txt .

All the storage classes that appear in the object file except for C_ALIAS are
generated by the assemblers, asm68 and asm68k . The storage class C_ALIAS
is generated by the linker, link68 (-P flag not specified), when it removes
duplicate structure, union and enumeration definitions and places alias entries in
their places.

Note that not all the storage classes listed in Table 1.17 appear in the object file.
Some of the storage classes such as C_EFCN, C_ARRAY , C_SUE, and
C_SKIP are used only internally by the compiler and assemblers.

Section 1: General Information 23

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

C_EFCN -1 Physical end of function

C_NULL 0

C_AUTO 1 Automatic variable

C_EXT 2 External symbol

C_STAT 3 Static

C_REG 4 Register variable

C_EXTDEF 5 External definition

C_LABEL 6 Label

C_ULABEL 7 Undefined label

C_MOS 8 Member of structure

C_ARG 9 Function argument

C_STRTAG 10 Structure tag

C_MOU 11 Member of union

C_UNTAG 12 Union tag

C_TPDEF 13 Type definition

C_USTATIC 14 Uninitialized static

C_ENTAG 15 Enumeration tag

C_MOE 16 Member of enumeration

C_REGPARM 17 Register parameter

C_FIELD 18 Bit field

C_ARRAY 19 Array dimension information

C_SUE 20 Structure, union, or enumeration

C_SKIP 21 Symbol that should not be output

C_BLOCK 100 Beginning and end of block

C_FCN 101 Beginning and end of function

C_EOS 102 End of structure

C_FILE 103 Filename

C_ALIAS 105 Duplicate tag

C_HIDDEN 106 Like static, used to avoid name conflicts

Table 1.17: Storage Classes

24 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.3. Storage Classes for Special Symbols

Some of the special symbols listed in Table 1.14 are restricted to certain storage
classes. Table 1.18 lists the restricted special symbols with their allowed storage
classes. Also, the storage classes C_FILE, C_BLOCK , C_FCN, and C_EOS are
used only with the special symbols they are shown associated with in Table 1.18.

Special Symbol Storage Class

.file C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.target C_AUTO

.xfake C_STRTAG, C_UNTAG, C_ENTAG

.eos C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

 Table 1.18: Storage Class of Special Symbols

Section 1: General Information 25

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.4. Symbol Value Field

The interpretation of the value of a symbol is a function of the symbol's storage
class. Table 1.19 summarizes the relationship between storage class and value.

Storage Class Meaning of Value

C_AUTO Stack offset in bytes

C_EXT Relocatable address

C_STAT Relocatable address

C_REG Register number

C_LABEL Relocatable address

C_MOS Offset in bytes

C_ARG Stack offset in bytes

C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE Enumeration value

C_REGPARM Register number

C_FIELD Bit displacement

C_BLOCK Relocatable address

C_FCN Relocatable address

C_EOS Size

C_FILE (see text below)

C_ALIAS Tag index

C_HIDDEN Relocatable address

 Table 1.19: Storage Class and Value

If a symbol has storage class C_FILE, the value of the symbol is the symbol
table entry index of the next .file symbol. The .file entries form a one-way linked
list within the symbol table. The value of the last .file symbol table entry is the
index of the first global symbol.

Relocatable symbols have a value that is equal to the virtual address of the
symbol. When a section is relocated by the linker, the values of the section's
relocatable symbols change.

26 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.5. Section Number Field

Section numbers are listed in Table 1.20.

Mnemonic Section Number Meaning

N_DEBUG -2 Special symbolic debugging symbol

N_ABS -1 Absolute value

N_UNDEF 0 Undefined external symbol

N_SCNUM 1-126 Section number where symbol is defined

 Table 1.20: Section Number

Section number -2 identifies symbolic debugging symbols, including structure,
union and enumeration tag names, typedefs, and filenames. Section number -1
identifies symbols that have a non-relocatable (absolute) value. Examples of
absolute-valued symbols include automatic and register variables, function
arguments, structure members and .eos symbols. The .text , .data , and .bss
sections typically default to section numbers 1, 2, and 3, respectively.

With one exception, section number 0 identifies a relocatable external symbol
that is not defined in the current file. The one exception is the external symbol
generated as the result of defining an uninitialized external variable. The ANSI C
standard permits only a single defining instance (initialized or uninitialized) of a
particular variable. To permit compatibility with early C environments, multiple
defining instances of uninitialized variables are permitted when the linker is
invoked with the -C command line flag. In each file where the symbol for the
uninitialized variable is defined, the section number of the symbol is 0, and the
value of the symbol is representative of the size and alignment of the symbol.
The size of the symbol occupies bits 0 – 29 and the symbol alignment occupies
bits 30 and 31. The alignment is a Sierra Systems extension to COFF where bits
30 and 31 low indicate quad alignment, bit 30 high (31 low) indicates even
alignment, and bit 31 high (30 low) indicates no alignment required. When the
files are combined into an executable object file, the linker (-C flag specified)
combines all the symbols of the same name into one symbol in the .bss section.
The maximum size of all the input symbols with the same name is used to
allocate space for the symbol and the value becomes the address of the symbol.
This is the only case where a symbol has a section number 0 and a non-zero
value.

Section 1: General Information 27

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.6. Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to having certain
section numbers. Table 1.21 summarizes the relationship between storage class
and section number.

Storage
Class

Section Number

C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM

C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N_SCNUM

C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

C_MOU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG

C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

 Table 1.21: Section Number and Storage Class

28 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.7. Type Entry

The type field in the symbol table entry contains information on the basic and
derived type for the symbol. The type information is generated for a symbol only
if the files are generated with symbolic debugging in mind. Type information is
generated when the compiler is invoked with the -q or -q1 flag and/or the
assembler is invoked with the -L flag and .type directives are inserted into the
assembly language file. Each symbol has one basic or fundamental type and
from zero to six derived types. The following is the format of the 16-bit type entry:

d6 d5 d4 d3 d2 d1 type

Bits 0 through 3, identified as type , indicate one of the fundamental types listed
in Table 1.22. Bits 4 through 15 are arranged as six 2-bit fields identified as d1
through d6. The fields d1 through d6 represent levels of the derived types listed
in Table 1.23.

Mnemonic Value Type

T_NULL 0 Type not assigned

T_LDOUBLE 1 Long double

T_CHAR 2 Character

T_SHORT 3 Short

T_INT 4 Integer

T_LONG 5 Long integer

T_FLOAT 6 Float

T_DOUBLE 7 Double

T_STRUCT 8 Structure

T_UNION 9 Union

T_ENUM 10 Enumeration

T_MOE 11 Member of enumeration

T_UCHAT 12 Unsigned character

T_USHORT 13 Unsigned short

T_UINT 14 Unsigned integer

T_ULONG 15 Unsigned long integer

 Table 1.22: Fundamental Types

Section 1: General Information 29

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Mnemonic Value Type

DT_NON 0 No derived type

DT_PTR 1 Pointer

DT_FCN 2 Function

DT_ARRAY 3 Array

 Table 1.23: Derived Types

The following two examples demonstrate the interpretation of the symbol table
entry type field.

int ** func1()

In the above example, func1 is a function that returns a pointer to a pointer to an
integer. The fundamental type of func1 is 4 (integer), the first derived type is 2
(function), the second derived type is 1 (pointer) and the third derived type is also
1 (pointer). Combining the information into a single word (01 01 10 0100), as
previously described, the hexadecimal representation of the value in the type
field is 0x164.

short (* (* pfunc[2][3])())[4]

In this example, pfunc is a two-dimensional array of pointers to a function that
returns a pointer to an array of short integers. The fundamental type of pfunc is
3 (short integer), the first derived type is 3 (array), the second derived type is 3
(array), the third derived type is 1 (pointer, the fourth derived type is 2 (function),
the fifth derived type is 1 (pointer) and the sixth derived type is again 3 (array).
Combining the information into a single word (11 01 10 01 11 11 0011), as
previously described, the hexadecimal representation of the value in the type
field is 0xD9F3.

30 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.8.8. Type Entries and Storage Classes

Symbols having certain storage classes are also restricted to having certain type
entries. Table 1.24 summarizes the relationship between storage class and type
entries.

Storage Derived Type Fundamental

Class Function Array Pointer Type

C_AUTO no yes yes Any except T_MOE

C_EXT yes yes yes Any except T_MOE

C_STAT yes yes yes Any except T_MOE

C_REG no no yes Any except T_MOE

C_LABEL no no no T_NULL

C_MOS no yes yes Any except T_MOE

C_ARG yes no yes Any except T_MOE

C_STRTAG no no no T_STRUCT

C_MOU no yes yes Any except T_MOE

C_UNTAG no no no T_UNION

C_TPDEF no yes yes Any except T_MOE

C_ENTAG no no no T_ENUM

C_MOE no no no T_MOE

C_REGPARM no no yes Any except T_MOE

C_FIELD no no no T_ENUM, T_CHAR, T_UCHAR,
T_SHORT, T_USHORT, T_INT,
T_UINT, T_LONG, T_ULONG

C_BLOCK no no no T_NULL

C_FCN no no no T_NULL

C_EOS no no no T_NULL

C_FILE no no no T_NULL

C_ALIAS no no no T_STRUCT, T_UNION,
T_ENUM

 Table 1.24: Type Entries by Storage Class

Conditions for the derived types shown in Table 1.24 apply to all derived types,
d1 through d6, with the added restriction that it is impossible to have two
consecutive derived types of function.

Section 1: General Information 31

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.9. Auxiliary Table Entries

An auxiliary entry of a symbol contains the same number of bytes (18) as the
symbol table entry. However, unlike symbol table entries, the format of an
auxiliary entry is a function of the symbol's type and storage class. Table 1.25
describes the relationship between type and storage class, and the formation of
the auxiliary entry.

Symbol Storage Type Entry Auxiliary

Name Class d1 type Entry Format

.file C_FILE DT_NON T_NULL Filename

section name C_STAT DT_NON T_NULL Section

tag name C_STRTAG,
C_UNTAG,
C_ENTAG

DT_NON T_NULL Tag name

.eos C_EOS DT_NON T_NULL End of structure

function name C_EXT DT_FCN (note 1) Function

array name (note 2) DT_ARY (note 1) Array

.bb C_BLOCK DT_NON T_NULL Beginning of blocks and
functions

.bf C_FCN DT_NON T_NULL Beginning of blocks and
functions

.eb C_BLOCK DT_NON T_NULL End of blocks and functions

.ef C_FCN DT_NON T_NULL End of blocks and functions

name related to
structure, union, or
enumeration

(note 2) DT_PTR,
DT_ARR

T_STRUCT
T_UNION

Structure, union,
enumeration

Note 1: Any except T_MOE
Note 2: C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF

 Table 1.25: Auxiliary Symbol Table Entries

In Table 1.25, tag name indicates any symbol name including .xfake . The symbol
names function name and array name represent any name for a function or array
respectively. Any symbol that satisfies more than one condition listed in
Table 1.25 (e.g., array of structures) should have a union format in the auxiliary
entry. Any symbol that does not satisfy any of the conditions listed in Table 1.25
should not have one of the auxiliary entries listed in Tables 1.26 through 1.34.
Future extensions may allow symbols to have more than one auxiliary entry and
auxiliary entries that are not listed in the above referenced tables.

Defined in file_fmt.txt is AUX_ENT, the typedef for the auxiliary symbol table
entry structure.

32 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.9.1. Filenames

The auxiliary symbol table entries for filenames have the format shown in
Table 1.26.

Bytes Declaration Name Description

0-13 char aux_file_name 14-character null padded filename

14-17 – – Unused (filled with 0's)

 Table 1.26: Auxiliary Symbol Entry for Filenames

1.4.9.2. Sections

The auxiliary symbol table entries for sections have the format shown in
Table 1.27.

Bytes Declaration Name Description

0-3 unsigned long sec.len Section length

4-5 unsigned short sec.nbr_rel_ents Number of relocation entries

6-7 unsigned short sec.nbr_line_nbrs Number of line number entries

8-17 – – Unused (filled with 0's)

 Table 1.27: Auxiliary Symbol Entry for Sections

1.4.9.3. Functions

The auxiliary symbol table entries for functions have the format shown in
Table 1.28. The parameter-and-fp-format word in the function auxiliary entry
contains information on how function parameters are pushed onto the stack and
which floating-point format the compiler is generating code for. The bits in the
parameter-and-fp-format word are interpreted as follows when set:

Bit 0 – Function is prototyped
Bit 1 – Parameters of type short and char pushed as four-bytes when prototyped

(Parameters of type short and char are always pushed as two-bytes for TI
calculators.)

Bit 2 – Parameters of type float pushed as 10 bytes (double) when prototyped
Bit 3 – Not supported by Texas Instruments.
Bit 4 – Not supported by Texas Instruments.

Bit 5 – Not supported by Texas Instruments.

Section 1: General Information 33

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Bytes Declaration Name Description

0-3 unsigned long symbol.tag_index Tag index

4-7 unsigned long symbol.u1.func_size Size of function

8-11 unsigned long symbol.u2.s.line_ptr File pointer to line number

12-15 unsigned long symbol.u2.s.end_index Index of entry after this point

16-17 unsigned short symbol.high_size Parameter and fp format info

 Table 1.28: Auxiliary Symbol Entry for Functions

1.4.9.4. Beginning of Blocks and Functions

The auxiliary symbol table entries for beginning of blocks and functions have the
format shown in Table 1.29.

Bytes Declaration Name Description

0-3 – – Unused (filled with 0's)

4-5 unsigned short symbol.u1.s.c_line_nbr C-source line number

6-11 – – Unused (filled with 0's)

12-15 unsigned long symbol.u2.s.end_index Index of entry after this block

16-17 – – Unused (filled with 0's)

 Table 1.29: Auxiliary Symbol Entry for Beginning of Blocks and Functions

1.4.9.5. End of Blocks and Functions

The auxiliary symbol table entries for the end of blocks and functions have the
format shown in Table 1.30.

Bytes Declaration Name Description

0-3 – – Unused (filled with 0's)

4-5 unsigned short symbol.u1.s.c_line_nbr C-source line number

6-17 – – Unused (filled with 0's)

 Table 1.30: Auxiliary Symbol Entry for End of Blocks and Functions

34 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.9.6. Arrays

The auxiliary table entries for arrays have the format shown in Table 1.31.

Bytes Declaration Name Description

0-3 unsigned long symbol.tag_index Tag index

4-5 unsigned short symbol.u1.s.c_line_nbr Line number of declaration

6-7 unsigned short symbol.u1.s.size Size of array

8-9 unsigned short symbol.u2.array_dim[0] First dimension

10-11 unsigned short symbol.u2.array_dim[1] Second dimension

12-13 unsigned short symbol.u2.array_dim[2] Third dimension

14-15 unsigned short symbol.u2.array_dim[3] Fourth dimension

16-17 – – Unused (filled with 0's)

 Table 1.31: Auxiliary Symbol Entry for Arrays

1.4.9.7. Tag Names

The auxiliary symbol table entries for tag names have the format shown in
Table 1.32.

Bytes Declaration Name Description

0-5 – – Unused (filled with 0's)

6-7 unsigned short symbol.u1.s.size Size of structure, union, or
enumeration

8-11 – – Unused (filled with 0's)

12-15 unsigned long symbol.u2.s. end_index Index of next entry beyond this
structure, union, or enumeration

16-17 – – Unused (filled with 0's)

 Table 1.32: Auxiliary Symbol Entry for Tag Names

Section 1: General Information 35

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.9.8. End of Structures

The auxiliary symbol table entries for the end of structures have the format
shown in Table 1.33.

Bytes Declaration Name Description

0-3 unsigned long symbol.tag_index Tag index

4-5 – – Unused (filled with 0's)

6-7 unsigned short symbol.u1.s.size Size of structure, union, or enumeration

8-17 – – Unused (filled with 0's)

 Table 1.33: Auxiliary Symbol Entry for End of Structures

1.4.9.9. Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumeration symbols have
the format shown in Table 1.34.

Bytes Declaration Name Description

0-3 unsigned long symbol.tag_index Tag index

4-5 – – Unused (filled with 0's)

6-7 unsigned short symbol.u1.size Size of structure, union, or enumeration

8-17 – – Unused (filled with 0's)

 Table 1.34: Auxiliary Symbol Entry for Structures, Unions, Enumerations

36 Section 1: General Information

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

1.4.10. Strin g Table

Symbol table names longer than eight characters are stored contiguously in the
string table with each symbol name terminated with a null character. The string
table is located immediately after the symbol table and it can be located by
adding the size of the symbol table to the base offset of the symbol table. The
first four bytes of the string table contain the size of the string table in bytes; thus
the first string table symbol will be at offset four.

For example, given a file that includes two symbols with names longer than eight
characters, this_is_a_long_name and this_is_a_still_longer_name, the string
table will appear as shown in Table 1.35.

0 0 0 52 ' t ' ' h ' ' i ' ' s ' ' _ ' ' i '

' s ' ' _ ' ' a ' ' _ ' ' l ' ' o ' ' n ' ' g ' ' _ ' ' n '

' a ' ' m ' ' e ' ' \0 ' ' t ' ' h ' ' i ' ' s ' ' _ ' ' i '

' s ' ' _ ' ' a ' ' _ ' ' s ' ' t ' ' i ' ' l ' ' l ' ' _ '

' l ' ' o ' ' n ' ' g ' ' e ' ' r ' ' _ ' ' n ' ' a ' ' m '

' e ' ' \0 '

 Table 1.35: Example String Table

The string table offset of this_is_a_long_name is 4, and the string table offset of
this_is_a_still_longer_name is 24.

37

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Section 2: Compiler

2. Compiler...41

2.1. Introduction ..41

2.2. Invoking the Compiler ..41

2.3. Command Line Flags ...41

2.3.1. Usage... 42

2.3.2. Default Behavior ..42

2.3.3. Description of Flags ...43

2.4. Pragma Directives..51

2.5. Translation Limits ...52

2.6. Reserved Keywords ...53

2.6.1. ASM Keyword ..53

2.6.2. ANSI C Keywords ..53

2.7. Constants ...54

2.7.1. Floating-Point Constants..54

2.7.2. Integer Constants...54

2.7.3. Enumeration Constants ...55

2.7.4. Character Constants ..56

2.8. Character Strings ...57

2.9. Types and Representations ...58

2.9.1. Integer Types ...59

2.9.2. Integer Representations...59

2.9.3. Floating-Point Types ..60

2.9.4. Floating-Point Representations..61

2.9.5. Enumeration Types..63

2.9.6. Bit Field Description ...65

2.9.7. Bit Field Internal Representation..66

2.9.8. Const Type Specifier..67

2.9.9. Volatile Type Specifier ...68

2.9.10. Touch Operator..69

2.9.11. Void Type Specifier ..69

38 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.9.12. Void Pointer (void *) ...70

2.10. Conversions ...70

2.10.1. General Considerations...70

2.10.2. Integer Types...71

2.10.3. Floating-Point and Integer Types...71

2.10.4. Floating-Point Types..72

2.10.5. Usual Arithmetic Conversions..72

2.10.6. Restrictions..73

2.11. Function Calling Conventions ..73

2.11.1. Declarations and Definitions ..74

2.11.1.1. Function Prototypes..74

2.11.1.2. Old-Style Declarations ..75

2.11.1.3. Mixing Prototype and Old-Style Declarations ...76

2.11.2. Passing Argument Values ...77

2.11.3. Accessing Parameters...78

2.11.4. Returning Values ...79

2.11.5. Register Usage..81

2.12. Compiler-Generated Function Calls...81

2.12.1. Internal Integer Arithmetic Functions...82

2.12.2. Internal Floating-Point Functions...83

2.12.3. Debugging Functions...86

2.13. Sections ...87

2.14. Static Storage Initialization...87

2.15. Compiler Algorithms...90

2.15.1. Register Allocation...90

2.15.2. Switch Statements ...92

2.16. The C Preprocessor ...93

2.16.1. Source File Inclusion ...94

2.16.2. Conditional Compilation...94

2.16.3. Macro Replacement...96

2.16.3.1. Argument Substitution...96

2.16.3.2. The # Operator (stringizing) ..97

2.16.3.3. The ## Operator (concatenation)..97

2.16.3.4. Rescanning and Further Replacement ...97

Section 2: Compiler 39

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.16.4. Macro Redefinition ...97

2.16.5. Macro Examples ..98

2.16.6. Line and Name Control ..99

2.16.7. Error Directive ..100

2.16.8. Pragma Directive ...100

2.16.9. Trigraph Sequences...100

2.16.10. Comment Delimiters ..101

2.16.11. Predefined Macro Names ..101

2.17. Compiler Error Messages ..102

40 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Figures

Figure 2.1: Internal Integer Representations ..60

Figure 2.2: Internal TI BCD Floating-Point Representation ..61

Figure 2.3: Special Internal Floating-Point Representations...63

Figure 2.4: Floating-Point Emulation Code Word ...84

Tables

Table 2.1: Escape Characters ..56

Table 2.2: Character Constants ..57

Table 2.3: Integer Types ...59

Table 2.4: Determination of Argument Size ..78

Table 2.5: Integer Arithmetic Functions ..82

41

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2. Compiler

2.1. Introduction

The Sierra Systems C compiler, com68 , converts C language statements into
68000 assembly code. It generates highly efficient code and supports ROMable
and position-independent code generation for the 68000.

The C compiler, com68 , was developed by Sierra Systems to support certain
Motorola processors and coprocessors and IEEE format floating-point numbers.
Under license from Sierra Systems, Texas Instruments has modified this
software to support TI BCD floating-point numbers, and support for coprocessors
has been removed. Although the software has not been modified to exclude
support for processors other than the 68000, the 68000 is the only processor
supported by Texas Instruments. The license from Texas Instruments to use
these products is restricted to development of software that is targeted to
execute only on TI calculators.

2.2. Invoking the Compiler

Typically, the TI FLASH Studio™ will handle all invocations of the compiler,
using the correct command line flags required to produce TI-89 / TI-92 Plus apps
or ASMs. The following discussion of command line format and flags is included
for developers who may wish to use com68 directly from the command line or
create their own makefile.

The C compiler is ordinarily invoked with two filenames listed on the command
line. The first filename specifies the C source file and the second specifies the
assembly language output file. If no output file is specified, the compiler writes
the assembly language output to stdout (usually the display screen). If no input
file is specified either, the compiler reads C source input from stdin (usually the
keyboard).

The following command compiles the file test.c and creates the 68000 assembly
language file test.s:

com68 test.c test.s

2.3. Command Line Flags

Flags are used to change the behavior of the compiler. They are specified on the
command line along with the input and output filenames. Flags appear on the
command line as strings of one or more alphabetic characters prefixed with a
hyphen (-). Some flags require arguments, and some accept optional

42 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

arguments. Other flags take no arguments. Flags may be grouped together
following a single hyphen; however, any flag that accepts an optional argument
must be the last flag in a group. The TI-89 / TI-92 Plus SDK includes example
invocations of the compiler. It is highly recommended that you only use the flags
as shown in those files.

The following command compiles the C source from the file demo_in.c and
places the generated 68000 assembly code into demo_out.s:

com68 -l -O demo_in.c demo_out.s

The two flags listed on the command line cause the C source to be listed in the
output file as comments, and full optimization to be applied to the program,
respectively.

The command can also be specified as follows without changing the behavior of
the compiler:

com68 demo_in.c -lO demo_out.s

These two command lines demonstrate both how flags can be grouped together
using a single hyphen (-) and that they can appear anywhere on the command
line.

When two or more contradictory flags are specified on the command line, the last
flag entered determines the behavior. For example, if the -Op0 flag (turn off
post-code-generation optimizations) is followed by the -Op1 flag (turn on
post-code-generation optimizations), the -Op0 flag is ignored. This feature may
be useful in some cases, for example, you may wish to override a flag contained
in a file included with the -i flag.

2.3.1. Usage

The following is a summary of the command line usage information for the
compiler (see -u flag):

usage: com68 [-fCcas#] [-CEPQTlq#su] [-Idir] [-D name[= def]]
[-U name] [-Xabcdef#ilpr#uw#AC#ILNRSWs#E#2]
[-ZabcdefilpqruwAILNRSsW2] [-O[a#c#f#i#l#m#p#r#s#t#x#zA]]
[-i cmd_file] [infile [outfile]]

2.3.2. Default Behavior

If no command line flags are specified, the compiler defaults to the following
settings:

68000 default settings: com68 -fc3 -Oa2c0f0i1l1m1p1r2s2x0

Section 2: Compiler 43

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The command line flags for the default settings are defined as follows:

-fc3 When specified by the -l flag, C source lines with comments and blank
lines stripped out are indented by three tabs and placed into the assembly
language output listing.

-Oa2 Both short and int data are aligned to even boundaries.

-Oc0 Do not coalesce function call stack cleanups.

-Of0 Set up a stack frame only when necessary.

-Oi1 Generate in-line code for the strcpy function.

-Ol1 Move only constants out of inner loops. Full loop invariant optimizations
are not performed.

-Om1 Expand multiplication by a constant into a sequence of shifts and adds if it
results in faster execution.

-Op1 Perform all post-code-generation optimizations.

-Or2 Treat all qualifying automatic variables as register candidates.

-Os2 In the presence of a function prototype, arguments of type char and short
int are pushed onto the stack as two-byte objects.

-Ox0 Do not perform common subexpression optimizations.

2.3.3. Description of Flags

-C Leave comments in the preprocessed C source. The -E flag is
implied.

-D name[= string]

Define the name name. The '=' and substitution string string are
optional; the name name is defined to be 1 if the optional string is
omitted. No whitespace is allowed on either side of the '=' .

-E Send the preprocessed C source to the output file. Do not compile.
See also -P flag.

-f Format the source listings and source line numbers that are optionally
inserted as comments into the assembly language output. The -l flag
must be specified to enable the selected format.

a Place C source line numbers next to the corresponding
assembly language statements.

c Insert C source lines with comments and blank lines
stripped into the assembly language listing.

44 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

C Insert C source lines including comments into the
assembly language output.

s Place line numbers in front of each C source line in the
assembly language listing.

Specify the number of tabs used to indent the C source
intermixed with the assembly language listing. The default
is three tabs.

-i cmd_file Include the contents of the file cmd_file into the command line
input at the current position in the command line. The -i flag cannot
be used inside an included file; however, it can be specified multiple
times on the command line.

-I path Search the directory specified by path for #include files before
looking in the default directory(ies). There is no limit to the number of
times the -I flag can be specified.

-l Mix C source and line numbers into the assembly language listing as
specified by the -f format option.

-LIC Display serial number and license information.

-M
-M1
-M2[t nbr]
-M3[t nbr]
-M4[t nbr]
-M5

Not supported by Texas Instruments, however, -M, -M1 ,
-M2[t nbr] , -M3[t nbr] , -M4[t nbr] , and -M5 are recognized
as reserved flags by the compiler.

-O Turn on or off specified compiler optimizations. Specifying no flags
after the -O flag is equivalent to specifying -Ol2x1c1t1 (loop
invariant, common subexpression, coalescing function call stack
cleanups, and tail recursion elimination). All other optimizations are
enabled by default (see section 2.3.2 Default Behavior).

a# Specify alignment for integer data types. a1 imposes no
alignment on any integer data types. a2 aligns both short
and int data types to even boundaries (default for 68000).
a4 aligns short data to even boundaries and int data to
quad boundaries.

A Ignore the possibility of aliases in the register
scorecarding optimization. When the -OA flag is
specified, slightly smaller, faster code is generated;
however, there is a small possibility that the code will be
incorrect if aliases exist.

Section 2: Compiler 45

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

c# c1 causes multiple function call stack cleanups to be
coalesced into a single cleanup. c0 inhibits function call
stack cleanups from being coalesced (default).

f# f0 specifies that a stack frame (link and unlk) should not
be setup if it is not essential (default). f1 specifies that a
stack frame should always be setup.

i# i1 causes calls to the strcpy function to generate in-line
code (default). i0 causes calls to the strcpy function to
generate a normal function call. i2 is the same as i1
with the added provision that all arrays are aligned to the
same boundary as an int .

l# Move expressions that are not modified inside a loop to
outside the loop. l0 specifies that no loop invariant
expressions are to be moved. l1 specifies that only
constants are to be moved outside inner-most loops
(default). The -Op1 flag (also default) must also be in
effect for l1 to have any effect. l2 specifies that invariant
expressions are to be moved outside the inner-most loops
only. l3 specifies that invariant expressions are to be
moved through as many levels of loop nesting as
possible. l4 specifies the same action as l3 , except that
a warning is issued (correct code is still generated) if the
compiler exceeds the number of loop invariants that it can
handle. l2 typically gives the best performance when this
message is encountered.

m# m0 inhibits multiplication by a constant from being
expanded into a sequence of shifts and adds; it also
inhibits the move-multiple instruction from being
expanded into discrete moves. m1 allows multiplication by
a constant to be expanded, but does not allow the
move-multiple instruction to be expanded (default).

p# p0 specifies that no post-code-generation optimizations
are to be performed. p1 specifies that
post-code-generation optimizations are to be performed
(default).

46 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

r# Specifies how automatic variables are selected for
placement into machine registers. r0 specifies that no
variables are to be placed into registers. r1 specifies that
only variables declared with the register storage-class
specifier are to be candidates for placement into registers.
r2 specifies that both variables declared register and
those not declared register will be register candidates
(default). The nonregister variables are selected as
register candidates based on how often they are used.
They are selected after the declared register candidates
until all have been assigned register candidate status or a
total of 32 (including those declared register) are selected.
r3 specifies the same action as r2 , except that register
declarations are ignored. Variables that were declared
register may still be assigned to registers. r4 prevents
floating-point automatic variables that have not been
declared register from being placed into floating-point
registers; otherwise, the behavior is the same as
described by r2 . For more information, refer to section
2.15.1 Register Allocation .

s# The -Os# flag determines how to push a prototyped
function argument onto the stack. A short int or char
function prototype results in a two-byte push when s2
(default) is specified and a four-byte push when s4 is
specified. In the presence of a float or a double
prototype, the argument is pushed as a double (10 bytes)
and will be pushed on as a double (10 bytes) when s3 or
s5 is specified (s2 or s4 implied, respectively).

t# t0 disables tail recursion elimination (default). t1
enables tail recursion elimination.

x# x0 specifies that duplicate common subexpressions are
not to be removed (default). x1 specifies that references
to different copies of a common subexpression are to be
replaced by references to a single subexpression with
duplicate subexpressions removed.

Section 2: Compiler 47

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

z Optimize the generated code for size, possibly at the
expense of speed. z disables the in-line string copy
routine, the unrolling of structure copy loops, and the
expansion of multiplication by constants (except where
the expanded code is more compact). The stack cleanup
coalesce option is enabled. Except for disabling the
unrolling of structure copy loops, which can only be
accomplished with this flag, the -Oz flag is equivalent to
-Oi0c1m0 .

-p proc Not supported by Texas Instruments, however, -p proc is recognized
as a reserved flag by the compiler.

-P Strip #line directives and multiple sequential blank lines out of
preprocessed C source files. The -E flag is implied.

-q Generate full source-level debugging information to allow the
compiled program to be debugged with the TI FLASH Studio
source-level debugger. Optimizations that would confuse a
source-level debugger are disabled when the -q flag is specified.

-q1 Generate full source-level debugging information for everything except
automatic variables and allow the compiler to operate with all
optimizations enabled. When debugging with the -q1 flag, the
locations (register or stack offset) of automatic variables can be easily
determined by issuing the TI FLASH Studio low-level-display
command and examining the C statements with the corresponding
assembly code intermixed.

-Q Suppress the Sierra Systems copyright notice when the compiler is
invoked.

-s Preprocess and parse the C source file, but do not generate an
assembly language output. This option should be used to save time
during initial compilations when syntax errors are expected.

-T Process ANSI trigraphs, e.g., map ??(to [and ??) to].

-u Print command line usage information.

-U name Undefine the name name that was previously defined on the
command line using the -D flag.

-X Turn on the following specified compiler options.

-Z Turn off the following specified compiler options.

A The -XA flag causes address pointers to be returned in
register d0 instead of register a0.

48 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

b Warn about automatic variables that may be defined
before they are used. The compiler will erroneously issue
a warning if it finds a path that would result in a use
before definition when such a path will never be taken
during program execution.

c Make a function call to __line_ck immediately before
every line of C source. The __line_ck function can be
used to perform user-supplied debugging functions.

Clength Set the maximum length of character strings to length .
The default length is 512 characters. The maximum length
that can be specified is limited by available memory. This
option is not valid with the -Z flag.

d Reference data objects relative to address register a5
with a 16-bit displacement.

e Write compiler errors to the file infile.err where infile is the
base name of the compiler input file. Errors are also
written to stderr .

Esize Set the size of the expression stack. The default size of
the expression stack is 30. This option is not valid with the
-Z flag.

f# Generate a warning when a function is declared without
prototype information and/or a function call is made in the
absence of any function declaration. f1 causes a warning
to be issued when a function is called outside the scope
of function declaration and f2 causes a warning to be
issued when a function is declared without prototype
information. f3 specifies the actions of both f1 and
f2 — i.e., a warning is issued when a function is called
without a prototype declaration in scope.

i Not supported by Texas Instruments, however, i is
recognized as a reserved flag by the compiler.

I Define type int to be 16 bits instead of 32 bits. When an
int is defined to be 16 bits, variables of type long (or cast
to type long) must be used when indexing into an array
larger than 32767 bytes or when offsetting a pointer to an
object larger than 32767 bytes. Both the TI-89 and
TI-92 Plus assume this option is selected and all library
functions support 16-bit integers.

Section 2: Compiler 49

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

l Use long offsets in table look-up switch tables instead of
word offsets. Long offsets must be specified if the total
size of the code inside a switch statement exceeds 32767
bytes.

L Reference data objects using the 32-bit absolute
addressing mode. This option inhibits data references
from being coerced to PC-relative modes when the
generation of position-independent code is specified (-Xp
flag). See also -XW flag.

M Not supported by Texas Instruments, however, M is
recognized as a reserved flag by the compiler.

N Automatically size enumerated data types to the smallest
integer type that can represent all associated enumeration
members. When this option is not specified, enumerated
data types are always type int .

p Generate position-independent code with a maximum
PC-relative displacement of 16 bits.

q When used with the -Z flag, this option undoes the effect
of the -q and -q1 flags used to specify the generation of
source-level debugger information. This option is not valid
with the -X flag.

r# Prevent the compiler from using the registers specified by
the r options. The reserved registers are available for use
(possibly as base registers) in assembly language
routines that are linked with C programs. The options r0
through ra cause the following registers to be reserved:

r0 − a5 r6 − a5, a4, d7
r1 − a5, a4 r7 − a5, d7, d6
r2 − d7 r8 − a5, a4, d7, d6
r3 − d7, d6 r9 − a5, a4, d7, d6, d5
r4 − d7, d6, d5 ra − a5, a4, a3, d7, d6, d5
r5 − a5, d7

If register a5 is already being used as a base register as
specified by -Xd , the reserved address registers are
shifted down one register (e.g., a5, a4 becomes a4, a3).

R Base the relative path of #include files on the directory
containing the original source file. The default is to base
the path on the directory containing the including file. This
option is only valid with the -Z flag and is provided to
undo the effect of the -XR flag.

50 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

s [size] Make a function call to __stk_ck at the beginning of
every function that requires more than size bytes of
stack space or calls other functions. The needed stack
space is available to __stk_ck in register d0; the default
value for the optional stack size is 40. The stack size
size cannot be specified with the -Z flag.

S Make a function call to __stk_ck at the beginning of
every function. The amount of stack space needed by the
function is available to __stk_ck in register d0. See
section 2.12.3 Debugging Functions for more
information.

u Do not place a leading underscore (_) in front of global
variables in the generated assembly code. A leading
underscore is placed in front of compiler-generated local
labels (_Lxxx) instead.

w# w1 disables warnings concerning minor problems such as
unnecessary assignments and statements that cannot be
reached. w2 disables warnings concerning the
compile-time initialization of address register relative data.
w4 causes the compiler to return a nonzero exit code if
any warnings are generated. The codes to the -Xw# flag
must be combined with a bitwise OR operation to disable
more than one class of warnings (e.g., when -Xw1 is
followed by -Xw4 the effect of -Xw1 is lost, whereas
when -Xw5 is specified the actions of both -Xw1 and
-Xw4 are in effect).

W Reference data objects using the 16-bit absolute
addressing mode. This option can be used when it is
known that all data references will be in the top or bottom
32K bytes of memory. It also inhibits data references from
being coerced to PC-relative modes when the generation
of position-independent code is specified (-Xp flag). See
also -XL flag.

1 Do not generate source-level debugging
.def – .endef pairs for function definitions. The .def –
 .endef pairs for function definitions are generated by
default, even in the absence of the
-q flag.

Section 2: Compiler 51

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2 Save and restore register d2 in all functions that use the
register to guarantee that the value of the register remains
unmodified across function calls. The default is to use
register d2 as a temporary scratch register with the value
not guaranteed across function calls.

2.4. Pragma Directives

A pragma is a preprocessing directive with the following form:

#pragma preprocessing_tokens

The functionality of a #pragma directive is similar to that of a command line flag.
The specified behavior, however, can be embedded into the source file and
turned on and off multiple times during a single compilation.

The Sierra C™ compiler currently supports five #pragma directives. Two of the
pragmas allow the default names of the text and data sections to be changed to
arbitrary names. One pragma permits integer functions written in C to be used as
interrupt handlers. Finally, two pragmas allow selected data objects to be
referenced using the absolute long addressing mode when a4-relative
addressing is selected on the command line. The five #pragma directives are
described as follows:

#pragma tsection section_name

The #pragma tsection directive causes data, instructions, and
literal strings that will be placed in the text section to be placed in a
section with the name section_name. The #pragma tsection
directive can be used multiple times to change to different names
or switch back and forth between a pair of names. For example,
the directive #pragma tsection .text will cause the name of the
text section to switch back to .text , the default name.

#pragma dsection section_name

The #pragma dsection directive causes data, instructions, and
literal strings that will be placed in the data section to be placed in
a section with the name section_name. The #pragma dsection
directive can be used multiple times to change to different names
or switch back and forth between a pair of names. For example,
#pragma dsection .data will cause the name of the data section
to switch back to .data the default name.

52 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

#pragma interrupt

Allow functions written in C to be used as interrupt handlers. When
the #pragma interrupt directive is placed before a function
definition, that function saves and restores the data and address
scratch registers (i.e., d0, d1, d2, a0, and a1), and exits using an
rte instruction instead of an rts . The #pragma interrupt directive
applies only to the next function and must be repeated to affect
additional functions.

#pragma +abs_data

Allow data objects declared in a file that is compiled to access
data relative to the program counter or address register a5 to be
accessed using the absolute long addressing mode. All data
objects declared between the #pragma +abs_data and #pragma
-abs_data directives will be accessed using the absolute long
addressing mode.

#pragma -abs_data

Undo the effect of the #pragma +abs_data directive.

#pragma fp_interrupt

Not supported by Texas Instruments.

2.5. Translation Limits

C programs must not include constructs that exceed the following limits:

• 50 nesting levels for #include files

• 16 nesting levels for conditional source inclusion

• 20 nesting levels for switch statements

• 25 nesting levels for loop statements

• 20 nesting levels for function calls

• 32 nesting levels for macro invocations

• 255 significant initial characters in an identifier (internal and external)

• 255 significant initial characters in a macro name

• 255 parameters in one function definition and call

• 31 parameters in one macro definition and invocation

• 512† characters in a character string (after concatenation)

† The number of characters can be increased with the -XC flag.

Section 2: Compiler 53

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.6. Reserved Keywords

Following is the list of reserved C language keywords that the Sierra C compiler
recognizes:

asm double int struct

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do

2.6.1. ASM Keyword

The asm keyword is a standard extension to ANSI C that allows statements to be
inserted directly into compiler-generated assembly code. The asm keyword is
followed by a character string enclosed in parentheses, and it can appear in the
C source file wherever a statement or declaration is allowed. For example, the
following statement causes the instruction enclosed in double quotes to be
inserted into the assembly output at the location that corresponds to the asm
statement’s location in the C source:

asm("move.w #0x2400, sr", 4)

The integer constant 4 that follows the string indicates the size of the instruction
in bytes. The size argument is optional; if omitted, the instruction is assumed to be
two bytes long. It is necessary to specify the size of the instruction only when the
asm statement appears inside a loop, if statement, switch statement, or
between a goto statement and the label it references. An incorrect or missing
size specification may cause the compiler to generate an improperly sized
branch instruction, which will result in an assembly error.

2.6.2. ANSI C Keywords

The ANSI C standard added three keywords, const , volatile , and signed , to the
C language. The const and volatile keywords are extremely important to
embedded systems developers. These two keywords are fully described in
sections 2.9.8 Const Type Specifier and 2.9.9 Volatile Type Specifier . The
keyword signed aids in writing portable code. For example, some compilers
recognize objects of type char as signed and others recognize them as
unsigned. The keyword signed can be used in conjunction with the previously
existing keyword unsigned to control the interpretation of certain object

54 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

declarations. The Sierra C compiler treats bit fields as unsigned objects by
default. The signed keyword can be used to treat bit fields as signed objects.

2.7. Constants

The C compiler recognizes four types of constants: floating-point, integer,
character, and enumeration. Every constant has a type that is determined by its
form and value, as described in this section. All constants are non-negative in the
absence of overflow. If there is a minus sign preceding a constant, it is
recognized as a unary operator applied to the constant, and not as part of the
constant itself.

2.7.1. Floating-Point Constants

A floating-point constant may be written with a decimal point, a signed exponent,
and/or a type specifier suffix. The exponent consists of the letter e or E followed
by an optionally signed decimal constant. The type specifier is one of the letters
f , F, l , or L. Either the decimal point or the exponent must be present for the
constant to be recognized as a floating-point type.

Examples of floating-point constants include:

0. 5e9 3.1415

1.0 5E+9l 0.31415E1F

.0 5e+9L 31415.e-4

.1 .50e-8 31415e-4f

The digit sequences are interpreted as decimal numbers. The exponent indicates
the power of 10 by which the value to the left of the exponent is to be multiplied.

Note: All floating-point constants, whether they are written with a suffix or without a suffix, are
of type double (10 byte TI BCD floating point).

2.7.2. Integer Constants

An integer constant begins with a decimal digit and contains no decimal point or
exponent. It can have a prefix that specifies its base and a suffix that specifies its
type. The type specifiers are the letters u, U, l , and L, where u (or U) and l (or L)
can be used together in either order. The u (or U) specifier coerces the constant
to an unsigned type, and the l (or L) specifier coerces the constant to a long
int .

Section 2: Compiler 55

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

An integer constant can be represented in three different bases: octal, decimal,
and hexadecimal. A constant’s base is determined by its leading character(s).
Octal constants begin with a zero, and hexadecimal constants begin with the
character pair 0x or 0X. Decimal constants begin with any nonzero digit.

Examples of integer constants include:

15092 0xf9a 0XF9al

03510 275uL 319LU

The type of an integer constant is determined by its value, base, and suffix (if
any) according to the following rules:

1. The type of a decimal constant with no suffix is the first type in the following
list in which its value can be represented: int , long int , unsigned long int .

2. The type of an octal or hexadecimal constant with no suffix is the first type in
the following list in which its value can be represented: int , unsigned int ,
long int , unsigned long int .

3. The type of a constant with only the u (or U) suffix is the first type in the
following list in which its value can be represented: unsigned int , unsigned
long int .

4. The type of a constant with only the l (or L) suffix is the first type in the
following list in which its value can be represented: long int , unsigned long
int .

5. The type of a constant with both the u (or U) suffix and the l (or L) suffix is
unsigned long int .

For example, the constant 0x81234567 is recognized as an unsigned long int ,
because it cannot be represented as a 32-bit signed long int .

2.7.3. Enumeration Constants

An identifier declared as an enumeration constant has type int . An enumeration
constant can be used anywhere an integer constant is allowed; however, there
are some restrictions when an enumeration constant is assigned to an
enumeration variable. See section 2.9.5 Enumeration Types , for additional
information.

56 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.7.4. Characte r Constants

A character constant is a sequence of up to four characters enclosed in single
quotes ('). Characters that cannot be entered directly or conveniently into the
source program, such as nongraphic characters, can be specified in a character
constant using an escape sequence. Table 2.1 lists the available escape
sequences and their values.

Character constants have type int . The value of each character in a character
constant is its integer encoding in the ASCII character set or the value of its
associated escape sequence, whichever is applicable.

The double quote (") and the question mark (?) can be specified directly or with
their escape sequences. The single quote (') and the backslash (\) , however,
must be specified with their escape sequences.

In the octal and hexadecimal escape sequences, ooo represents up to three
octal digits and hhh represents up to three hexadecimal digits. These digit
sequences are terminated with the third digit or the first nonoctal (or
nonhexadecimal) character. The specified digits determine the value of the
character.

Escape Sequence Common Name Integer Value

\a alert (bell) 0x7

\b backspace 0x8

\f form feed 0xC

\n newline 0xA

\r carriage return 0xD

\t horizontal tab 0x9

\v vertical tab 0xB

\' single quote 0x27

\" double quote 0x22

\? question mark 0x3F

\\ backslash 0x5C

\ooo octal escape code 0ooo (masked with 0xFF)

\xhhh hexadecimal escape code 0xhhh (masked with 0xFF)

 Table 2.1: Escape Characters

Some integer values that can be represented using three octal or hexadecimal
digits will not fit into a single eight-bit character. When a value does not fit into
eight bits, it is masked with the value 0xFF to force it to fit into eight bits. The
construct ' \x123 ' is a character constant containing a single character. To

Section 2: Compiler 57

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

specify a character constant containing the two characters whose values are
' \12 ' and ' 3 ', the construction ' \0123 ' must be used. To specify a character
constant containing the two characters whose values are ' \12 ' and ' z ', the
constructions ' \012z ' and ' \12z ' are both valid.

The sign of the character constant is determined by the most significant bit of the
character. For example, the character constant ' \xFF ' has the value -1, and the
character constant ' \x7F ' has the value +127. The value of a multi-character
character constant is determined by placing its characters (from right to left) into
successively higher order bytes of an integer (beginning with the lowest order
byte). Just as the sign of a single-character character constant is determined by
the value of bit 7, the sign of a four-character character constant is determined
by the value of bit 31. Two- and three-character character constants are always
positive.

The examples in Table 2.2 illustrate how character constants are evaluated.

Character Constant Hexadecimal Value Decimal Value

'\0' 0x0 0

'0' 0x30 48

'\x123' 0x23 35

'\x50' 0x50 80

'\x90' 0x90 -112

'\x08012' 0x803132 401202

'1234' 0x31323334 825373492

'\x040123' 0x40313233 1076965939

'\x080123' 0x80313233 -2144259533

 Table 2.2: Character Constants

2.8. Characte r Strings

A character string is a sequence of zero or more characters enclosed in double
quotes (e.g., "abc"). The same considerations that apply to characters and
escape sequences in character constants apply also to character strings.

Refer to Table 2.1 for the list of recognized escape sequences and the rules and
restrictions that apply. In a character string, the only difference in the use of the
escape sequence mechanism is that the single quote (') can be specified
directly or with its escape sequence, whereas the double quote (") must be
specified with its escape sequence.

58 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

A character string is actually a static array of characters, where the array has
been initialized with the given characters and a terminating null character.
Character strings cannot be modified during program execution; the static array
containing the characters resides in the program text section, which is typically
loaded into Read-Only Memory (ROM).

A newline is illegal inside of a character string. There are two ways, however, to
continue a character string on a new line. A character string may be continued by
placing a backslash (\) immediately before the newline. For example, the
following two strings are equivalent:

"this is a test of a string that \

spans two lines"

"this is a test of a string that spans two lines"

Character strings can also be continued by placing them adjacent to each other.
For example, the following two strings are equivalent:

"this" " string " "has "

"been broken"" into several pieces"

"this string has been broken into several pieces"

Escape sequences are converted into single characters before adjacent
character strings are concatenated. For example, the first string below is
equivalent to the second string, not the third:

"\x12" "3"

"\x0123" (two characters)

"\x123" (one character)

The maximum length of a character string is 512 characters unless it is increased
with the -XC flag. When two or more strings are concatenated, the character
length limit applies to the combined length.

2.9. Types and Representations

This section describes the internal representations of the various integer and
floating-point types. It also describes the correct usage of enumeration types and
bit fields, and discusses the issues concerning the const , volatile , and void type
specifiers.

Section 2: Compiler 59

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.9.1. Intege r Types

Table 2.3 summarizes the recognized integer types, their sizes, and their value
ranges. Integer data types can also be declared to be signed just as they can be
declared to be unsigned . The signed keyword, however, is significant only
when used in a bit field declaration, because bit fields are the only integer data
types that are unsigned by default.

The integer data types int and short int declare objects of the same size (when
the -XI command line flag is used to specify 16-bit integers as on the
TI-89 / TI-92 Plus). Even though objects of both types have the same internal
representation and can be used to store the same values, the two types should
not be used interchangeably. One reason is that pointers to int and pointers to
short int are different types, and a warning will be issued if either type is
assigned to the other. Also, the program may someday be recompiled on
another compiler where int and short int do not declare objects of the same
size.

Type Size in Bits Minimum Value Maximum Value

char 8 -128 127

short int 16 -32768 32767

int † 16 -32768 32767

long int 32 -2147483648 2147483647

unsigned char 8 0 255

unsigned short int 16 0 65535

unsigned int † 16 0 65535

unsigned long int 32 0 4294967295

† Integers are 16-bit objects on the TI-89 / TI-92 Plus (the -XI command line flag is
specified).

 Table 2.3: Integer Types

2.9.2. Intege r Representations

The memory address of any integer data object is the address of its highest
order byte (i.e., the byte containing the most significant bits). Unsigned integer
data types are represented as straight binary numbers, and signed integer types
are represented using two’s complement notation. Figure 2.1 shows the internal
representations of the three basic integer data types for the given values.

60 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Character char a = 0x12;

msb (sign)
7

lsb
0

1 2

0
address

Integer or Short Integer short int b = 0x1234;

msb (sign)
15

lsb
0

1 2 3 4

0
low address

+1
high address

Long Integer long int c = 0x12345678;

msb (sign)
31

lsb
0

1 2 3 4 5 6 7 8

0
low address

+1 +2 +3
high address

Figure 2.1: Internal Integer Representations

2.9.3. Floating-Point Types

The Sierra C compiler has been modified by Texas Instruments to support the
TI BCD floating-point format, removing all other previously supported
floating-point formats and coprocessors, except for an IEEE format which is used
in special cases and exists only in the compiler, not on the TI-89 / TI-92 Plus.
(See section 2.12.2 Internal Floating-Point Functions for more information on
the IEEE format.)

There are two forms of the TI BCD floating-point values, differing only in the
number of significant digits retained in the mantissa. Both have a size of ten
bytes, with double keeping 16 BCD digits in the mantissa, while float rounds the
accuracy to 14 digits. There is not a separate representation for long double ,
which is interpreted as double when encountered. The floating-point values
available to the users of the TI-89 and TI-92 Plus calculators have 14 digit
mantissas. It is highly recommended to always use the double format when
coding the applications to take advantage of the increased accuracy provided by
the extra two digits. See chapter 16. Working with Numbers in the
TI-89 / TI-92 Plus Developers Guide for information on how and when to round to
the 14 digits required by the calculator user floating-point representation. The
float format will not usually be used in TI-89 / TI-92 Plus applications. In the

Section 2: Compiler 61

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

include file (tiams.h) supplied with the TI-89 / TI-92 Plus SDK, BCD16 has been
defined as double , and should be used when coding applications as a reminder
that routines containing floating-point operations may not be portable code.

2.9.4. Floating-Point Representations

All TI BCD floating points are 10 byte objects. The first two bytes in the TI BCD
floating-point format are the mantissa sign and exponent. The mantissa sign is
the most significant bit of that word (1=negative, 0=positive) and the other 15 bits
are a 0x4000 biased exponent, where a value less than 0x4000 represents a
negative exponent, and a value greater than 0x4000 represents a positive
exponent. The memory address of a floating-point data object is the address of
the first byte of the sign/exponent. The decimal point is assumed to be after the
first BCD mantissa digit. The mantissa consists of 16 BCD digits, with digits 15
and 16 always equal to 0 in a float .

double and float

Low address High Address

2 bytes MSD 8 bytes LSD

0x4000 biased 1 15 16
exp and sign 16 digit mantissa (digits 15 and 16=0 for float)

Figure 2.2: Internal TI BCD Floating -Point Representation

Following are some examples of common floating-point values shown as if
written in 68000 assembly language:

_PI:
 .word 0x4000 ; 3.141592653589793
 .long 0x31415926,0x53589793
_FPZERO:
 .word 0x4000 ; 0
 .long 0,0
_FPPT001:
 .word 0x3FFD ; .001
 .long 0x10000000,0
_FPPTFIVE:
 .word 0x3FFF ; .5
 .long 0x50000000,0
_FPONE:
 .word 0x4000 ; 1
 .long 0x10000000,0
_FPNEG1:
 .word 0xC000 ; -1
 .long 0x10000000,0
_FPTEN:
 .word 0x4001 ; 10
 .long 0x10000000,0

62 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

_FPNEGTEN:
 .word 0xC001 ; -10
 .long 0x10000000,0

The internal floating-point representation allows an exponent range of L16384 to
16383. However, the exponent range available to the users of the TI-89 and
TI-92 Plus calculators is L999 to 999. See chapter 16. Working with Numbers in
the TI-89 / TI-92 Plus Developers Guide for information on how and when to
verify that the exponent is within the range required by the calculator user
floating-point representation and what to do when it is not.

There are also several specific floating-point representations for signed zeros,
infinities, and undefined values (or NANs).

positive zero

Low address High Address

2 bytes MSD 8 bytes LSD

 0x0000 0x00000000, 0x00000000

negative zero

Low address High Address

2 bytes MSD 8 bytes LSD

 0x8000 0x00000000, 0x00000000

positive infinity

Low address High Address

2 bytes MSD 8 bytes LSD

 0x7FFF 0xAA00BB00, 0x00000000

negative infinity

Low address High Address

2 bytes MSD 8 bytes LSD

 0xFFFF 0xAA00BB00, 0x00000000

unsigned infinity

Low address High Address

2 bytes MSD 8 bytes LSD

 0x7FFF 0xAA00CC00, 0x00000000

Section 2: Compiler 63

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

invalid floating-point representation (undefined or NAN)

Low address High Address

2 bytes MSD 8 bytes LSD

 0x7FFF 0xAA000000, 0x00000000

Figure 2.3: Special Internal Floating -Point Representations

All of the special internal floating-point values are valid inputs to TI BCD
floating-point routines and will be handled correctly when encountered. It is not
necessary to check for them after every floating-point operation to detect
overflows or other special values. However, none of the special values shown
above can be directly entered on the TI-89 or TI-92 Plus calculators. The signed
zeros may result from a calculation but since they are displayed as 0. on the
calculator, they can only be recognized by their behavior in other calculations.
The infinities and invalid floating-point values must be converted to other
representations before being made available to the user. See chapter
16. Working with Numbers in the TI-89 / TI-92 Plus Developers Guide for
information on how and when to verify that the floating-point value is valid as
required by the calculator user floating-point representation and what to do when
it is not.

2.9.5. Enumeration Types

An enumeration type is a set of integer values represented by identifiers; these
identifiers are referred to as enumeration constants. The declaration of an
enumeration type is similar to that of a structure or union type. For example, the
following declaration creates an enumeration type color — whose values are
red , green , blue , and white — and declares the variables boat and car to be of
this type:

enum color { red, green, blue = 8, white } boat, car;

The enumeration constants (red , green , blue , and white in the above example)
are assigned integer values when the enum type is created. Enumeration
constants are assigned either values generated automatically by the compiler or
values specified by an assignment operator and a constant integer expression.
When an explicit assignment is not made, the first enumeration constant in the
list is assigned the value zero; subsequent enumeration constants are assigned
the value of the previous constant plus one. In the above example, the
enumeration constants have the following values:

red = 0

green = 1

blue = 8

white = 9

64 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Using the enumeration constant assignment capability, it is possible (and legal)
to create different enumeration constants with the same integer values.

Enumeration constants are integer type objects and are treated the same as
numerical integer constants (i.e., their values cannot be modified). They can be
used anywhere an integer constant can be used except in an assignment to an
enumeration variable of a different enum type. Enumeration constants within the
same block scope must have unique names so that they can be distinguished
from each other as well as other variables, functions, and typedef names.

Variables and other objects of enumeration type can be declared in the
declaration containing the type definition (as in the above example) or in
subsequent declarations that specify the enumeration type name. If subsequent
declarations will not be made, the enumeration type name (enum tag) can be
omitted from the initial declaration. For example, the following three sets of
declarations are equivalent:

enum { sunny, overcast, rainy } CA, FL, NJ;

enum weather { sunny, overcast, rainy } CA, FL, NJ;

enum weather { sunny, overcast, rainy };

enum weather CA, FL;

enum weather NJ;

The enum tag (weather in the above example) is placed into the same name
space as struct and union tags.

Enumeration variables and objects are treated the same as integers except in
assignments that involve incompatible enumeration types. An enumeration type
is the same size as an int unless the -XN flag is specified. When this flag is
specified, the size of an enumeration type is determined by the values of its
associated enumeration constants. If the value of each enumeration constant fits
in a signed char , the enumeration type is the same size as a char . If the value
of each enumeration constant fits in a signed short int , the enumeration type is
the same size as a short int . Otherwise, the enumeration type is the same size
as an int .

Section 2: Compiler 65

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

As previously stated, enumeration constants and variables can be used anywhere
integer types can be used except in assignments involving different enumeration
types. The following examples utilize the enumeration objects declared on the
previous page to demonstrate enum type checking across assignments:

int i;

CA = sunny; /* legal */

i = 25; /* legal */

red = 36; /* illegal, red is constant */

car = boat; /* legal */

car = NJ; /* illegal */

FL = green; /* illegal */

boat = i; /* legal */

2.9.6. Bit Field Description

The C language allows integer data to be stored in spaces that differ in size from
those provided by the basic integer types. Such arbitrarily sized integers are
called bit fields. They are supported by allowing the width in bits of a structure or
union member to be specified using a colon and a constant expression after the
member declarator. In the following declaration, x.a is a 10-bit integer, x.b is a
12-bit integer, and x.c is a seven-bit integer:

struct s {

long int a:10;

long int b:12, c:7;

} x;

The three members of this structure occupy a total of four bytes; internally, they
are packed into a space that has the same size and alignment as a long int .

Bit fields can be packed in any of the four basic integer types (for example, char ,
short int , int , or long int). The size of the type determines the maximum
allowable bit field size. Bit field declarations can also include the signed and
unsigned type specifiers. The signed type specifier causes the bit field to be
interpreted as a signed quantity — the most significant bit of the bit field
(for example, the sign bit) is extended when extracting the contents of the field.
The unsigned type specifier can also be used, but has no effect since bit fields
are unsigned by default. Given the following initialization, the three bit field
members will have the values shown:

struct t {

int i:3;

signed int j:3;

unsigned int k:3;

} y = { -1, -1, -1 }; /* -1 bit pattern all 1's */

y.i = 7

y.j = -1

y.k = 7

66 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Note: Since most computers do not allow bits to be addressed directly, it is illegal to take the
address of a bit field. As a result, pointers to bit fields and arrays of bit fields are not
permitted. Furthermore, functions are not allowed to return bit fields.

2.9.7. Bit Field Internal Representation

Bit fields are packed into memory as efficiently as possible. Each bit field is
placed in the lowest order bits (highest address) available in the specified integer
type. If a bit field does not fit in the remainder of the current integer, it is placed in
a new one (i.e., it cannot span two integers). A bit field declaration without an
identifier is used to force a desired alignment. If the field width is nonzero, the
bits are allocated exactly as if an identifier was present in the declaration; if the
field width is zero, the remainder of the current integer is skipped. For example,
the following declaration causes memory to be allocated as shown:

struct tag {

long int a:10;

long int b:20;

long int c:5;

long int :5;

long int d:8;

long int :0;

long int e:12;

} s;

31 29 9 0

b a

31 17 9 4 0

d c

31 11 0

e

Section 2: Compiler 67

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.9.8. Const Type Specifier

The value of an object that is declared with the const type specifier cannot be
modified; therefore, the object cannot appear as the left-hand side of an
assignment, nor as the operand of the '++' or '− −' operator. The following
examples demonstrate the legality of various modifications involving const
objects:

const int a = 99;

const int b = 66;

const int *p = &a;

a++; /* illegal */

b−− ; /* illegal */

a = 10; /* illegal */

p = &b; /* legal */

p = 20; / illegal */

The const type specifier can be used with integer types, floating-point types,
structure and union types, and enumeration types. It can also be used with
individual members of structures and unions, in which case only the specified
members are affected. If the const type specifier is used without any other type
specifiers or with only the volatile type specifier (see below), type int is implied.

The const type specifier can also be used to declare pointers to constant objects
and constant pointers to constant and nonconstant objects. Just as an asterisk
(*) in a declaration indicates a pointer to an object, the construct *const
indicates a constant pointer to an object. A constant pointer cannot be modified;
no restrictions are placed on the object to which it points. The following
declarations define a constant int , a constant pointer to an int , and a constant
pointer to a pointer to a constant pointer to a constant double , respectively:

const int a;

int * const b;

const double * const ** const c;

A pointer to a nonconstant object can be assigned to a pointer to either a
constant or nonconstant object; however, a pointer to a constant object can only
be assigned to a pointer to a constant object. These pointer assignment rules
were established to help prevent accidental modifications of constant objects with
dereferenced pointers to nonconstant objects. These rules can be easily
sidestepped with a type cast, but this is not recommended since it could result in
an attempt to modify data stored in Read-Only Memory (ROM).

68 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

In most embedded systems, as much information as possible is placed in ROM
(e.g., the entire code (.text) section). The const type specifier is extremely
important in these environments because it causes declared data (except when
also declared volatile) to be placed in the .text section — i.e., directly in ROM.
For additional information on the use of the const type specifier, refer to section
2.14 Static Storage Initialization .

2.9.9. Volatile Type Specifier

An object that is declared with the volatile type specifier is guaranteed to be
accessed, in its entirety, each time it is referenced in the source. As a result, the
compiler must forgo optimizations that would alter either the size of references to
the object (e.g., char , short , int , etc.) or the number of references made to the
object. For example, the compiler cannot test a bit in a four-byte volatile object by
referencing only the byte that contains the bit of interest; the object must be
referenced as a four-byte entity. As the following example illustrates, the compiler
would not be able to optimize the first function, which reads data from an I/O port,
as though it were written as the second function:

volatile char * const stat_reg = (char *) 0x60000D;

volatile char * const rcvr_reg = (char *) 0x60000F;

get_char()

{

while(!(* stat_reg & 0x40));

return(* rcvr_reg);

}

get_char()

{

register int temp;

temp = !(* stat_reg & 0x40);

while(temp); / * infinite loop * /

return(* rcvr_reg);

}

The volatile type specifier is used for memory-mapped I/O ports, variables
shared by other processes, variables modified inside interrupt handlers and error
handlers, and any other variables that are accessed in ways not obvious to the
compiler.

Section 2: Compiler 69

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The volatile type specifier observes the same declaration usage rules as the
const type specifier (see section 2.9.8 Const Type Specifier); it can be used in
conjunction with the const type specifier. The following declarations define a
volatile int , a constant volatile int , and a volatile pointer to a constant volatile
pointer to a pointer to a volatile double , respectively:

volatile int a;

volatile const int b;

volatile double ** volatile const * volatile c;

The second declaration above could be used for a resource such as a real-time
clock; the compiler does not know when the value of a real-time clock changes,
and a program should not attempt to modify it.

A pointer to a nonvolatile object can be assigned to a pointer to either a volatile
or nonvolatile object; however, a pointer to a volatile object can only be assigned
to a pointer to a volatile object. These pointer assignment rules, which are
analogous to the rules for constant pointers described above, were established to
help prevent accidental references of volatile objects with dereferenced pointers
to nonvolatile objects.

2.9.10. Touch Operator

The _touch(* pointer_to_volatile_argument) operator uses the test instruction,
tst , to “touch” the memory location pointed to by pointer_to_volatile_argument. In
embedded systems design, it is often necessary to touch an address-mapped
piece of hardware — e.g., to increment a counter or set a latch. The argument to
_touch() must be a dereferenced pointer to a volatile integer type object;
otherwise, _touch() behaves as an ordinary function.

2.9.11. Void Type Specifier

An expression of type void has no value associated with it. Such an expression
can be neither referenced nor converted (implicitly or explicitly) to another type.

The void type specifier is most frequently used in the declaration of functions
that return no values. It is illegal for a void function to return a value or for the
return value of a void function to be used in an expression. The void type can
also be used to indicate that the value of an expression is ignored. For example,
the following function, which returns no value, uses a void cast to discard the
return value of the printf function:

void report_error(int error, int line)

{

(void)printf("Error %d on line: %d\n", error, line);

}

70 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The void cast is not necessary in the above example, but many programmers
use the cast to indicate that the return value is being intentionally ignored.

2.9.12. Void Pointer (void *)

A pointer to void (i.e., void *), referred to as a generic pointer, has special
meaning to the compiler. A pointer to any type of object can be converted to a
void pointer and back again with the resultant and original pointers guaranteed
to compare equal. Additionally, void pointers and non-void pointers may appear
together in assignment and comparison expressions with no explicit type
conversion. The following examples demonstrate legal and illegal pointer
expressions:

int * pi;

char * pc;

void * pv;

pv = pc; / * legal * /

pc = pi; / * illegal, cast required * /

pi ++; / * legal * /

pv += 2; / * illegal, size of void pointer unknown * /

f(* pv) / * illegal to dereference a void pointer * /

2.10. Conversions

The compiler provides for both the implicit and explicit conversion of values from
one type to another.

• A value may be explicitly converted to another type with a cast operator.

• An operand may be implicitly converted to another type so that a specific
arithmetic or logical operation can be performed.

• An implicit conversion may result from the assignment of an object of one
type to an object of another type.

• An argument to a function may be implicitly converted to another type in
preparation for the function call.

• The value returned by a function may be implicitly converted to the function
return type before the function return.

2.10.1. General Considerations

When a value of one type is converted to a value of another type, the internal
representation (i.e., bit pattern) may change. Conversions between floating-point
types and integer types always involve a change in representation. When

Section 2: Compiler 71

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

converting between different integer types, the resultant representation is easily
determined since the target machine uses a two’s complement representation.
Conversions between integer types of the same length involve no change in
representation. Conversions from longer integer types to shorter integer types
involve a truncation of the excess high order bits. Conversions from shorter
integer types to longer integer types involve the padding of the additional high
order bits with all 1’s or 0’s.

2.10.2. Integer Types

When an integer of one type is converted to an integer of another type, the
resultant value is determined according to the following rules:

• When a signed integer type is converted to another signed integer type of
equal or greater length, the value remains unchanged.

• When an unsigned integer type is converted to another unsigned integer type
of equal or greater length, the value remains unchanged.

• When an unsigned integer type is converted to an integer type of greater
length, the value remains unchanged.

• When an integer type is converted to an integer type of shorter length, the
resultant value is the value of the truncated bit pattern as interpreted by the
new type.

• When a signed integer type is converted to an unsigned integer type of
greater length the resultant value is unchanged if the value of the signed
integer was non-negative. Otherwise, the bit pattern representation in the
unsigned integer is determined by promoting the signed integer to a signed
integer of the same length as the unsigned integer.

• When an integer type is converted to an integer type of the same length, the
resultant value is the value of the bit pattern as interpreted by the new type.

2.10.3. Floating -Point and Integer Types

When a floating-point type is converted to an integer type, the resultant value is
determined by discarding the fractional part. If the conversion is to an unsigned
long and the value of the integral part cannot fit in the space provided, the
behavior is undefined. If the conversion is to any other integer type and the value
of the integral part cannot fit, the integral part is first assigned to a signed long
and is then converted to the specified integer type using the integer conversion
rules. If the integral part cannot fit in a signed long , it is assigned the largest
positive or negative value (depending on the sign of the integral part) that can be
represented by a signed long .

72 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.10.4. Floating-Point Types

Since all TI BCD floating-point data objects are ten bytes, there is no promoting
float to double or demoting double to float . Explicit type casting of float to
double or double to float is also ignored. This does not imply that there is no
difference between them. TI floating-point arithmetic will recognize that a float
has only 14 significant digits. If a cast from double to float is desired, the
round14 function on the TI-89 / TI-92 Plus is available. However, it is strongly
recommended to always use double , taking advantage of the increased
accuracy. (See section 2.9.3 Floating-Point Types for more information.)

2.10.5. Usual Arithmetic Conversions

Most binary operators that require operands of arithmetic type cause implicit
conversions (to yield a common type). These conversions are known as the
usual arithmetic conversions. The first applicable rule in the following lists
specifies the performed conversions:

• If either operand is of type double , the other operand is converted to type
double .

• If either operand is of type float , the other operand is converted to type float .

• If either operand is of type unsigned long int , the other operand is converted
to type unsigned long int .

• If one operand has type long int and the other has type unsigned int , the
conversion depends on the specified integer size (see -XI flag). When 16-bit
integers are used (as on the TI-89 / TI-92 Plus), the operand of type
unsigned int is converted to the type long int ; otherwise, both operands are
converted to the type unsigned long int .

• If either operand is of type long int , the other operand is converted to type
long int .

• If either operand is of type unsigned int , the other operand is converted to
type unsigned int .

• If either operand is not of type int , it is converted to type int . (Exception: if
16-bit integers are used, as on the TI-89 / TI-92 Plus, and the operand type is
unsigned short int , it will be converted to unsigned int in order to preserve
its value.)

• If both operands are of type int , no conversion is necessary.

Section 2: Compiler 73

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Note: These binary conversion rules do not apply to the shift operators (>> and <<), since the
operands are not combined directly. Instead, each operand is treated as if it were an
operand of a unary operator.

Note: Operands of type integer are not always converted as stated above. Sometimes, smaller
integer types are used if doing so results in improved run-time performance without loss
of precision.

2.10.6. Restrictions

Type conversions can be performed on any of the scalar types — i.e., integer
types, floating-point types, enumeration types, and pointers. There are, however,
certain restrictions imposed upon both explicit and implicit conversions.

The only explicit conversions that are not permitted are those between
floating-point types and pointers; any other conversions involving scalar types
are allowed.

Additional restrictions apply to implicit conversions that are made across
assignments and through function returns. Any statement requiring either an
implicit conversion between two enumeration types or an implicit conversion
involving a pointer (excluding null pointers and void pointers) is illegal. In both of
these cases, however, the conversion will be performed and a warning issued.

All conversions between float and double are ignored since they are both 10
byte objects, however, no warning or error is issued.

2.11. Function Calling Conventions

When a function is called with arguments, the value of each specified argument
is pushed onto the stack. (Hereafter, the value of an argument will be referred to
simply as the argument.) The arguments are pushed onto the stack in reverse
order — i.e., beginning with the rightmost argument. After a function call, the
stack pointer is incremented, if necessary, to restore its value to that prior to the
stacking of the arguments.

Note: When the -O , -Oz , or -Oc1 command line flag is specified, the stack pointer will not
necessarily be incremented after every function call that has arguments pushed onto the
stack. In the presence of any of these flags, attempts are made to coalesce more than
one stack cleanup into a single stack adjustment.

Note: If the top of the stack is free, the rightmost argument is sometimes moved directly into
the top stack position (i.e., the stack pointer is not decremented); otherwise, it is pushed
onto the stack. Additional arguments are always pushed onto the stack.

74 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The amount of stack space used by each function argument is determined by the
type of the argument and whether the function is declared with a function
prototype. Structure arguments are pushed onto the stack and take as much
stack space as necessary to fit the entire structure. If necessary, the stack space
allocated to a structure argument is rounded up to a multiple of four bytes.

2.11.1. Declarations and Definitions

A function declaration declares a variable to be a function and specifies the type
of value it returns. A prototype function declaration also establishes the number
of function arguments and the types of those arguments. A function declaration
does not cause memory to be allocated or code to be generated. A function
definition causes memory to be allocated and code to be generated; it also
serves as a function declaration.

2.11.1.1. Function Prototypes

A function prototype is a function declaration or definition that specifies both the
number of arguments and the argument types. Function prototypes prevent
errors caused by passing the wrong argument type or wrong number of
arguments to a called function.

The following are examples of prototype function declarations:

double f1(short x, int y, double z);

double f2(short, int, double);

double f3(short, int, double, ...);

double f4(void);

The functions f1, f2, f3, and f4 are declared to return a value of type double . The
first two functions are declared to accept exactly three arguments: a short , an
int , and a double , respectively. Except for the function names, the first two
function declarations are identical. The formal parameters x, y, and z in function
f1 are optional and are used for documentation purposes only. The scope of
these optional parameter names extends only to the end of the declaration; the
names do not have to match the formal parameter names in the actual function
definition. Function f3 is declared to accept three or more arguments. The ellipsis
notation (, . . .) informs the compiler that zero or more additional arguments of
unknown type will be passed to the function. In the body of the function definition,
the macros va_start() and va_arg() defined in the include file tiams.h should
be used to access the additional argument values. Function f4 is declared to
accept no arguments; calling f4 with any arguments will result in an error.

Section 2: Compiler 75

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

An in-scope prototype function declaration not only establishes the function
return type, but also enables verification that the function is called with the
correct number of arguments and that the type of each argument is compatible
with its corresponding formal parameter. The type checking and conversions that
are performed are identical to those performed when assigning a value using the
assignment operator (=). For example, if a function that is defined with a
parameter of type double is called with an argument of type int , the argument is
automatically converted to a value of type double before being pushed onto the
stack; an explicit cast operator is unnecessary. Additional arguments permitted
by the ellipsis notation (, . . .) are handled as if they were arguments to a function
declared without a prototype. When declared with the ellipsis notation, type
checking and automatic type conversions cannot be performed; instead, the
ANSI C integral and floating-point promotion rules are applied to the arguments.

The following is an example of a prototype function definition:

double f1(short a, int b, double c)

{

/* function body */

}

The function f1 is defined to accept three arguments and return a value of type
double . The formal parameter type declarations int a , short b , and double c
declare how the parameters will be used inside the function. The Sierra C
compiler specifies how the parameters are pushed onto the stack at the function
call site. If a prototype declaration is in scope, an argument of type short may be
promoted to an int before being pushed onto the stack. The rules for determining
how an argument is pushed onto the stack in the presence of a prototype is
determined by specific command line flags. Table 2.4 (section 2.11.2 Passing
Argument Values) summarizes how arguments of different types are pushed
onto the stack with and without a prototype in scope.

2.11.1.2. Old-Style Declarations

An old-style function declaration is a declaration that provides only the type of the
return value. Information on the types and number of arguments is not
established. The following is an example of an old-style (nonprototype) function
declaration:

int f5();

The function f5 is declared to return a value of type int ; no information about the
number and types of arguments is specified. This declaration could be deleted
from the program without any effect, since the default function return type is int .

76 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The following is an example of an old-style function definition:

int f5(a, b, c, d, e)

int a;

short b;

long c;

float d;

double e;

{

/* function body */

}

The function f5 is defined to accept five arguments and return a value of type int .
The formal parameter type declarations int a , short b , long c , float d , and
double e declare how the parameters will be used inside the function. They do
not describe the types of the actual parameters that are pushed onto the stack at
the function call site. The expected types of the actual parameters are
determined by the integral and floating-point promotion rules. The promotion
rules state that arguments of type char and short are converted to type int , and
that arguments of type float are converted to type double ; no other conversions
are performed.

At a function call site, there is no information available on the types of the
arguments. If a called function has a formal parameter declared to be of type
float , it is expecting an actual parameter of type double to have been pushed on
the stack. If, however, the parameter is of type int , it must be explicitly cast to
either a float or a double at the call site to prevent it from being incorrectly
pushed as an int . Finally, if the function is called with too few or too many
parameters, the error will go undetected during compilation.

2.11.1.3. Mixing Prototype and Old-Style Declarations

The Sierra C compiler supports both new-style (prototype) and old-style
(nonprototype) function declarations and definitions as specified by the ANSI C
standard. However, it is highly recommended that the prototype style be used
exclusively.

Mixing prototype declarations and old-style function definitions should be avoided
because it will often create problems. The following is an example of a prototype
declaration and an old-style function definition:

int func(short a);

int func(a)

short a;

{

/* function body */

}

Section 2: Compiler 77

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

When the file containing the above example is compiled, the following warning
will be issued:

warning: incompatible parameter types, func() arg 1

This message is generated because the prototype declaration declares a
function that accepts a short parameter, while the function definition declares a
function that accepts an int parameter. The formal parameter in the function
definition is recognized as an int because the function definition is in the old-style
format; therefore, the integral promotion rules are applied to the short
parameter. To further understand the problem, examine the case in which a
short is pushed as two bytes in the presence of a prototype. A two-byte value
will be pushed onto the stack because a prototype declaration is in scope;
however, a four-byte argument will be expected inside the function that was
defined using the old style. A problem also results if a function that is defined with
a prototype to accept a short is called with an old-style declaration (or no
declaration) in scope.

The above problems can be avoided through exclusive use of prototype
declarations and definitions. The compiler command line flags -Xf1 , -Xf2 , and
-Xf3 can be used to verify that appropriate declarations are being utilized. The
-Xf1 flag causes a warning to be issued when a function is called outside the
scope of a function declaration. The -Xf2 flag causes a warning to be issued
when a function is declared without a prototype. The -Xf3 flag (the combination
of -Xf1 and -Xf2) causes a warning to be issued if a function is called without a
prototype declaration in scope.

2.11.2. Passing Argument Values

Several factors determine how an argument value is pushed onto the stack when
a function call is made: the specified command line flags, the type of the
argument, and whether or not a function prototype is in scope. If a function
prototype is not in scope, the integral and floating-point promotion rules will be
applied to the argument types.

The -XI flag instructs the compiler to interpret objects of type int as 16 bits
rather than 32 bits (default). Specifying the -XI flag, as on the TI-89 / TI-92 Plus,
will cause all integer types (except for type long) to be passed as 16-bit objects
independent of whether a function prototype is in scope. The -Os# flags
determine how argument values of different types are passed only in the
presence of a function prototype. In the presence of a prototype, parameters of
type char and short are pushed as two-byte objects when the -Os2 flag is
specified, and are pushed as four-byte objects when the -Os4 flag is specified.

78 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Compiler and Flags char short int long float double

com68 2 / 4 2 / 4 4 / 4 4 / 4 10 / 10 10 / 10

com68 -Os2 2 / 4 2 / 4 4 / 4 4 / 4 10 / 10 10 / 10

com68 -Os3 2 / 4 2 / 4 4 / 4 4 / 4 10 / 10 10 / 10

com68 -Os4 4 / 4 4 / 4 4 / 4 4 / 4 10 / 10 10 / 10

com68 -Os5 4 / 4 4 / 4 4 / 4 4 / 4 10 / 10 10 / 10

com68 -XI 2 / 2 2 / 2 2 / 2 4 / 4 10 / 10 10 / 10

com68 -XI -Os2 2 / 2 2 / 2 2 / 2 4 / 4 10 / 10 10 / 10

com68 -XI -Os3 2 / 2 2 / 2 2 / 2 4 / 4 10 / 10 10 / 10

com68 -XI -Os4 2 / 2 2 / 2 2 / 2 4 / 4 10 / 10 10 / 10

com68 -XI -Os5 2 / 2 2 / 2 2 / 2 4 / 4 10 / 10 10 / 10

Note:Sizes are in bytes, with and without prototype — (with prototype) / (without prototype).
The TI-89 / TI-92 Plus requires use of the LXI flag.

 Table 2.4: Determination of Argument Size

Table 2.4 shows the sizes in bytes that function arguments occupy on the stack.
The sizes are shown as a function of the compiler and associated command line
flags, argument type, and whether or not a prototype is present. The numbers in
the table to the left of the slash (/) are sizes in bytes in the presence of a
prototype; the numbers to the right are sizes in the absence of a prototype.

2.11.3. Accessin g Parameters

Inside the called function, the function parameters are accessed from the stack.
The exact mechanism for accessing the parameters is determined by the
presence or absence of the link and movem instructions.

The link instruction, if present, is the first instruction in a function; it is used to set
up a stack frame using address register a6 as the frame pointer (refer to the link
instruction in the M68000 Family Programmer’s Reference Manual). The link
instruction is also used to leave an extra four bytes free on the top of the stack.
When the top of the stack is free, the rightmost parameter in a function call can
be moved onto the stack instead of pushed onto the stack. The default action is
to use a link instruction only when a stack variable is referenced while the stack
is temporarily displaced, or when the program is to be examined with a
source-level debugger. Its use can be forced with the -Of1 command line flag.
When the link instruction is not used and a function parameter expects the top of
the stack to be free a subq.l #4, sp instruction is inserted at the start of the
function to free up the top of the stack.

The movem instruction (move or movea instruction if only one register is saved)
saves on the stack the registers that must remain unmodified across a function

Section 2: Compiler 79

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

call. If the link instruction is used, the movem instruction moves the registers to
be saved into stack space reserved by the link . If the link is not used, the
movem instruction pushes the registers to be saved onto the stack. A second
movem instruction restores the saved registers before the function returns.

When the link instruction is present, the function parameters are referenced
relative to the frame pointer — register a6. The offset from register a6 required to
reference the leftmost function parameter (i.e., the last parameter pushed onto
the stack) is eight bytes: four bytes for the function return address and four bytes
introduced by the link instruction.

When the link instruction is not present, the function parameters are referenced
relative to the stack pointer — register a7 (also referred to as sp). The offset
from register a7 required to reference the leftmost function parameter is
determined as follows:

• Four bytes for the function return address.

• Four bytes for each data or address register pushed onto the stack.

• Ten bytes for each floating-point register pushed onto the stack.

• Four bytes introduced by the addq.l #4, sp instruction, if present.

2.11.4. Returning Values

Functions that return scalar (nonaggregate) data types return their data in one of
several registers. Integer data types are returned in register d0. Address pointers
are returned in register a0 (d0 when the -XA flag is specified). Floating-point
data types are returned in register fp0 . The type of the return register is
determined by the data type specified in the function declaration.

Functions that return a structure are significantly more complicated than
functions that return a scalar data type. Inside the called function, the structure to
be returned is copied into stack space that is allocated by the calling function.
Information about the reserved stack space is passed to the called function as an
address pointer that is pushed onto the stack immediately before the function call
(as if it were the function’s leftmost argument). Immediately before the function
returns, the structure is copied into the reserved space. The address of the
reserved space is returned in register a0. Immediately after the function returns,
the pointer in a0 is used to copy the returned structure to its destination.

80 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The structure return mechanism can be further clarified using a pair of examples.
Example A shows a function returning a structure, and Example B uses structure
pointers to demonstrate (at the C level) what the compiler generates internally
when a function returns a structure. These examples generate essentially
identical code.

Example A Example B

struct s { struct s {

int a; int a;

int b; int b;

}; };

struct s f(); struct s *f();

struct s x; struct s x;

main() main()

{ {

x = f(1,2); struct s tmp;

}

x = *f(&tmp,1,2);

struct s f(int i,int j) }

{

struct z; struct *f(strct_ptr,i,j)

z.a = i; struct s *strct_ptr;

z.b = j; {

return z; struct z;

}

z.a = i;

z.b = j;

*strct_ptr = z;

return strct_ptr;

}

Warning: A function that returns anything other than an integer must be declared in a file
before it is called. Failure to do so could result in unexpected behavior. Without a
declaration in scope, a called function is assumed to return an integer; therefore, its
return value is expected to be in d0. However, if the function actually returned a
pointer, the return value would be found in a0. Similarly, if the function returned
floating-point data, the return value would be in fp0 . Even if the function returned an
object of type char or short int , the upper portion of d0 might contain invalid data
that would result in a corrupted integer value.

Warning: A function that returns a structure must be declared in a file before it is called, even
when the return value is not used. Without a declaration in scope, the pointer to the
structure return area is not pushed onto the stack. The called function, which
assumes that the memory pointer has been pushed, cannot access its parameters
correctly and may corrupt memory when it attempts to return a structure.

Section 2: Compiler 81

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.11.5. Register Usage

Data, address, and floating-point registers are used to hold both the values of
automatic variables and the intermediate results generated during the evaluation
of an expression. The registers used to hold intermediate expression values are
referred to as scratch registers. Registers d0–d2 , a0–a1, and fp0–fp1 are used
as scratch registers by the compiler; their values are not guaranteed across
function calls. When the -X2 command line flag is specified, the value of register
d2 is guaranteed across function calls. Registers d3–d7 , a2–a5, and fp2–fp7
must remain stable across function calls and are thus required to be saved and
restored in any function that uses them. Registers a6 (frame pointer) and a7
(stack pointer) must also remain stable across function calls. The unlk instruction
restores registers a6 and a7.

2.12. Compiler-Generated Function Calls

The compiler usually generates in-line assembly code when translating C
programs. Sometimes, however, the compiler calls library functions to perform
operations when in-line code would be inefficient or when special debugging
options have been requested. The compiler-generated function calls fall into the
following three categories:

1. calls to integer arithmetic functions

2. calls to floating-point software functions

3. calls to debugging functions

Compiler-generated function calls do not follow the standard C function calling
conventions. For example, when calling internal integer arithmetic functions,
parameters are passed in registers instead of on the stack. The following
sections describe the special calling conventions used by each category of
compiler-generated function calls.

82 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.12.1. Internal Integer Arithmetic Functions

The 68000 compiler, com68 , generates function calls to perform integer
arithmetic when in-line code would require an unacceptable amount of space. It
also generates function calls to perform some division and modulus operations.
The size and type of the operands determine whether a function call is
generated. For example, the division of two signed 16-bit operands will be
handled by in-line code, but the division of two signed 32-bit operands will be
handled by a function call. Table 2.5, Integer Arithmetic Functions, lists the
functions that are called by the 68000 compiler to perform the specified integer
arithmetic operations.

Function Name Operation

__du16u16 Divide 16-bit unsigned by 16-bit unsigned

__ds32s32 Divide 32-bit signed by 32-bit signed

__du32u32 Divide 32-bit unsigned by 32-bit unsigned

__ds16u16 Divide 16-bit signed by 16-bit unsigned

__ms16u16 Mod 16-bit signed with 16-bit unsigned

__mu16u16 Mod 16-bit unsigned with 16-bit unsigned

__ms32s32 Mod 32-bit signed with 32-bit signed

__mu32u32 Mod 32-bit unsigned with 32-bit unsigned

 Table 2.5: Integer Arithmetic Functions

Arguments are passed to the functions listed in Table 2.5 in registers d0 and d1;
they are not passed on the stack. Results are always 32 bits and are returned in
register d1 (basically, d1 = d1 / d0 or d1 = d1 % d0). The functions that operate
on 16-bit operands use only registers d0 and d1. The functions that operate on
32-bit operands also use registers d2, a0, and a1.

The following example, which shows both a 68000 C file and the generated
assembly code, illustrates the generation of an internally generated function call:

extern int i, j; move.l _i,d1

void f(void) move.l _j,d0

{ jsr __ds32s32

i = i / j; move.l d1,_i

} rts

Section 2: Compiler 83

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.12.2. Internal Floating-Point Functions

The Sierra C compiler supports two different floating-point formats, each one
being automatically used in specific cases. The supported formats include the
TI BCD floating-point format and an IEEE format which exists only in the
compiler, not on the TI-89 / TI-92 Plus. Floating-point operations on constants
are performed in the IEEE format by the compiler while all other floating-point
operations are handled by internally generated calls to the BCD floating-point
routines on the TI-89 / TI-92 Plus. Floating-point constants are converted to
BCD if they are used as operands in the TI BCD floating-point routines. It is
important to remember that in rare cases, it is possible that a value computed in
the IEEE format and converted to BCD may differ from the result of the identical
operation if performed by the TI floating-point routines due to the difference in
accuracy between IEEE and BCD. Floating-point constant operations should be
used with caution for this reason, although since the IEEE format is comparable
to 20 BCD digits and the TI BCD values have 16 digits, differences will be
extremely rare.

double flt1=1024. * 16.; /* IEEE operations */

double flt2;

flt2 = flt1 * 4.; /* TI BCD floating-point routines */

When generating code for the TI BCD floating-point routines, floating-point
registers fp0 through fp7 correspond to stack frame locations (-10, a6) through
(-80, a6), respectively; each location occupies ten bytes. To minimize the amount
of code needed to make an internally generated call, the compiler goes through
an interface function on the TI-89 / TI-92 Plus, __bcd_math . Calls to the
floating-point interface function differ from calls generated for C language
function calls in two major respects:

• Operand information, including the specification of both source and
destination registers (when applicable), is encoded into a single two-byte
argument.

• The called (not the calling) function restores the stack upon function return.

When using the function call to __bcd_math , a two-byte code word is inserted
into the instruction sequence immediately following the function call. The code
word fully describes the floating-point operation, the size of the operands, and
the effective addresses of both the source and destination operands. If both the
source and destination operands are registers (data and/or emulation
floating-point registers), no information other than that supplied by the code word
is required.

84 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Figure 2.4 explains how to decipher information in the floating-point emulation
code word. The operator and size components of the code word should be
self-explanatory. Source and destination registers refer to the actual processor
data registers and the emulation floating-point registers that correspond to
locations on the stack frame (as explained above). If the destination operand is a
register, the operator, size, and source operand determine whether it references
a data register or a floating-point register.

The TI software emulation is patterned after the 68881/2 floating-point
coprocessor (see section 3.1.2 Prerequisite Reading for a list of references if
more information is desired). The same rules and restrictions that apply to
68881/2 instruction operands apply to corresponding emulation instruction
operands. If one of the operands is specified by its absolute address, the 32-bit
address is pushed onto the stack immediately before the function call. If an
operand is specified to be an immediate short , immediate long , or frame offset,
the 16-bit or 32-bit immediate value or the 16-bit a6-relative frame displacement
is inserted into the instruction sequence immediately following the code word.
From the information in the code word, the called function adjusts its return
address to skip over the code word and the operand (if present).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operator Size Source Operand Dest. Operand

fcmp 0 byte 0 fp0 0 r0 (fp or d) 0
fadd 1 word 1 | | | |
fdiv 2 long 2 fp7 7 r7 (fp or d) 7
fmul 3 single 3 d0 8 frame offset 8
fsub 4 double 4 | | effective address 9
fintrz 5 extend 5 d7 15 return register 10
fmove 6 immed. long 16
fneg 7 immed. short 17
ftst 8 frame offset 18
fbcc 9 effective address 19

immed. zero 20

Figure 2.4: Floating-Point Emulation Code Word

The following example demonstrates the interface to the TI BCD floating-point
routines. Shown below is a sample C listing, followed by the code that is
generated after compilation.

Section 2: Compiler 85

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

double area, radius;
void circle(void)
{

area = 3.14159* radius * radius;

}

68000 C Compiler 3.2h Copyright 1987-99 by Sierra Systems. All rights
reserved.

.opt proc=68000

.file "test.c"

.comm _area,10,2

.comm _radius,10,2
; 4 double area, radius;
; 5 void circle(void)

.text

.align 2

.globl _circle

.def _circle\ .val _circle\ .scl 2\ .type 0xd0020\

.endef
_circle:

link a6,#-36
; 6 {
; 9 area = 3.14159* radius * radius;

; fmove.d _radius,fp0
move.l a0,-(sp)
lea _radius,a0
move.l (a0)+,-10(a6)
move.l (a0)+,-6(a6)
move.w (a0)+,-2(a6)
movea.l (sp)+,a0

; fmul.d _radius,fp0
pea _radius
jsr __bcd_math
.short 0x3930

; fmul.d #3.14159000000000000000e+00,fp0
jsr __bcd_math
.short 0x3900
.short 0x4000
.long 0x31415900
.long 0x0

; fmove.d fp0,_area
lea _area,a0
move.l -10(a6),(a0)+
move.l -6(a6),(a0)+
move.w -2(a6),(a0)+

; 12 }
unlk a6
rts
.def _circle\ .val .\ .scl -1\
.endef

86 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.12.3. Debugging Functions

The compiler can be directed to insert calls to debugging functions in the
generated assembly code using the -XS , -Xs , and -Xc command line flags. The
-XS and -Xs flags cause the compiler to place calls to __stk_ck (i.e., _stk_ck
defined as a C function) at the beginning of each function. The -Xc flag causes
the compiler to place a call to __line_ck (i.e., _line_ck defined as a C function)
following each line of C source code.

Both the _stk_ck and _line_ck functions are intended to be provided by the
user. These functions provide a mechanism to check various aspects of a
program. Although the _stk_ck function will typically compare the current stack
pointer offset and the amount of stack space needed by the calling function to the
total amount of available stack space, on the TI-89 / TI-92 Plus, this is done
through hardware. Even though the traditional use for _stk_ck is no longer
necessary, the function may be used for any other debugging purpose desired.
The _line_ck function could be used to locate the position in a program where a
particular memory location is corrupted.

The -XS flag causes the compiler to insert calls to _stk_ck at the beginning of
every function in the file. The amount of stack space used by the function is
available to _stk_ck in register d0. If the _stk_ck function uses any nonscratch
registers (i.e., d3–d7 , a2–a7, or fp2–fp7), it must save and restore them.

The -Xs size flag is identical to the -XS flag with the exception that it causes the
compiler to insert the call to _stk_ck only when a function is expected to take
more than size number of bytes of stack space. If no value is specified, the
default value of 40 bytes is used.

The -Xc flag causes the compiler to insert a call to _line_ck following each line
of compiled C source code. No information is passed to _line_ck . The _line_ck
function can be a very useful debugging aid, and its uses are left up to your
imagination. Unlike other functions, _line_ck must save and restore all registers
it uses including scratch registers d0–d2 , a0–a1, and fp0–fp1 . In addition,
_line_ck must save and restore the condition codes in the status register,
because the function call may occur between the time a condition code is set and
when it is used.

Note: The compiler adds a leading underscore (_) to all function names and external
variables (unless the -Xu flag is specified). For example, the C language functions
abc() and _xyz() will appear in an assembly language listing as _abc and _ _xyz,
respectively.

Section 2: Compiler 87

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.13. Sections

The TI-89 / TI-92 Plus SDK includes example invocations of the compiler. You
must use the sections as shown in those files when compiling applications. The
compiler places information into four different sections for TI-89 / TI-92 Plus
applications: .text , .data , .const , and .bss (blank static storage). Initialized static
data that has not been declared const is placed into .data . Uninitialized static
data is placed into .bss . The .bss section is set to zero during app initialization.
For more detailed information on application data storage and initialization, see
chapter 7. Flash Application Layout in the TI-89 / TI-92 Plus Developers Guide
supplied with the TI-89 / TI-92 Plus SDK.

2.14. Static Storage Initialization

A data object with static storage duration can be assigned an initial value when it
is declared. The initializing value is placed directly into the .text , .const , or .data
section of the program by the compiler; the assignment is not made at run-time.
If a static data object is not initialized in a declaration, the data object is assigned
to the .bss section where it is set to zero at the start of program execution.

An initializer for an integer or floating-point data object must be an expression
that evaluates to a constant during compilation. A compile-time constant
expression may contain an arbitrary number of operators and subexpressions
and include both integer and floating-point constants. The same data type
conversions that apply across an assignment at run-time also apply to
compile-time initializations. The following are examples of legal compile-time
initializations:

int a = 50;

double b = 3.1415926;

int c = 2 * (5 + 7 / 3) - (122 && 15);

int * d = &c + 50;

char * e = (char *)0x80000;

When a scalar (pointer or arithmetic object) is initialized, a single expression
optionally enclosed in a single set of braces, is permitted in the declaration.

See section 2.12.2 Internal Floating-Point Functions for more information on
initializing floating-point data objects. An initializer for a pointer must be an
expression that evaluates to an integer constant at compile-time or the address
of a static object, plus or minus a constant expression. When the address of an
object appears in an initializer the object must have been declared previously in
the same file. When a nonzero constant expression is used to initialize a pointer,
the expression must be cast to the appropriate pointer type.

88 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

When the initialized variable is an aggregate (structure or array), the initializer
consists of a brace-enclosed list of comma-separated initializers. The initializers
in the list are applied to the aggregate in increasing member or subscript order. If
the aggregate contains members that are also aggregates, the same rules apply
recursively to the subaggregates. If there are fewer initializers in a
brace-enclosed list than there are members in the aggregate, the remaining
members are initialized to the value zero. It is illegal for there to be more
initializers in a brace-enclosed list than there are members in the aggregate. For
initialization purposes a union is treated as a structure that contains a single
member, where the single member is the first member of the union.

The following is a fully initialized array of structures:

struct {

int a;

int b[3];

} c[2] = { {1, {2,3,4}}, {5, {6,7,8}} };

The initial values for the array c are as follows:

c[0].a = 1, c[0].b[0] = 2, c[0].b[1] = 3, c[0].b[2] = 4

c[1].a = 5, c[1].b[0] = 6, c[1].b[1] = 7, c[1].b[2] = 8

The following is a partially initialized array of structures:

struct {

int a;

int b[3];

} d[2] = { {1, {2}}, {5, {6,7}} };

The initial values for the array d are as follows:

d[0].a = 1, d[0].b[0] = 2, d[0].b[1] = 0, d[0].b[2] = 0

d[1].a = 5, d[1].b[0] = 6, d[1].b[1] = 7, d[1].b[2] = 0

Note: When an aggregate is initialized, its scalar members can also be brace enclosed. The
following two declarations are equivalent:

int a[3] = { 10, 20, 30 };

int a[3] = { {10}, {20}, {30} };

The scalar-level braces are rarely used, however.

Section 2: Compiler 89

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The braces surrounding subaggregate initializers are not always necessary.
When a subaggregate initializer does not begin with a brace, only enough
initializers are taken from the list to account for the members of the
subaggregate. If there are too few initializers in the list to initialize the
subaggregate, the remainder of the subaggregate is padded with zeros. If there
are more initializers in the list than needed to initialize the subaggregate, the
remainder of the initializers in the list initialize the next member of the aggregate
of which the subaggregate is a member. For example, the following two
declarations are equivalent:

short x[2][3] = { {1, 2, 3}, {4, 5, 6} };

short x[2][3] = {1, 2, 3, 4, 5, 6};

The following two examples, however, are not equivalent:

short x[2][3] = {1, 2};

short x[2][3] = {{1}, 2};

The first defines an array in which x[0][0] = 1, x[0][1] = 2, and all other elements
are zero; the second defines in array in which x[0][0] = 1, x[1][0] = 2, and all other
elements are zero. The following declaration is illegal:

short x[2][3] = {1, {2,3}};

The declaration initialization list can also be used to establish the size of an
array. In the following example, the array is determined to have four elements:

double z[] = {1.2, 2.3, 4.555, 3.14};

Finally, a character array may be initialized by a character string, optionally
enclosed in braces. Successive characters from the character string — including
the terminating null character if there is room or if no size has been specified for
the array — are used to initialize the array. The following example illustrates
equivalent methods for declaring arrays s and t:

char s[3] = "abc";

char s[] = {'a', 'b', 'c'};

char s[] = {"a"

 "b"

 "c"

};

char t[] = "xyz";

char t[] = {'x', 'y', 'z', '\0'};

The following two declarations are similar, but not identical:

char * p = "abc";

char q[] = "abc";

90 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Both p and q can be used to reference the characters ' a ', ' b ', and ' c '.
However, only q can be used to modify the character values. q is an array, the
contents of which are modifiable. p is a pointer initialized to point to a character
string, an array of characters which is not modifiable.

2.15. Compiler Algorithms

This section describes the register allocation algorithm and the criteria used to
select between the three different switch statement algorithms.

2.15.1. Register Allocation

The allocation of automatic variables to machine registers (data, address, and
floating-point) is a two-phase process. First, register candidates are selected.
Within a function there can be up to 32 register candidates. The default behavior
of the compiler is to select first the automatic variables that are declared with the
register keyword. If fewer than 32 automatic variables are declared register ,
additional automatic variables that qualify for register allocation are classified as
register candidates. An automatic variable qualifies for allocation to a register if
its address is not taken and it is not an array or structure type. If there are 32 or
fewer automatic variables in a function that qualify for placement into registers,
they are all classified as register candidates. If there are more than 32 variables
that qualify, the qualifying variables that are not already declared register are
prioritized based on the number of times they appear in the function. On the
basis of their assigned priorities, the remaining variables are classified as register
candidates until all 32 slots are filled.

The -Or# flag can be used to influence which variables are selected to be
register candidates. The register candidate selection algorithm described above
is the default algorithm specified by the -Or2 flag. The -Or0 flag specifies that
no variables are to be considered register candidates. The -Or1 flag specifies
that only variables declared register are register candidates. The -Or3 flag
forces the register declaration to be ignored, but otherwise follows the default
selection algorithm. The -Or3 flag allows the compiler to use its own judgment to
select the most appropriate register candidates. The -Or4 flag prevents
floating-point variables that are not declared register from being considered as
register candidates. On an individual basis, automatic variables can be removed
from consideration as register candidates by applying the address-of operator
(&). For example, the C statement '&count; ' will not generate any code and will
guarantee that the variable count will not be placed in a register.

In the second phase of the register allocation process, the one or more lifetimes
of each register candidate are identified. For example, if a variable is used as a
loop counter in three non-nested loops and the variable is not referenced outside
any of the loops, then the variable is considered to have three discrete lifetimes.

Section 2: Compiler 91

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Each variable lifetime is assigned a weight that is determined by the number of
times the variable is referenced, how deeply nested (inside loops) the references
are, and how many instructions the lifetime spans. The greater the number of
times the variable is referenced and the more deeply nested the references are,
the higher the assigned priority; the more instructions the lifetime spans, the
lower the assigned priority. The lifetimes are then sorted by priority in descending
order. Finally, attempts are made to fit as many variable lifetimes into as few
machine registers and stack locations as possible. Going through the prioritized
lifetimes list, as many nonoverlapping lifetimes as possible are assigned to the
first register. After going through the entire prioritized list, the allocation process
moves to the next register or stack location. Register and stack space allocation
occur in the following order:

1. Fit integer type objects into data registers until there are no more integer
type objects to be assigned or there are no more data registers to be
allocated.

2. Fit pointer type objects into address registers until there are no more pointer
type objects to be assigned or there are no more address registers to be
allocated.

3. Fit integer type objects into address registers until there are no more integer
type objects to be assigned or there are no more address registers to be
allocated.

4. Fit floating-point type objects into floating-point registers until there are no
more floating-point type objects to be assigned or there are no more
floating-point registers to be allocated.

5. Fit ten-byte objects into ten-byte units on the stack until there are no more
ten-byte objects to be assigned memory locations.

6. Fit eight-byte objects into eight-byte units on the stack until there are no
more eight-byte objects to be assigned memory locations.

7. Fit four-byte objects into four-byte units on the stack until there are no more
four-byte objects to be assigned memory locations.

8. Fit two-byte objects into two-byte units on the stack until there are no more
two-byte objects to be assigned memory locations.

9. Fit one-byte objects into one-byte units on the stack until there are no more
one-byte objects to be assigned memory locations.

The register allocation algorithm described above is extremely powerful and it
has some interesting properties. A variable declared register may not make it
into a register if all of its lifetimes are assigned low priorities during the second
phase of the allocation process, whereas a variable not declared register may
make it into a register if its lifetimes are assigned high priorities. Every variable in

92 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

a function can be assigned to the same register if they all have nonoverlapping
lifetimes. Different lifetimes of the same variable can be allocated to different
registers or a combination of registers and stack locations.

2.15.2. Switch Statements

The compiler uses three different code generation algorithms to implement the C
language switch statement. The algorithm employed for a given switch
statement depends on the number of case statements and the range of case
statement values.

If there are four or fewer case labels, the compiler generates a sequence of
explicit tests against the case values. This is equivalent to the code generated by
a series of if-else statements.

If there are more than four case labels, the switch algorithm selected is
determined by both the number of case statements and their values. If the case
value density is sufficiently high, a jump table is generated; otherwise, the
compiler generates code that performs an in-line binary search to locate the
appropriate case statement.

A jump table is generated when at least one third of the possible integral values
over the case value range are represented by case statements (i.e., when the
difference between the highest and lowest case values divided by the total
number of case statements is less than three). For example, a jump table would
not be generated for the following switch statement:

int i;

f()

{

switch(i) {

case 4: ... ;

case 8: ... ;

case 12: ... ;

case 16: ... ;

case 20: ... ;

default: ... ;

}

}

In this example, the binary search algorithm is used because the case density is
not high enough to justify a jump table. The difference between the maximum
and minimum case values divided by the number of case statements is not less
than three (i.e., (20 - 4) / 5 > 3).

Section 2: Compiler 93

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Typically, the binary search algorithm is more compact than the jump table, and
the jump table algorithm is faster than the binary search. When speed is more
important than size, dummy case statements can be added to the switch
statement in order to force the use of a jump table.

By default, jump tables use a word offset to specify the location of the code
associated with a particular case label. The word table handles most switch
statements likely to be encountered. In the unlikely event that the distance
between the jump table and the code associated with a case label is greater than
32767, the -Xl (X el) command line flag can be specified to force the jump table
to use long offsets.

2.16. The C Preprocessor

The C preprocessor is a simple but powerful macro processor that manipulates
the text of a C source program before it is passed onto the compiler proper. The
preprocessor is typically used to simplify both the writing and maintenance of a C
source program. Controlled by preprocessor directives embedded in the source
file, the preprocessor can do the following:

1. Insert the contents of other files in the source.

2. Conditionally suppress portions of the source.

3. Make macro substitutions in the text.

The directives and operators recognized by the preprocessor are as follows:

#define #endif #include defined
#elif #if #line #
#error #ifdef #pragma ##
#else #ifndef #undef

All preprocessor directives begin with a pound sign (#) and occupy a single
source line. The ' # ' character is permitted to be preceded and/or followed by
whitespace (i.e., tabs, spaces, and comments). A single source line can be
extended to include multiple lines in the file by inserting a backslash (\) before
all but the last newline.

Character sequences recognized as tokens by the preprocessor are: header
names within a #include directive, identifiers, constants, string literals,
punctuation, and non-whitespace characters that are not one of the previously
mentioned.

94 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.16.1. Source File Inclusion

The #include directive causes the contents of the named file to be treated as if it
had appeared in place of the directive itself. The included file can contain
anything that is permitted in the including file, including other #include directives.
The argument to the #include directive, used to specify the file for inclusion, can
take one of three forms.

A preprocessing directive of the following form specifies that the filename
(optionally preceded by directory information) is to be searched for in a series of
standard directories:

#include <filename>

The standard directories can be defined both on the compiler command line
using the -I flag and by setting the INCLUDE68 environment variable. The
filename is searched for until it is located, first in the directories named on the
command line (in the order listed) and then in the directory(ies) defined by
INCLUDE68. If INCLUDE68 is not set, the include subdirectory of the directory
specified by the SIERRA environment variable is searched.

A preprocessing directive of the following form specifies that the filename
(optionally preceded by directory information) is to be searched for in association
with the original source file:

#include "filename"

Alternatively, the filename is searched for in association with the including file
when the -R compiler command line flag is specified. If the filename is not
located in association with the appropriate file, the #include directive is
processed as if the filename had been enclosed in angle brackets as in the
previously described form.

A preprocessing directive of the following form is also permitted:

#include preprocessor_tokens

Macro names among the preprocessor tokens after the #include directive are
processed the same as any other macro names in the file. The directive that
results after macro substitution must match one of the two previous forms and is
processed accordingly.

2.16.2. Conditional Compilation

The #if directives (i.e., #if , #else , #elif , #ifdef , #ifndef , and #endif) allow
selected lines of text in the file to be conditionally included or excluded from
further processing.

Section 2: Compiler 95

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Each #if directive in a file must be paired with a closing #endif directive. Zero or
more #elif (similar to #else followed by #if) directives can appear between a #if
and #endif pair and at most one #else directive can appear between the pair. If
the #else directive does appear, it must be the last directive before the #endif .
These directives can be nested inside other #if directives.

In the following #if directive sequence, text block 1 remains in the file if the
constant expression following the #if evaluates to a nonzero value, text block 2
remains in if the first constant expression evaluates to zero and the constant
expression following the #elif evaluates to nonzero, and text block 3 remains in if
both constant expressions evaluate to zero:

#if constant_expression

text block 1

#elif constant_expression

text block 2

#else

text block 3

#endif

A constant expression that follows a #if or #elif must contain only integral
constants (including character constants that may contain escape sequences),
and it must not contain the sizeof operator, a cast operator, or an enumeration
constant. However, it may contain unary expressions of either of the following
forms:

defined identifier

defined (identifier)

These evaluate to 1 if the identifier is currently defined as a macro and to 0
otherwise. All identifiers in the constant expression currently defined as macros
(except those that are arguments to the defined operator) are replaced and
identifiers not currently defined are replaced by the constant 0. After all the above
substitutions are performed, the constant expression is evaluated (treating all
constants as 32-bit integers) following the same rules used to evaluate any other
C expression.

Preprocessing directives of the following forms selectively include or exclude the
block of text that follows based on whether the identifier is or is not currently
defined as a macro name:

#ifdef identifier

#ifndef identifier

The above directives are functionally identical to the following:

#if defined (identifier)

#if !defined (identifier)

96 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.16.3. Macro Replacement

The #define directive is used to define a macro. It has two forms, depending on
whether the identifier to be defined is immediately followed by a left parenthesis.

A preprocessing directive of the following form defines an object-like macro:

#define macro_name replacement_list

It causes each subsequent instance of the macro name to be replaced by the
replacement list that constitutes the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

A preprocessing directive of the following form defines a function-like macro with
arguments that is similar in appearance to a function call:

#define macro_name(identifier_list) replacement_list

The parameters are specified by the optional identifier list. Each subsequent
instance of the function-like macro name followed by a left parenthesis
introduces the sequence of preprocessing tokens that is replaced by the
replacement list in the definition. (A function-like macro name that is not followed
by a left parenthesis is not recognized as a macro name and no replacement is
made.) The replaced sequence is terminated by the matching right parenthesis,
skipping intervening matched pairs of left and right parenthesis. Within the
sequence that comprises an invocation of a function-like macro, a newline is
considered a normal whitespace character.

The sequence of tokens bounded by the outermost matching parentheses forms
the argument list for the function-like macro. The individual arguments within the
list are separated by commas; commas in the list enclosed within nested
parenthesis do not separate arguments. The number of comma-separated
arguments in the list must match the number of parameters in the function-like
macro definition.

2.16.3.1. Argument Substitution

After the arguments in a function-like macro are identified, argument substitution
takes place. Each parameter in the replacement list, unless preceded by a ' # ' or
' ## ' preprocessor operator or followed by a ' ## ' operator, is replaced by the
macro expansion of the corresponding argument from the argument list. In other
words, each argument, unless its parameter is associated with a ' # ' or ' ## '
operator, is fully expanded (i.e., all macros replaced) before it is substituted into
the replacement list.

Section 2: Compiler 97

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.16.3.2. The # Operator (stringizing)

If a parameter in the replacement list is immediately preceded by the ' # '
preprocessing operator, the ' # ' operator and the parameter are both replaced by
a string literal that contains the spelling of the corresponding argument. The
argument (not expanded) is placed within a pair of double quotes with any
whitespace before and/or after the argument removed. Other than the removal of
leading and trailing whitespace, the exact spelling of the argument is retained in
the string.

2.16.3.3. The ## Operator (concatenation)

If a parameter in the replacement list is immediately preceded or followed by the
' ## ' preprocessing operator, the parameter is replaced by the macro-expanded
corresponding argument. For both object-like and function-like macro
invocations, each instance of the ' ## ' preprocessing operator in the replacement
list (not brought in by an argument) is deleted and the preceding and following
preprocessing tokens are concatenated before the list is reexamined for macro
names to be replaced. The token created by concatenation is then available for
further macro replacement as is any other token in the replacement list.

2.16.3.4. Rescanning and Further Replacement

After all parameters in the replacement list have been substituted as described
above, the resulting tokens are rescanned for more macro names to replace. If
the name of the macro being replaced is encountered during this scan of the
replacement list, it is not replaced. Further, if any nested replacements encounter
the name of the nested macro being replaced, it is not replaced. These
nonreplaced macro names are not available for further replacement even if they
are examined again in a context where they would otherwise be replaced.
Finally, if the fully expanded preprocessor token sequence resembles a
preprocessing directive, it is not recognized as such.

2.16.4. Macro Redefinition

An identifier currently defined as an object-like macro may be redefined by
another #define directive provided that the second definition is also an object-like
macro definition and the two replacement lists are identical. An identifier currently
defined as a function-like macro may be redefined provided that the second
definition is also a function-like macro definition and both the number of
parameters and the replacement lists are identical.

Two replacement lists are considered identical if and only if the two lists have
identical spelling and whitespace separation. If it is necessary to redefine a
macro and the second definition has a different replacement list, a #undef
directive must appear before the redefinition.

98 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.16.5. Macro Examples

The following example illustrates the rules for redefinition, tokenization, macro
replacement, and replacement list reexamination:

#define x 3

#define q x

#define f(i) f(q + (i->m))

#define b b + c

#undef x

#define x 5

#define z(a) a

#define g f

#define j)

#define d +

#define e +

#define r(a, b) (a)(b)

#define s(a, b) a(b)

#define y g(y)

r(f, g)

s(f, q)

g(36j

#undef q

#define q d

f(b + c)

f(y)

35d+12

35e+12

/* Results After Preprocessing */

(f)(5)

f(5 + (4->m))

f(36)

f(+ + (b + c + c->m))

f(+ + (f(y)->m))

35++12

35e+12

Section 2: Compiler 99

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The following example illustrates the rules for concatenating tokens:

#define paste(a,b) a ## b

#define opnd_info(n) op##n##_info(size##n(),type##n())

#define HITHERE hello, world!

paste(HI,THERE)

opnd_info(2)

/* Results After Preprocessing */

hello, world!

op2_info(size2(),type2())

The following example illustrates the rules for creating string literals:

#define stringize(s) # s

#define expand(s) stringize(s)

#define max(a,b) ((a) > (b) ? (a) : (b))

#define show_macro(m) printf(#m " becomes " expand(m)"\n")

show_macro(max(a,b))

/* Results After Preprocessing */

printf("max(a,b)" " becomes " "((a) > (b) ? (a) : (b))""\n")

After string concatenation, the above result appears as follows:

printf("max(a,b) becomes ((a) > (b) ? (a) : (b))\n")

Space around the ' # ' and ' ## ' operators is optional.

2.16.6. Line and Name Control

A preprocessing directive of the following form causes the compiler to behave as
if the line number of the next source line is the number specified by the decimal
constant in the directive:

#line decimal_constant

A preprocessing directive of the following form sets the line number as specified
above and changes the presumed name of the source file to be the filename
shown in the string literal:

#line decimal_constant "file_name"

Macro names among the preprocessor tokens following the #line directive are
processed the same as any other macro names in the file. The directive that
results after macro substitution must match one of the two previous forms and is
processed accordingly.

100 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.16.7. Error Directive

A preprocessing directive of the following form causes the compiler to produce
an error message that includes the macro expansion of the specified sequence
of preprocessing tokens:

#error preprocessing_tokens

For example, the following sequence causes generation of the error message
shown below if SIZE is greater than 1024:

#if SIZE > 1024

#line 150 "test.c"

#error SIZE is greater than 1024!

#endif

test.c, 150: SIZE is greater than 1024!

2.16.8. Pragma Directive

A preprocessing directive of the following form is a pragma:

#pragma preprocessing_tokens

A pragma causes the compiler to behave in specified ways. The functionality of a
#pragma directive is similar to that of a command line flag, except that the
specified behavior can be embedded in the source file and turned on and off
multiple times during a single compilation. If the directive following the #pragma
is not recognized, the pragma directive is ignored. Refer to section 2.4 Pragma
Directives , for a description of the pragmas supported by Sierra C.

2.16.9. Trigraph Sequences

A trigraph sequence is a sequence of three characters (??x) that maps into a
single character. They are used to facilitate the writing of C programs on
terminals that do not support all the characters required by the C language. The
trigraph conversion capabilities are enabled by specifying the -T flag on the
compiler command line. The supported trigraph sequences are as follows:

??= ⇒ #

??(⇒ [

??/ ⇒ \

??) ⇒]

??' ⇒ ^

??< ⇒ {

??! ⇒ |

??> ⇒ }

??- ⇒ ~

Section 2: Compiler 101

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

For example, the following two source lines are equivalent:

int a??(10??) = ??<1, 2, 3??>;

int a[10] = {1, 2, 3};

2.16.10. Comment Delimiters

In addition to the standard ANSI C comment delimiters slash-asterisk (/*) and
asterisk-slash (*/), the C++ style comment delimiter slash-slash (//) is
supported by the compiler. Everything from the // to the end of the current line is
recognized as a comment. Note, however, that the use of the // comment
delimiter is not recommended since the resulting code will be nonportable.

2.16.11. Predefined Macro Names

The following names are predefined by the compiler:

__DATE__ The date that the source file was compiled given as a string literal of
the form "Mmm dd yyyy", where the first character of dd is a space
if the value is less than 10.

__FILE__ The presumed name of the source file given as a string literal
(e.g., "file_name").

__FLOAT__ Not supported by Texas Instruments, however, __FLOAT__ is
recognized as a reserved name by the compiler.

__INT__ A macro that expands to 16 or 32 to indicate whether the compiler is
interpreting objects of type int as 16 or 32 bits. The macro expands
to 16 only when the -XI command line flag is specified.

__LINE__ The line number of the current source line given as a decimal
constant.

__PCREL__ A macro that expands to 0 if position-independent code is not being
generated and 1 if position-independent code is being generated, as
specified by the -Xp command line flag.

__TIME__ The time that the source file was compiled given as a string literal of
the form "hh:mm:ss".

__SIERRA__ A macro that expands to identify the version number of the compiler.

These macro names can be neither defined nor undefined with the #define or
#undef preprocessing directives.

The following example illustrates the use of predefined macros:

printf(__FILE__": compiled on "__DATE__" at "__TIME__"\n");

/* Results After Preprocessing and String Concatenation */

printf("test.c: compiled on Aug 29 1992 at 17:35:23\n");

102 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

2.17. Compiler Error Messages

All error messages are listed alphabetically. Warning messages are alphabetized
under w for warning. When searching for a message, ignore all identifier names,
filenames, and flags (shown in italics here). Also, ignore the hyphen character
and the leading word the. Uppercase and lowercase letters are treated the same.

- flag argument too long

The argument to a -D or -U flag exceeds 512 characters.

array of functions is illegal

Functions cannot be elements of an array. An array of pointers to functions is
legal.

array size is unknown

An automatic or uninitialized static array is declared with an empty dimension.

asm keyword requires a character string

The argument specified inside the parentheses following the asm keyword must
be a character string enclosed in double quotes.

bad call to system function identifier ()

A call to the system function identifier() failed (returned with an error status).

bit field illegal outside of structure

Bit fields are permitted only in structures (not unions).

bit field size is zero

The size of a named bit field must be greater than zero.

bit field size too large

Depending on the type of the bit field, the length of a bit field cannot exceed the
number of bits in a char (8), short int (16), int (16), or long int (32).

cannot include file file

The compiler could not open the given #include file.

cannot open file for reading

The given file could not be opened for reading.

Section 2: Compiler 103

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

cannot open file for writing

The given file could not be opened for writing.

cannot re-open file

The file file, which has been temporarily closed to permit the inclusion of deeply
nested #include files, cannot be re-opened. In a multi-tasking system, this can
occur when the file is removed by another task during compilation.

case outside of switch

A case label must appear inside a switch statement.

case requires constant integer expression

A case expression must evaluate to an integer constant.

character constant too long

A character constant contains more than four characters.

character string too long

A character string contains more than 512 characters. When adjacent character
strings are concatenated, the 512-character limit applies to the resulting string.

command line: - flag followed by invalid argument: string

The given string is an invalid argument to the given flag.

command line: - flag is an invalid flag

The given flag is not recognized.

command line: - flag requires an argument

The given flag must be followed by an argument.

command line: -i flag is illegal in a command file

Command line include files cannot be nested inside each other.

command line: more than two files are specified

The compiler accepts at most two filenames on the command line (not counting
filenames that are arguments to flags): an input file and an output file.

104 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

compiler cannot recover from earlier errors

The compiler must exit because previous errors are too serious to permit
recovery.

compiler error number (internal)

An internal error has occurred in the compiler. Please submit a problem report on
the TI web site.

compiler error: move function call outside expression

An internal error has occurred in the compiler. This problem will rarely occur, but
when it does, use a temporary variable to move the function call outside the
expression.

constant integer expression required

A constant integer expression is required. This error may occur when a
floating-point or nonconstant expression is used in an array declaration, bit field
specification, or enum definition.

declaration for identifier is too complex

The complexity of the declaration for the given identifier has exceeded an internal
compiler limit.

declaration is too complex

The complexity of a declaration has exceeded an internal compiler limit.

default outside of switch

A default label must appear inside a switch statement.

directive syntax error

A pound sign (#) is followed by an unrecognized directive.

duplicate case number inside switch

The given case number appears more than once inside a switch statement.

duplicate default inside switch

The default label appears more than once inside a switch statement.

Section 2: Compiler 105

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

#elif following #else at same level

A #elif directive cannot follow a #else directive without an intervening #if , #ifdef ,
#ifndef , or #endif directive.

#elif without matching #if, #ifdef or #ifndef

A #elif directive cannot appear without being preceded by a matching #if , #ifdef ,
or #ifndef directive.

#else following #else at same level

Once a #if , #ifdef or #ifndef directive has been matched by a #else directive, it
cannot be matched by a #elif directive.

#else without matching #if, #ifdef or #ifndef

A #else directive cannot appear without being preceded by a matching #if ,
#ifdef , or #ifndef directive.

#endif without matching #if, #ifdef or #ifndef

A #endif directive cannot appear without being preceded by a matching #if ,
#ifdef , or #ifndef directive.

empty character constant

The empty character constant (i.e., two adjacent single quotes) is illegal.

EOF encountered in definition of macro identifier

An unexpected EOF (end of file) appeared in the definition of macro identifier.

EOF encountered in filename

An unexpected EOF (end of file) appeared in the filename of a #include
directive.

expression is too complex

The complexity of an expression has exceeded an internal compiler limit.

expression stack overflow: use option '-XE60'

The compilers expression stack ran out of space. The compiler option -XE#
allows you to increase the size of the expression stack to avoid this problem. The
default size for the expression stack is 30.

106 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

extern data declaration cannot be initialized

A data declaration that includes the extern storage class specifier does not
allocate memory; thus, memory cannot be initialized.

filename too long

A filename (including the full path) in a #include directive exceeds the limits of
the host operating system. The limit may be exceeded when a #include path is
appended to a standard directory search path.

float illegal in switch

The expression following the switch keyword must evaluate to an integer type.

floating point divide by zero

A compile-time floating-point division by zero occurred.

floating point operand error

A compile-time operand error has occurred.

formal parameter declaration list illegal with prototypes

A prototyped function definition cannot have a parameter list between the
function’s closing parenthesis and opening brace. A parameter declaration list in
that position is legal only with non-prototyped function definitions.

function identifier () is illegal in struct/union

A function cannot appear in a structure or union.

function calls are nested too deep

Function calls are nested deeper than 20 levels.

function cannot be initialized

It is illegal to initialize a function.

function cannot return a function

It is illegal to declare a function as returning a function.

function cannot return an array

It is illegal to declare a function as returning an array.

Section 2: Compiler 107

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

function declarations must be empty or include prototypes

The parenthesis following the function name in a nondefinition function
declaration must either contain prototype information or be empty.

identifier missing from formal parameter prototype

A type specifier appeared without an identifier in the prototype list of a function
definition.

IEEE nonaware comparison involving a NAN (not-a-number)

If the -Xi flag was not used, an internal compiler error has occurred. Please
submit a problem report on TI’s web site.

#if's are nested too deep

The #if , #ifdef , and #ifndef directives cannot be nested deeper than 16 levels.

#include's are nested too deep

Included files cannot be nested deeper than 50 levels.

generated code contains too many labels

The assembly code generated by the compiler contained more than 50,000
compiler generated labels.

illegal bit field size

The size of a bit field must be greater than or equal to zero (greater than zero if it
is a named bit field).

illegal bit field type

A bit field must be an integer type (char , short int , int , or long int).

illegal break

A break statement may appear only inside a do , for , while , or switch statement.

illegal character character in #if or #elif expression

The given character is illegal in the expression following a #if or #elif
preprocessor directive.

illegal character (number hex) in #if or #elif expression

The nonprinting character with the given hexadecimal representation is illegal in
the expression following a #if or #elif preprocessor directive.

108 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

illegal character (0 hex) in macro definition

A macro definition contains a null character.

illegal character after macro name following -D flag

The only non-whitespace character allowed after a macro name following a -D
flag is ' = '. The ' = ' is then followed by the text of the macro definition.

illegal character in octal constant

An octal constant can contain only the digits 0, 1, 2, 3, 4, 5, 6, and 7.

illegal combination of different structures, op =

A structure cannot be assigned to a structure of a different type.

illegal combination of different structures, op RETURN

A function returning a structure must return a structure type that matches the
function return type.

illegal continue

A continue statement may appear only inside a do , for , or while statement.

illegal declaration

Either a syntax error appeared in a declaration or a typedef was used in a
declaration with other type specifiers.

illegal empty dimension

Only the first dimension of a multi-dimensional array may be left empty in a
declaration.

illegal extern/static initializer

Data declared with static storage duration must be initialized with a constant
expression or the address of an object or function (when the address is known by
the time the program has been linked).

illegal floating-point constant

The floating-point constant contains a syntax error.

illegal function

An expression with type other than function type was used where an expression
with function type was expected.

Section 2: Compiler 109

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

illegal function identifier ()

The given identifier with type other than function type was used where an
undefined identifier or identifier with function type was expected.

illegal #ifdef or #ifndef argument

The argument to a #ifdef or #ifndef directive is not a valid C identifier.

illegal indirection

Indirection using the indirection operator (*) or subscript operator ([]) was
applied to a nonpointer object.

illegal indirection on identifier

Indirection using the indirection operator (*) or subscript operator ([]) was
applied to the specified nonpointer object.

illegal initialization: type = type

An incompatible type was used to initialize a variable of type type.

illegal initialization: bit field = type

The constant used to initialize a bit field was not an integer type.

illegal initialization: { nested too deep }

The braces in an aggregate initialization are nested more deeply than the object
being initialized.

illegal initialization: { string nested too deep }

The braces surrounding the string initializer of a character array are nested more
deeply than the objects being initialized.

illegal left hand side of assignment

The left operand of an assignment must be a modifiable value.

illegal left hand side of assignment, op operator

The left operand of the given assignment operator must be a modifiable value.

illegal operation on void type, op CAST

It is illegal to cast a void type to any other type.

110 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

illegal pointer subtraction

It is illegal to subtract pointers of different types.

illegal redefinition of macro identifier

The given identifier is already defined as a macro and the new macro
replacement list does not match exactly the already existing macro replacement
list.

illegal storage class

The specified storage class is illegal in the present context. For example, the
auto and register storage class specifiers cannot be used outside a function or
in conjunction with the static or extern storage class specifiers.

illegal struct/union reference

An object that that was not a pointer to a structure or a union was used where
such a pointer was expected.

illegal to cast a string inside an initialization

It is illegal to apply the cast operator to a character string used in an initialization.

illegal to cast to a function

An object cannot be cast to a function type.

illegal to cast to an array

An object cannot be cast to an array type.

illegal to define defined

It is illegal to define the identifier defined as a macro. The identifier defined is
used as an operator in the expression that follows a #if or #elif directive.

illegal to take the size of a function

The sizeof operator cannot be applied to a function type.

illegal to undefine defined

It is illegal to undefine the identifier defined . The identifier defined is used as an
operator in the expression that follows a #if or #elif directive.

illegal to use & on a bit field

It is illegal to take the address of a bit field.

Section 2: Compiler 111

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

illegal type combination

An illegal combination of type specifiers appeared together in a declaration.

illegal type pointer

In a declaration, an asterisk was followed by a type specifier other than const
and/or volatile .

illegal #undef of predefined macro identifier

The given predefined macro cannot be undefined. It is illegal to undefine the
predefined macros: __DATE__ , __FILE__ , __FLOAT__ , __INT__ ,
__LINE__ , __PCRELL__ , __SIERRA__ , __STDC__ , and __TIME__ .

illegal use of &

The address operator (&) was applied to an object whose address cannot be
taken.

illegal use of & on register type

It is illegal to take the address of an object declared with the register storage
class specifier.

illegal use of member identifier

The dot (.) (or arrow (−>)) operator was applied to a structure (or pointer to a
structure) that does not contain the given member, and the member is defined in
more than one other structure in current scope.

illegal use of void pointer

Arithmetic cannot be performed on a pointer to void . The size of a void object is
undefined.

illegal void declaration

An object cannot be declared to be of type void .

incompatible operand types, op CAST

The object that is being cast cannot be converted to an object of the type of the
cast.

incompatible operand, type , op BOOLEAN

It is illegal to apply the specified Boolean operator to the given type.

112 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

incompatible operand, type , op operator

The given unary operator cannot be applied to the given type.

incompatible operands, type and type , indent () arg position

The argument at the specified position in the function call is not assignment
compatible with the type specified in the prototyped function declaration. When
passing arguments to a prototyped function, the rules that apply are the same as
those that apply when using the assignment operator.

incompatible operands, type and type , op operator

It is illegal to apply the given operator to the given types.

input token too long

The length of a preprocessor token (identifier or numeric constant) exceeds 256
characters.

integer divide by zero

An integer division by zero occurred while doing integer constant folding.

invalid argument to #include directive

The argument to the #include directive after macro expansion must be of the
form "filename" or <filename>.

invalid line number for #line directive

A #line directive must be followed by a decimal constant and an optional double
quoted filename.

identifier is missing from formal parameter list

The given identifier appears in the argument declaration list, but does not appear
in the formal parameter list.

label identifier is missing

The label identifier referred to in a goto statement does not appear in the current
function.

leading comma inside function call

A comma cannot appear in front of the first argument in a function call, nor can it
appear in a function call with no arguments.

Section 2: Compiler 113

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

live variable analysis stack overflow

There were more than 50,000 references in the current function to register
candidate variables. Simplify the function or reduce the number of register
candidates using the -Or0 or -Or1 flags to avoid the problem.

loops/switches are nested too deep

Loops cannot be nested deeper than 25 levels and switch statements cannot be
nested deeper than 20 levels.

macro definition too long

A macro definition exceeds 4096 characters.

macro expansion too long

The expansion of a macro cannot exceed 120,000 characters.

memory allocation request too large: code number

A memory request by the compiler exceeds the maximum block size available on
the host machine. The code number is an internal code specifying the location of
the memory request in the compiler.

missing #endif

A #if , #ifdef , or #ifndef preprocessor directive is not followed by a matching
#endif directive.

missing newline after preprocessor directive

EOF (end of file) was reached before the newline that completes a preprocessor
directive.

missing or illegal argument to #define directive

The argument to a #define preprocessor directive is missing or is not a valid C
identifier.

missing or invalid argument to #undef directive

The argument to a #undef preprocessor directive is missing or is not a valid C
identifier.

missing or invalid macro name for - flag flag

The argument to a -D or -U flag is missing or is an invalid C identifier.

114 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

missing or invalid preprocessor directive

The token that follows the pound sign (#) used to begin a preprocessor directive
is not a valid C identifier.

missing right parenthesis in argument list for macro ident

The right parenthesis needed to terminate a macro argument list is missing from
the given macro definition.

multiple decimal points in constant

A floating-point constant contains more than one decimal point.

newline inside character constant

An unescaped newline appears inside a character constant.

newline inside character string

An unescaped newline appears inside a character string.

newline inside filename

A newline character appears in the filename of a #include directive.

newline or EOF in character constant

An unescaped newline or EOF (end of file) appears inside a character constant.

newline or EOF inside string

An unescaped newline or EOF (end of file) appears inside a string.

operand must be a nonconst lvalue, op operator

The operand of the increment (++) or decrement (− −) operator must be
modifiable.

operand must have scalar type, op CAST

It is illegal to cast aggregate types, such as arrays and structures.

parameters illegal in a function declaration

A function declaration must not contain parameters.

Section 2: Compiler 115

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

parser stack overflow

A statement is too complex for the compiler to process. To correct the problem,
break the statement into simpler statements.

pointer illegal in switch

The expression following the switch keyword must evaluate to an integer type.

pointer to a function can only be assigned, op operator

A pointer to a function cannot be operated on other than by an assignment
operator.

preprocessor error number (internal)

An internal error has occurred in the preprocessor section of the compiler. Please
submit a problem report on TI’s web site.

prototype declarations are nested too deep

Function prototype declarations can be nested up to ten levels deep.

redeclaration of identifier

The given identifier is declared more than once.

redeclaration of formal parameter identifier

A formal parameter is declared more than once in the argument declaration list.

redeclaration of label identifier

The given label appears more than once in a function.

redeclaration of identifier (prototype mismatch)

The function identifier was declared or defined with a prototype argument list that
does not match the prototype argument list of an in-scope declaration of the
same function.

redeclaration of tag identifier

The given structure, union, or enumeration tag is multiply defined.

reference to macro identifier is nested too deep

Macros cannot be nested deeper than 32 levels.

116 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

return operand and function type are incompatible

The type of the object being returned and the type of the function are
incompatible.

size of operand unknown, op SIZEOF

The sizeof operator is applied to an object or type of unknown size. This can
occur when a dimension of an external array is left unspecified.

size of struct/union identifier is unknown

The size of the given structure or union is not known; thus, a structure or union
assignment cannot be made.

size of struct/union is unknown

The size of a structure or union is not known; thus, a structure or union
assignment cannot be made.

size of struct/union member identifier is unknown

The size of the given structure or union member is unknown.

size of struct/union/enum identifier is unknown

The size of the given structure, union, or enumeration type is unknown.

size of struct/union/enum unknown

The size of a structure, union, or enumeration type is unknown.

struct/union/enum definition illegal inside prototype

A structure, union, or enumeration type cannot be defined in the parameter list of
a function prototype declaration.

struct/union member identifier is undefined

The given identifier is not defined as a member of an in-scope structure or union.

struct/union pointer (not type) required

The left operand of the arrow (−>) operator is a structure type instead of a
structure pointer.

Section 2: Compiler 117

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

struct/union pointer required by nonunique member identifier

The given member appears at different offsets in more than one structure in the
current scope, and the left operand of the arrow (−>) operator is not a structure
pointer.

struct/union reference illegal in switch

The expression following the switch keyword must evaluate to an integer type.

struct/union reference must be addressable

The compiler must be able to take the address of the object to the left of the
dot (.) operator.

struct/union type (not pointer) required

The operand to the left of the dot (.) operator is a structure pointer instead of a
structure type.

struct/union type required by nonunique member identifier

The given member appears at different offsets in more than one structure in the
current scope, and the operand to the left of the dot (.) operator is not a
structure type.

structures are nested too deep

Structures cannot be nested deeper than 50 levels.

syntax error

The code is grammatically incorrect.

syntax error in #if or #elif expression

The expression following a #if or #elif directive is grammatically incorrect.

syntax error in formal parameter list for macro identifier

The formal parameter list of the given macro contains a grammatical error.

too many errors: compiler exiting

The compiler exits after 100 errors have been reported.

118 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

too many files open, can't include file

The given file cannot be included because the system limit on the number of files
that can be simultaneously opened has been exceeded. If possible, increase the
system limit on the number of files that can be opened simultaneously.

too many formal parameters for macro identifier

The parameter list for the given macro contains more than 31 parameters.

too many include files

More than 255 files were included in the current source file.

too many initializers

A declaration contains more initializers than there are objects to initialize.

too many initializers at { level number }

An aggregate declaration contains more initializers than there are objects to
initialize at the specified brace level.

type-name cannot be initialized

A typedef declaration cannot contain initializers.

type-name is too complex

The typedef declaration is too complex.

unable to allocate additional memory: code number

The memory needed by the compiler exceeds the available memory on the host
machine. The code number is an internal code specifying the location of the
failed memory request. To correct the problem, break up or shorten functions, or
reduce memory overhead by running the compiler directly without the command
driver, a make utility, user-supplied shells, or add more memory to your system.

identifier undefined

The given identifier is not currently defined.

unexpected characters after filename in expansion of macro ident

A macro in a #include directive does not expand to the form "filename" or
<filename>.

Section 2: Compiler 119

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

unexpected characters after preprocessor directive

Only spaces, tabs, and comments are allowed between the last character of a
preprocessor directive and the newline that terminates the directive.

identifier unexpected in declaration

Two identifiers appeared adjacent to each other in a declaration. Most likely, a
comma between the two identifiers is missing or the first identifier is assumed to
be a typedef name, but is not recognized as such by the compiler.

unrecognized character, number (hex)

The character represented by the given hexadecimal number is not recognized
by the compiler.

unrecognized escape sequence in character constant

A character constant following a #if or #elif directive contains an unrecognized
escape sequence.

unrecognized preprocessor directive 'token'

The given token is not a legal preprocessor directive.

unsigned type always > = zero

An unsigned number is compared to zero using the greater than or equal to
(>=) or the less than (<) operator. The test is meaningless because unsigned
types are always greater than or equal to zero.

unterminated comment

EOF (end of file) was reached before the last comment was closed with the
comment delimiter (* /).

void cannot appear with other prototype arguments

The void type specifier cannot be used with any other arguments in a function
declaration or definition.

void function identifier () cannot return value

It is illegal to return a value from a function declared as returning void .

void type illegal in switch

The expression following the switch keyword must evaluate to an integer type.

120 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

warning: identifier may be used before it is defined

An automatic variable may be used before its value is set. This warning message
appears only when the -Xu flag is set. In most cases, the warning can be
ignored because the path by which the variable is used before it is defined will
never be taken during actual program execution.

warning: expression is evaluated but not used

An expression is evaluated, but the result of the evaluation is not used.

warning: floating point overflow

Floating-point overflow occurred during compile-time constant folding of
floating-point constants.

warning: floating point underflow

Floating-point underflow occurred during compile-time constant folding of
floating-point constants.

warning: function ident () called with too few arguments

The function was called with fewer arguments than were specified by an in-scope
prototyped function declaration.

warning: function ident () called with too many arguments

The function was called with more arguments than were specified by an in-scope
prototyped function declaration.

warning: function ident () declared without prototype information

A function was declared without prototype information (old-style declaration).
Message can be generated only when -Xf2 or -Xf3 command line flag is
specified.

warning: function identifier () used without declaration

A function was called without a function declaration in scope. This message can
be generated only when the -Xf1 or -Xf3 command line flag is specified.

warning: function returning integer cast to pointer

A function declared as returning an integer is cast to a pointer. When the return
value of a function is cast to a pointer type, quite often the function is not
declared previously in the file in which case it is assumed to return an int . Not
declaring a function that returns a pointer, and casting it when used, causes
problems because a function that returns a pointer returns its value in register a0

Section 2: Compiler 121

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

and a function that returns an integer type returns its value in register d0. In the
situation described, the called function will place its return value in a0 and the
calling function will expect the value to be in d0.

warning: illegal combination of type1 and type2 , op operator

It is illegal to combine the given types type1 and type2 using the given operator.

warning: illegal combination of enum types, op operator

It is illegal to combine different enumeration types across an assignment.

warning: illegal combination of pointers, op operator

It is illegal to combine different pointers types using the given operator.

warning: illegal position independent initialization

Because the address of a position independent object or function is not known
until load-time or run-time, it cannot be used for compile-time initialization.

warning: illegal use of member identifier

The structure to the left of the dot (.) or arrow (−>) operator does not include
the given member.

warning: incompatible parameter types, indent () arg position

The parameter at the specified argument position in a nonprototyped function
definition does not match the corresponding argument in an in-scope prototyped
declaration. Often the problem is the result of the promotion of a char or short
int parameter to an int in the nonprototyped definition. For more information, see
section 2.11.1.3 Mixing Prototype and Old-Style Declarations .

warning: loop invariant capacity exceeded

The number of invariants detected in a loop exceeds the limit imposed by the
compiler’s loop optimizer. The loop invariants located before the limit was
reached will be processed normally by the optimizer. When the limit is reached,
the compiler will sometimes generate better code when invariant optimizations
are performed on inner-most loops only (-Ol2 flag).

warning: return operand does not match function type

The type of the object being returned and the type of the function do not match.

122 Section 2: Compiler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

warning: statement cannot be reached

There is no path by which the statement can be reached. The compiler does not
generate code for unreachable statements.

warning: string initializer too long

The string used to initialize a character array contains more characters than the
array can hold.

warning: struct/union pointer required

The left operand of the arrow (−>) operator is not a structure or union pointer.

warning: struct/union type required

The left operand of the arrow (−>) operator is not a structure or union type.

warning: too many dimensions for symbolic debugging

The object file symbol table cannot keep track of more than six levels of array
dimensions.

warning: unnecessary assignment of variable identifier

An assignment is made to the given variable, and the variable is not used before
it is assigned to again or the end of the function is reached.

wrong number of arguments for macro identifier

The number of arguments in a macro invocation does not match the number of
arguments in the macro definition.

zero or negative array dimension

Array dimensions must be positive integer values.

123

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Section 3: Assembler

3. Assembler ..129

3.1. Introduction ..129

3.1.1. Overview...129

3.1.2. Prerequisite Reading ..130

3.1.3. Notational Conventions ..131

3.2. Invocation...131

3.2.1. Command Line Syntax ...132

3.2.2. Command Line Flags ...132

3.2.3. File Name Conventions ..136

3.2.4. Environment Variables ...136

3.2.5. Invocation Examples ..137

3.3. Assembly Language...137

3.3.1. Overview...138

3.3.2. Assembler Statements ...138

3.3.2.1. Statement Syntax (asm68) ..138

3.3.2.2. Statement Syntax (asm68k) ..139

3.3.3. Character Set ...140

3.3.4. Sections..140

3.3.4.1. Section Types..140

3.3.4.2. Creating Sections ..141

3.3.4.3. Location Counter ...141

3.3.4.4. Structure Templates ..141

3.3.5. Symbols..141

3.3.5.1. Symbol Syntax...142

3.3.5.2. Labels ..143

3.3.5.3. Symbol Assignment...143

3.3.5.4. Comm and Lcomm Symbols ...144

3.3.5.5. Undefined Symbols ...144

3.3.5.6. Compiler Locals...145

3.3.5.7. Floating-Point Symbols..145

124 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.6. Constants ...145

3.3.6.1. Integer Constants ..145

3.3.6.2. Character Constants..146

3.3.6.3. Floating-Point Constants ...148

3.3.7. Expressions ..148

3.3.7.1. Operands...148

3.3.7.2. Operators...149

3.3.7.3. Expression Evaluation ...150

3.4. Instruction Set ..152

3.4.1. Syntax...152

3.4.2. Instruction Sizing ..152

3.4.3. Instruction Optimization ..153

3.5. Effective Addressing Modes...155

3.5.1. Overview...155

3.5.2. Terminology..157

3.5.3. Effective Address Syntax..158

3.5.4. Addressing Mode Selection..160

3.5.4.1. PC-relative Coercion ...160

3.5.4.2. Displacement Sizing ..161

3.5.4.3. Mode selection ..162

3.6. Asm68 Assembler Directives ...163

3.6.1. Asm68 Section Directives...164

3.6.2. Asm68 Symbol Directives...165

3.6.3. Asm68 Data/Fill Directives ...166

3.6.4. Asm68 Control Directives ...167

3.6.5. Asm68 Output Directives..167

3.6.6. Asm68 Debugging Directives ...168

3.6.7. Asm68 Directive Reference..168

3.7. Asm68k Assembler Directives ...209

3.7.1. Asm68k Section Directives...210

3.7.2. Asm68k Symbol Directives...211

3.7.3. Asm68k Data/Fill Directives..212

3.7.4. Asm68k Control Directives ...213

Section 3: Assembler 125

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7.5. Asm68k Output Directives ..214

3.7.6. Asm68k Debugging Directives ...214

3.7.7. Asm68k Directive Reference ..215

3.8. Asm68k Macros ...271

3.8.1. User-Defined Macros..271

3.8.1.1. Macro Definition...271

3.8.1.2. Macro Invocation ...272

3.8.1.3. Parameters ..273

3.8.1.4. Local Labels ..274

3.8.1.5. NARG Symbol ...274

3.8.1.6. MEXIT Directive...274

3.8.1.7. Macro Examples..275

3.8.2. Structured Control Macros..278

3.8.2.1. Structured Control Expressions...278

3.8.2.2. Macro Invocation ...280

3.8.2.3. Structured Control Reference..280

3.9. Instruction Set Summary..289

126 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Figures

Figure 3.1: Expression Evaluation ..150

Figure 3.2: Instruction Sizing (asm68) ..152

Tables

Table 3.1: Notational Conventions..131

Table 3.2: Default File Extensions ..136

Table 3.3: Statement Syntax (asm68) ..138

Table 3.4: Statement Syntax (asm68k)...139

Table 3.5: Integer Radix Specification ..146

Table 3.6: Value Ranges for Integer Constants..146

Table 3.7: Escaped Characters ..147

Table 3.8: Integer Expression Operators ..149

Table 3.9: Operator Precedence/Associativity..150

Table 3.10: Instruction Optimizations and Corrections ...154

Table 3.11: Effective Addressing Modes ..156

Table 3.12: Effective Addressing Mode Categories..157

Table 3.13: Displacement Syntax Comparisons ...159

Table 3.14: Unknown Absolute Displacement Sizing ...162

Table 3.15: Unknown PC-Relative Displacement Sizing ..162

Table 3.16: Directive Groups ..163

Table 3.17: Section Directives ..164

Table 3.18: Symbol Directives .. 165

Table 3.19: Data/Fill Directives ...166

Table 3.20: Control Directives...167

Table 3.21: Output Directives ...167

Table 3.22: Debugging Directives...168

Table 3.23: Directive Groups ..209

Table 3.24: Section Directives ..210

Section 3: Assembler 127

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Table 3.25: Symbol Directives .. 211

Table 3.26: Data/Fill Directives ...212

Table 3.27: Control Directives...213

Table 3.28: Output Directives ...214

Table 3.29: Debugging Directives...215

Table 3.30: Integer Conditional Tests ...279

Table 3.31: Structured Control Macros ...280

Table 3.32: Instructions and Size Qualifiers ...290

128 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

129

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3. Assembler

This section describes in detail the Sierra Systems assemblers, asm68 and
asm68k . It includes a guide to their usage, a discussion of relevant programming
concepts, and a complete reference for assembler options and directives. They
were developed by Sierra Systems to support certain Motorola processors and
coprocessors and IEEE format floating-point numbers. Under license from Sierra
Systems, Texas Instruments has modified this software to support TI BCD
floating-point numbers, and support for coprocessors has been removed.
Although the software has not been modified to exclude support for processors
other than the 68000, the 68000 is the only processor supported by Texas
Instruments. The license from Texas Instruments to use these products is
restricted to development of software that is targeted to execute only on TI
calculators.

3.1. Introduction

The assembler asm68 was designed to assemble source files generated by the
Sierra C™ compiler, com68 . The second assembler asm68k was designed to
assemble code written for the Motorola M68000 Resident Structured Assembler.
Its directive set has been extended to offer many of the features provided by
asm68 , while remaining compatible with code written for the Motorola assembler.

Either assembler can be used to develop assembly language programs and
assemble source files generated by the Sierra C compiler. They both support the
entire Motorola 68000 instructions and modes. The main difference between the
two assemblers, other than syntax, is that asm68k provides macro support and
structured control facilities whereas asm68 does not.

The first five assembler sections and the instruction summary section at the end
apply to both of these assemblers. Those subsections and descriptions that
pertain to a specific assembler are clearly marked with the name of the
assembler to which the text is applicable. Sections 3.6 Asm68 Assembler
Directives , 3.7 Asm68k Assembler Directives , and 3.8 Asm68k Macros each
apply only to the named assembler.

3.1.1. Overview

The assembler section is targeted at the experienced 68000 assembly language
programmer and is not intended to serve as a 68000 reference source (see
section 3.1.2 Prerequisite Reading). This section includes the following
information:

• Section 3.2 — a guide to using the assemblers.

130 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

• Section 3.3 — a discussion of assembly language programming concepts
and source file formats.

• Section 3.4 — an instruction set overview, including a discussion of
optimizations.

• Section 3.5 — a comprehensive discussion of effective addressing modes.

• Section 3.6 — a discussion of the asm68 assembler directives, including an
alphabetized reference for each assembler.

• Section 3.7 — a discussion of the asm68k assembler directives, including an
alphabetized reference for each assembler.

• Section 3.8 — a description of asm68k user-defined macros and structured
control macros.

• Section 3.9 — an instruction-set summary including a list of all supported
instructions and legal size extensions.

3.1.2. Prerequisite Reading

The assembler section assumes a working knowledge of the Motorola 68000
microprocessor and the programming issues that govern it and familiarity with the
other documentation supplied with the TI-89 / TI-92 Plus SDK. For information
regarding these topics, the following sources should be consulted:

• M68000 Family Resident Structured Assembler Reference Manual,
M68KMASM/D11

• M68000 Family Programmer’s Reference Manual, M68000PM

• M68000 8-16-32-Bit Microprocessors User’s Manual, MC68000UM/D

• MC68881/MC68882 User’s Manual, MC68881UM/AD

• TI-89 / TI-92 Plus Developer Guide

• TI FLASH Studio™ (IDE) documentation

Section 3: Assembler 131

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.1.3. Notational Conventions

The notational conventions used for syntactic descriptions in the assembler
section are shown in Table 3.1. They apply to all syntactic descriptions, unless
otherwise stated.

Syntax Semantics

{ } (Curly Braces) Enclosed items are required

[] (Square Brackets) Enclosed items are optional

| (Vertical Bar) Separated items are alternatives

. . . (Horizontal Ellipsis) Preceding item can be repeated zero or more
times on the same line

... (Vertical Ellipsis) Preceding item can be repeated zero or more
times on successive lines

typewriter font Programming examples

italics Item is to be replaced with an actual item

Table 3.1: Notational Conventions

Throughout this section, the assembler directives for asm68 are shown in
lower-case characters, while those unique to asm68k are shown in uppercase.
This is done merely to aid in recognition and to avoid confusion. Both
assemblers, in fact, allow directives to be written in either lowercase or
uppercase characters. The asm68k directives shown in lowercase and beginning
with a period (.) are extensions to the Motorola M68000 Resident Structured
Assembler. The additional directives are taken from asm68 and are needed to
allow asm68k to support the assembly code generated by the Sierra Systems
compiler. When a directive is referenced from within a common part of the
document, the names of both assemblers’ directives are shown, separated by a
slash (e.g., .include / INCLUDE where .include is the asm68 directive and
INCLUDE is the asm68k directive).

3.2. Invocation

This section describes the command line syntax for invoking the Sierra Systems
assemblers. It also includes descriptions of the command line options, file
naming conventions, and file inclusion environment variables.

Typically, the TI FLASH Studio will handle all invocations of the assembler, using
the correct command line flags required to produce TI-89 / TI-92 Plus apps or
ASMs. The following discussion of the command line syntax and flags is included
for developers who may wish to use either assembler directly from the command
line or create their own makefile.

132 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.2.1. Command Line Syntax

The syntax used to invoke the Sierra Systems assemblers, asm68 and asm68k ,
is shown below. Option flags are case-sensitive.

asm68 [option] . . . [file] [option] . . .

asm68k [option] . . . [file] [option] . . .

The assembler option option specifies zero or more command line option flags. A
full description of the assembler flags is provided in section 3.2.2 Command
Line Flags.

The file file specifies an assembly source file. If omitted, the input assembly
source is read from the standard input stream, stdin .

As indicated, the command line arguments consist of option flags and the name
of the file to be assembled. All arguments are optional and can appear in any
order (except for the -g flag and its associated file arguments as noted in section
3.2.2 Command Line Flags).

3.2.2. Command Line Flags

Command line option flags are used to control the assembler’s behavior. This
section provides a summary of the available option flags. However, it is highly
recommended that you only use the flags as shown in the sample assembler
invocations included in the TI-89 / TI-92 Plus SDK files. Other flag combinations
may produce output incompatible with the TI-89 / TI-92 Plus data objects.
Numerical arguments can be specified in octal (leading 0), decimal, or
hexadecimal (leading 0x or 0X); they cannot include any symbols or expressions.
Whitespace is permitted between a flag and its argument unless the argument is
optional. Multiple flags can follow a single hyphen (-) provided only the final flag
takes an argument. Unless otherwise noted, option flags can be placed on the
command line in any order. An action specified by an option flag can be undone
(returned to the default state) by prefixing the option flag with the -Z flag. When
two option flags specify conflicting actions, such as an option flag with and
without the -Z prefix, the latter option flag is used.

The following are the syntax and description of each command line flag:

-a size Specify the address bus size of the target processor (must be 68000
for TI-89 / TI-92 Plus data objects). The bus size size is specified
in bits. If the -a flag is omitted, the address bus size is set
according to the selected target processor (see .opt / OPT
directive). Knowing the size of the address bus is necessary only
when relocation hole compression is to be performed (see -h flag).

Section 3: Assembler 133

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

-A Alert the user that the following error messages are from the
assembler. The message, “Assembler Errors,” is printed before the
first error message. The message separates compiler messages
from assembler messages when the compiler and assembler are
invoked sequentially.

-c Generate object files that are fully compatible with the AT&T UNIX
System V COFF specification. When the -c flag is not specified, the
.text , .data , and .bss sections begin at relative address zero; comm
variables include alignment information; and relocation
displacements are not required to fit in their associated relocation
holes. This flag is incompatible with the -6 flag.

-C Cause symbols that are declared .extern / XREF but not otherwise
referenced in the file not to be entered into the symbol table. In the
absence of the -C flag, .extern / XREF symbols always appear in
the symbol table possibly causing unnecessary modules to be pulled
in from a library file. The -C flag basically causes .extern / XREF
symbols to behave the same as extern symbols in the C language.

-d symbol [= value]

Define a local symbol symbol with value value . If value is
omitted, the symbol is assigned a value of 1.

-D symbol [= value]

Define a global symbol symbol with value value . If value is
omitted, the symbol is assigned a value of 1.

-e Disable the .echo directive. (asm68)

-E Require that undefined labels be declared external (see .xref
directive). Failure to do so will result in an error. By default,
undefined labels are assumed to be external. (asm68k) Assume
that undefined labels are external. By default, undefined labels must
be declared external (see XREF directive). If the .opt directive (not
OPT) is specified (as it would be in compiler generated assembly
code), the asm68k assembler emulates the asm68 assembler as it
pertains to undefined labels undefined symbols are assumed to
be external and the -E flag necessitates that undefined labels be
declared external.

-g file . . . Group multiple source files. When specified, the -g flag must be the
last option on the command line; all files that follow are
concatenated to produce a single source file. Output file names are
based on the name of the first file that is specified.

-h file Select the source file for relocation hole compression. The -h flag is
used during the first assembly pass. The name of the object file and
the command line flags with which it is created are recorded in the
hole compression input file file . This file, which by convention has
a .hci extension, is used by link68 .

134 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

-H file Perform relocation hole compression on the source file. The -H flag
is used during the second assembly pass. The information in the
hole compression output file file , which is created by link68 , is
used to determine which relocation holes can be compressed. No
other command line arguments are used during this pass.

-i file Include the contents of the file file at the current location in the
command line. The -i flag cannot be used inside an included file;
however, multiple occurrences of this flag can appear on the
command line.

-I path Add the path path to the search list used to locate included files
(see .include / INCLUDE directive). Directories specified with the
-I flag are searched after the current directory has been searched
and before the standard include directories (see section
3.2.4 Environment Variables).

-k Remove (kill) the object file if any errors are detected.

-K Do not generate an object file.

-l Do not generate a listing file.

-L Generate line number information to allow source-level debugging of
assembler source. When the -L flag is specified, all debugging
directives, except for the .type / TYPE directive, are ignored (see
sections 3.6.6 Asm68 Debugging Directives and 3.7.6 Asm68k
Debugging Directives). The .type / TYPE directive can be used to
specify type information for any label.

-n Do not put line numbers in the listing file.

-o file Set the name of the output object file to file . If the -o flag is not
specified, the object file has a .o extension and the base name is
derived from the name of the source file (see section 3.2.3 File
Name Conventions).

-O [address] Set the default section to be an absolute, text-type section with base
address address . If address is omitted, the value zero is used.
If the -O flag is not specified, the default section is .text .

-OPT option [, option] . . .

Set assembler options. The -OPT flag allows assembler options to
be specified on the command line (see .opt / OPT directive).

-p [length] Set the page length used in the listing file to length . If length is
omitted or is zero, pagination is disabled; otherwise, the length must
be at least 10. The default page length is 65 lines.

-q Do not require sections to begin on quad boundaries, and do not
pad sections to quad boundaries. The -q flag is provided to allow
the generation of code that can be patched into linked executable
files; it should not be used otherwise.

-Q Do not print the Sierra Systems copyright banner.

Section 3: Assembler 135

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

-r Write error messages to the standard error stream, stderr . This is
useful only when the input assembly source is read from the
standard input stream, stdin . The -r flag is ignored if an input
source file is specified.

-s { x | a[c] | v[c] | c }

Specify which symbols are to be included in the listing file symbol
table. The default setting is a.

x Do not generate a symbol table listing.

a Generate an alphabetically ordered listing.

v Generate a numerically ordered listing.

c Include compiler local symbols in the listing.

-S { x | l | c }

Specify which symbols are to be included in the object file symbol
table. The default setting is l .

x Exclude local symbols.

l Include local symbols.

c Include local symbols and compiler local symbols.

-t [width] Set the tab width used in the listing file to width . If width is
omitted, or is zero or one, spaces are used instead of tabs; this is
the default behavior.

-T Generate a transcript of the input assembly source when it is read
from the standard input stream, stdin . The transcript file has a .trn
extension and the base name is derived from the name of the object
file (see section 3.2.3 File Name Conventions).

-u Print usage information, then exit.

-w [width] Set the page width used in the listing file to width . If width is
omitted, the page width is set to 132. The minimum width that can
be specified is 40. The default page width is 80.

-W Suppress all warning messages.

-x Truncate lines in the listing file at the specified page width (see -w
flag). The default is to wrap lines that extend beyond the selected
page width.

-y file Set the name of the listing file to file . If the -y flag is not
specified, the listing file has a .lst extension and the base name is
derived from the name of the object file (refer to section 3.2.3 File
Name Conventions).

-Y file Write error and warning messages to the error file file . By default,
all such messages are written to the standard error stream, stderr .

136 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

-Z {6|a|A|c|C|e|E|h|k|K|l|L|n|o|p|q|Q|r|t|T|w|W|x|y|Y} . . .

Returns the specified options to their default conditions.

-6 Not supported by Texas Instruments, however, -6 is recognized as
a reserved flag by the assembler.

3.2.3. File Name Conventions

Each type of file has an associated default file extension as shown in Table 3.2.
These extensions are used to determine the names of output files that have not
been explicitly specified. When left unspecified, the names of output files are
derived from the names of other files as described below.

File Type File Extension

source .s

object .o

listing .lst

transcript .trn

Table 3.2: Default File Extensions

If the name of the object file is not specified (see -o flag), it is derived from the
name of the source file. This is done by adding the .o extension to its base
filename. Since the full path name is not used, the object file is written in the
current directory, regardless of the location of the source file.

If the name of the listing file is not specified (see -y flag), it is derived from the
name of the object file. This is done by adding the .lst extension to its base
filename. The path component of the name is preserved so that the listing file
resides in the same directory as the object file.

If the assembly source is read from the standard input stream, stdin (i.e., no
source file was specified), then a transcript file can be generated (see -T flag).
The name of this file is derived from the name of the object file in the same
manner as the name of the listing file described above, except that the
replacement extension is .trn . In the absence of a source file, the derivation of
the object file’s name is based on the name of the assembler (e.g., asm68.o),
and the listing file is written to the standard output stream, stdout .

3.2.4. Environment Variables

The environment variables INCLUDE68 and SIERRA can be used to control
inclusion of assembly source files (see .include / INCLUDE directive). The

Section 3: Assembler 137

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

INCLUDE68 variable can be used to specify multiple directories by assigning it a
semicolon-separated list of paths. The SIERRA variable is typically set to the
directory under which the Sierra Systems software has been installed. When a

source file is included, the assembler will attempt to locate it in (or, relative to) the
following directories in the specified order:

1. The current directory.

2. Directories specified with the -I command line flag.

3. Directories specified by the environment.

The directories specified by the environment are determined in the following
manner. If the INCLUDE68 variable is defined, the paths it specifies are used;
otherwise, the environment search path is the SIERRA\include subdirectory.

3.2.5. Invocation Examples

The following examples demonstrate how to invoke the assemblers. The
assembler asm68 is used in the examples. Path names are specified using
MS-DOS syntax.

asm68 -o ..\obj\driver.o -I..\incl driver.s -W

This example assembles the file driver.s. The sibling directory incl has been
specified as a location to search for included files. The object file, as well as the
listing file driver.lst, is created in the sibling directory obj . Warning messages
have been suppressed with the -W flag.

In the following example, the assembly source is read from the standard input
stream, stdin :

asm68 -l -T (or, asm68 -lT)

The object file is named asm68.o , while the listing file has been suppressed with
the -l flag. The -T flag directs the assembler to create a transcript file with the
name asm68.trn .

3.3. Assembly Language

Assembly languages provide an efficient means of developing and maintaining
machine-level programs. This section describes the format of assembly language
source files, as well as the major concepts necessary to write them.

138 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.1. Overview

The two assemblers, asm68 and asm68k , translate assembler source to object
code. This translation is performed using a single pass of the assembler source
file. After the source has been completely scanned, forward references are
resolved. Any references that cannot be resolved (e.g., references to symbols
defined in other files) are left for the linker to resolve.

This section describes the format of assembler source files, management of
object code sections, symbol definition and usage, and symbolic expression
construction. The format of the object files that are produced is UNIX System V
COFF (see section 1.4 Object File Format).

3.3.2. Assembler Statements

An assembly language program consists of statements that are used to generate
machine instructions, control the behavior of the assembler, and provide
documentation. The assemblers asm68 and asm68k have different statement
syntaxes, which are described below.

3.3.2.1. Statement Syntax (asm68)

The syntaxes for the various types of assembler statements accepted by asm68
are summarized in Table 3.3. Any of the fields shown can begin in any column,
provided they observe the specified syntax. Whitespace (i.e., spaces and tabs) is
used to separate the various fields, although no whitespace is required after the
label field or before the comment field. Whitespace is permitted within any of the
fields.

Statement Syntax

Label label : [; comment]

Instruction [label :] instruction [operand] [; comment]

Directive [label :] directive [operand] [; comment]

Assignment [label :] symbol { = | == } expression [; comment]

Comment ; comment

Table 3.3: Statement Syntax (asm68)

Section 3: Assembler 139

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Instruction statements direct the assembler to generate object code for the
68000 instructions (see section 3.4 Instruction Set). Directive statements either
modify the behavior of the assembler or direct the assembler to generate object
code (see section 3.6 Asm68 Assembler Directives). Assignment statements
associate constant values with symbols (see section 3.3.5.3 Symbol
Assignment). Comment statements are ignored by the assembler; they allow
source files to contain explanatory text. The maximum length of any statement is
256 characters.

3.3.2.2. Statement Syntax (asm68k)

The syntaxes for the various types of assembler statements accepted by
asm68k are summarized in Table 3.4. Labels can begin in any column, provided
they are followed by a colon; otherwise, they must begin in column one.
Instruction and directive mnemonics, as well as macro invocations, cannot begin
in column one.

Statement Syntax

Label label [:] [! | ; comment]

Instruction [label [:]] instruction [operand] [[! | ;] comment]

Directive [label [:]] directive [operand] [comment]

Equate label [:] equate operand [comment]

Macro [label [:]] macro [operand] [[! | ;] comment]

Comment { * | ; } comment

Table 3.4: Statement Syntax (asm68k)

Whitespace (i.e., spaces and tabs) is used to separate the various fields of a
statement; it can be used within the operand field as part of a character constant
or in the comment field. An exclamation point (!) or a semicolon (;) is required
at the beginning of the comment field when the preceding operation has optional
operands that have been omitted. The asterisk (*) or semicolon (;) that is used
to begin a comment statement can appear in any column.

Instruction statements direct the assembler to generate object code for the
68000 instructions (see section 3.4 Instruction Set). Directive statements either
modify the behavior of the assembler or direct the assembler to generate object
code (see section 3.7 Asm68k Assembler Directives). Macro statements allow
common sequences of code to be easily duplicated (see section 3.8 Asm68k
Macros). Comment statements are ignored by the assembler; they allow source
files to contain explanatory text. The maximum length of any statement is 256
characters.

140 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.3. Character Set

The assembler recognizes the following characters:

• The alphabetical characters A – Z and a – z.

• The numerical characters 0 – 9.

• The whitespace characters space, tab, and newline

• The remaining printable ASCII characters:

! " # $ % & ' () * + , - . / :

; < = > ? @ [\] ^ _ ` { | } ~

Any other characters will cause an error unless they appear in a comment field or
string. By default, alphabetical characters are case-sensitive. The OPT NOCASE
directive (supported by asm68k) can be used to cause case insensitivity. When
case insensitivity is specified, symbol names are converted to lowercase before
entry into the symbol table.

3.3.4. Sections

A section is a block of object code whose base is associated with an address.
Sections with fixed base addresses are called absolute; those with repositionable
bases are called relocatable. Relocatable sections are fixed at an absolute
address during linkage. Each relocatable section must have a name; names are
optional for absolute sections.

The remainder of this section describes the various types of sections and the
methods used to manage them.

3.3.4.1. Section Types

There are three types of sections: text-type, data-type, and BSS-type. Text-type
sections contain read-only data. Data-type sections contain initialized read/write
data. BSS-type sections contain uninitialized read/write data.

There are three special relocatable sections, one of each of the three types.
They are called .text , .data , and .bss . These sections have special significance
in the System V COFF file format (see section 1.4 Object File Format). The
Sierra C compiler generates these three sections. Code is placed in the section
.text , initialized data is placed in the section .data , and uninitialized data is
allocated space in the section .bss (see .comm and .lcomm directives).

Note: TI-89 / TI-92 Plus apps and ASMs also have a .const section. See chapter 7. Flash
Application Layout in the TI-89 / TI-92 Plus Developer Guide for information on the use
and initialization of the TI-89 / TI-92 Plus sections.

Section 3: Assembler 141

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.4.2. Creating Sections

Special directives are used to create and activate sections (see sections
3.6 Asm68 Assembler Directives and 3.7 Asm68k Assembler Directives). All
object code that is generated by instructions and directives is placed in the most
recently created or activated section. When a section has been completed, its
size is padded (if necessary) to a quad boundary with the current fill value (see
.opt fillval / OPT FILLVAL). Prior to the issuance of the first section directive,
the relocatable, text-type section .text is used. If the -O flag is specified,
however, the default section is an absolute, text-type section beginning at the
specified address.

3.3.4.3. Location Counter

Each section has a location counter, which maintains the current position within
the section, i.e., the address at which object code will be placed next. This
address is absolute in an absolute section and is section-relative in a relocatable
section.

The location counter allows a resumed section to continue as if there had been
no interruption: additional object code is placed immediately following the last
code that was generated in that section. It also allows instructions and directives
to reference the address at which they are located. The location counter can be
referenced in integer expressions with a period (.) (asm68) or an asterisk (*)
(asm68k).

3.3.4.4. Structure Templates

Structure template sections are used to define labels suitable for structure field
references. They are merely dummy sections — they cannot contain any object
code, and they are not included in the output object file. See the
.struct / OFFSET directives for a complete description of their usage.

3.3.5. Symbols

Symbols are used to label addresses and represent constants. They can be
either absolute or relocatable. The value of an absolute symbol is fixed, while
that of a relocatable symbol is dependent upon the section in which it is defined.
During assembly, the value of a relocatable symbol is an offset from the base of
a relocatable section; it becomes absolute during linkage (after relocatable
sections have been bound to absolute addresses).

142 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

By default, the scope of a symbol is static (i.e., local to the file in which it is
defined). The scope of a symbol can be extended to external with the
.xdef / XDEF directive; this allows it to be referenced from within any other
source file that declares it to be external (see .xref / XREF directive). The term
local is reserved for describing scopes that are limited to a subset of a source file
(e.g., a label local to a macro invocation).

The remainder of this section describes the syntax of symbol names and the
methods available to define symbols, set their values, and modify their scopes.

3.3.5.1. Symbol Syntax

The syntax used for constructing symbol names differs between the two
assemblers. When using asm68 , symbol names can be composed of the
following characters:

• The alphabetical characters A – Z and a – z.

• The numerical characters 0 – 9.

• The underscore (_).

They cannot begin with a numerical character. When using asm68k , symbol
names can be composed of the following characters:

• The alphabetical characters A – Z and a – z.

• The numerical characters 0 – 9.

• The underscore (_).

• The period (.).

• The dollar sign ($).

They cannot begin with a numerical character or the dollar sign. For certain types
of symbol names, there are exceptions to these rules. They are clearly noted
where applicable.

Symbol names are case-sensitive by default. The OPT NOCASE directive can
be used to render symbol names case-insensitive (asm68k). When symbol
names are case-insensitive, they are converted to lowercase before entry into
the symbol table. There is no explicit maximum length for symbol names. Their
length is limited only by the maximum length of a source input line, which is 256
characters. All characters of a symbol name are significant.

Section 3: Assembler 143

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.5.2. Labels

A label is a symbol that is used to represent an address in a section. Labels are
defined as shown in the description of the various statement syntaxes (see
section 3.3.2 Assembler Statements). A label is either absolute or relocatable;
this property is inherited from the section in which it is defined.

When a label is defined, it is assigned the value of the current section’s location
counter (i.e., the current object code address). In the following code fragment,
the symbol loop is assigned the address of the move instruction:

jsr init

loop: move.l (a0)+,(a1)+

cmpa.l #end,a0

bne loop

This value is either absolute or relocatable, depending on the active section. As
discussed earlier, relocatable sections are bound to absolute addresses during
linkage. At this time, relocatable labels become absolute.

By default, the scope of a label is static (i.e., local to the file in which it is
defined). This scope can be extended to other files by defining the label to be
external (see .xdef / XDEF directive). When using asm68k , it is also possible to
limit the scope of a label to a particular subset of a source file. A local label is
defined by prefixing its name with a period (.) (with the OPT LLBL directive in
effect). Ordinary (i.e., non-local) labels delineate unique local label scopes, i.e.,
each time an ordinary label is defined, a new local label scope is created. This
means that the same label name can be used in different local label scopes
without conflict. In addition, labels can be defined to be local to macro
invocations (see section 3.8.1.4 Local Labels).

3.3.5.3. Symbol Assignment

Symbols can be assigned arbitrary values by direct assignment. When using
asm68 , assignment is performed with the = and == operators. The right-hand
side of the assignment is an absolute or simple relocatable expression (see
section 3.3.7.3 Expression Evaluation) that contains no forward, external, or
undefined references. The value of this expression is assigned to the symbol on
the left-hand side of the assignment.

Using the = operator prohibits the defined symbol from being assigned a new
value, while the == operator permits future assignments. Attempting to assign a
value to a symbol whose value has been set with the = operator results in an
error.

144 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

When using asm68k , the EQU and SET directives perform the same function as
the = and == operators, respectively (see section 3.7 Asm68k Assembler
Directives). As with labels, the default scope of symbols defined via assignment
is static (i.e., local to the file in which they are defined). The .xdef / XDEF
directive can be used to define a symbol to be external.

3.3.5.4. Comm and Lcomm Symbols

The final way that symbols can be defined is with the .comm / COMM and
.lcomm / LCOMM directives. These directives are used to define symbols that
are referred to as comm and lcomm symbols, respectively. Each such symbol is
associated with a block of uninitialized data in the .bss section. The primary
difference between the two types of symbols is their scope: comm symbols are
external and lcomm symbols are static (i.e., local to the file in which they are
defined). For syntax, descriptions, and examples of these directives, refer to
sections 3.6 Asm68 Assembler Directives and 3.7 Asm68k Assembler
Directives .

The names for these two types of symbols come from the expressions common
area and common block, which are used in languages such as FORTRAN.
These directives were originally used for compatibility with these languages;
therefore, they allow symbols to be redefined, provided the size and alignment
information are identical. If the -C linker command flag is specified at link time,
definitions of the same symbol can appear in other source files as well. These
directives are now typically used for allocating space for uninitialized data. For
historical reasons, the names have remained.

Since comm symbols can be defined in multiple source files, they cannot be
allocated by the assembler as lcomm symbols are. They are instead allocated
during linkage after all common definitions have been resolved.

3.3.5.5. Undefined Symbols

If a symbol is referenced in a source file, but is not defined in that file (by label,
assignment, etc.) and has no external declaration, it is considered to be
undefined. When using asm68 , any undefined symbols are assumed to be
external. When using asm68k , an error is generated for each undefined symbol
that is found. These behaviors can be reversed using the -E command line flag.
Furthermore, if the .opt (not OPT) directive is used in a file assembled by
asm68k , all undefined symbols are assumed to be external. The behavior switch
based on the detection of the .opt directive is needed to allow compiler
generated assembly code to be assembled by asm68k .

For both assemblers, undefined symbols are defined to be external in the output
object file and are shown as undefined in the listing file. The only difference in
behavior is whether or not an error message is generated.

Section 3: Assembler 145

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.5.6. Compiler Locals

The Sierra C compiler creates labels for data addresses and branch destinations;
these labels are static (i.e., local to the files in which they appear) and are
commonly referred to as compiler locals. Compiler locals are distinguished from
other labels by the naming convention they observe: the letter ‘ L ’ followed by an
arbitrary number of decimal digits. This convention can be modified to include a
leading underscore by specifying the .opt uloc directive.

Compiler locals are typically of no interest and, by default, are excluded from the
symbol tables in the object and listing files. This exclusion can be overridden with
the -S and -s command line option flags, respectively.

3.3.5.7. Floating-Point Symbols

A floating-point symbol is defined by assigning it a floating-point constant. Since
the floating-point assignment operator (#=) in asm68 and the FEQU directive in
asm68k are not supported by Texas Instruments, the .double directive should
be used to create floating-point symbols. See the .double directive in sections
3.6.7 Asm68 Directive Reference and 3.7.7 Asm68k Directive Reference for
examples.

3.3.6. Constants

A constant is an invariant quantity, which can be specified in any of the following
formats: integer, character, and floating point. Each type has its own value
ranges; an error is generated if a range is exceeded.

3.3.6.1. Integer Constants

Integer constants can be specified in binary, octal, decimal, and hexadecimal.
The base of an integer is determined by its leading character(s) as shown in
Table 3.5. The syntax for specifying the base of an integer constant is different
for the two assemblers. Any integer constant can be preceded by the unary
minus (-) operator.

146 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Radix Prefix (asm68) Prefix (asm68k)

Binary % %

Octal @ or 0 @ or 0†

Decimal 1 – 9 0† – 9

Hexadecimal $ or 0x or 0X $ or 0x or 0X

† A leading zero identifies a decimal constant unless the .opt
(not OPT) directive is used in a file assembled by asm68k ,
in which case, a leading zero specifies an octal constant.
The behavior switch based on the detection of the .opt
directive is provided to allow asm68k to be compatible with
code originally written for asm68 .

Table 3.5: Integer Radix Specification

The size of an integer constant can be one, two, or four bytes. The value ranges
for each size are shown in Table 3.6. Values are stored using two’s complement
representation.

Bytes Signed Range Unsigned Range

1 L128 – 127 0 – 255

2 L32,768 – 32,767 0 – 65,535

4 L2,147,483,648 – 2,147,483,647 0 – 4,294,967,295

Table 3.6: Value Ranges for Integer Constants

3.3.6.2. Character Constants

Character constants are delimited by single quotes ('). Each character between
the single quotes is represented by a byte of data; therefore, byte data is limited
to a single character, word data to two, and long-word data to four. If the
maximum number of characters is not specified, the bytes in a word or long-word
constant are justified according to the assembler being used. The bytes are
right-justified within the byte group when using asm68 (or asm68 style data
directives with asm68k). For example:

.word 'a' ; produces 0061

.long 'ab' ; produces 00006162

When using asm68k , the bytes are left-justified:

DC.W 'a' ; produces 6100

DC.L 'ab' ; produces 61620000

Section 3: Assembler 147

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

A single quote (') is represented by a pair of single quotes (' ') when using
asm68k , and by an escaped single quote (\') when using asm68 .
Furthermore, if the .opt (not OPT) directive is used in a file assembled by
asm68k , escaped characters are allowed in a character constant appearing in
the effective address field of an instruction. The behavior switch based on the
detection of the .opt directive is needed to allow compiler generated assembly
code to be assembled by asm68k . The escaped characters recognized by
asm68 (and asm68k in the presence of the .opt directive or in an asm68 style
data directive) are shown in Table 3.7.

Syntax Description

\a bell (alert)

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\v vertical tab

\xh hexadecimal constant (h is at most 3 hexadecimal digits)

\Xh hexadecimal constant (h is at most 3 hexadecimal digits)

\o octal constant (o is at most 3 octal digits)

\^c <ctrl>-c (c is an alphabetical character)

\c c (c is any character excluding escaped characters shown here)

Table 3.7: Escaped Characters

When a character constant is used with the DC directive (asm68k), it is legal to
exceed the character limit. It has the following effect:

DC.B 'abc' ; equivalent to DC.B 'a','b','c'

DC.W 'abc' ; equivalent to DC.W 'ab','c'

When a character constant is used with the .byte or .ascii directive, it is legal to
exceed the character limit by specifying the constant as a string. Strings are
delimited by double quotes ("). It has the following effect:

.byte "xyz" ; equivalent to .byte 'x','y','z'

Strings are not null terminated (whereas they are in the C language).

148 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.6.3. Floating-Point Constants

Floating-point constants can be specified in real format or in the internal format of
TI BCD floating-point data objects.

Real format constants include a decimal point or an exponent or both. The
decimal point is designated with a period (.), and the exponent field is
introduced with the letter e (or E). Internally, the constant is converted to the
TI BCD floating-point format.

Floating-point constants can be specified directly in the TI BCD floating-point
format by specifying their bit patterns in hexadecimal. The prefixes used to
introduce a bit pattern are the hexadecimal integer constant prefixes ($, 0x, or
0X). In addition, when using asm68 , a colon (:) can also be used to introduce a
floating-point hexadecimal bit pattern. All TI BCD floating-point data objects are
stored in 10 bytes. See the .double directive in sections 3.6.7 Asm68 Directive
Reference and 3.7.7 Asm68k Directive Reference for examples of
floating-point constant entry.

3.3.7. Expressions

Expressions can be used almost anywhere an integer argument is required
(e.g., effective address arguments, directive arguments, and right-hand sides of
assignments). Floating-point expressions are not supported.

The syntax for expressions is identical to that of the C language, except that only
a relevant subset of the operators is supported. There is no limit to the number of
operands or operators that can appear in an expression, nor is there a limit to the
level of parenthesization. Except where noted, expressions can contain forward,
external, and undefined references.

Following is a description of the legal operands and operators, as well as a
discussion of expression evaluation.

3.3.7.1. Operands

Integer symbols, integer constants, character constants, and the location counter
symbol can be used as operands in an expression. Floating-point symbols and
constants cannot be used as operands.

Section 3: Assembler 149

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.3.7.2. Operators

All the arithmetic and bitwise operators found in the C language are supported.
They are shown in Table 3.8.

Operator Description

Unary

~ One’s complement

− Unary minus

Binary

* Multiplication

/ Division

% Modulus

+ Addition

− Subtraction

<< Left shift

>> Right shift

& Bitwise AND

^ Bitwise exclusive OR

| or ! Bitwise inclusive OR

 Table 3.8: Integer Expression Operators

Each assembler has its own operator precedence rules as shown in Table 3.9.
Operators listed on the same line have the same precedence; rows are arranged
in decreasing order of precedence. Also shown is the associativity of each
operator. The rules for asm68 are identical to those of the C language, while the
rules for asm68k are identical to those of the Motorola M68000 Resident
Structured Assembler.

150 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

asm68 asm68k

Operator Associativity Operator Associativity

() left to right () left to right

~ − right to left ~ − right to left

* / % left to right << >> left to right

+ − left to right & | ! ^ left to right

<< >> left to right * / % left to right

& left to right + − left to right

| ! left to right

^ left to right

Table 3.9: Operator Precedence/Associativity

3.3.7.3. Expression Evaluation

Expressions are evaluated using the precedence and associativity rules
described above. They are always calculated with 32-bit intermediate values,
regardless of the size of the result. An expression can be evaluated when it is
encountered if it contains no forward or undefined symbol references. Otherwise,
the evaluation of the expression is deferred until the source file has been
completely scanned so that any forward references can be resolved.

Once an expression has been evaluated by the assembler, it can be classified as
one of the following three types: absolute, simple relocatable, or complex
relocatable. An expression that evaluates to an absolute value is classified
absolute. If the expression has reduced to an absolute offset from an external
symbol or from the base address of a relocatable section, then the expression is
simple relocatable; otherwise, the expression is complex relocatable. An
expression that references multiple external symbols or symbols from different
relocatable sections would be classified as complex relocatable. See Figure 3.1
for an example of the different types of expressions.

.xref sym_x

sym_a = 18

sym_b:

.long 0xff << sym_a ; absolute

.long sym_f − sym_b ; absolute (deferred)

.long . + 8 ; simple relocatable

.long sym_f − 4 ; simple relocatable (deferred)

.long sym_b − sym_x ; complex relocatable

.long sym_b + sym_f ; complex relocatable (deferred)

sym_f:

Figure 3.1: Expression Evaluation

Section 3: Assembler 151

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

If the expression is relocatable, a relocation entry is generated and placed in the
object file so that the evaluation can be performed during linkage. All relocatable
expressions are resolved to absolute values after section allocation has been
performed (i.e., each relocatable section has been bound to an absolute
address). See section 1.4.5.2 Complex Relocation , for a complete description
of how complex relocation is performed.

Note: Complex relocation is not supported when either the -6 option or -c option has been
selected. An error is generated when a complex relocatable expression is used with
either of these flags.

Note: For users of the Motorola M68000 Resident Structured assembler (asm68k): The class
of expressions that are classified as complex relocatable has been extended to include
any expression that is neither absolute nor simple relocatable. Furthermore, the
limitations imposed on their usage in effective addresses have been lifted; they can be
used anywhere a simple relocatable expression can be used.

If an expression affects the size of the object code, its value must resolve to an
absolute value when it is encountered. Also, expressions used in assignments
must resolve to an absolute or simple relocatable expression when encountered.
Expressions used elsewhere will typically carry no restrictions. Any restrictions
that are applicable to a particular expression are noted with the description of its
usage.

If an expression is used as immediate data or an argument to a data directive,
and the size of the data is byte (8) or word (16), a “hole too small” warning will be
generated by the linker if the expression evaluates to a value outside the range
of a signed byte or word, respectively. An unsigned byte or word with the high
order bit set is rejected because it would be interpreted as a negative value when
used in an effective address as an absolute address or displacement. The
warning is sometimes incorrectly generated because the linker has no
information as to whether the expression it is evaluating is used as immediate
data (warning potentially incorrect) or in an effective address (warning correct).

To get around the warning problem, the linker can be forced to accept
expressions that resolve to unsigned values in the range 0 to 0xff f f (0xff in the
case of a byte) by explicitly masking the entire expression with 0xff f f (0xff). For
example, where the expression A + B resolves to the value 0x9040, the first
statement will generate a linker warning and the second will be accepted:

.word A+B ; linker warning generated

.word (A+B)&0xffff ; ok

152 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.4. Instruction Set

Only the 68000 instruction set is supported by Texas Instruments. Use of
unsupported instructions gives unpredictable results. This is especially true of the
floating-point instructions. See Table 3.32 in section 3.9 Instruction Set
Summary for a complete list of supported instructions. For detailed information
on any instruction, consult the appropriate Motorola reference manual (see
section 3.1.2 Prerequisite Reading). This section describes the accepted
instruction syntax, the sizing of instructions, and the optimizations that can be
performed.

3.4.1. Syntax

The assemblers asm68 and asm68k recognize the instruction mnemonics that
are used by Motorola. Mnemonics can be specified in either all uppercase or all
lowercase characters, and can include an optional size qualifier. The recognized
mnemonics and corresponding legal size qualifiers are shown in Table 3.32 in
section 3.9 Instruction Set Summary . For restrictions on the placement of
instructions imposed by the statement syntax, see section 3.3.2 Assembler
Statements .

3.4.2. Instruction Sizing

The size of an instruction is determined according to the first applicable rule in
the following list:

1. The size extension is used, if present.

2. The current default instruction size is used, if legal (see .opt isize / OPT
ISIZE directive).

3. The instruction’s default size is used (see Table 3.32, section
3.9 Instruction Set Summary).

Figure 3.2 demonstrates how these rules are used to determine the sizes of
various instructions. Word size is not legal for the lea instruction, and the jsr
instruction is unsized.

movea.l #array,a0 ; instruction size is long (rule 1)

move func,d0 ; instruction size is long (rule 2)

.opt isize = w ; set default instruction size to word

move func,d1 ; instruction size is word (rule 2)

lea (a0,d0),a1 ; instruction size is long (rule 3)

jsr (a1) ; not applicable

Figure 3.2: Instruction Sizing (asm68)

Section 3: Assembler 153

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.4.3. Instruction Optimization

By default, both assemblers perform instruction optimizations and corrections.
This feature can be disabled with the .opt noiopt / OPT NOIOPT directive. An
instruction is optimized by replacing it with a smaller, faster instruction that has
the same functionality (e.g., add.l #4,d0 can be replaced with addq #4,d0).
Corrections are performed on instructions when one of the effective addressing
modes is incompatible with the instruction. In this case, the instruction is replaced
with a closely related instruction in order to produce legal code
(e.g., add.l d0,a0 must be replaced with adda.l d0,a0). Instructions that
are not corrected will result in an error.

The instruction optimizations and corrections are summarized in Table 3.10. As
is shown, optimizations produce faster code with exactly the same results, and
corrections produce legal code with the original code’s intent.

154 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Instruction Modified Form

ADD <ea>,An ADDA <ea>,An

ADD #<data>,<ea> ADDI #<data>,<ea>

ADDI #<data>,An ADDA #<data>,An

ADD #<qdata>,<ea> ADDQ #<qdata>,<ea>

ADDI #<qdata>,<ea> ADDQ #<qdata>,<ea>

ADDA #<qdata>,An ADDQ #<qdata>,An

SUB <ea>,An SUBA <ea>,An

SUB #<data>,<ea> SUBI #<data>,<ea>

SUBI #<data>,An SUBA #<data>,An

SUB #<qdata>,<ea> SUBQ #<qdata>,<ea>

SUBI #<qdata>,<ea> SUBQ #<qdata>,<ea>

SUBA #<qdata>,An SUBQ #<qdata>,An

CMP #<data>,<ea> CMPI #<data>,<ea>

CMP <ea>,An CMPA <ea>,An

CMPI #<data>,An CMPA #<data>,An

CMP (Ay)+,(Ax)+ CMPM (Ay)+,(Ax)+

AND #<data>,<ea> ANDI #<data>,<ea>

OR #<data>,<ea> ORI #<data>,<ea>

EOR #<data>,<ea> EORI #<data>,<ea>

MOVE.L #<bdata>,Dn MOVEQ #<bdata>,Dn

MOVE <ea>,An MOVEA <ea>,An

Notation: <ea> = any legal effective address
#<data> = immediate data
#<bdata> = byte immediate data (byte)
#<qdata> = quick immediate data (range 1–8)

Table 3.10: Instruction Optimizations and Corrections

Section 3: Assembler 155

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.5. Effective Addressing Modes

Both assemblers support all effective addressing modes for the 68000
microprocessor. They recognize a flexible addressing mode syntax, while
providing the user with full control over addressing mode selection. Additionally,
they perform various optimizations and coercions to allow the most efficient
addressing possible. This section describes the 68000 effective addressing
modes, relevant terminology, the accepted syntax for the addressing modes, and
which modes are generated given a particular syntax and set of user options.

3.5.1. Overview

The effective addressing modes supported by the various 68000 family
processors are summarized in Table 3.11; also shown are the processors to
which each addressing mode is applicable. However, only the 68000 addressing
modes are supported by Texas Instruments. For convenience, the effective
address notation used in this table and throughout this section is identical to that
which is used in the Motorola reference manuals.

The various effective addressing modes can be categorized according to the
ways in which they can be used. The following is a list of classifications that are
useful for describing restrictions on the use of different addressing modes.

• Data — the addressing mode can be used to refer to data operands.

• Memory — the addressing mode can be used to refer to memory operands.

• Control — the addressing mode can be used to refer to memory operands
that do not have an associated size.

• Alterable — the addressing mode can be used to refer to alterable
(i.e., writeable) operands.

These terms can be combined to form more restrictive classes of effective
addressing modes. For example, a data alterable mode is one that is both a data
reference and alterable. Table 3.12 summarize the effective addressing modes
and the categories to which they belong.

156 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Addressing Mode Syntax 68000/08/1
0

CPU32* 68020/30/40
*

Register Direct

 Data Dn ✓ ✓ ✓

 Address An ✓ ✓ ✓

Register Indirect

 Address (An) ✓ ✓ ✓

 Address with Postincrement (An)+ ✓ ✓ ✓

 Address with Predecrement –(An) ✓ ✓ ✓

 Address with Displacement (d16,An) ✓ ✓ ✓

Address Register Indirect with Index

 8-Bit Displacement (d8,An,Xn) ✓ ✓ ✓

 Base Displacement (bd,An,Xn) ✓ ✓

Memory Indirect

 Postindexed ([bd,An],Xn,od) ✓

 Preindexed ([bd,An,Xn],od) ✓

Program Counter Indirect

 with Displacement (d16,PC) ✓ ✓ ✓

Program Counter Indirect with Index

 8-Bit Displacement (d8,PC,Xn) ✓ ✓ ✓

 Base Displacement (bd,PC,Xn) ✓ ✓

Program Counter Memory Indirect

 Postindexed ([bd,PC],Xn,od) ✓

 Preindexed ([bd,PC,Xn],od) ✓

Absolute Data Addressing

 Short (xxx).W ✓ ✓ ✓

 Long (xxx).L ✓ ✓ ✓

Immediate #<data> ✓ ✓ ✓

*Not supported by Texas Instruments.

Notation: Dn = Data register d8 = Byte displacement
An = Address register d16 = Word displacement
PC = Program counter bd = Base displacement
Xn = Index register od = Outer displacement
xxx = Expression <data> = Immediate value

Table 3.11: Effective Addressing Modes

Section 3: Assembler 157

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Addressing Mode Data Memory Control Alterable

Register Direct

 Data ✓ ✓

 Address ✓

Register Indirect

 Address ✓ ✓ ✓ ✓

 Address with Postincrement ✓ ✓ ✓

 Address with Predecrement ✓ ✓ ✓

 Address with Displacement ✓ ✓ ✓ ✓

Address Register Indirect with Index

 8-Bit Displacement ✓ ✓ ✓ ✓

 Base Displacement ✓ ✓ ✓ ✓

Memory Indirect

 Postindexed ✓ ✓ ✓ ✓

 Preindexed ✓ ✓ ✓ ✓

Program Counter Indirect

 with Displacement ✓ ✓ ✓

Program Counter Indirect with Index

 8-Bit Displacement ✓ ✓ ✓

 Base Displacement ✓ ✓ ✓

Program Counter Memory Indirect

 Postindexed ✓ ✓ ✓

 Preindexed ✓ ✓ ✓

Absolute Data Addressing

 Short ✓ ✓ ✓ ✓

 Long ✓ ✓ ✓ ✓

Immediate ✓ ✓

Table 3.12: Effective Addressing Mode Categories

3.5.2. Terminology

The term base register refers to the register that is used as the base address in
an indexed addressing mode. Any address register or the program counter can
be used as a base register. The term index register refers to the register that is
added to the base address in an indexed addressing mode. Any data register or
address register can be used as an index register.

158 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

If the base or index register is omitted from an addressing mode, it is said to be
suppressed. When a register is suppressed, its value is zero in the effective
address calculation. Since Texas Instruments only supports the 68000,
suppression is not allowed.

The term displacement is used to describe either an absolute address or a
signed offset from a base address. Any integer expression (see section
3.3.7 Expressions) can be used to designate a displacement. The following
types of displacements are used in the 68000 family effective addressing modes,
however, only the displacements allowed on the 68000 are supported by Texas
Instruments:

• Byte displacement — d8

• Word displacement — d16

• Base displacement — bd

• Outer displacement — od

• Absolute short address — (xxx).W

• Absolute long address — (xxx).L

Base and outer displacements can be either a word or a long word. If omitted,
they are said to be null displacements, which have a value of zero in effective
address calculations.

3.5.3. Effective Address Syntax

This section describes how effective addresses are specified in assembly
language. The syntax accepted by both assemblers is an extension of the
Motorola syntax in that it provides more flexibility in the placement of the effective
address operands and permits the use of whitespace (asm68 only) for increased
readability. The accepted syntax is as follows:

• Parentheses are used to designate indirection through a register.

• The comma (,) is used to separate address components.

• The plus sign (+) and the minus sign (−) are used to specify the
postincrement and predecrement modes, respectively.

• The pound sign (#) is used to designate immediate data.

• The size qualifiers .w and .l can be appended to any index register.

• All registers (i.e., data, address, floating-point, and control registers) are
specified using Motorola’s naming conventions.

Section 3: Assembler 159

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

• Registers can be specified in either all uppercase or all lowercase characters.

• sp (or SP) is a synonym for a7.

• The hyphen (−) and slash (/) are used to specify register lists; the hyphen
is used to designate an ascending register range and the slash is used to
separate ranges (e.g., d3−d7/a2−a4).

• Whitespace can be used between operands and within expressions (asm68).

All operands are required for the addressing modes that apply to the 68000; in
the other effective addressing modes, all operands are optional. If a register
operand is legally omitted from an addressing mode, it is suppressed (see
section 3.5.2 Terminology). Since Texas Instruments only supports the 68000,
suppression is not allowed.

The order of operands within parentheses is significant only if it results in
ambiguity. The only such case is when two address registers, of which one or
both can be suppressed, are used and neither has a size qualifier or scaling
factor. Since it cannot be determined which is the base register, the one on the
left is selected arbitrarily. The address register on the right is used as the index
register.

For backward compatibility, the old-style displacement notation associated with
the 68000 is accepted; the effects of specifying effective addresses using
old-style 68000 syntax are discussed below. Table 3.13 shows the four
applicable 68000 addressing modes with both old and new syntaxes.

Addressing Mode Old Syntax New Syntax

Address Register Indirect with Displacement d16(An) (d16,An)

Address Register Indirect with Index (8-Bit Displacement) d8(An,Xn) (d8,An,Xn)

Program Counter Indirect with Displacement d16(PC) (d16,PC)

Program Counter Indirect with Index (8-Bit Displacement) d8(PC,Xn) (d8,PC,Xn)

Table 3.13: Displacement Syntax Comparisons

Note: The addressing mode (expr,PC) or expr(PC) means that expr is referenced relative to
the program counter; it does not represent a relative reference of expr bytes from the
PC. For example, (8,PC) references the absolute address 8 via the program counter. To
represent a PC-relative reference of 8 bytes from the beginning of the current instruction,
the correct syntax is (.+8,PC) or (*+8,PC), depending on the assembler.

160 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.5.4. Addressing Mode Selection

The assembler performs various optimizations and coercions on eligible effective
addressing modes in order to produce more efficient code. The following
addressing modes are not affected:

• Data register direct.

• Address register direct.

• Address register indirect.

• Address register indirect with postincrement.

• Address register indirect with predecrement.

• Immediate data.

For all other addressing modes, the mode selection is carried out in three
phases. First, coercion to a PC-relative addressing mode is performed, if
possible. Using a PC-relative mode typically results in a smaller, faster
instruction. This step can be bypassed with the .opt nopc / OPT NOPC directive.
Second, displacements are sized minimally for the current set of user-specified
effective address options. Finally, the mode selection is made.

3.5.4.1. PC-relative Coercion

The effective address specifications that are eligible for PC-relative coercion are
those that have a displacement and no base register. This includes the absolute
addressing modes, the register indirect modes, and the memory indirect modes.
The following criteria must be met for coercion to be performed:

1. The appropriate PC addressing mode must be legal for the instruction.

2. The displacement must not have a size qualifier.

3. The settings of the PC-relative coercion options must allow it.

In the following discussion, pcb32 / PCB32 is included for completeness, but is
not supported by Texas Instruments. The options related to PC-relative coercion
(see .opt / OPT directive) are the following:

pcb16 / PCB16 pcf / PCF nopc / NOPC

pcb32 / PCB32 pca / PCA nopca / NOPCA

These settings are used as described below to control the situations in which
PC-relative coercion is performed. The primary consideration is whether or not a
PC-relative displacement can be computed when its associated effective address
is encountered. The computation can be performed if the displacement involves
no forward or external references, and the effective address and referenced

Section 3: Assembler 161

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

location are both in the same relocatable section or are both in absolute sections
(see section 3.3.7.3 Expression Evaluation).

If the displacement can be computed relative to the program counter when it is
encountered, then coercion is performed if one of the following two conditions is
met:

• The pcb32 / PCB32 option is in effect.

• The pcb16 / PCB16 option is in effect and the relative displacement fits in a
word.

If the displacement cannot be computed relative to the program counter, then
coercion is performed if one of the following three conditions is met:

• The pcb16 / PCB16 option is in effect and the coercion is permitted by
relocation hole compression.

• The pcf / PCF option and the pca / PCA option are both in effect.

• The pcf / PCF option is in effect and neither the displacement nor the
reference of the displacement is known to be in an absolute section when the
instruction is encountered.

To generate position-independent code, the pcf / PCF and nopca / NOPCA
options should be selected. For more information on these option settings see
sections 3.6 Asm68 Assembler Directives and 3.7 Asm68k Assembler
Directives .

3.5.4.2. Displacement Sizing

If a size qualifier is present, the designated size is used. An error is generated if it
can be determined that this size is too small for the displacement. In the absence
of a size qualifier, the size of the displacement is based on its value; however, if
the value cannot be reduced to an absolute expression when it is encountered
(see section 3.3.7.3 Expression Evaluation), the displacement is sized
according to the current set of displacement sizing options. These options are
summarized in Table 3.14 and Table 3.15, which show the sizing rules for
unknown absolute and PC-relative displacements, respectively. For more
information on these options, see the .opt / OPT directive.

162 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Size Option (asm68) Option (asm68k)

word a16 FRS

long a32 FRL†

† The displacement size is word if either the current section or the section
in which the displacement is defined has the .S qualifier; the size is also
word if the displacement is a symbol defined with the COMM.S or
LCOMM.S directive, or declared external with the XREF.S directive.

Table 3.14: Unknown Absolute Displacement Sizing

Size Option (asm68) Option (asm68k)

byte fr8 BRB / BRS

word fr16 BRW

Table 3.15: Unknown PC-Relative Displacement Sizing

The options described above are overridden when either hole compression
permits the use of a word displacement or the old-style displacement syntax is
used. If a base and index register are used with the old-style syntax, the
displacement is a byte; if only a base register is used, the displacement is a
word.

3.5.4.3. Mode selection

After PC-relative coercion has been attempted and displacement sizing has been
performed, the specified address consists of one or more of the following (see
Table 3.11 for addressing modes supported by Texas Instruments):

• Base displacement (minimally sized).

• Outer displacement (minimally sized).

• Base register (possibly PC resulting from coercion).

• Index register.

If the address consists of a base displacement with no memory indirection, then
the absolute short or absolute long addressing mode is selected depending on
the size of the displacement.

If the address consists of a byte displacement, a base register, an index register,
and no memory indirection, then the (d8,An,Xn) or (d8,PC,Xn) mode is selected.
When assembling for the 68000, the displacement can be omitted provided that
the .opt iopt / OPT IOPT directive is in effect (default).

If the address consists of a byte or word displacement, a base register, and no
memory indirection, then the (d16,An) or (d16,PC) mode is selected. The

Section 3: Assembler 163

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

address (0,An) is optimized to (An) when the .opt iopt / OPT IOPT directive is in
effect (default).

Otherwise, the appropriate register indirect or memory indirect mode is selected
as determined by the syntax (i.e., the position of the square brackets or a lack
thereof). The individual components of the address are determined as follows:

• If the base register has been omitted, then a suppressed address register is
used. This condition implies that PC-relative coercion has failed.

• If the index register has been omitted, then a suppressed index register is
used. If memory indirection is being performed, the preindexed mode is used
(as opposed to the postindexed mode). The choice of mode, however, does
not affect the effective address calculation.

• If the base displacement has been omitted, a null displacement is used. A
word displacement is used in the case of a byte-size displacement.

• If the outer displacement has been omitted, a null displacement is used. A
word displacement is used in the case of a byte-size displacement.

3.6. Asm68 Assembler Directives

Assembler directives are used in assembly source to generate data and to alter
the assembler’s object code generation behavior. This section describes the
various directives supported by asm68 and supplies examples of their typical
usage. The directives are first presented in functional groups, a summary of
which is presented in Table 3.16. For ease of reference, full descriptions of the
directives, including syntax and examples, are then provided in an alphabetically
arranged format.

Group Description

Section directives Create and resume sections

Symbol directives Create and modify symbols

Data/Fill directives Generate initialized/uninitialized data

Control directives Control assembly

Output directives Specify output settings

Debugging directives Generate debugging information

Table 3.16: Directive Groups

164 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The mnemonics for the asm68 assembler directives, like those for instructions,
are written in either all uppercase or all lowercase characters. As stated earlier,
the mnemonics for asm68 are shown in lowercase characters only to
differentiate them from those for asm68k , which are shown in uppercase
characters.

3.6.1. Asm68 Section Directives

Section directives can be used to manage both absolute and relocatable sections
with any of the following types: text-type, data-type, or BSS-type. Text-type
sections contain read-only data. Data-type sections contain initialized read/write
data. BSS-type sections contain uninitialized read/write data. Section directives
remain in effect until another section directive is issued.

Section directives can also be used to create structure template sections; these
are special dummy sections that allow the convenient definition of labels suitable
for structure field references. Table 3.17 summarizes the section directives for
asm68 . For more information, see section 3.3.4 Sections . See chapter 7. Flash
Application Layout in the TI-89 / TI-92 Plus Developer Guide for information on
the use and initialization of the TI-89 / TI-92 Plus sections.

Directive Function

.bsection Begin/resume a given BSS-type section

.bss Begin/resume the BSS-type section .bss

.data Begin/resume the data-type section .data

.dsection Begin/resume a given data-type section

.ends End a structure template section

.org Begin an unnamed, absolute, data-type section

.reorg Reset the location counter in an absolute section

.section Begin/resume a given data-type section

.struct Begin a structure template section

.text Begin/resume the text-type section .text

.tsection Begin/resume a given text-type section

Table 3.17: Section Directives

Section 3: Assembler 165

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.6.2. Asm68 Symbol Directives

Symbol directives are used to define symbols, declare their scopes, and set their
values. By default, symbols have static scope, i.e., they are local to the files in
which they are defined. In order to be referenced from within other files, they
must be declared to have external scope. Table 3.18 summarizes the symbol
directives for asm68 . For more information, see section 3.3.5 Symbols .

Directive Function

.comm Define a comm symbol

.extern Declare external a referenced symbol

.external Declare external a referenced symbol

.global Declare external a defined symbol

.globl Declare external a defined symbol

.lcomm Define an lcomm symbol

.xdef Declare external a defined symbol

.xref Declare external a referenced symbol

Table 3.18: Symbol Directives

166 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.6.3. Asm68 Data/Fill Directives

Data directives are used to generate integer and floating-point data. Integer data
can be expressed as integer constants, character constants, or any integer
expression (see section 3.3.7 Expressions). Floating-point data can be
expressed as either floating-point symbols or floating-point constants. A single
data directive can be used to generate multiple data items. Fill directives are
used to allocate storage, typically for uninitialized data. Table 3.19 summarizes
the data and fill directives for asm68 . For more information, see sections
3.3.5 Symbols and 3.3.6 Constants .

Directive Function

.align Align location counter

.ascii Generate integer data (byte)

.bin Include contents of binary file

.byte Generate integer data (byte)

.double Generate TI BCD floating-point data

.extend Not supported

.fill Generate a block of initialized data

.float Generate TI BCD floating-point data

.fpdata Not supported

.long Generate integer data (long-word)

.packed Not supported

.short Generate integer data (word)

.single Not supported

.space Generate a block of uninitialized data

.word Generate integer data (word)

Table 3.19: Data/Fill Directives

Section 3: Assembler 167

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.6.4. Asm68 Control Directives

Assembly control directives provide mechanisms for controlling when and how
instructions and directives are assembled. Their uses include option setting,
conditional assembly, and source file inclusion. Table 3.20 summarizes the
assembly control directives for asm68 .

Directive Function

.cmnt Begin comment block

.elifdef Assemble if alternative symbol defined

.else Assemble if converse true

.end End assembly

.endc End comment block

.endif End conditional assembly

.ifdef Assemble if symbol defined

.ifndef Assemble if symbol not defined

.include Include assembler source file

.opt Set assembler options

Table 3.20: Control Directives

3.6.5. Asm68 Output Directives

Output directives are used to format assembly listing files and to generate
diagnostic messages. Table 3.21 summarizes the output directives for asm68 .

Directive Function

.echo Echo message

.page Begin new listing page

Table 3.21: Output Directives

168 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.6.6. Asm68 Debugging Directives

Debugging directives are used to generate source-level debugging information.
They are typically generated by the Sierra Systems C compiler to allow
source-level debugging, but can also be used when programming in assembly
language. Table 3.22 summarizes the debugging directives for asm68 .

The debugging directive descriptions are provided primarily to facilitate
interpreting the compiler-generated directives. Their use is not recommended for
programs written in assembly language. Instead, the -L command line flag
should be used in conjunction with the .type directive to provide a reasonable
level of debugging capability. When the -L command line flag is specified, a line
number entry is generated for each instruction and memory allocation directive in
text-type sections.

Directive Function

.def Begin symbol attribute block

.dim Set array dimension attribute

.endef End symbol attribute block

.file Set name of source file

.line Set line number attribute

.ln Create line number entry

.scl Set storage class attribute

.size Set size attribute

.tag Set tag name attribute

.type Set type attribute

.val Set value attribute

Table 3.22: Debugging Directives

3.6.7. Asm68 Directive Reference

The remainder of this section provides, in alphabetical order, detailed
descriptions of the directives supported by asm68 .

Section 3: Assembler 169

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.align — Align Location Counter

Syntax

.align { 1 | 2 | 4 | 8 }

Description

The .align directive aligns the current section’s location counter to the nearest
multiple of the specified byte count. Any required padding is filled with the current
fill value (see .opt fillval).

Example

.align 2

.word 0x4000

.ascii — Generate Integer Data (Byte)

Syntax

.ascii operand [, operand] . . .

Description

operand Specifies an integer expression.

The .ascii directive generates byte integer data. The values of the specified
operands are placed in successive bytes beginning at the current location in the
current section. This directive is a synonym for the .byte directive. For additional
information, see section 3.3.6.2 Character Constants .

Examples

.ascii "Hello!\0" ; 4865 6c6c 6f21 00

.ascii 'a' ; 61

.ascii %1111,017,15,0xf ; 0f0f 0f0f

.ascii 16 * 4 + 3 ; 43

Each of the above examples is shown with the code sequence (in hexadecimal)
that it generates.

170 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.bin — Include Contents of Binary File

Syntax

.bin " filename "

Description

filename The name of a binary file (including an optional absolute or
relative path).

The .bin directive inserts the contents of the specified binary file at the current
position in the assembler source. If the file is not specified with a full path, it is
searched for in (or, relative to) the following directories in the indicated order:

1. The current directory.

2. Directories specified with the -I flag.

3. Directories specified with the environment variables INCLUDE68 or SIERRA
(see section 3.2.4 Environment Variables).

Examples

.bin "table.inc"

.bin "../include/graphics.std"

Section 3: Assembler 171

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.bsection — Begin / Resume a BSS-type Section

Syntax

.bsection name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a period (.).

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .bsection directive begins a BSS-type section with name name. If address is
specified, the section is absolute and begins at that address; otherwise, the
section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location.
Relocatable sections cannot be resumed with an address specification.

No object code can be generated in BSS-type sections; they contain only
uninitialized read/write data.

Examples

.bsection zero ; relocatable

.bsection stats, 0x4000 ; absolute

.bss — Begin / Resume the BSS-type Section .bss

Syntax

.bss

Description

The .bss directive begins or resumes the BSS-type section .bss . It is functionally
equivalent to .bsection .bss .

The section .bss contains only uninitialized data; therefore, no object code can
be generated in this section. The section .bss is present in all object files,
regardless of whether it is specified. For more information, see section
3.3.4.1 Section Types .

172 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.byte — Generate Integer Data (Byte)

Syntax

.byte operand [, operand] . . .

Description

operand Specifies an integer expression.

The .byte directive generates byte integer data. The values of the specified
operands are placed in successive bytes beginning at the current location in the
current section. This directive is a synonym for the .ascii directive. For additional
information, see section 3.3.6.2 Character Constants .

Examples

.byte "Hello!\0" ; 4865 6c6c 6f21 00

.byte 'a' ; 61

.byte %1111,017,15,0xf ; 0f0f 0f0f

.byte 16 * 4 + 3 ; 43

Each example is shown with the generated code sequence (in hexadecimal).

.cmnt — Begin Comment Block

Syntax

.cmnt

Description

The .cmnt directive begins a comment block. All assembler statements between
this directive and its matching .endc directive are ignored. Pairs of comment
block directives can be nested.

Example

.cmnt

These lines are ignored by the assembler;

no other comment markers are needed.

.endc

Section 3: Assembler 173

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.comm — Define a comm Symbol

Syntax

.comm symbol , count [, align]

Description

symbol Specifies a symbol that is not defined elsewhere in the current file.

count Specifies the number of bytes associated with the symbol. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

align Specifies the alignment requirements for the symbol. Its value can
be 1, 2, or 4. It is an absolute expression that cannot contain any
forward, external, or undefined references.

The .comm directive defines the specified symbol symbol and associates with it
a block of uninitialized data in the BSS-type section .bss . The number of bytes in
this block is specified by count. The alignment of the block is specified by align; if
omitted or if the -c flag has been specified, quad alignment is used.

The scope of the symbol symbol is external. The block of data is allocated during
linkage, unless the -6 flag has been specified, in which case it is allocated during
assembly. For more information, refer to section 3.3.5.4 Comm and Lcomm
Symbols .

Examples

.comm table, 4096

.comm strings, 256, 2

.data — Begin / Resume the Data-type Section .data

Syntax

.data

Description

The .data directive begins or resumes the data-type section .data . It is
functionally equivalent to .dsection .data .

The section .data contains initialized read/write data. It is present in all object
files, regardless of whether it is specified. For additional information, refer to
section 3.3.4.1 Section Types .

174 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.def — Begin Symbol Attribute Block

Syntax

.def symbol

Description

symbol Specifies a symbol that is defined in the current assembler source
file or corresponding C source file.

The .def directive begins an attribute block for the symbol symbol. The .dim ,
.line , .scl , .size , .tag , .type , and .val directives are used to set the various
attributes of a symbol (see section 1.4 Object File Format). The .endef directive
must be used to end an attribute block. For convenience, the directives that
comprise a symbol attribute block can be specified as a backslash-separated list.

The information contained in an attribute block is stored in the object file’s symbol
table for purposes of symbolic debugging. The Sierra C compiler automatically
generates these attribute blocks for all symbols when the -q command line flag
is specified. They can be written manually when performing assembler
source-level debugging, but this is not recommended. Adequate debugging
information can be generated with the -L assembler command line flag, which
directs the assembler to generate line number information, and with the .type
directive, which can be used to specify symbol types directly (i.e., without a
symbol attribute block).

Examples

.def init

.val init

.scl 2

.type 0x24

.endef

.def tbl \ .val 12 \ .scl 3 \ .type 0x4 \ .endef

Section 3: Assembler 175

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.dim — Set Array Dimension Attribute

Syntax

.dim dim [, dim [, dim [, dim]]]

Description

dim Specifies an array dimension of the current symbol. It is an
absolute expression that cannot contain any forward, external, or
undefined references. Up to four dimensions can be specified.

The .dim directive sets the dimension attribute of the symbol referenced by the
current attribute block (see .def directive). The dimension attribute is specified for
array types (see sections 1.4.8.7 Type Entry and 1.4.9.6 Arrays). This directive
can appear at most once per symbol attribute block.

The .dim directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type directive).

Example

.def buf

.val buf

.dim 16,4 ; buf is a two-dim array, int buf[16][4]

.scl 2

.type 0xf4

.line 25

.size 256

.endef

176 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.double — Generate Floating-Point Data

Syntax

.double operand [, operand] . . .

Description

operand Specifies a floating-point symbol or floating-point constant. No
forward references are allowed.

The .double directive generates TI BCD floating-point data. The values of the
specified operands are placed in 10 bytes beginning at the current location in the
current section. A warning is issued if the alignment is odd.

Examples

_PI:

 .double 3.141592653589793 ; 4000 3141 5926 5358 9793

 .double 0X40003141592653589793 ; 4000 3141 5926 5358 9793

 .double -10,.2 ; c001 1000 0000 0000 0000

; 3fff 2000 0000 0000 0000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

Section 3: Assembler 177

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.dsection — Begin / Resume a Data-type Section

Syntax

.dsection name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a period (.).

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .dsection directive begins a data-type section with name name. If address is
specified, the section is absolute and begins at that address; otherwise, the
section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location; any
space that is created is filled with the current fill value (see .opt fillval).
Relocatable sections cannot be resumed with an address specification.

Examples

.dsection table ; relocatable

.dsection ram, 0x8000 ; absolute

178 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.echo — Echo Message

Syntax

.echo { text | expression [.format] } . . .

Description

text Specifies an ASCII string. Whitespace characters are permitted,
but curly braces ({ }) are not.

expression Specifies an absolute expression that cannot contain any forward,
external, or undefined references. The expression must be
enclosed in curly braces ({ });

format Specifies the format for printing the preceding expression. The
legal format characters, which correspond to those of the ANSI
standard C library function printf , are shown below; the default
is d.

d Signed decimal

u Unsigned decimal

o Octal

x Hexadecimal (lower case)

X Hexadecimal (upper case)

The .echo directive causes the specified message to be written to the standard
output stream, stdout . The end of the message is marked by the newline
character; therefore, no comment field is permitted with this directive. This
directive can be used for both informational and diagnostic purposes.

Example

.echo The end of the data section is {data_end}.x

The symbol data_end is a user-defined label, which has been defined prior to the
directive in this example. If the value of the label is 0x42f8, then this directive
produces the following message:

The end of the data section is 42f8

Section 3: Assembler 179

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.elifdef — Assemble If Alternative Symbol Defined

Syntax

.elifdef symbol

Description

symbol Specifies a user-defined symbol.

The .elifdef directive is used in a conditional assembly block. It is equivalent to
the .else directive followed by an .ifdef – .endif block (see .ifdef and .endif
directives). Its use obviates the need for multiple .endif directives in conditional
blocks that have multiple alternatives.

The .elifdef directive is optional within a conditional assembly block.

Example

.ifdef option1

moveq #1,d0

.elifdef option2

moveq #2,d0

.elifdef option3

moveq #3,d0

.endif

180 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.else — Assemble If Converse True

Syntax

.else

Description

The .else directive is used in a conditional assembly block. This directive
matches the immediately preceding .ifdef , .ifndef , or .elifdef directive that is not
matched by a .endif or .else directive. If this preceding directive fails, then the
statements between the .else directive and the matching .endif directive are
assembled; otherwise, these statements are skipped.

The .else directive is optional within a conditional assembly block.

Example

.ifdef debug

moveq #1,d0

.else

moveq #0,d0

.endif

.end — End Assembly

Syntax

.end

Description

The .end directive ends assembly in the current source file. Any assembler
statements appearing after this directive are ignored.

.endc — End Comment Block

Syntax

.endc

Description

The .endc directive ends a comment block (see .cmnt directive).

Section 3: Assembler 181

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.endef — End Symbol Attribute Block

Syntax

.endef

Description

The .endef directive ends the current symbol attribute block (see .def directive).

.endif — End Conditional Assembly Block

Syntax

.endif

Description

The .endif directive ends a conditional assembly block (see .ifdef and .ifndef
directives).

Example

.ifdef debug

jsr mem_dump

.endif

.ends — End a Structure Template Section

Syntax

.ends

Description

The .ends directive ends a structure template section. The section that was
active prior to the structure template section is automatically resumed. Refer to
the description of the .struct directive for more information.

.extend — Generate Floating-Point Data (Extended-Precision)

Not supported by Texas Instruments. However, .extend is still recognized as a
reserved name by asm68 .

182 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.extern / .external — Declare External a Referenced Symbol

Syntax

.extern symbol [, symbol] . . .

.external symbol [, symbol] . . .

Description

symbol Specifies a symbol that is referenced (but not defined) in the
current file. Section names and floating-point symbols are not
allowed.

The .extern and .external directives declare the scope of the symbol symbol to
be external. This is necessary when a locally referenced symbol is defined in
another source file. These directives are synonyms for the .xref directive.

Symbols that are referenced in a file but not defined in that file are assumed to
have external scope; therefore, these directives are not necessary (unless the -E
flag is specified on the command line).

Examples

.extern base, init, input

.external proc1, jmp_tbl

.file — Set Name of Source File

Syntax

.file " filename "

Description

filename Specifies the name of either the assembler source file or the
corresponding C source file. It can be up to 14 characters in
length.

The .file directive sets the name of the source file for purposes of source-level
debugging. This directive can appear at most once per source file. It is generated
internally by the assembler if it does not appear or if it specifies a C source file
when the -L command line flag is used. For more information, see section
1.4.7.1 Special Symbols .

Example

.file "demo.c"

Section 3: Assembler 183

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.fill — Allocate a Block of Initialized Memory

Syntax

.fill[.size] count , value

Description

size Specifies the unit size. The legal size qualifiers are shown below;
the default is b.

b Byte Integer (1 byte)

w Word Integer (2 bytes)

l Long-word Integer (4 bytes)

s Single-precision Real (not supported)

d Double-precision Real (not supported)

x Extended-precision Real (not supported)

p Packed Decimal Real (not supported)

count Specifies the unit count. It is an absolute expression that cannot
contain any forward, external, or undefined references.

value Specifies the unit value. If size is w or l , any integer expression
can be used; otherwise, an absolute expression that contains no
forward, external, or undefined references must be used.

The .fill directive allocates a block of initialized memory whose size is determined
by the number and size of the unit location. Each location is filled with the
specified value value. This directive cannot be used in BSS-type sections.

Examples

.fill 256, 0xff

.fill.l 16, err_vector

184 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.float — Generate Floating-Point Data (Single-Precision)

Syntax

.float operand [, operand] . . .

Description

operand Specifies a floating-point symbol or floating-point constant. No
forward references are allowed.

The .float directive generates TI BCD floating-point data. The values of the
specified operands are placed in 10 bytes beginning at the current location in the
current section. A warning is issued if the alignment is odd. The data generated
is the same as the .double directive, allowing 16 digits in the mantissa. Since a
float in the compiler, com68 , contains only 14 significant digits in the mantissa, it
is recommended to always use .double to avoid confusion.

Examples

.float 3.141592653589793 ; 4000 3141 5926 5358 9793

.float -10,.2 ; c001 1000 0000 0000 0000

; 3fff 2000 0000 0000 0000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

.fpdata — Generate Floating-Point Data

Not supported by Texas Instruments; however, .fpdata is still recognized as a
reserved name by asm68 .

Section 3: Assembler 185

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.global / .globl — Declare External a Defined Symbol

Syntax

.global symbol [, symbol] . . .

.globl symbol [, symbol] . . .

Description

symbol Specifies a symbol that is defined in the current file. Section
names and floating-point symbols are not allowed.

The .global and .globl directives declare the scope of the symbol symbol to be
external. This is necessary when the symbol is referenced in other source files
since the default symbol scope is static. These directives are synonyms for the
.xdef directive.

Examples

.globl main, jmp_tbl

.global diag_list, proc1, eval

.ifdef — Assemble If Symbol Defined

Syntax

.ifdef symbol

Description

symbol Specifies a user-defined symbol.

The .ifdef directive introduces a conditional assembly block. If the specified
symbol symbol is defined when the directive is encountered, then the statements
between this directive and the first matching .elifdef , .else , or .endif directive are
assembled and the remainder of the block is skipped. Otherwise, the statements
associated with the .ifdef directive are skipped and control passes to the
aforementioned matching directive.

Conditional assembly directives can be nested to 40 levels.

Example

.ifdef serial

move.l #serial_dev, io_func

.endif

186 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.ifndef — Assemble If Symbol Not Defined

Syntax

.ifndef symbol

Description

symbol Specifies a user-defined symbol.

The .ifndef directive introduces a conditional assembly block. If the specified
symbol symbol is not defined when the directive is encountered, then the
statements between this directive and the first matching .elifdef , .else , or .endif
directive are assembled and the remainder of the block is skipped. Otherwise,
the statements associated with the .ifdef directive are skipped and control
passes to the aforementioned matching directive.

Conditional assembly directives can be nested to 40 levels.

Example

.ifndef serial

move.l #parallel_dev, io_func

.endif

Section 3: Assembler 187

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.include — Include Assembler Source File

Syntax

.include " filename "

Description

filename The name of an assembler source file (including an optional
absolute or relative path).

The .include directive inserts the contents of the specified file at the current
position in the assembler source. If the file is not specified with a full path, it is
searched for in (or, relative to) the following directories in the indicated order:

1. The current directory.

2. Directories specified with the -I flag.

3. Directories specified with the environment variables INCLUDE68 or SIERRA
(see section 3.2.4 Environment Variables).

This directive can be nested, i.e., included files can themselves include files. The
assembler imposes no limit on the level of nesting.

Examples

.include "table.inc"

.include "../include/vector.h"

188 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.lcomm — Define an lcomm Symbol

Syntax

.lcomm symbol , count [, align]

Description

symbol Specifies a symbol that is not defined elsewhere in the current file.

count Specifies the number of bytes associated with the symbol. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

align Specifies the alignment requirements for the symbol. Its value can
be 1, 2, or 4. It is an absolute expression that cannot contain any
forward, external, or undefined references.

The .lcomm directive defines the specified symbol symbol and associates with it
a block of uninitialized data in the BSS-type section .bss . The number of bytes in
this block is specified by count. The alignment of the block is specified by align; if
omitted or if the -c flag has been specified, quad alignment is used.

The scope of the symbol symbol is static. The block of data is allocated during
assembly. For more information, refer to section 3.3.5.4 Comm and Lcomm
Symbols .

Examples

.lcomm table, 4096

.lcomm strings, 256, 4

Section 3: Assembler 189

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.line — Set Line Number Attribute

Syntax

.line line

Description

line Specifies the number of the line on which the current symbol is
defined. It is an absolute expression that cannot contain any
forward, external, or undefined references.

The .line directive sets the line number attribute of the symbol referenced by the
current attribute block (see .def directive). For a detailed description of this
attribute, see section 1.4.9 Auxiliary Table Entries . This directive can appear at
most once per symbol attribute block.

The .line directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type directive).

Example

.def buf

.val buf

.dim 16,4

.scl 2

.type 0xf4

.line 25 ; buf is defined on line 25

.size 256

.endef

190 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.ln — Create Line Number Entry

Syntax

.ln line

Description

line Specifies the current line number in the source file. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .ln directive creates a line number entry for purposes of source-level
debugging. This entry associates the current section’s location counter with a line
in the associated C source file. For more information, refer to section 1.4.6 Line
Number Information . This directive cannot be used in BSS-type sections.

The .ln directive is typically used only for C source-level debugging; it is ignored
when assembler source-level line number information is generated with the -L
command line flag.

Example

.ln 33

add d0,d1

Section 3: Assembler 191

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.long — Generate Integer Data (Long-Word)

Syntax

.long operand [, operand] . . .

Description

operand Specifies an integer expression.

The .long directive generates long-word integer data. The values of the specified
operands are placed in successive long words beginning at the current location
in the current section. A warning is issued if the alignment is odd. For additional
information, see section 3.3.6.2 Character Constants .

Examples

.long 'abcd' ; 61626364

.long 16777215, 0xffffff ; 00ffffff 00ffffff

.long 0xff << 24 ; ff000000

Each of the above examples is shown with the sequence of long words (in
hexadecimal) that it generates.

192 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.opt — Set Assembler Options

Syntax

.opt option [, option] . . .

Description

option An assembler option.

The .opt directive sets the specified assembler options. These options affect the
assembly of instructions, effective addresses, and data. They also provide a
means of customizing the assembly listing output. Only options valid for the
68000 are supported by Texas Instruments.

Options

a16
a32

Set the size of unknown absolute displacements to either 16
or 32 bits (see section 3.5.4.2 Displacement Sizing).
(Default: a32)

dlist
nodlist

Enable/disable full listing of data directive assembly. The
dlist option allows the object code associated with data
directives (e.g., .byte , .word , etc.) to be listed in its entirety,
while the nodlist option permits only one line of object code
to be listed.
(Default: dlist)

eqin
noeqin

Enable/disable inclusion of assignment symbols (i.e., symbols
created by direct assignment) in the object file’s symbol table.
(Default: eqin)

ffp
noffp

Enable/disable Motorola fast floating-point format conversion
(not supported by Texas Instruments).

fillval =value Set the fill value to value (see .align and .space directives).
A warning is issued if the specified value does not fit in a
signed or unsigned byte.
(Default: fillval=0)

fpid =n Set the identification number of the 68881/2 coprocessor (not
supported by Texas Instruments).

fpisize =size Set the default floating-point instruction size (not supported by
Texas Instruments).

fr8
fr16

Set the size of unknown PC-relative displacements to 8 or 16
bits (see section 3.5.4.2 Displacement Sizing).
(Default: fr16)

Section 3: Assembler 193

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

fwdsize Enable displacement size checking for forward branches. The
assembler will issue a warning for each displacement that can
be reduced in size.
(Default: disabled)

iopt
noiopt

Enable/disable instruction optimizations (see section
3.4.3 Instruction Optimization).
(Default: iopt)

isize =size Set the default instruction size (see section 3.4.2 Instruction
Sizing). The following are the legal sizes:

b Byte Integer

w Word Integer

l Long-word Integer

(Default: isize=l)

lhex List the alphabetic hexadecimal digits using lowercase
characters (see also uhex).
(Default: lhex)

list
nolist

Enable/disable listing of the assembly code. These options
are used to omit portions of the assembly code from the listing
file. Pairs of these complement options can be nested.
(Default: list)

nopc Disable all coercions to PC-relative addressing modes. This
option disables the pcb16 , pcb32 , and pcf options.
(Default: pcb16)

pca
nopca

Enable/disable coercion to PC-relative addressing modes for
references to an absolute location or from an absolute
section. The pcf option must be enabled for this option to be
effective (see section 3.5.4.1 PC-relative Coercion).
(Default: pca)

pcb16
pcb32

Enable coercion to PC-relative addressing modes for 16-bit
and 32-bit backward references (see section
3.5.4.1 PC-relative Coercion). Selecting the pcb16 option
disables the pcb32 option; selecting the pcb32 option
enables the pcb16 option. The pcb32 option is not legal on
the 68000/10.
(Default: pcb16)

194 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

pcf Enable coercion to PC-relative addressing modes for forward
references, references to locations positioned at an unknown
distances. This option also enables the pcb16 option. For
more information, see section 3.5.4.1 PC-relative Coercion .
(Default: pcb16)

prec =type Set the precision used when converting floating-point values
(not supported by Texas Instruments).

proc =proc Set the target processor. 68000 is the only processor
recognized by Texas Instruments.
(Default: proc=68000)

rngchk =type Set the immediate data range check for byte and word data.
The following four levels of range checking are provided:

0 No checking: all values are silently truncated

1 Byte: -256–255; Word: -65536–65535

2 Byte: -128–255; Word: -32768–65535

3 Byte: -128–127; Word: -32768–32767
(Default: rngchk=1)

round =mode Set the rounding mode used when converting floating-point
values (not supported by Texas Instruments).

title title Set the title that appears at the top of each page of the
assembly listing. The string title must be delimited by a
character that does not appear in the title itself (e.g., double
quotes). Ending the title with a tilde (~) omits the source file
name from the listing header.
(Default: title "Sierra Systems ASM68 x.xx")

uhex List the alphabetic hexadecimal digits using uppercase
characters.
(Default: lhex)

uloc Modify the naming convention for compiler locals by adding
an initial underscore (_). For more information, see section
3.3.5.6 Compiler Locals .
(Default: disabled)

Section 3: Assembler 195

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.org — Begin an Absolute Data-type Section

Syntax

.org address

Description

address Specifies the base address of the section. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .org directive begins an unnamed, data-type section. The section’s base
address address is fixed.

Examples

.org 0x8000

.org base + 1024

In the second example, the symbol base is absolute and is defined prior to this
directive.

.packed — Generate Floating-Point Data (Packed Decimal)

Not supported by Texas Instruments. However, .packed is still recognized as a
reserved name by asm68 .

196 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.page — Begin New Listing Page

Syntax

.page

Description

The .page directive begins a new page in the listing file. This directive does not
appear in the listing.

.reorg — Reset the Location Counter in an Absolute Section

Syntax

.reorg address

Description

address Specifies the address at which the current section will continue. It
is an absolute expression that cannot contain any forward,
external, or undefined references.

The .reorg directive resets the location counter in an absolute section. The
continuation address address must be greater than the current value of the
section’s location counter; any space that is created is filled with the current fill
value (see .opt fillval), unless the section is of BSS-type.

Examples

.org 0x4000

addq #7,d0

.reorg 0x6000

.bsection tbl, 0x1000

move.l _abc,d0

.reorg 0x8000

As the second example illustrates, the .reorg directive can be applied to any
absolute section, regardless of its declaration.

Section 3: Assembler 197

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.scl — Set Storage Class Attribute

Syntax

.scl class

Description

class Specifies the storage class of the current symbol. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .scl directive sets the storage class attribute of the symbol referenced by the
current attribute block (see .def directive). For a list of recognized storage
classes, see section 1.4.8.2 Storage Class . This directive can appear at most
once per symbol attribute block.

The .scl directive is typically used only for C source-level debugging; it is ignored
when assembler source-level debugging information is generated with the -L
command line flag (see also .type directive).

Example

.def x

.val 3

.scl 4 ; x is in a register

.type 4

.endef

198 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.section — Begin / Resume a Data-type Section

Syntax

.section name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a period (.).

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .section directive begins a data-type section with name name. If address is
specified, the section is absolute and begins at that address; otherwise, the
section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location; any
space that is created is filled with the current fill value (see .opt fillval).
Relocatable sections cannot be resumed with an address specification.

This directive is a synonym for the .dsection directive.

Examples

.section table ; relocatable

.section ram, 0x8000 ; absolute

Section 3: Assembler 199

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.short — Generate Integer Data (Word)

Syntax

.short operand [, operand] . . .

Description

operand Specifies an integer expression.

The .short directive generates word integer data. The values of the specified
operands are placed in successive words beginning at the current location in the
current section. A warning is issued if the alignment is odd. This directive is a
synonym for the .word directive. For additional information, refer to section
3.3.6.2 Character Constants .

Examples

.short 'ab' ; 6162

.short 01777,1023,0x3ff ; 03ff 03ff 03ff

.short 1024 * 16 ; 4000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

.single — Generate Floating-Point Data (Single-Precision)

Not supported by Texas Instruments. However, .single is still recognized as a
reserved name by asm68 .

200 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.size — Set Size Attribute

Syntax

.size size

Description

size Specifies the size of the current symbol. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .size directive sets the size attribute of the symbol referenced by the current
attribute block (see .def directive). The size attribute is specified for aggregate
types (see section 1.4.9 Auxiliary Table Entries). This directive can appear at
most once per symbol attribute block.

The .size directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type directive).

Example

.def buf

.val buf

.dim 16,4

.scl 2

.type 0xf4

.line 25

.size 256 ; buf is an array 256 bytes long

.endef

Section 3: Assembler 201

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.space — Allocate a Block of Uninitialized Memory

Syntax

.space[.size] count

Description

size Specifies the unit size. The legal size qualifiers are shown below;
the default is b.

b Byte Integer (1 byte)

w Word Integer (2 bytes)

l Long-word Integer (4 bytes)

s Single-precision Real (not supported)

d Double-precision Real (not supported)

x Extended-precision Real (not supported)

p Packed Decimal Real (not supported)

count Specifies the unit count. It is an absolute expression that cannot
contain any forward, external, or undefined references.

The .space directive allocates a block of uninitialized memory whose size is
determined by the number and size of the unit location. Each location is filled
with the current fill value (see .opt fillval), unless the section is of BSS-type.

Examples

.space 256

.space.l 64

202 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.struct — Begin a Structure Template Section

Syntax

.struct [label]

Description

label Specifies a label that is used for documentation purposes. It is not
entered in the symbol table.

The .struct directive begins a structure template section. This type of section is
used in conjunction with the .space and .align directives to define labels suitable
for structure field references. These labels are not included in the object file’s
symbol table.

Structure template sections begin at absolute address zero. Since they are
dummy sections, they cannot contain any object code. Also, they cannot be
nested; however, fields of a nested structure can be treated as part of the
enclosing structure. The .ends directive is used to end a structure template
section and resume the previously active section.

Example

.struct node ; struct node {

visited: .space 1 ; char visited;

.align 2 ; struct position {

pos.x: .space 2 ; short int x;

pos.y: .space 2 ; short int y;

.align 4 ; } pos;

left: .space 4 ; struct node *left;

right: .space 4 ; struct node *right;

.ends ; };

move.b #1,_n+visited ; n.visited = 1;

movea.l _p,a0 ; p −>right = NULL;

clr.l (right,a0) ;

This example illustrates how the .struct and .ends directives are used to define
a set of structure field labels. The .space and .align directives are used to
allocate space and maintain proper alignment, respectively.

Section 3: Assembler 203

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.tag — Set Tag Name Attribute

Syntax

.tag symbol

Description

symbol Specifies the tag name with which the current symbol is
associated. It is a symbol that is defined as a structure, union, or
enumeration type.

The .tag directive sets the tag name attribute of the symbol referenced by the
current attribute block (see .def directive). For a detailed description of the tag
name attribute, see section 1.4.9 Auxiliary Table Entries . This directive can
appear at most once per symbol attribute block.

The .tag directive is typically used only for C source-level debugging; it is ignored
when assembler source-level debugging information is generated with the -L
command line flag (see also .type directive).

Example

.def x

.val x

.scl 2

.type 8

.size 4

.tag s ; s is the tag of the structure

.endef ; of which x is a member

.text — Begin / Resume the Text-type Section .text

Syntax

.text

Description

The .text directive begins or resumes the text-type section .text . It is functionally
equivalent to .tsection .text .

The section .text contains read-only data. It is present in all object files,
regardless of whether it is specified. For more information, see section
3.3.4.1 Section Types .

204 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.tsection — Begin/Resume a Text-type Section

Syntax

.tsection name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a period (.).

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .tsection directive begins a text-type section with name name. If address is
specified, the section is absolute and begins at that address; otherwise, the
section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location; any
space that is created is filled with the current fill value (see .opt fillval).
Relocatable sections cannot be resumed with an address specification.

Examples

.tsection code ; relocatable

.tsection rom, 0xf800 ; absolute

Section 3: Assembler 205

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.type — Set Type Attribute

Syntax

.type type

Description

type Specifies the type of the current symbol. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .type directive sets the type attribute of the symbol referenced by the current
attribute block (see .def directive). For a discussion of fundamental and derived
types, see section 1.4.8.7 Type Entry . This directive can appear at most once
per symbol attribute block.

The .type directive can also be used in conjunction with the -L command line
flag to provide type information for symbols. When the -L command line flag is
used, this directive does not have to appear within a symbol attribute block; the
type it specifies is associated with the most recently defined label. Function types
can only be attributed to labels defined in text-type sections.

Example

x:

.type 0x24 ; x is a function that returns an int

206 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.val — Set Value Attribute

Syntax

.val value

Description

value Specifies the value of the current symbol. It is an absolute or
simple relocatable expression.

The .val directive sets the value attribute of the symbol referenced by the current
attribute block (see .def directive). The meaning of the value attribute is
dependent upon the selected storage class (see section 1.4.8.4 Symbol Value
Field). This directive can appear at most once per symbol attribute block.

The .val directive is typically used only for C source-level debugging; it is ignored
when assembler source-level debugging information is generated with the -L
command line flag (see also .type directive).

Example

.def x

.val x ; x is a variable its value is its location

.scl 2

.type 4

.endef

Section 3: Assembler 207

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.word — Generate Integer Data (Word)

Syntax

.word operand [, operand] . . .

Description

operand Specifies an integer expression.

The .word directive generates word integer data. The values of the specified
operands are placed in successive words beginning at the current location in the
current section. A warning is issued if the alignment is odd. For additional
information, refer to section 3.3.6.2 Character Constants .

Examples

.word 'ab' ; 6162

.word %1111111111,01777,1023 ; 03ff 03ff 03ff

.word 1024 * 16 ; 4000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

.xdef — Declare External a Defined Symbol

Syntax

.xdef symbol [, symbol] . . .

Description

symbol Specifies a symbol that is defined in the current file. Section
names and floating-point symbols are not allowed.

The .xdef directive declares the scope of the symbol symbol to be external. This
is necessary when the symbol is referenced in other source files (since the
default symbol scope is static).

Examples

.xdef init

.xdef proc1, diag_list

208 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.xref — Declare External a Referenced Symbol

Syntax

.xref symbol [, symbol] . . .

Description

symbol Specifies a symbol that is referenced (but not defined) in the
current file. Section names and floating-point symbols are not
allowed.

The .xref directive declares the scope of the symbol symbol to be external. This
is necessary when a locally referenced symbol is defined in another source file.

Symbols that are referenced in a file but not defined in that file are assumed to
have external scope; therefore, this directive is not necessary (unless the -E flag
is specified on the command line).

Examples

.xref base, init, input

.xref proc1

Section 3: Assembler 209

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7. Asm68k Assembler Directives

Assembler directives are used in assembly source to generate data and to alter
the assembler’s object code generation behavior. This section describes the
various directives supported by asm68k and supplies examples of their typical
usage. The directives are first presented in functional groups, a summary of
which is presented in Table 3.23. For ease of reference, full descriptions of the
directives, including syntax and examples, are then provided in an alphabetically
arranged format.

Group Description

Section directives Create and resume sections

Symbol directives Create and modify symbols

Data/Fill directives Generate initialized/uninitialized data

Control directives Control assembly

Output directives Specify output settings

Debugging directives Generate debugging information

Table 3.23: Directive Groups

The mnemonics for the asm68k assembler directives, like those for instructions,
are written in either all uppercase or all lowercase characters. The lowercase
mnemonics all begin with a period (.) and they are extensions to the Motorola
M68000 Resident Structured Assembler. The additional mnemonics (from
asm68) are needed to allow asm68k to support the assembly code generated by
the Sierra Systems compiler, com68 . Note that all mnemonics, regardless of the
case they are shown in, can be written in either lowercase or uppercase
characters. When two mnemonics are equivalent and referenced from within this
document, the names of the mnemonics are shown separated by a slash
(e.g., .global / XDEF).

210 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7.1. Asm68k Section Directives

Section directives can be used to manage both absolute and relocatable sections
with any of the following types: text-type, data-type, or BSS-type. Text-type
sections contain read-only data. Data-type sections contain initialized read/write
data. BSS-type sections contain uninitialized read/write data. Section directives
remain in effect until another section directive is issued.

Section directives can also be used to create structure template sections; these
are special dummy sections that allow the convenient definition of labels suitable
for structure field references. Table 3.24 summarizes the section directives for
asm68k . For more information, see section 3.3.4 Sections . See chapter
7. Flash Application Layout in the TI-89 / TI-92 Plus Developer Guide for
information on the use and initialization of the TI-89 / TI-92 Plus sections.

Directive Function

.bsection Begin/resume a given BSS-type section

.bss Begin/resume the BSS-type section .bss

.data Begin/resume the data-type section .data

.dsection Begin/resume a given data-type section

.text Begin/resume the text-type section .text

.tsection Begin/resume a given text-type section

BSECTION Begin/resume a given BSS-type section

DSECTION Begin/resume a given data-type section

OFFSET Begin a structure template section

ORG Begin an unnamed, absolute, data-type section

REORG Reset the location counter in an absolute section

SECTION Begin/resume a given data-type section

TSECTION Begin/resume a given text-type section

Table 3.24: Section Directives

Section 3: Assembler 211

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7.2. Asm68k Symbol Directives

Symbol directives are used to define symbols, declare their scopes, and set their
values. By default, symbols have static scope, i.e., they are local to the files in
which they are defined. In order to be referenced from within other files, they
must be declared to have external scope. Table 3.25 summarizes the symbol
directives for asm68k . For more information, see section 3.3.5 Symbols .

Directive Function

.comm Define a comm symbol

.global Declare external a defined symbol

.globl Declare external a defined symbol

.lcomm Define an lcomm symbol

COMM Define a comm symbol

EQU Define an integer symbol

FEQU Not supported

LCOMM Define an lcomm symbol

REG Define a register list symbol

SET Define/redefine an integer symbol

XDEF Declare external a defined symbol

XREF Declare external a referenced symbol

Table 3.25: Symbol Directives

212 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7.3. Asm68k Data/Fill Directives

Data directives are used to generate integer and floating-point data. Integer data
can be expressed as integer constants, character constants, or any integer
expression (see section 3.3.7 Expressions). Floating-point data can be
expressed as either floating-point symbols or floating-point constants. A single
data directive can be used to generate multiple data items. Fill directives are
used to allocate storage, typically for uninitialized data. Table 3.26 summarizes
the data and fill directives for asm68k . For more information, see sections
3.3.5 Symbols and 3.3.6 Constants .

Directive Function

.align Align location counter

.bin Include contents of binary file

.byte Generate integer data (byte)

.double Generate TI BCD floating-point data

.extend Not supported

.float Generate TI BCD floating-point data

.long Generate integer data (long-word)

.short Generate integer data (word)

.space Generate a block of uninitialized data

.word Generate integer data (word)

BIN Include contents of binary file

COMLINE Generate a block of uninitialized data

DC Generate integer/floating-point data

DCB Generate a block of initialized data

DS Generate a block of uninitialized data

Table 3.26: Data/Fill Directives

Section 3: Assembler 213

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7.4. Asm68k Control Directives

Assembly control directives provide mechanisms for controlling when and how
instructions and directives are assembled. Their uses include option setting,
conditional assembly, and source file inclusion. Table 3.27 summarizes the
assembly control directives for asm68k .

Directive Function

.cmnt Begin comment block

.elifdef Assemble if alternative symbol defined

.else Assemble if converse true

.endc End comment block

.endif End conditional assembly

.ifdef Assemble if symbol defined

.ifndef Assemble if symbol not defined

.include Include assembler source file

.opt Set assembler options

ELSEC Assemble if converse true

END End assembly

ENDC End conditional assembly block

FOPT Not supported

IFC Assemble if strings equal

IFcc Assemble if condition true

IFNC Assemble if strings not equal

INCLUDE Include assembler source file

MASK2 Not supported

OPT Set assembler options

Table 3.27: Control Directives

214 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.7.5. Asm68k Output Directives

Output directives are used to format assembly listing files and to generate
diagnostic messages. Table 3.28 summarizes the output directives for asm68k .

Directive Function

.echo Echo message

FAIL Generate error message

FORMAT† Format listing file

LIST Enable assembly listing

LLEN Set line length of listing file

NOFORMAT† Do not format listing file

NOL Disable assembly listing

NOLIST Disable assembly listing

NOOBJ Suppress object code generation

NOPAGE Do not page listing file

PAGE Begin new listing page

SPC Generate blank lines in listing file

TTL Set title in listing file

† Ignored by assembler.

Table 3.28: Output Directives

3.7.6. Asm68k Debugging Directives

Debugging directives are used to generate source-level debugging information.
They are typically generated by the Sierra Systems C compiler to allow
source-level debugging, but can also be used when programming in assembly
language. Table 3.29 summarizes the debugging directives for asm68k .

The debugging directive descriptions are provided primarily to facilitate
interpreting the compiler-generated directives. Their use is not recommended for
programs written in assembly language. Instead, the -L command line flag
should be used in conjunction with the .type directive to provide a reasonable
level of debugging capability. When the -L command line flag is specified, a line
number entry is generated for each instruction and memory allocation directive in
text-type sections.

Section 3: Assembler 215

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

To accommodate the COFF object file format (see section 1.4.6 Line Number
Information), line number entries are associated with the most recently defined
function (see TYPE directive); if no function has been defined, a dummy function
with which to associate the entries is created. These dummy functions are
named ^line1 , ^line2 , ^line3 , etc. The scope of both user-defined and dummy
functions ends when either a new function is defined or a new section is created.

Directive Function

.def / DEF Begin symbol attribute block

.dim / DIM Set array dimension attribute

.endef / ENDEF End symbol attribute block

.file / FILE Set name of source file

.line / LINE Set line number attribute

.ln / LN Create line number entry

.scl / SCL Set storage class attribute

.size / SIZE Set size attribute

.tag / TAG Set tag name attribute

.type / TYPE Set type attribute

.val / VAL Set value attribute

Table 3.29: Debugging Directives

3.7.7. Asm68k Directive Reference

The remainder of this section provides, in alphabetical order, detailed
descriptions of the directives supported by asm68k .

216 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.align — Align Location Counter

Syntax

.align { 1 | 2 | 4 | 8 }

Description

The .align directive aligns the current section’s location counter to the nearest
multiple of the specified byte count. Any required padding is filled with the current
fill value (see .opt fillval).

Example

.align 2

.word 0x4000

.bin / BIN — Include Contents of Binary File

Syntax

.bin filename

BIN filename

Description

filename The name of a binary file (including an optional absolute or
relative path). It can optionally be enclosed in single or double
quotes.

The BIN directive inserts the contents of the specified binary file at the current
position in the assembler source. If the file is not specified with a full path, it is
searched for in (or, relative to) the following directories in the indicated order:

1. The current directory.

2. Directories specified with the -I flag.

3. Directories specified with the environment variables INCLUDE68 or SIERRA
(see section 3.2.4 Environment Variables) .

Examples

BIN "table.inc"

BIN "../include/graphics.seg"

Section 3: Assembler 217

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.bsection / BSECTION — Begin / Resume a BSS-type Section

Syntax

.bsection name [, address]

BSECTION[.S] name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a numerical character (0 – 9). If the section name begins with a
numerical character, the assembler will prefix it with a period (.).
Section names 9, 13, and 14, however, are handled differently;
they designate the sections .text , .data , and .bss , respectively.

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .bsection / BSECTION directive begins a BSS-type section with name
name. If address is specified, the section is absolute and begins at that address;
otherwise, the section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location.
Relocatable sections cannot be resumed with an address specification.

The .S qualifier is used to indicate that any symbols defined in the section can be
referenced with the absolute short addressing mode (i.e., the section will reside
in the top or bottom 32K of memory).

No object code can be generated in BSS-type sections; they contain only
uninitialized read/write data.

Examples

BSECTION abc ; relocatable

BSECTION xyz,$4000 ; absolute

218 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.bss — Begin / Resume the BSS-type Section .bss

Syntax

.bss

Description

The .bss directive begins or resumes the BSS-type section .bss . It is functionally
equivalent to .bsection .bss .

The section .bss contains only uninitialized data; therefore, no object code can
be generated in this section. The section .bss is present in all object files,
regardless of whether it is specified. For more information, see section
3.3.4.1 Section Types .

.byte — Generate Integer Data (Byte)

Syntax

.byte operand [, operand] . . .

Description

operand Specifies an integer expression.

The .byte directive generates byte integer data. The values of the specified
operands are placed in successive bytes beginning at the current location in the
current section. The .byte directive accepts character strings delimited by double
quotes. Escaped characters are also allowed in both character constants and
strings. For additional information, see section 3.3.6.2 Character Constants .

Examples

.byte "Hello!\0" ; 4865 6C6C 6F21 00

.byte 'a' ; 61

.byte %1111,017,15,0xF ; 0F0F 0F0F

.byte 16*4+3 ; 43

Each of the above examples is shown with the code sequence (in hexadecimal)
that it generates.

Section 3: Assembler 219

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.cmnt — Begin Comment Block

Syntax

.cmnt

Description

The .cmnt directive begins a comment block. All assembler statements between
this directive and its matching .endc directive are ignored. Pairs of comment
block directives can be nested.

Example

.cmnt

These lines are ignored by

the assembler; no other

comment markers are needed.

.endc

COMLINE — Allocate a Block of Uninitialized Memory

Syntax

COMLINE count

Description

count Specifies the number of bytes to allocate. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The COMLINE directive is functionally equivalent to the DS.B directive. It
allocates a block of uninitialized memory whose size is determined by count.
Each byte is filled with the current fill value (see OPT FILLVAL), unless the
section is of BSS-type. This directive’s intended use is not applicable to asm68k ;
it is supported only for Motorola compatibility.

220 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.comm / COMM — Define a comm Symbol

Syntax

.comm symbol , count [, align]

COMM[.S] symbol , count [, align]

Description

symbol Specifies a symbol that is not defined elsewhere in the current file.

count Specifies the number of bytes associated with the symbol. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

align Specifies the alignment requirements for the symbol. Its value can
be 1, 2, or 4. It is an absolute expression that cannot contain any
forward, external, or undefined references.

The COMM directive defines the specified symbol symbol and associates with it
a block of uninitialized data in the BSS-type section .bss . The number of bytes in
this block is specified by count. The alignment of the block is specified by align; if
omitted or if the -c flag has been specified, quad alignment is used.

The scope of the symbol symbol is external. The block of data is allocated during
linkage, unless the -6 flag has been specified, in which case it is allocated during
assembly. For more information, see section 3.3.5.4 Comm and Lcomm
Symbols .

The .S qualifier is used to indicate that the symbol can be referenced with the
absolute short addressing mode (i.e., the symbol will reside in the top or bottom
32K of memory).

Examples

COMM table,4096

COMM strings,256,2

COMM.S buffer,4

Section 3: Assembler 221

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.data — Begin / Resume the Data-type Section .data

Syntax

.data

Description

The .data directive begins or resumes the data-type section .data . It is
functionally equivalent to .dsection .data .

The section .data contains initialized read/write data. It is present in all object
files, regardless of whether it is specified. For additional information, refer to
section 3.3.4.1 Section Types .

222 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

DC — Generate Integer / Floating-Point Data

Syntax

DC[.size] operand [, operand] . . .

Description

size Specifies the size and type of the data. The legal size qualifiers
are shown below; the default is W.

B Byte Integer (1 byte)

W Word Integer (2 bytes)

L Long-word Integer (4 bytes)

S TI BCD floating point (10 bytes)

D TI BCD floating point (10 bytes)

X Extended-precision Real (not supported)

P Packed decimal Real (not supported)

operand Specifies either an integer or floating-point value. Forward
references are not allowed when specifying floating-point data.

The DC directive can be used to generate both integer and floating-point data.
The values of the specified operands are placed in succession beginning at the
current location in the current section. Word alignment of the data is forced
except when size is B. For additional information, see section 3.3.6.2 Character
Constants .

Examples

DC.B 'abcd' ; 6162 6364

DC.L $FF<<24 ; FF00 0000

DC.D 2.71828182846 ; 4000 2718 2818 2846 0000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

Section 3: Assembler 223

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

DCB — Allocate a Block of Initialized Memory

Syntax

DCB[.size] count , value

Description

size Specifies the unit size. The legal size qualifiers are shown below;
the default is W.

B Byte Integer (1 byte)

W Word Integer (2 bytes)

L Long-word Integer (4 bytes)

S Single-precision Real (not supported)

D Double-precision Real (not supported)

X Extended-precision Real (not supported)

P Packed decimal Real (not supported)

count Specifies the unit count. It is an absolute expression that cannot
contain any forward, external, or undefined references.

value Specifies the unit value. If size is W or L, any integer expression
can be used; otherwise, an absolute expression that contains no
forward, external, nor undefined references must be used.

The DCB directive allocates a block of initialized memory whose size is
determined by the number and size of the unit location. Each location is filled
with the specified value value. This directive cannot be used in BSS-type
sections.

Examples

DCB 256,$FF

DCB.L 16,err_vector

224 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.def / DEF — Begin Symbol Attribute Block

Syntax

.def symbol

DEF symbol

Description

symbol Specifies a symbol that is defined in the current assembler source
file.

The .def / DEF directive begins an attribute block for the symbol symbol. The
DIM, LINE, SCL, SIZE, TAG, TYPE, and VAL (.dim , .line , .scl , .size , .tag ,
.type , and .val) directives are used to set the various attributes of a symbol (see
section 1.4 Object File Format). The .endef / ENDEF directive must be used to
end an attribute block. For convenience, the directives that comprise a symbol
attribute block can be specified on a single line as a semicolon-separated list.

The information contained in an attribute block is stored in the object file’s symbol
table for purposes of symbolic debugging. The Sierra C compiler automatically
generates attribute blocks for all symbols when the -q command line flag is
specified. They can be written manually when performing assembler source-level
debugging, but this is not recommended. Adequate debugging information can
be generated with the -L assembler command line flag, which directs the
assembler to generate line number information, and the .type / TYPE directive,
which can be used to specify symbol types directly (i.e., without a symbol
attribute block).

Examples

DEF init

VAL init

SCL 2

TYPE $24

ENDEF

DEF tbl ; VAL 12 ; SCL 3 ; TYPE 4 ; ENDEF

Section 3: Assembler 225

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.dim / DIM — Set Array Dimension Attribute

Syntax

.dim dim [, dim [, dim [, dim]]]

DIM dim [, dim [, dim [, dim]]]

Description

dim Specifies an array dimension of the current symbol. It is an
absolute expression that cannot contain any forward, external, or
undefined references. Up to four dimensions can be specified.

The .dim / DIM directive sets the dimension attribute of the symbol referenced by
the current attribute block (see .def / DEF directive). The dimension attribute is
specified for array types (see sections 1.4.8.7 Type Entry and 1.4.9.6 Arrays).
This directive can appear at most once per symbol attribute block.

The .dim / DIM directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type / TYPE directive).

Example

DEF buf

VAL buf

DIM 16,4 ; buf is a two-dim array, int buf[16][4]

SCL 2

TYPE $F4

LINE 25

SIZE 256

ENDEF

226 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.double — Generate Floating-Point Data

Syntax

.double operand [, operand] . . .

Description

operand Specifies a floating-point symbol or floating-point constant. No
forward references are allowed.

The .double directive generates TI BCD floating-point data. The values of the
specified operands are placed in 10 bytes beginning at the current location in the
current section. A warning is issued if the alignment is odd.

Examples

_PI:

 .double 3.141592653589793 ; 4000 3141 5926 5358 9793

 .double 0x40003141592653589793 ; 4000 3141 5926 5358 9793

 .double -10,0.2 ; C001 1000 0000 0000 0000

; 3FFF 2000 0000 0000 0000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

Section 3: Assembler 227

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

DS — Allocate a Block of Uninitialized Memory

Syntax

DS[.size] count

Description

size Specifies the unit size. The legal size qualifiers are shown below;
the default is W.

B Byte Integer (1 byte)

W Word Integer (2 bytes)

L Long-word Integer (4 bytes)

S Single-precision Real (not supported)

D Double-precision Real (not supported)

X Extended-precision Real (not supported)

P Packed Decimal Real (not supported)

count Specifies the unit count. It is an absolute expression that cannot
contain any forward, external, or undefined references.

The DS directive allocates a block of uninitialized memory whose size is
determined by the number and size of the unit location. Each location is filled
with the current fill value (see OPT FILLVAL), unless the section is of BSS-type.

Specifying a count of zero forces alignment for the selected data size
(e.g., DS.W 0 forces word alignment).

Examples

DS 256

DS.L 64

228 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.dsection / DSECTION — Begin / Resume a Data-type Section

Syntax

.dsection name [, address]

DSECTION[.S] name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a numerical character (0 – 9). If the section name begins with a
numerical character, the assembler will prefix it with a period (.).
Section names 9, 13, and 14, however, are handled differently;
they designate the sections .text , .data , and .bss , respectively.

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .dsection / DSECTION directive begins a data-type section with name
name. If address is specified, the section is absolute and begins at that address;
otherwise, the section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location; any
space that is created is filled with the current fill value (see OPT FILLVAL).
Relocatable sections cannot be resumed with an address specification.

The .S qualifier is used to indicate that any symbols defined in the section can be
referenced with the absolute short addressing mode (i.e., the section will reside
in the top or bottom 32K of memory).

Examples

DSECTION table ; relocatable

DSECTION ram,$8000 ; absolute

Section 3: Assembler 229

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.echo — Echo Message

Syntax

.echo { text | expression [.format] } . . .

Description

text Specifies an ASCII string. Whitespace characters are permitted,
but curly braces ({ }) are not.

expression Specifies an absolute expression that cannot contain any forward,
external, or undefined references. The expression must be
enclosed in curly braces ({ });

format Specifies the format for printing the preceding expression. The
legal format characters, which correspond to those of the ANSI
standard C library function printf , are shown below; the default is
d.

d Signed decimal

u Unsigned decimal

o Octal

x Hexadecimal (lowercase)

X Hexadecimal (uppercase)

The .echo directive causes the specified message to be written to the standard
output stream, stdout . The end of the message is marked by the newline
character; therefore, no comment field is permitted with this directive. This
directive can be used for both informational and diagnostic purposes.

Example

.echo The end of the data section is {data_end}.x

The symbol data_end is a user-defined label, which has been defined prior to the
directive in this example. If the value of the label is 0x42f8, then this directive
produces the following message:

The end of the data section is 42f8

230 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.elifdef — Assemble If Alternative Symbol Defined

Syntax

.elifdef symbol

Description

symbol Specifies a user-defined symbol

The .elifdef directive is used in a conditional assembly block. It is equivalent to
the .else directive followed by an .ifdef–.endif block (see .ifdef and .endif
directives). Its use obviates the need for multiple .endif directives in conditional
blocks that have multiple alternatives.

The .elifdef directive is optional within a conditional assembly block.

Example

.ifdef option1

moveq #1,d0

.elifdef option2

moveq #2,d0

.elifdef option3

moveq #3,d0

.endif

Section 3: Assembler 231

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.else — Assemble If Converse True

Syntax

.else

Description

The .else directive is used in a conditional assembly block. This directive
matches the immediately preceding .ifdef , .ifndef , or .elifdef directive that is not
matched by a .endif or .else directive. If this preceding directive fails, then the
statements between the .else directive and the matching .endif directive are
assembled; otherwise, these statements are skipped.

The .else directive is optional within a conditional assembly block.

Example

.ifdef debug

moveq #1,d0

.else

moveq #0,d0

.endif

ELSEC — Assemble If Converse True

Syntax

ELSEC

Description

The ELSEC directive is used in a conditional assembly block. This directive
matches the immediately preceding IFC, IFNC, or IFcc directive that is not
matched by an ENDC or ELSEC directive. If this preceding directive fails, then
the statements between the ELSEC directive and the matching ENDC directive
are assembled; otherwise, these statements are skipped.

The ELSEC directive is optional within a conditional assembly block.

Example

IFNE debug

MOVEQ #1,D0

ELSEC

MOVEQ #0,D0

ENDC

232 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

END — End Assembly

Syntax

END

Description

The END directive ends assembly in the current source file. Any assembler
statements appearing after this directive are ignored.

.endc — End Comment Block

Syntax

.endc

Description

The .endc directive ends a comment block (see .cmnt directive). Note that the
.endc directive is not the same as the ENDC directive.

ENDC — End Conditional Assembly Block

Syntax

ENDC

Description

The ENDC directive ends a conditional assembly block (see IFC, IFNC, and IFcc
directives).

Example

IFNE debug

JSR mem_dump

ENDC

Section 3: Assembler 233

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.endef / ENDEF — End Symbol Attribute Block

Syntax

.endef

ENDEF

Description

The .endef / ENDEF directive ends the current symbol attribute block (see
.def / DEF directive).

.endif — End Conditional Assembly Block

Syntax

.endif

Description

The .endif directive ends a conditional assembly block (see .ifdef and .ifndef
directives).

Example

.ifdef debug

jsr mem_dump

.endif

234 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

EQU — Define an Integer Symbol

Syntax

symbol EQU value

Description

symbol Specifies a symbol that is not defined elsewhere in the current file.
It must appear in the label field of the statement.

value Specifies the value of the symbol. It is an absolute or simple
relocatable expression that cannot contain any forward, external,
or undefined references.

The EQU directive defines the symbol symbol and assigns to it the value value.
The symbol is defined with static scope (the XDEF directive can be used to
expand its scope to external). For more information, see SET directive and refer
to section 3.3.5.3 Symbol Assignment .

Examples

BUF_SIZE EQU 1024

TOT_LEN EQU SYM_LEN+STR_LEN

.extend — Generate Floating-Point Data (Extended-Precision)

Not supported by Texas Instruments. However, .extend is still recognized as a
reserved name by asm68k .

Section 3: Assembler 235

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

FAIL — Generate Error Message

Syntax

FAIL code

Description

code Specifies an error code. It is an absolute expression that cannot
contain any forward, external, or undefined references.

The FAIL directive causes the assembler to generate an error message. The
value of code can be used to identify the offending directive or to provide useful
diagnostic information. This directive is typically used in conditional assembly
blocks — especially within macros — to mark a case that should not occur.

Examples

FAIL 83

FAIL \2 ; second argument inside a macro

FEQU — Define a Floating-Point Symbol

Not supported by Texas Instruments. However, FEQU is still recognized as a
reserved name by asm68k .

.file — Set Name of Source File

Syntax

.file " filename "

Description

filename Specifies the name of either the assembler source file or the
corresponding C source file. It can be up to 14 characters in
length.

The .file directive sets the name of the source file for purposes of source-level
debugging. This directive can appear at most once per source file. It is generated
internally by the assembler if it does not appear or if it specifies a C source file
when the -L command line flag is used. For more information, see section
1.4.7.1 Special Symbols .

Example

.file "demo.c"

236 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.float — Generate Floating-Point Data

Syntax

.float operand [, operand] . . .

Description

operand Specifies a floating-point symbol or floating-point constant. No
forward references are allowed.

The .float directive generates TI BCD floating-point data. The values of the
specified operands are placed in 10 bytes beginning at the current location in the
current section. A warning is issued if the alignment is odd. The data generated
is the same as the .double directive, allowing 16 digits in the mantissa. Since a
float in the compiler, com68 , contains only 14 significant digits in the mantissa, it
is recommended to always use .double to avoid confusion.

Examples

.float 3.141592653589793 ; 4000 3141 5926 5358 9793

.float -10,0.2 ; C001 1000 0000 0000 0000

; 3FFF 2000 0000 0000 0000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

FOPT — Set Assembler Floating-Point Options

Not supported by Texas Instruments. However, FOPT is still recognized as a
reserved name by asm68k .

FORMAT — Format Assembly Listing

Syntax

FORMAT

Description

The FORMAT directive is ignored. It is recognized only for Motorola compatibility.

Section 3: Assembler 237

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.global / .globl — Declare External a Defined Symbol

Syntax

.global symbol [, symbol] . . .

.globl symbol [, symbol] . . .

Description

symbol Specifies a symbol that is defined in the current file. Section
names and floating-point symbols are not allowed.

The .global and .globl directives declare the scope of the symbol symbol to be
external. This is necessary when the symbol is referenced in other source files
since the default symbol scope is static. This directive is a synonym for the XDEF
directive.

Example

.global main,jmp_tbl

.globl procl,eval

IDNT — Set Name of Source File

Syntax

filename IDNT

Description

filename Specifies the name of the assembler source file. It can be up to 14
characters in length and must appear in the label field of the
statement.

The IDNT directive sets the name of the source file for purposes of source-level
debugging. This directive can appear at most once per source file and is
generated internally by the assembler if omitted. For more information, refer to
the discussion of the .file symbol in section 1.4.7.1 Special Symbols .

Example

demo.s IDNT

238 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

IFC — Assemble If Strings Equal

Syntax

IFC 'string1 ', 'string2 '

Description

string1 Specifies an ASCII string. It can include whitespace and commas.

string2 Specifies an ASCII string. It can include whitespace and commas.

The IFC directive introduces a conditional assembly block. If the specified strings
string1 and string2 are equal, then the statements between this directive and the
first matching ELSEC or ENDC directive are assembled, and the remainder of
the block is skipped. Otherwise, the statements associated with the IFC directive
are skipped and control passes to the aforementioned matching directive.

The IFC directive is useful only within user-defined macros (e.g., testing for null
parameters). The single quotes that enclose each string need not appear literally
in the operand field of this directive prior to macro expansion i.e., they can be
included in an actual parameter.

Conditional assembly directives can be nested to 40 levels.

Example

IFC '\2',''

MOVE.L #1,match

ENDC

Section 3: Assembler 239

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

IFcc — Assemble If Condition True

Syntax

IFcc value

Description

cc Specifies a conditional relation between the specified value and
zero. The following are the valid condition codes:

EQ Expression is equal to zero

NE Expression is not equal to zero

GE Expression is greater than or equal to zero

GT Expression is greater than zero

LE Expression is less than or equal to zero

LT Expression is less than zero

value Specifies the control value for the assembly block. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

Each IFcc directive introduces a conditional assembly block. If the value value
observes the specified conditional relation, then the statements between the
given IFcc directive and the first matching ELSEC or ENDC directive are
assembled and the remainder of the block is skipped. Otherwise, the statements
associated with the IFcc directive are skipped and control passes to the
aforementioned matching directive.

Conditional assembly directives can be nested to 40 levels.

Example

IFGT count

MOVEQ #5,D2

ENDC

240 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.ifdef — Assemble If Symbol Defined

Syntax

.ifdef symbol

Description

symbol Specifies a user-defined symbol.

The .ifdef directive introduces a conditional assembly block. If the specified
symbol symbol is defined when the directive is encountered, then the statements
between this directive and the first matching .elifdef , .else , or .endif directive are
assembled and the remainder of the block is skipped. Otherwise, the statements
associated with the .ifdef directive are skipped and control passes to the
aforementioned matching directive.

Conditional assembly directives can be nested to 40 levels.

Example

.ifdef serial

move.l #serial_dev,io_func

.endif

Section 3: Assembler 241

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

IFNC — Assemble If Strings Not Equal

Syntax

IFNC 'string1 ', 'string2 '

Description

string1 Specifies an ASCII string. It can include whitespace and commas.

string2 Specifies an ASCII string. It can include whitespace and commas.

The IFNC directive introduces a conditional assembly block. If the specified
strings string1 and string2 are not equal, then the statements between this
directive and the first matching ELSEC or ENDC directive are assembled, and
the remainder of the block is skipped. Otherwise, the statements associated with
the IFNC directive are skipped and control passes to the aforementioned
matching directive.

The IFNC directive is useful only within user-defined macros (e.g., testing for null
parameters). The single quotes that enclose each string need not appear literally
in the operand field of this directive prior to macro expansion i.e., they can be
included in an actual parameter.

Conditional assembly directives can be nested to 40 levels.

Example

IFNC '\1',''

MOVE.W D0,D3

ENDC

242 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.ifndef — Assemble If Symbol Not Defined

Syntax

.ifndef symbol

Description

symbol Specifies a user-defined symbol.

The .ifndef directive introduces a conditional assembly block. If the specified
symbol symbol is not defined when the directive is encountered, then the
statements between this directive and the first matching .elifdef , .else , or .endif
directive are assembled and the remainder of the block is skipped. Otherwise,
the statements associated with the .ifdef directive are skipped and control
passes to the aforementioned matching directive.

Conditional assembly directives can be nested to 40 levels.

Example

.ifndef serial

move.l #parallel_dev,io_func

.endif

Section 3: Assembler 243

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.include / INCLUDE — Include Assembler Source File

Syntax

.include filename

INCLUDE filename

Description

filename The name of an assembler source file (including an optional
absolute or relative path). It can optionally be enclosed in single or
double quotes.

The INCLUDE directive inserts the contents of the specified file at the current
position in the assembler source. If the file is not specified with a full path, it is
searched for in (or, relative to) the following directories in the indicated order:

1. The current directory.

2. Directories specified with the -I flag.

3. Directories specified with the environment variables INCLUDE68 or SIERRA
(see section 3.2.4 Environment Variables).

This directive can be nested, i.e., included files can themselves include files. The
assembler imposes no limit on the level of nesting.

Examples

INCLUDE "table.inc"

INCLUDE "../include/vector.h"

244 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.lcomm / LCOMM — Define an lcomm Symbol

Syntax

.lcomm symbol , count [, align]

LCOMM[.S] symbol , count [, align]

Description

symbol Specifies a symbol that is not defined elsewhere in the current file.

count Specifies the number of bytes associated with the symbol. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

align Specifies the alignment requirements for the symbol. Its value can
be 1, 2, or 4. It is an absolute expression that cannot contain any
forward, external, or undefined references.

The LCOMM directive defines the specified symbol symbol and associates with it
a block of uninitialized data in the BSS-type section .bss . The number of bytes in
this block is specified by count. The alignment of the block is specified by align; if
omitted or if the -c flag has been specified, quad alignment is used.

The scope of the symbol symbol is static. The block of data is allocated during
assembly. For more information, refer to section 3.3.5.4 Comm and Lcomm
Symbols).

The .S qualifier is used to indicate that the symbol can be referenced with the
absolute short addressing mode (i.e., the symbol will reside in the top or bottom
32K of memory).

Examples

LCOMM table,4096

LCOMM strings,256,4

Section 3: Assembler 245

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.line / LINE — Set Line Number Attribute

Syntax

.line line

LINE line

Description

line Specifies the number of the line on which the current symbol is
defined. It is an absolute expression that cannot contain any
forward, external, or undefined references.

The .line / LINE directive sets the line number attribute of the symbol referenced
by the current attribute block (see .def / DEF directive). For a detailed description
of this attribute, see section 1.4.9 Auxiliary Table Entries . This directive can
appear at most once per symbol attribute block.

The .line / LINE directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type / TYPE directive).

Example

DEF buf

VAL buf

DIM 16,4

SCL 2

TYPE $F4

LINE 25 ; buf is defined on line 25

SIZE 256

ENDEF

246 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

LIST — Enable Assembly Listing

Syntax

LIST

Description

The LIST directive causes a listing of the assembly to be generated (default). It is
used to resume the assembly listing after it has been disabled with the NOL or
NOLIST directive. Pairs of NOLIST and LIST directives can be nested.

LLEN — Set Line Length of Listing File

Syntax

LLEN length

Description

length Specifies the line length. It is an absolute expression that cannot
contain any forward, external, or undefined references. The
minimum line length is 40.

The LLEN directive sets the line length of the listing file to length characters. The
default line length is 80.

Example

LLEN 132

Section 3: Assembler 247

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.ln / LN — Create Line Number Entry

Syntax

.ln line

LN line

Description

line Specifies the current line number in the source file. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .ln / LN directive creates a line number entry for purposes of source-level
debugging. This entry associates the current section’s location counter with a line
in the associated C source file. For more information, see section 1.4.6 Line
Number Information . This directive cannot be used in BSS-type sections.

The .ln / LN directive is typically used only for C source-level debugging; it is
ignored when assembler source-level line number information is generated with
the -L command line flag.

Example

LN 33

ADD D0,D1

248 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.long — Generate Integer Data (Long-Word)

Syntax

.long operand [, operand] . . .

Description

operand Specifies an integer expression.

The .long directive generates long-word integer data. The values of the specified
operands are placed in successive long words beginning at the current location
in the current section. A warning is issued if the alignment is odd. For additional
information, see section 3.3.6.2 Character Constants .

Examples

.long 'abcd' ; 61626364

.long 16777215,0xFFFFFF ; 00FFFFFF 00FFFFFF

.long 0xFF<<24 ; FF000000

Each of the above examples is shown with the sequence of long words (in
hexadecimal) that it generates.

MASK2 — Assemble For Mask2 Chip

Syntax

MASK2

Description

The MASK2 directive is ignored. It is recognized only for Motorola compatibility.

NOFORMAT — Do Not Format Assembly Listing

Syntax

NOFORMAT

Description

The NOFORMAT directive is ignored. It is recognized only for Motorola
compatibility.

Section 3: Assembler 249

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

NOL / NOLIST — Disable Assembly Listing

Syntax

NOL

NOLIST

Description

The NOL and NOLIST directives prevent a listing of the assembly from being
generated. This allows portions of the assembly to be omitted from the listing file.
The listing is resumed with the LIST directive. Pairs of NOLIST and LIST
directives can be nested.

NOOBJ — Suppress Object Code Generation

Syntax

NOOBJ

Description

The NOOBJ directive suppresses generation of an object file. This directive has
the same effect as the -K command line flag.

NOPAGE — Do Not Page Listing File

Syntax

NOPAGE

Description

The NOPAGE directive suppresses paging in the listing file. The listing is
generated as one continuous page.

250 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

OFFSET — Begin a Structure Template Section

Syntax

OFFSET [address]

Description

address Specifies the base address of the section. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The OFFSET directive begins a structure template section. If address is
specified, the section begins at that address; otherwise, it begins at absolute
address zero. This type of section is used in conjunction with the DS directive to
define labels suitable for structure field references. These labels are not included
in the object file’s symbol table.

Since structure template sections are dummy sections, they cannot contain any
object code. Also, they cannot be nested; however, fields of a nested structure
can be treated as part of the enclosing structure. Any section directive will end a
structure template section.

Example

OFFSET ; struct node {

visited DS.B 1 ; char visited;

DS.W 0 ; struct position {

pos.x DS.B 2 ; short int x;

pos.y DS.B 2 ; short int y;

DS.W 0 ; } pos;

left DS.B 4 ; struct node *left;

right DS.B 4 ; struct node *right;

ORG $1000 ; };

MOVE.B #1,_n+visited ; n.visited = 1;

MOVEA.L _p,A0 ; p −>right = NULL;

CLR.L (right,A0) ;

This example illustrates how the OFFSET directive is used to define a set of
structure field labels. The DS directive is used to allocate space and maintain
proper alignment.

Section 3: Assembler 251

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.opt / OPT — Set Assembler Options

Syntax

.opt option [, option] . . .

OPT option [, option] . . .

Description

option An assembler option (see complete list below).

The .opt / OPT directive sets the specified assembler options. These options
affect the assembly of instructions, effective addresses, and data. They also
provide a means of customizing the assembly listing output. Only options valid
for the 68000 are supported by Texas Instruments.

Options

BRB / BRS
BRW

Set the size of unknown PC-relative displacements to 8 or 16 bits (see
section 3.5.4.2 Displacement Sizing).
(Default: BRW)

CASE
NOCASE

Enable/disable character case-sensitivity in symbol names (see
section 3.3.5.1 Symbol Syntax).
(Default: CASE)

CEX
NOCEX

Enable/disable full listing of data directive assembly. The CEX option
allows the object code associated with the DC directive to be listed in
its entirety, while the NOCEX option permits only one line of object
code to be listed. Pairs of these complement options can be nested.
(Default: CEX)

CHOP
NOCHOP

Enable/disable truncation of lines in the assembly listing (see -w and
-x command line flags).
(Default: NOCHOP)

CL
NOCL

Enable/disable listing of conditional assembly directives (see IFC,
IFNC, and IFcc directives).
(Default: CL)

CRE This option is ignored. It is recognized only for Motorola compatibility.

D This option is ignored. It is recognized only for Motorola compatibility.

EQU
NOEQU

Enable/disable inclusion of equate symbols (i.e., symbols created via
the EQU and SET directives) in the object file’s symbol table.
(Default: EQU)

252 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

FILLVAL =value

Set the fill value to value (see DS directive). A warning is issued if the
specified value does not fit in a signed or unsigned byte.
(Default: FILLVAL=0)

Flash ROM 16
FR32

Set the size of unknown PC-relative displacements to 16 or 32 bits
(not supported by Texas Instruments).

FRS
FRL

Set the size of unknown absolute displacements to either 16 or 32 bits
(see section 3.5.4.2 Displacement Sizing).
(Default: FRL)

FWDSIZE Enable displacement size checking for forward branches. The
assembler will issue a warning for each displacement that can be
reduced in size.
(Default: disabled)

IOPT
NOIOPT

Enable/disable instruction optimizations (see section
3.4.3 Instruction Optimization).
(Default: IOPT)

ISIZE =size Set the default instruction size (see section 3.4.2 Instruction Sizing).
The following are the legal sizes:

B Byte Integer

W Word Integer

L Long-word Integer
(Default: ISIZE=W)

LHEX List the alphabetical hexadecimal digits using lowercase characters.
(Default: UHEX)

LLBL
NOLLBL

Enable/disable local labels (see section 3.3.5.2 Labels).
(Default: NOLLBL)

MC
NOMC

Enable/disable listing of user-defined macro invocations (see section
3.8.1.2 Macro Invocation).
(Default: MC)

MD
NOMD

Enable/disable listing of user-defined macro definitions (see section
3.8.1.1 Macro Definition).
(Default: MD)

MEX
NOMEX

Enable/disable listing of user-defined macro expansions (see section
3.8.1 User-Defined Macros).
(Default: NOMEX)

NOPC Disable all coercions to PC-relative addressing modes. This option
disables the PCB16, PCB32, and PCF options.
(Default: PCB16)

O
NOO

Enable/disable generation of the object file. This option is overridden
by both the NOOBJ directive and the -K flag.
(Default: O)

Section 3: Assembler 253

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

OLD
NOOLD

Enable/disable old branch sizing (see section 3.5.4.2 Displacement
Sizing).
(Default: NOOLD)

P=proc
PROC=proc

Set the target processor. 68000 is the only processor recognized by
Texas Instruments.
(Default: P=68000)

PCA
NOPCA

Enable/disable coercion to PC-relative addressing modes for
references to an absolute location or from an absolute section. The
PCF option must be enabled for this option to be effective (see
section 3.5.4.1 PC-relative Coercion).
(Default: PCA)

PCB16
PCB32

Enable coercion to PC-relative addressing modes for 16-bit and 32-bit
backward references (see section 3.5.4.1 PC-relative Coercion).
Selecting the PCB16 option disables the PCB32 option; selecting the
PCB32 option enables the PCB16 option. The PCB32 option is not
legal on the 68000/10.
(Default: PCB16)

PCF Enable coercion to PC-relative addressing modes for forward
references, references to locations positioned at an unknown
distances. This option also enables the PCB16 option. For more
information, see section 3.5.4.1 PC-relative Coercion .
(Default: PCB16)

RNGCHK [=] type

Set the immediate data range check for byte and word data. The
following four levels of range checking are provided:

0 No checking: all values are silently truncated

1 Byte: -256–255; Word: -65536–65535

2 Byte: -128–255; Word: -32768–65535

3 Byte: -128–127; Word: -32768–32767
(Default: RNGCHK=1)

SCEX
NOSCEX

Enable/disable listing of structured control macro expansions (see
section 3.8.2 Structured Control Macros).
(Default: NOSCEX)

UHEX List the alphabetical hexadecimal digits using uppercase characters
(see also LHEX).
(Default: UHEX)

ULOC Modify the naming convention for compiler locals by adding an initial
underscore (_). For more information, see section 3.3.5.6 Compiler
Locals .
(Default: disabled)

254 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

ORG — Begin an Absolute Data-type Section

Syntax

ORG[.size] address

Description

size Specifies the size of unknown absolute displacements contained
in the section. The legal values are shown below; the default is L.

S Absolute short reference (16-bit)

L Absolute long reference (32-bit)

address Specifies the base address of the section. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The ORG directive begins an unnamed, data-type section. The section’s base
address address is fixed.

Examples

ORG.S $4000

ORG base+1024

In the second example, the symbol base must be absolute and previously
defined.

PAGE — Begin New Listing Page

Syntax

PAGE

Description

The PAGE directive begins a new page in the listing file. This directive does not
appear in the listing.

Section 3: Assembler 255

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

REG — Define a Register List Symbol

Syntax

symbol REG register [–register] [/ register [–register]] . . .

Description

symbol Specifies a symbol that is not defined elsewhere in the current file.
It must appear in the label field of the statement.

register Specifies a data, address, or floating-point register.
Hyphen-separated ranges must be specified in ascending order.

The REG directive defines the symbol symbol and assigns to it the specified
register list. Register list symbols are suitable for use with the MOVEM and
FMOVEM instructions. For more information on register list specification, see
section 3.5.3 Effective Address Syntax .

Examples

SAVE REG D3-D7/A2

256 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

REORG — Reset the Location Counter in an Absolute Section

Syntax

REORG address

Description

address Specifies the address at which the current section will continue. It
is an absolute expression that cannot contain any forward,
external, or undefined references.

The REORG directive resets the location counter in an absolute section. The
continuation address address must be greater than the current value of the
section’s location counter; any space that is created is filled with the current fill
value (see OPT FILLVAL), unless the section is of BSS-type.

Examples

ORG.L $8000

MOVE.L #$5000,D0

REORG $C000

BSECTION tbl,$1000

MOVE.L #$1200,D1

REORG $8000

As the second example illustrates, the REORG directive can be applied to any
absolute section, regardless of its declaration.

Section 3: Assembler 257

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.scl / SCL — Set Storage Class Attribute

Syntax

.scl class

SCL class

Description

class Specifies the storage class of the current symbol. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .scl / SCL directive sets the storage class attribute of the symbol referenced
by the current attribute block (see .def / DEF directive). For a list of recognized
storage classes, see section 1.4.8.2 Storage Class . This directive can appear at
most once per symbol attribute block.

The .scl / SCL directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type / TYPE directive).

Example

DEF x

VAL 3

SCL 4 ; x is in a register

TYPE 4

ENDEF

258 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

SECTION — Begin / Resume a Data-type Section

Syntax

SECTION[.S] name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a numerical character (0–9). If the section name begins with a
numerical character, the assembler will prefix it with a period (.).
Section names 9, 13, and 14, however, are handled differently;
they designate the sections .text , .data , and .bss , respectively.

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The SECTION directive begins a data-type section with name name. If address is
specified, the section is absolute and begins at that address; otherwise, the
section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location; any
space that is created is filled with the current fill value (see OPT FILLVAL).
Relocatable sections cannot be resumed with an address specification.

The .S qualifier is used to indicate that any symbols defined in the section can be
referenced with the absolute short addressing mode (i.e., the section will reside
in the top or bottom 32K of memory).

This directive is a synonym for the DSECTION directive.

Section 3: Assembler 259

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

SET — Define / Redefine an Integer Symbol

Syntax

symbol SET value

Description

symbol Specifies a symbol that can be defined elsewhere in the current
file only with the SET directive. It must appear in the label field of
the statement.

value Specifies the value of the symbol. It is an absolute or simple
relocatable expression that cannot contain any forward, external,
or undefined references.

The SET directive defines the symbol symbol and assigns to it the value value.
The symbol is defined with static scope (the XDEF directive can be used to
expand its scope to external). If the symbol was previously defined with the SET
directive, it is redefined with the specified value; its scope is not modified. For
more information, see section 3.3.5.3 Symbol Assignment .

Examples

COUNT SET 1

COUNT SET COUNT+1

COUNT SET COUNT+1

260 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.short — Generate Integer Data (Word)

Syntax

.short operand [, operand] . . .

Description

operand Specifies an integer expression.

The .short directive generates word integer data. The values of the specified
operands are placed in successive words beginning at the current location in the
current section. A warning is issued if the alignment is odd. For additional
information, refer to section 3.3.6.2 Character Constants .

Examples

.short 'ab' ; 6162

.short 01777,1023,0x3FF ; 03FF 03FF 03FF

.short 1024*16 ; 4000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

Section 3: Assembler 261

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.size / SIZE — Set Size Attribute

Syntax

.size size

SIZE size

Description

size Specifies the size of the current symbol. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .size / SIZE directive sets the size attribute of the symbol referenced by the
current attribute block (see .def / DEF directive). The size attribute is specified for
aggregate types (see section 1.4.9 Auxiliary Table Entries). This directive can
appear at most once per symbol attribute block.

The .size / SIZE directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type / TYPE directive).

Example

DEF buf

VAL buf

DIM 16,4

SCL 2

TYPE $F4

LINE 25

SIZE 256 ; buf is an array 256 bytes long

ENDEF

262 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.space — Allocate a Block of Uninitialized Memory

Syntax

.space[.size] count

Description

size Specifies the unit size. The legal sizes are shown below; the
default is b.

b Byte Integer (1 byte)

w Word Integer (2 bytes)

l Long-word Integer (4 bytes)

s Single-precision Real (not supported)

d Double-precision Real (not supported)

x Extended-precision Real (not supported)

p Packed Decimal Real (not supported)

count Specifies the unit count. It is an absolute expression that cannot
contain any forward, external, or undefined references.

The .space directive allocates a block of uninitialized memory whose size is
determined by the number and size of the unit location. Each location is filled
with the current fill value (see OPT FILLVAL), unless the section is of BSS-type.

Examples

.space 256

.space.l 64

Section 3: Assembler 263

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

SPC — Generate Blank Lines in Listing File

Syntax

SPC count

Description

count Specifies the number of blank lines. It is an absolute expression
that cannot contain any forward, external, or undefined
references.

The SPC directive generates count blank lines in the listing file. This directive
does not appear in the listing.

Example

SPC 3

264 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.tag / TAG — Set Tag Name Attribute

Syntax

.tag symbol

TAG symbol

Description

symbol Specifies the tag name with which the current symbol is
associated. It is a symbol that is defined as a structure, union, or
enumeration type.

The .tag / TAG directive sets the tag name attribute of the symbol referenced by
the current attribute block (see .def / DEF directive). For a detailed description of
the tag name attribute, see section 1.4.9 Auxiliary Table Entries . This directive
can appear at most once per symbol attribute block.

The .tag / TAG directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type / TYPE directive).

Example

DEF x

VAL x

SCL 2

TYPE 8

SIZE 4

TAG s ; s is the tag of the structure

ENDEF ; of which x is a member

.text — Begin / Resume the Text-type Section .text

Syntax

.text

Description

The .text directive begins or resumes the text-type section .text . It is functionally
equivalent to .tsection .text .

The section .text contains read-only data. It is present in all object files,
regardless of whether it is specified. For more information, see section
3.3.4.1 Section Types .

Section 3: Assembler 265

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.tsection / TSECTION — Begin / Resume a Text-type Section

Syntax

.tsection name [, address]

TSECTION[.S] name [, address]

Description

name Specifies the section. It is a symbol whose name can be up to
eight characters in length. The first character of the name can be
a numerical character (0–9). If the section name begins with a
numerical character, the assembler will prefix it with a period (.).
Section names 9, 13, and 14, however, are handled differently;
they designate the sections .text , .data , and .bss , respectively.

address Specifies the base or continuation address of the section. It is an
absolute expression that cannot contain any forward, external, or
undefined references.

The .tsection / TSECTION directive begins a text-type section with name name.
If address is specified, the section is absolute and begins at that address;
otherwise, the section is relocatable.

If the specified section already exists, it is resumed either at its current location
(i.e., the value of its location counter) or at the specified address address. An
absolute section can be restarted at any address beyond its current location; any
space that is created is filled with the current fill value (see OPT FILLVAL).
Relocatable sections cannot be resumed with an address specification.

The .S qualifier is used to indicate that any symbols defined in the section can be
referenced with the absolute short addressing mode (i.e., the section will reside
in the top or bottom 32K of memory).

Examples

TSECTION code ; relocatable

TSECTION rom,$F800 ; absolute

266 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

TTL — Set Title in Listing File

Syntax

TTL title

Description

title Specifies the title that appears on each listing file page. It is an
ASCII string that can be optionally enclosed in double quotes.

The TTL directive sets the title that appears in the header of each page of the
listing file. This directive stays in effect until another TTL directive is encountered;
the current page is affected only if the directive appears on the page’s first line. If
this directive is not specified, the assembler’s name is used as the title.

Example

TTL "macro assembler"

TTL Sierra Systems is #1

Section 3: Assembler 267

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.type / TYPE — Set Type Attribute

Syntax

.type type

TYPE type

Description

type Specifies the type of the current symbol. It is an absolute
expression that cannot contain any forward, external, or undefined
references.

The .type / TYPE directive sets the type attribute of the symbol referenced by the
current attribute block (see .def / DEF directive). For a discussion of fundamental
and derived types, see section 1.4.8.7 Type Entry . This directive can appear at
most once per symbol attribute block.

The .type / TYPE directive can also be used in conjunction with the -L command
line flag to provide type information for symbols. When the -L command line flag
is used, this directive does not have to appear within a symbol attribute block; the
type it specifies is associated with the most recently defined label. Function types
can only be attributed to labels defined in text-type sections.

Examples

x:

TYPE $24 ; x is a function that returns an int

268 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.val / VAL — Set Value Attribute

Syntax

.val value

VAL value

Description

value Specifies the value of the current symbol. It is an absolute or
simple relocatable expression.

The .val / VAL directive sets the value attribute of the symbol referenced by the
current attribute block (see .def / DEF directive). The meaning of the value
attribute is dependent upon the selected storage class (see section
1.4.8.4 Symbol Value Field). This directive can appear at most once per symbol
attribute block.

The .val / VAL directive is typically used only for C source-level debugging; it is
ignored when assembler source-level debugging information is generated with
the -L command line flag (see also .type / TYPE directive).

Example

DEF x

VAL x ; x is a variable its value is its location

SCL 2

TYPE 4

ENDEF

Section 3: Assembler 269

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.word — Generate Integer Data (Word)

Syntax

.word operand [, operand] . . .

Description

operand Specifies an integer expression.

The .word directive generates word integer data. The values of the specified
operands are placed in successive words beginning at the current location in the
current section. A warning is issued if the alignment is odd. For additional
information, refer to section 3.3.6.2 Character Constants .

Examples

.word 'ab' ; 6162

.word %1111111111,01777,1023 ; 03FF 03FF 03FF

.word 1024*16 ; 4000

Each of the above examples is shown with the sequence of words (in
hexadecimal) that it generates.

XDEF — Declare External a Defined Symbol

Syntax

XDEF symbol [, symbol] . . .

Description

symbol Specifies a symbol that is defined in the current file. Section
names and floating-point symbols are not allowed.

The XDEF directive declares the scope of the symbol symbol to be external. This
is necessary when the symbol is referenced in other source files (since the
default symbol scope is static).

Examples

XDEF init

XDEF proc1,diag_list

270 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

XREF — Declare External a Referenced Symbol

Syntax

XREF[.S] [section :]symbol [, [section :]symbol] . . .

Description

section Specifies the number of the section in which the symbol is
defined. It is an absolute expression that cannot contain any
forward, external, or undefined references.

symbol Specifies a symbol that is referenced (but not defined) in the
current file. Section names and floating-point symbols are not
allowed.

The XREF directive declares the scope of the symbol symbol to be external. This
is necessary when a locally referenced symbol is defined in another source file.
Failure to declare such a symbol to have external scope results in an error (see
also -E flag).

The .S qualifier is used to indicate that the symbol(s) can be referenced with the
absolute short addressing mode. The optional section number is ignored; it is
recognized only for Motorola compatibility.

Examples

XREF base,init,input

XREF.S proc1

Section 3: Assembler 271

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.8. Asm68k Macros

The assembler asm68k supports two macro facilities: user-defined macros and
structured control macros. They are provided to simplify the task of
programming, improve the readability of assembly source, and help reduce the
frequency of errors. This section describes the user-defined macro and
structured control macro support.

3.8.1. User-Defined Macros

Macros provide an efficient means of generating commonly used sequences of
code. A macro is defined once and can be used any number of times.
Parameters can be used to allow variations in the code sequences generated by
a single macro.

Using macros simplifies programming, since changes can be isolated to a single
location. Also, assembly programs written using macros are more concise and
easier to understand. The remainder of this section describes how to define and
invoke macros, as well as how to use macro parameters and conditional control.

3.8.1.1. Macro Definition

A macro definition consists of a header, a body, and a terminator. Following is
the syntax for a macro definition:

Syntax

label MACRO [comment]
[statement]

.

.

.
ENDM

Description

label Specifies the name of the macro. The first 32 characters of the
macro name are significant. Only the first character of the name
can be a period (.).

comment Specifies a comment, which is typically used to document any
formal parameters of the macro.

statement Specifies an assembler statement. It cannot be a macro definition
(i.e., macro definitions cannot be nested).

272 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The header consists of the macro name label, the MACRO directive, and an
optional comment field. The terminator is the ENDM directive. The body is a
sequence of statements that are assembled each time the macro is invoked.
These statements can reference the formal parameters of the macro (see section
3.8.1.3 Parameters).

A macro can be referenced from within another macro definition prior to being
defined itself. Macros cannot be redefined, nor can they use the names of
instructions or directives.

3.8.1.2. Macro Invocation

Following is the syntax for macro invocations:

Syntax

[label] macro [.qualifier] [parameter [, parameter] . . .]

Description

label Specifies an optional label.

macro Specifies the name of the macro. It must have been previously
defined with the MACRO directive.

qualifier Specifies a size qualifier that is passed to the macro as parameter
\0.

parameter Specifies symbols, constants, expressions, or any other text. The
maximum number of parameters allowed is 35. They are passed
to the macro as parameters \1, \2, \3, etc.

When a macro is invoked, it generates assembler statements according to its
definition and actual parameters. These statements are treated as are any other
source statements. Any nested macros will be expanded when they are
encountered.

Once a macro is recognized, the specified actual parameters are saved. The first
specified parameter corresponds to formal parameter \1, the second corresponds
to \2, etc. Parameters are passed by name, not by value. Since the
parameter-passing mechanism is simply textual substitution, values of symbols
can be modified by the macro.

Section 3: Assembler 273

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The following steps are then performed for each statement in the body of the
macro:

• The statement is retrieved.

• Any formal parameters are replaced with their corresponding actual
parameters; formal parameters that have no corresponding actual parameter
are assigned a null string.

• The \@ designator is replaced with a unique number (refer to section
3.8.1.4 Local Labels).

• The NARG symbol is replaced with its value (see section 3.8.1.5 NARG
Symbol).

• The fully expanded statement is processed as any other statement would be
processed. If it is a nested macro invocation, these steps are performed
recursively.

Macros must be defined before they are invoked. A macro’s expanded code will
appear in the listing file only if the OPT MEX directive is specified (default:
OPT NOMEX).

3.8.1.3. Parameters

The formal parameters of a macro are the parameters that are referenced in the
macro’s definition. They are denoted by a backslash (\) followed by a digit or
alphabetical character (either lowercase or uppercase). The formal parameter
designated by \0 corresponds to the optional size qualifier used when the macro
is invoked. The parameters designated by \1 – \9 and \A – \Z correspond to the
actual parameters that appear in the operand field of a macro invocation. If a
macro is defined with a non-consecutive set of formal parameters (e.g., \3 is
referenced, but \2 is not), a warning is issued.

The actual parameters of a macro are the parameters that are specified when a
macro is invoked. The actual parameters are substituted for their formal
counterparts in the body of the expanded macro. The default value for any
parameter in the operand field is a null string, and the default for the parameter in
the qualifier field is the size qualifier .W. If an actual parameter is omitted, its
value is the default.

If an actual parameter contains whitespace or commas, it must be enclosed in
angle brackets (< >). Angle brackets can be nested, but must always appear in
pairs.

274 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

An actual parameter that begins with a question mark (?) is evaluated prior to
macro expansion; the result of the integer expression becomes the actual
parameter. The expression must be absolute and cannot contain any forward,
external, or undefined references (see section 3.3.7.3 Expression Evaluation).
The question mark operator is necessary when a formal parameter is situated in
a field where an expression cannot be specified (e.g., within in a symbol name).
It is also useful when an actual parameter is a complicated expression and its
corresponding formal parameter is referenced more than once in the body of the
macro.

The parameter list of a macro invocation can be continued on additional lines, if
necessary. A line to be continued must end with a comma that separates two
parameters, and the subsequent continuation line must have an ampersand (&)
in the first column. If continuation lines are used, a comment can appear only
after the final continuation line.

3.8.1.4. Local Labels

If a label is defined within a macro, it must be declared to be local to that macro if
the macro will be used more than once in a file; otherwise, multiple invocations of
the macro will produce multiple definitions of the label.

Labels local to a macro can be generated by using the \@ designator as part of
the label name or as the label name itself. When the macro is invoked, the \@
designator will be replaced with a period (.) followed by a unique four-digit
number. This number begins at zero and is incremented each time a macro is
invoked, thus providing up to 10,000 unique local macro scopes.

3.8.1.5. NARG Symbol

The NARG symbol is used in the body of a macro definition. When a macro is
expanded, this symbol is replaced with the index of the last parameter with which
the macro was invoked (even if this parameter was explicitly specified as null).

The NARG symbol is typically used in conjunction with conditional assembly
directives to allow a macro’s generated code to depend on the number of
parameters supplied to it. This symbol has no meaning outside of a macro
definition and can be used as an ordinary symbol.

3.8.1.6. MEXIT Directive

The MEXIT directive causes the current macro invocation to be terminated; any
remaining assembler statements in the macro definition are skipped (i.e., all
statements between the MEXIT and ENDM directives). Only the current
invocation is terminated; if macros are nested, control is returned to the previous
level of macro expansion.

Section 3: Assembler 275

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The MEXIT directive is typically used in conjunction with conditional assembly
directives to provide a conditional macro termination (see IFcc directive).

3.8.1.7. Macro Examples

The remainder of this section provides a series of examples that illustrate the
various features of the macro facility. Each example includes a macro definition
and one or more invocations of that macro. The OPT MEX directive is required to
show the macro expansion in the listing file.

The first example presents a macro that can be used to repeat an arbitrary
statement a specified number of times. It can be easily modified to accept any
number of statements, including invocations of other macros. Following the
macro definition is an example invocation and the assembler statements it
generates.

REP MACRO

IFEQ \2

MEXIT

ENDC

REP <\1>,?(\2-1)

\1

ENDM

OPT MEX

REP <MOVE.B (A0)+,(A1)+>,8

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

MOVE.B (A0)+,(A1)+

If the parameter evaluation operator (?) is omitted from the above example, the
macro will produce the identical code; however, evaluation of the second
parameter will involve redundant computations (e.g., the second parameter
would be 8-1-1-1-1-1-1-1-1 instead of 0 on the final invocation).

The second example presents a macro that can be used to define sequences of
equate symbols; the value of each symbol is a function of its position in the
specified sequence. The definition of this macro is followed by a pair of example
invocations and their associated expansions.

276 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

VALUES MACRO

IFLT \2

MEXIT

ENDC

VALUES \1,?(\2-1),\3

\1\2 EQU \3\2

ENDM

OPT MEX

VALUES BIT,7,1<<

BIT0 EQU 1<<0

BIT1 EQU 1<<1

BIT2 EQU 1<<2

BIT3 EQU 1<<3

BIT4 EQU 1<<4

BIT5 EQU 1<<5

BIT6 EQU 1<<6

BIT7 EQU 1<<7

VALUES IDX,9,4*

IDX0 EQU 4*0

IDX1 EQU 4*1

IDX2 EQU 4*2

IDX3 EQU 4*3

IDX4 EQU 4*4

IDX5 EQU 4*5

IDX6 EQU 4*6

IDX7 EQU 4*7

IDX8 EQU 4*8

IDX9 EQU 4*9

The final example presents a macro that can be used to perform copying of
strings and arbitrary memory ranges. Its parameters include the source and
destination addresses, the type of copy to be performed, and the number of
bytes to be copied (not used for string copies). The final two parameters are
optional; they specify the address registers that will be used for the copy. The
macro’s size qualifier specifies the number of bytes to be copied at a time. The
macro COUNT uses the qualifier to compute the number of move instructions
needed to perform the copy. Two example invocations are shown following the
macro definitions.

COPY MACRO

IFNC '\3','STRING COPY'

COUNT \4,\0,MOVEQ,D0

ENDC

IFEQ NARG-6

LEA \1,A\5

Section 3: Assembler 277

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

LEA \2,A\6

L\@

MOVE.\0 (A\6)+,(A\5)+ ; \3

ELSEC

LEA \1,A0

LEA \2,A1

L\@

MOVE.\0 (A1)+,(A0)+ ; \3

ENDC

IFC '\3','STRING COPY'

BNE L\@

ELSEC

DBF D0,L\@

ENDC

ENDM

COUNT MACRO

IFC '\2','B'

\3 #(\1-1),\4

ELSEC

IFC '\2','L'

\3 #((\1>>2)-1),\4

ELSEC

\3 #((\1>>1)-1),\4

ENDC

ENDC

ENDM

OPT MEX

COPY.B MESG1,MESG2,<STRING COPY>,,3,4

LEA MESG1,A3

LEA MESG2,A4

L.0000

MOVE.B (A4)+,(A3)+ ; STRING COPY

BNE L.0000

COPY.L NODE1,NODE2,<STRUCTURE COPY>,64

MOVEQ #((64>>2)-1),D0

LEA NODE1,A0

LEA NODE2,A1

L.0001

MOVE.L (A1)+,(A0)+ ; STRUCTURE COPY

DBF D0,L.0001

278 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.8.2. Structured Control Macros

The structured control macro facility provided by asm68k is a set of high-level
language constructs, which are used to generate run-time loops and conditional
execution. These macros expand into the appropriate assembly code to perform
the desired control structure. Since these macros are implemented efficiently,
they improve readability without sacrificing the desirable aspects of using
assembly language. The remainder of this section describes their usage.

Note: Structured control macros do not provide assembly-time control — they provide run-time
control.

3.8.2.1. Structured Control Expressions

Structured control expressions are used to specify the flow of execution for
certain structured control macros. These expressions are translated into one or
more CMP, BRA , and Bcc instructions to provide the necessary flow of control.
The expressions themselves have a logical value of true of false. They are used
with the IF, UNTIL, and WHILE directives. The syntax for constructing structured
control expressions is as follows:

Syntax

I. <cc1> [logical_op [.size] <cc2>]

II. <cc1> [logical_op [.size] op3 <cc2> op4]

III. op1 <cc1> op2 [logical_op [.size] <cc2>]

IV. op1 <cc1> op2 [logical_op [.size] op3 <cc2> op4]

Description

cc1
cc2

Specifies one of the integer conditional tests shown in Table 3.30.
Floating-point and PMMU conditional tests are not supported. The angle
brackets that enclose the conditional test are required characters.

op1
op2
op3
op4

Specifies an effective address expression (see section 3.5 Effective
Addressing Modes).

logical_op Specifies one of the following logical operators:

AND Logical AND

OR Logical OR

Section 3: Assembler 279

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

size Specifies the size of the CMP instruction generated for the expression
that follows the logical operator. (The size qualifier for the first expression
is attached to the preceding IF, UNTIL, or WHILE directive.) The legal
values are shown below:

B Byte Integer

W Word Integer

L Long-word Integer

S Single-precision Real (not supported)

D Double-precision Real (not supported)

X Extended-precision Real (not supported)

P Packed Decimal Real (not supported)

A CMP instruction is generated for each specified pair of effective
address operands. If necessary, the operands of this instruction will be
exchanged to produce a legal instruction; in this case, the corresponding
conditional test will also be reversed. The operands will be exchanged in
the following cases:

• The second operand is immediate data.

• The first operand is a data or address register, and the second
operand is not a data or address register.

A conditional branch is generated for each specified conditional test. If
necessary, the negation of a conditional test will be used to produce the
correct flow of control.

Examples

<NE>

D1 <GT> #LIMIT

A0 <LT> A1 AND.L D2 <NE> #0

Mnemonic Condition Mnemonic Condition

CC Carry Clear LS Low or Same

CS Carry Set LT Less Than

EQ Equal MI Minus

GE Greater or Equal NE Not Equal

GT Greater Than PL Plus

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set

Table 3.30: Integer Conditional Tests

280 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

3.8.2.2. Macro Invocation

The structured control constructs are specified with a set of predefined macros,
which are shown in Table 3.31. Each of these macros and their associated
parameters expand into the appropriate labels and instructions to produce the
desired control structure. These expansions will appear in the listing file if the
OPT SCEX directive is specified (default: OPT NOSCEX). An alphabetically
arranged set of macro descriptions is provided below. Structured control macros
can be nested to form more complicated control structures.

Mnemonic Function

BREAK Terminate Loop Execution

CONTINUE Begin Next Loop Iteration

FOR . . . ENDF Loop Based on Counter

IF . . . ELSE . . . ENDI Perform Conditional Execution

REPEAT . . . UNTIL Loop Until Condition True

WHILE . . . ENDW Loop While Condition True

Table 3.31: Structured Control Macros

In addition to the macro mnemonics, there is a set of supporting keywords, which
are not reserved; they are AND, BY, DO, DOWNTO, OR, THEN, and TO. These
keywords are required syntax for macro invocations, but can be used elsewhere
as ordinary symbols.

As with user-defined macros, invocations of structured control macros can be
continued on additional lines, if necessary. Because of the syntax, no
continuation characters are needed; however, blank lines cannot appear
between any of the continuation lines. Comments used prior to a continuation
line must begin with an exclamation point (!).

Note: The labels that are created during the expansion of structured control macros have local
scope. They are defined using the same mechanism that is used for labels local to
user-defined macros (see section 3.8.1.4 Local Labels). The labels are named ZL1\@,
ZL2\@, ZL3\@, and ZL4\@; the \@ designator is replaced by a period (.) and a unique
four-digit number. These labels are treated the same as compiler local labels as far as
the symbol tables in the object and listing files are concerned (i.e., their presence or
absence is controlled with the -S and -s command line flags).

3.8.2.3. Structured Control Reference

The remainder of this section contains detailed descriptions of the various
structured control macros. The descriptions are ordered alphabetically.

Section 3: Assembler 281

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

BREAK — Terminate Loop Execution

Syntax

BREAK[. extent]

Description

extent Specifies the extent of the generated forward branch. The legal
values are shown below; if omitted, the branch extent is
determined by the current default forward branch size (see OPT
BRB/BRS/BRW directive).

B 8-bit forward branch

S 8-bit forward branch

W 16-bit forward branch

The BREAK macro is analogous to the break statement in C — i.e., it terminates
execution of the smallest enclosing loop. It is used to exit a FOR, REPEAT, or
WHILE loop before the loop’s termination condition is met.

The BREAK macro expands into an unconditional branch to the
assembler-generated label that immediately follows the smallest enclosing loop.
Using this macro outside a loop results in an error.

282 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

CONTINUE — Begin Next Loop Iteration

Syntax

CONTINUE[.extent]

Description

extent Specifies the extent of the generated forward branch. The legal
values are shown below; if omitted, the branch extent is
determined by the current default forward branch size (see
OPT BRB/BRS/BRW directive).

B 8-bit forward branch

S 8-bit forward branch

W 16-bit forward branch

The CONTINUE macro is analogous to the continue statement in C — i.e., it
proceeds to the next iteration of the smallest enclosing loop. It is used to skip the
remainder of the current iteration of a FOR, REPEAT, or WHILE loop.

The CONTINUE macro expands into an unconditional branch to the
assembler-generated label that immediately precedes the condition test of the
smallest enclosing loop. Using this macro outside a loop results in an error.

Section 3: Assembler 283

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

FOR . . . ENDF — Loop Based on Counter

Syntax

FOR[.size] op1 = op2 { TO | DOWNTO } op3 [BY op4] DO[.extent]
[statement]
.
.
.

ENDF

Description

size Specifies the size qualifier for instructions that are generated to
operate on op1, op2, op3, and op4. The legal values are shown
below; if omitted, the size is determined according to the rules
discussed in section 3.4.2 Instruction Sizing .

B Byte Integer

W Word Integer

L Long-word Integer

op1 Specifies the loop counter. It must be an alterable effective
address expression (see section 3.5 Effective Addressing
Modes).

op2 Specifies the initial value of the loop counter. It can be any
effective address expression.

op3 Specifies the final value of the loop counter. It can be any effective
address expression.

op4 Specifies the step value (increment/decrement) for the loop
counter. It can be any effective address expression. If omitted, it
defaults to #1.

extent Specifies the extent of the forward branch that is generated to
span the loop body. The legal values are shown below; if omitted,
the branch extent is determined by the current default forward
branch size (see OPT BRB/BRS/BRW directive).

B 8-bit forward branch

S 8-bit forward branch

W 16-bit forward branch

statement Specifies an assembler statement.

284 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

The FOR . . . ENDF macro is a restricted form of the for statement in C. It
generates a counter-based iterated loop, which can be executed zero or more
times. The loop is executed until op1 is greater / less (TO / DOWNTO) than op3.

This macro uses a MOVE instruction to initialize op1 to the value of op2, either
an ADD instruction to increment op1 by op4 (TO) or a SUB instruction to
decrement op1 by op4 (DOWNTO), and a CMP instruction to perform the
termination test involving op1 and op3. An unconditional forward branch is used
initially to jump to the termination test, which is situated at the end of the loop; a
conditional backward branch is used to jump to the beginning of the loop to
perform the next iteration. The initial jump to the termination test will be omitted
during expansion if it can be determined that the loop will execute at least once.

Upon normal exit from the loop, op1 will contain the value that caused the loop to
terminate; the condition codes will reflect the final execution of the CMP
instruction. Since the FOR . . . ENDF construct is simply a macro, there are no
restrictions on modifying the operands op1, op2, op3, and op4 from within the
body of the loop.

Examples

FOR.L A0 = #OUTBUF TO #OUTBUF+BUFSIZ-1 BY #4 DO.S

 CLR.L (A0)

ENDF

FOR.W D0 = #1 TO #SIZE DO.S

 MOVE.B (A0)+,(A1)+

ENDF

As the first example illustrates, the default step size of 1 is inappropriate when
the loop counter is used directly to index through word or long-word data.

Section 3: Assembler 285

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

IF . . . ELSE . . . ENDI — Perform Conditional Execution

Syntax

IF[.size] expression THEN[.extent]
[statement]
.
.
.

ENDI

 – or –

IF[.size] expression THEN[.extent]
[statement]
.
.
.

ELSE[.extent]
[statement]
.
.
.

ENDI

Description

size Specifies the size qualifier for the structured control expression.
The legal values are shown below; if omitted, the size is
determined according to the rules discussed in section
3.4.2 Instruction Sizing .

B Byte Integer.

W Word Integer.

L Long-word Integer.

S Single-precision Real (not supported).

D Double-precision Real (not supported).

X Extended-precision Real (not supported).

P Packed Decimal Real (not supported).

expression Specifies a structured control expression (see section
3.8.2.1 Structured Control Expressions).

286 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

extent Specifies the extent of the forward branches that are generated to
span the THEN and ELSE statement groups. The legal values are
shown below; if omitted, the branch extent is determined by the
current default forward branch size (see OPT BRB/BRS/BRW
directive).

B 8-bit forward branch.

S 8-bit forward branch.

W 16-bit forward branch.

statement Specifies an assembler statement.

The IF . . . ELSE . . . ENDI macro is analogous to the if-else construct in C. If the
specified expression is true, the set of statements following the THEN keyword is
executed; otherwise, the set of statements following the ELSE keyword (if
present) is executed.

Code is generated to evaluate the structured control expression expression and
to perform the necessary flow of control. This will include either one or two
branches, depending on the expression’s complexity.

When IF macros are nested, each ELSE clause is associated with the
immediately preceding IF macro that is not matched by an ENDI or ELSE
directive.

Example

IF.W D1 <GT> D2 THEN.S

 MOVE.W D1,D0

ELSE.S

 MOVE.W D2,D0

ENDI

Section 3: Assembler 287

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

REPEAT . . . UNTIL — Loop Until Condition True

Syntax

REPEAT
[statement]
.
.
.

UNTIL[.size] expression

Description

statement Specifies an assembler statement.

size Specifies the size qualifier for the structured control expression.
The legal values are shown below; if omitted, the size is
determined according to the rules discussed in section
3.4.2 Instruction Sizing .

B Byte Integer

W Word Integer

L Long-word Integer

expression Specifies a structured control expression (see section
3.8.2.1 Structured Control Expressions).

The REPEAT . . . UNTIL macro generates a loop that executes until the specified
condition becomes true. The termination test is performed at the end of the loop;
therefore, the loop is executed at least once, even if the terminating condition is
true upon entry.

Code is generated to evaluate the structured control expression expression and
to perform the necessary flow of control. This will include either one or two
branches, depending on the expression’s complexity. Upon normal exit from the
loop, the condition codes will reflect the final evaluation of expression.

To repeat an instruction or sequence of instructions at assembly-time, refer to
the REP macro in the first example in section 3.8.1.7 Macro Examples .

Example

REPEAT

MOVE.B (A0)+,(A1)+

UNTIL <EQ>

288 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

WHILE . . . ENDW — Loop While Condition True

Syntax

WHILE[.size] expression DO[.extent]
[statement]
.
.
.

ENDW

Description

size Specifies the size qualifier for the structured control expression.
The legal values are shown below; if omitted, the size is
determined according to the rules discussed in section
3.4.2 Instruction Sizing .

B Byte Integer

W Word Integer

L Long-word Integer

expression Specifies a structured control expression (see section
3.8.2.1 Structured Control Expressions).

extent Specifies the size of any forward branches that are generated to
span the loop body. The legal values are shown below; if omitted,
the size is determined by the current default forward branch size
(see OPT BRB/BRS/BRW directive).

B 8-bit forward branch

S 8-bit forward branch

W 16-bit forward branch

statement Specifies an assembler statement.

The WHILE . . . ENDW macro is analogous to the while statement in C — i.e., it
generates a loop that executes while a specified condition is true. The
termination test is performed at the beginning of the loop; therefore, the loop is
not executed if the condition is false upon entry.

Code is generated to evaluate the structured control expression expression and
to perform the necessary flow of control. This will include either one or two
forward branches, depending on the expression’s complexity. An unconditional
backward branch is used to perform the next iteration of the loop. Upon normal
exit from the loop, the condition codes will reflect the final evaluation of
expression.

Section 3: Assembler 289

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Example

WHILE.L (A0) <NE> #-1 DO.S

ADD.L (A0)+,D0

ENDW

3.9. Instruction Set Summary

The instructions for the 68000 family of microprocessors and coprocessors are
listed alphabetically in Table 3.32. However, only the 68000 instruction set is
supported by Texas Instruments. Use of unsupported instructions gives
unpredictable results. This is especially true of the floating-point instructions. The
legal size qualifiers and the default sizes are summarized for each instruction.

290 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Default Size

Mnemonic Size Qualifiers asm68 asm68k Not Supported

ABCD B B B

ADD B W L L W

ADDA W L L W

ADDI B W L L W

ADDQ B W L L W

ADDX B W L L W

AND B W L L W

ANDI B W L L W

ANDI to CCR B B B

ANDI to SR W W W

ASL B W L L W

ASR B W L L W

Bcc B W L† W W

BCHG B L B/L‡ B/L‡

BCLR B L B/L‡ B/L‡

BFCHG Ÿ

BFCLR Ÿ

BFEXTS Ÿ

BFEXTU Ÿ

BFFFO Ÿ

BFINS Ÿ

BFSET Ÿ

BFTST Ÿ

BGND Ÿ

BKPT Ÿ

BRA B W L† W W

BSET B L B/L‡ B/L‡

BSR B W L† W W

BTST B L B/L‡ B/L‡

CALLM Ÿ

CAS B W L L W Ÿ

CAS2 W L L W Ÿ

CHK W L† L W

CHK2 B W L L W Ÿ

Table 3.32: Instructions and Size Qualifiers

Section 3: Assembler 291

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Default Size

Mnemonic Size Qualifiers asm68 asm68k Not Supported

CINV Ÿ

CLR B W L L W

CMP B W L L W

CMP2 B W L L W Ÿ

CMPA W L L W

CMPI B W L L W

CMPM B W L L W

cpBcc W L W W Ÿ

cpDBcc W W W Ÿ

cpGEN Ÿ

cpRESTORE Ÿ

cpSAVE Ÿ

cpScc B B B Ÿ

cpTRAPcc W L W W Ÿ

CPUSH Ÿ

DBcc W W W

DIVS W L† L W

DIVSL L L L Ÿ

DIVU W L† L W

DIVUL L L L Ÿ

EOR B W L L W

EORI B W L L W

EORI to CCR B B B

EORI to SR W W W

EXG L L L

EXT W L L W

EXTB L L L Ÿ

FABS B W L S D X P X W Ÿ

FACOS B W L S D X P X W Ÿ

FADD B W L S D X P X W Ÿ

FASIN B W L S D X P X W Ÿ

FATAN B W L S D X P X W Ÿ

FATANH B W L S D X P X W Ÿ

FBcc W L W W Ÿ

Table 3.32: Instructions and Size Qualifiers (continued)

292 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Default Size

Mnemonic Size Qualifiers asm68 asm68k Not Supported

FCMP B W L S D X P X W Ÿ

FCOS B W L S D X P X W Ÿ

FCOSH B W L S D X P X W Ÿ

FDABS B W L S D X P X W Ÿ

FDADD B W L S D X P X W Ÿ

FDBcc Ÿ

FDDIV B W L S D X P X W Ÿ

FDIV B W L S D X P X W Ÿ

FDMOVE B W L S D X P X W Ÿ

FDMUL B W L S D X P X W Ÿ

FDNEG B W L S D X P X W Ÿ

FDSQRT B W L S D X P X W Ÿ

FDSUB B W L S D X P X W Ÿ

FETOX B W L S D X P X W Ÿ

FETOXM1 B W L S D X P X W Ÿ

FGETEXP B W L S D X P X W Ÿ

FGETMAN B W L S D X P X W Ÿ

FINT B W L S D X P X W Ÿ

FINTRZ B W L S D X P X W Ÿ

FLOG10 B W L S D X P X W Ÿ

FLOG2 B W L S D X P X W Ÿ

FLOGN B W L S D X P X W Ÿ

FLOGNP1 B W L S D X P X W Ÿ

FMOD B W L S D X P X W Ÿ

FMOVE B W L S D X P X W Ÿ

FMOVECR X X X Ÿ

FMOVEM L X X X Ÿ

FMUL B W L S D X P X W Ÿ

FNEG B W L S D X P X W Ÿ

FNOP Ÿ

FREM B W L S D X P X W Ÿ

FRESTORE Ÿ

FSABS B W L S D X P X W Ÿ

FSADD B W L S D X P X W Ÿ

FSAVE Ÿ

Table 3.32: Instructions and Size Qualifiers (continued)

Section 3: Assembler 293

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Default Size

Mnemonic Size Qualifiers asm68 asm68k Not Supported

FSCALE B W L S D X P X W Ÿ

FScc B B B Ÿ

FSDIV B W L S D X P X W Ÿ

FSGLDIV B W L S D X P X W Ÿ

FSGLMUL B W L S D X P X W Ÿ

FSIN B W L S D X P X W Ÿ

FSINCOS B W L S D X P X W Ÿ

FSINH B W L S D X P X W Ÿ

FSMOVE B W L S D X P X W Ÿ

FSMUL B W L S D X P X W Ÿ

FSNEG B W L S D X P X W Ÿ

FSQRT B W L S D X P X W Ÿ

FSSQRT B W L S D X P X W Ÿ

FSSUB B W L S D X P X W Ÿ

FSUB B W L S D X P X W Ÿ

FTAN B W L S D X P X W Ÿ

FTANH B W L S D X P X W Ÿ

FTENTOX B W L S D X P X W Ÿ

FTRAPcc W L W W Ÿ

FTST B W L S D X P X W Ÿ

FTWOTOX B W L S D X P X W Ÿ

ILLEGAL

JMP

JSR

LEA L L L

LINK W L† W W

LPSTOP W W W Ÿ

LSL B W L L W

LSR B W L L W

MOVE B W L L W

MOVE from CCR W W W Ÿ

MOVE from SR W W W

MOVE to CCR W W W

MOVE to SR W W W

MOVE USP L L L

Table 3.32: Instructions and Size Qualifiers (continued)

294 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Default Size

Mnemonic Size Qualifiers asm68 asm68k Not Supported

MOVE16 L L L Ÿ

MOVEA W L L W

MOVEC L L L Ÿ

MOVEM W L L W

MOVEP W L L W

MOVEQ L L L

MOVES B W L L W Ÿ

MULS W L† L W

MULU W L† L W

NBCD B B B

NEG B W L L W

NEGX B W L L W

NOP

NOT B W L L W

OR B W L L W

ORI B W L L W

ORI to CCR B B B

ORI to SR W W W

PACK Ÿ

PBcc W L W W Ÿ

PDBcc W W W Ÿ

PEA L L L

PFLUSH Ÿ

PFLUSHA Ÿ

PFLUSHR Ÿ

PFLUSHS Ÿ

PLOAD Ÿ

PMOVE B W L D D D Ÿ

PRESTORE Ÿ

PSAVE Ÿ

PScc B B B Ÿ

PTEST Ÿ

PTRAPcc W L L W Ÿ

PVALID L L L Ÿ

RESET

Table 3.32: Instructions and Size Qualifiers (continued)

Section 3: Assembler 295

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Default Size

Mnemonic Size Qualifiers asm68 asm68k Not Supported

ROL B W L L W

ROR B W L L W

ROXL B W L L W

ROXR B W L L W

RTD Ÿ

RTE

RTM Ÿ

RTR

RTS

SBCD B B B

Scc B B B

STOP

SUB B W L L W

SUBA W L L W

SUBI B W L L W

SUBQ B W L L W

SUBX B W L L W

SWAP W W W

TAS B B B

TBLS B W L L W Ÿ

TBLSN B W L L W Ÿ

TBLU B W L L W Ÿ

TBLUN B W L L W Ÿ

TRAP

TRAPcc W L L W Ÿ

TRAPV

TST B W L L W

UNLK

UNPK Ÿ

† Size qualifier .L legal with 68020/30/40 and CPU32 only
‡ Size qualifier is determined by the destination operand: .B (memory), .L (register)

Table 3.32: Instructions and Size Qualifiers (continued)

296 Section 3: Assembler

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

297

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Section 4: Linker

4. Linker ...299

4.1. Introduction ..299

4.2. Link68 Inputs and Outputs ...299

4.3. Options...300

4.3.1. Library Search Options...300

4.3.2. Option Flags ...300

4.4. Object Files ..302

4.4.1. Sections..302

4.5. Symbols ...302

4.6. Relocation Entries ..303

4.7. Relocation Hole Compression..303

4.8. Reserved Symbols ...305

298 Section 4: Linker

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

299

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

4. Linker

4.1. Introduction

The Sierra Systems linker link68 combines object files to create an executable
output file. It was developed by Sierra Systems to support certain Motorola
processors in conjunction with the rest of the Sierra C™ software package.
Under license from Sierra Systems, Texas Instruments has modified this
software to support TI BCD floating-point numbers, and support for coprocessors
has been removed. Although the software has not been modified to exclude
support for processors other than the 68000, the 68000 is the only processor
supported by Texas Instruments. The license from Texas Instruments to use
these products is restricted to development of software that is targeted to
execute only on TI calculators.

4.2. Link68 Inputs and Outputs

The linker’s actions are directed by the arguments placed on the command line.
The linker opens each file referenced in its command input and reads the file
header to determine if the file is an object or library file. If the file is an object file,
the linker resolves undefined addresses and concatenates each section in the file
to an output section of the same name. Otherwise, if the file is a library, the linker
searches the symbol table of the library file to determine if any undefined
symbols may be defined by an object file in the library. If the linker finds such a
symbol in the library, it loads the member defining that symbol from the library.
The search continues until no undefined symbols can be resolved by loading
library members. Only the library members needed to resolve undefined symbols
are loaded. The linker treats the object files loaded from a library as if the names
of the object files themselves appeared in the command input. If the file is neither
an object nor library file, the linker generates an error message and aborts.

The linker’s primary output is an object file that, by default, is executable. The
linker copies code from input object files named in its command input to the
executable file, modifying the code to reflect its address in the executable.
Information needed for further linking, such as relocation entries, is removed
from the executable file.

If the command input includes the -m flag specifying a map file, the linker will
create a formatted listing of the executable file’s contents, showing where each
input file is located in the generated output file. The map file’s name is simply the
executable file’s base name with a .map extension.

300 Section 4: Linker

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

4.3. Options

This section describes the various library search options and command line flags
available for applications developers.

Typically, the TI FLASH Studio™ will handle all invocations of the linker, using
the correct command line flags required to produce TI-89 / TI-92 Plus apps or
ASMs. The following discussion of command line format and flags is included for
developers who may wish to use link68 directly from the command line or create
their own makefile.

4.3.1. Library Search Options

The linker provides the -l flag for loading standard library files. The linker
searches for the specified library in the directories specified by the environment
(e.g., sierra/lib) and the -L flag. The library name searched for is created by
prefixing the string that follows the -l flag with lib and suffixing it with .68. For
example, given -l xyz the library libxyz.68 will be searched for. The linker
examines each directory on its list of standard library directories and if it finds
the library in one of them, it stops searching and processes the library as
already described. Note that the -l flag is not required to specify a library file,
the full pathname of the library can also be specified.

The -L flag adds a directory to the linker’s library search path (used with the -l
flag). The directories specified with the -L flag are searched in the order in
which they appear in the command input. The remaining directories in the library
search path are obtained from the program’s environment as follows. If the
environment variable LIB68 is defined, each of the directories it specifies is
added to the search path. Otherwise, if the SIERRA environment variable is
defined, the directory it specifies (suffixed with /lib) is added to the search path.
The directories specified with the -L flag are searched before those specified by
the environment.

Texas Instruments provides only one library file, libams.68 . Many functions
previously included in the Sierra C library files have been rewritten as part of the
calculator operating system and are accessed through the jump table instead. No
other library file is required to create apps or ASMs for use on the TI-89 or
TI-92 Plus.

4.3.2. Option Flags

A sample invocation of the linker is included with the files supplied with the
TI-89 / TI-92 Plus SDK. It is strongly recommended that you use the linker only
as shown in those examples. The following option flags can also be included on
the command line if desired. Whitespace is optional between a flag and any

Section 4: Linker 301

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

argument. The linker accepts multiple flag letters grouped after a single hyphen
(-) provided only the last flag can take an argument.

-E Cause undefined symbols to be an error instead of a warning. Errors
cause the linker to exit (after completion) with a nonzero return value.

-i file Include (interpolate) the file file at the current position in the
command line or command file. Command files may be nested inside
one other.

-h hci_file Generate hole compression information for the linker input files listed in

the file hci_file . The hci_file is the hole compression file

created by asm68 using the asm68 -h flag. The resultant hole

compression information is written to a file with a name created by

stripping the .hci extension (if present) from the hci_file and

appending .hco .

-H hco_file Determine if any compressed holes are too small. If any holes are
incorrectly compressed, make corrections in the hco_file , the hole
compression output file generated during the first linker pass in
response to the -h flag. If an additional assembly-linkage pass is
required (unlikely), a message is generated indicating that the
additional pass is necessary. The -H flag must be used on the second
hole compression linker pass and on any subsequent passes.

-l libspc Search for the specified library in the library directories specified by the
environment (i.e., sierra/lib) and the -L flag. The library name
searched for is created by prefixing libspc with lib and suffixing it
with .68. For example, given -lms the library libms.68 will be
searched for. The -x flag can be used to change the default .68 suffix.

-L dir Add the directory pathname dir to the library paths to be searched
when the -l flag is specified. The -L flag can be specified multiple
times.

-m Generate a map file. The name of the map file is created by stripping
the .out extension, if present, from the output file’s name and
appending .map .

-o outfile Name the output file outfile . If the -o flag is not used to specify an
output filename, the name x.out is used.

-Q Suppress the Sierra Systems copyright message. This flag must
appear before any filenames or linker directives to be effective.

-r Build relocation information for the app.

-S Silence all warning messages.

-u Print usage information.

-x ext Set the extension for standard libraries specified with the -l flag to
.ext . The extension ext can be up to three characters long. The
default extension is .68.

302 Section 4: Linker

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

4.4. Object Files

Object files are generated by the assemblers (asm68 , asm68k) and the linker
(link68). Object files include three major components: sections, relocation
information, and a symbol table. The sections component primarily stores the text
and data of a program. The relocation information describes where and how the
code in the various text and data sections must be modified as the linker builds
the executable output file. The symbol table holds symbols (labels) together with
associated addresses and absolute values.

4.4.1. Sections

Sections are indivisible, contiguous pieces of object code. When creating an app,
sections must be defined and used only as shown in the examples supplied with
the TI-89 / TI-92 Plus SDK. See chapter 7. Flash Application Layout in the
TI-89 / TI-92 Plus Developers Guide for more information.

4.5. Symbols

Symbols are address labels and assignment variables, each of which can be
either defined or undefined. If a symbol refers to an address in a relocatable
section, it is called relocatable because its value changes as the linker relocates
its section. If a symbol refers to a numeric constant or an address in an absolute
section, it is called absolute because its value cannot be changed. Relocatable
and absolute symbols are referred to as defined. The values associated with
defined symbols are stored as 32-bit numbers. Symbols that are referenced but
not defined are referred to as undefined. An undefined symbol’s value and type
are resolved by the linker.

A symbol is also either global or local. The linker uses only global symbols to
resolve undefined symbols and to search libraries. Local symbols are kept in
object files purely for informational and debugging purposes. All undefined
symbols are global.

A variant of the undefined symbol type is the comm symbol. The compiler
generates a comm symbol whenever it encounters a declaration for an
uninitialized external variable. A comm symbol is always global and the linker
defines an uninitialized block of data in the .bss section for it. The length of the
block and its alignment are encoded in the 32-bit value field associated with the
comm symbol. For information on how the length and alignment of comm
symbols are encoded, refer to section 1.4.8.5 Section Number Field .

Section 4: Linker 303

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

4.6. Relocation Entries

An object file contains relocation information that describes how the code in the
file must be modified when it is copied to the executable output file. The
information is stored as a series of relocation entries. Each relocation entry
locates a byte, word, or long word in the object code that refers to an undefined
symbol. The piece of code referenced by a relocation entry is called a relocation
hole. A relocation entry also specifies a symbol that the linker adds to the hole
when the linker moves code or resolves undefined symbols.

4.7. Relocation Hole Compression

When the linker fills in a relocation hole, it is possible that the value it places
there could have fit in a smaller hole than was left by the assembler. This is
because the assembler, unless otherwise directed, leaves 32-bit absolute
relocation holes for references it cannot resolve. To avoid wasting space, asm68
and link68 together provide an option called relocation hole compression which
can be used to shrink oversized holes. Shrinking relocation holes not only
reduces the size of your program, but also increases its execution speed.

The hole compression technique used by Sierra Systems uses a double
assembly and linkage pass, and decreases code size by an average of four to
seven percent. The actual size decrease (speed increase) depends on a number
of factors, such as the placement of the various output sections and the number
of external references in those sections. The increase in time resulting from the
double assembly/linkage passes has been determined to be minimal, especially
when considering that the compression process will typically be performed only
once as a final optimization. An example of both invocations of the linker required
for hole compression is shown below. The majority of the linker directives are
contained in the file app.lnk in this example. Refer to the sample files supplied
with the TI-89 / TI-92 Plus SDK for information on what should be included in
app.lnk.

link68 -h holes -i app.lnk

link68 -r -H holes.hco -i app.lnk

During the first pass, the assembler and linker are each invoked as they
ordinarily are, with the addition of the -h flag. The argument to this flag specifies
a file that will contain the names of the object files on which hole compression is
to be performed. It is generated incrementally by the assembler during each of its
first pass invocations and is used as an input file to the linker. This file is referred
to as the hole compression input file, and by convention is designated by the file
extension .hci . In addition to the names of the object files, this file includes the
command line arguments from each assembler invocation (needed for
regenerating the object files), as well as the size of the target processor’s
address bus (needed to ensure correct address computations by the linker).

304 Section 4: Linker

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Once all the assembly files have been processed by the assembler, the linker is
invoked with the -h flag with the hole compression input file just created
specified as an argument. For each 32-bit relocation hole in each TEXT-like
section of each object file listed in this file, the linker determines whether the
address of the referenced symbol could be expressed as an absolute short
address and/or a 16-bit program counter relative address. This information is
stored along with the address of the relocation hole in the compression output
file. The name of this file is created by stripping the .hci extension, if present,
from the compression input file, and appending .hco . Also stored in this file are
the address bus size and the assembler command line arguments, both of which
are obtained from the compression input file. Once the compression input file is
no longer needed, it is moved to a backup file which is designated by the file
extension .hcb .

During the second pass, the assembler and linker are each invoked with the -H
flag, followed by the name of the hole compression output file generated by the
linker. The assembler treats the compression information contained in this file as
suggestions only, since it is possible that the addressing mode required to
compress a hole will not be legal for the effective address field of a given
instruction. If the addressing mode required to compress a hole is legal, though,
the assembler will shrink the hole to 16 bits, opting for the PC-relative mode over
the absolute short mode if both addressing modes are legal and permit
compression. The assembler requires only a single invocation during this pass,
because it reads the command lines needed to assemble each input file directly
from the compression output file; no command line arguments beside the -H flag
and its file should be specified during this pass.

Finally, the linker is invoked with the -H flag to link the compressed object files. It
is possible, albeit unlikely, that there will exist a compressed relocation hole that
is too small for the value it must hold. This can only occur when other hole
compressions have caused an increase in the distance between the hole and the
location it references. If this has occurred, the linker will edit the hole
compression output file to rescind the compression recommendation for that
hole. An additional pass (identical to the second pass) will then be required to
uncompress that hole and any others like it. A message will notify the user if an
extra pass is necessary. Only in the rarest of cases will more than one additional
pass be required. If there is still an error after the second pass, check your
source code for possible problems.

The two assembly/linkage passes (plus any necessary additional passes)
required for relocation hole compression are performed automatically by the
TI FLASH Studio.

Section 4: Linker 305

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

4.8. Reserved Symbols

The Sierra Systems standard C libraries reserve several symbols to locate the
memory heap. The symbols heap_org and heap_len and the memory routines
that use them, such as malloc , are not supported by Texas Instruments.
However, they are still reserved names and must be avoided. See chapter
13. Memory Management in the TI-89 / TI-92 Plus Developers Guide for
information on the memory routines available on the TI-89 / TI-92 Plus.

306 Section 4: Linker

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

307

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Section 5: Utilities

5. Utilities..309

5.1. Symbol Table Name Utility ...309

5.2. Object File Size Utility ..313

308 Section 5: Utilities

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

309

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

5. Utilities

5.1. Symbol Table Name Utility

Name

nm68 – Sierra Systems Symbol Table Name Utility

Syntax

nm68 [-abefhnrstuvFHRTU] [-d[#[:# |+#]]] [files . . .]

Description

The nm68 utility displays the symbol table embedded in a 68000 COFF object
file, as well as information on the file header, section headers, relocation entries,
and line number entries. For detailed information on the Sierra Systems object
module format, see section 1.4 Object File Format . The zero or more files files
specified on the command line can be either relocatable or absolute COFF object
files or libraries of relocatable or absolute object files. When a library file is
specified, the member object files are displayed as if they had been listed on the
command line individually. If no file name is specified, the file x.out is assumed.
If a file name without an extension is specified, the extension .out is assumed if
the file cannot first be found without the extension.

By default, the output from nm68 contains detailed information about each
symbol, including the symbol's name, value (address), storage class, type, size,
associated C language source file line, and section. If the original source file was
not compiled with the debug option enabled, some of the symbol information may
not be available. All values except for addresses are in decimal. Addresses
appearing in the value field are in hexadecimal (padded with leading 0's). If the
symbol is a comm variable, both the size and alignment requirements of the
comm variable appear in the value field; the size of the comm appears to the left
of the decimal point and the boundary alignment appears to the right.

Command line flags are:

-a Print the symbol name and its value in the form of an assignment
statement such that the generated list can be inserted directly into a C or
assembly language source file or a linker command file.

-b Suppress the header information at the start of the formatted and raw
symbol listings.

310 Section 5: Utilities

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

-d [start_offset [: end_offset | + length]]

Dump the contents of the file in both hexadecimal and ASCII starting at
file offset start_offset and continuing through file offset
end_offset or the specified length . If only start_offset is
specified, the entire file from that offset to the end is dumped. If the -d
flag is used without any arguments, the entire file is dumped.

-e Print only external symbols. When used with the -s flag, static symbols
are also printed.

-f Produce a full listing that includes the symbols .text , .data and .bss ,
which are normally suppressed.

-F Prefix the name of the object file or library containing the object file to
every output line.

-h Print the file header, the optional a.out header, and all the individual
section headers contained in the object file. In general, indexes, counts,
and line numbers are in decimal while sizes, addresses, flags, and file
offsets (enclosed in parentheses) are in hexadecimal. The file header
listing includes the magic number, date, number of sections, flags, and
number of symbols. The number of symbols is followed by the file offsets
of the symbol table and string table in parentheses. The optional a.out
header listing includes a magic number, a version number, an execution
entry point, and the sizes and addresses of the .text , .data , and .bss
sections. Each section header listing includes both the section's physical
and virtual addresses, the section's size followed by the file offset to the
start of the section, flags, and the number of associated line numbers and
relocation entries together with file offsets. See the example screen
display shown on page 312.

-H Print relocation and line number information in addition to the header
information printed by the -h flag. For both relocation and line number
entries, the first column contains the file offset of the entry in
hexadecimal.

-n Sort symbols alphabetically by name. Only external symbols are sorted if
local symbols are present; if local symbols are suppressed by the -s ,
-e , or -U flags, static and external symbols are sorted together.

-r Reverse the order of the sort specified by the -n or -v flags.

-R Print a raw symbol table dump that displays each entry in both ASCII and
hexadecimal. The symbol table index in decimal is shown on the left side.
The string table entries, together with hexadecimal offsets from the start
of the string table, are printed at the end. All symbols are listed in the
order that they appear in their respective object files.

-s Print only static symbols. When used with the -e flag, external symbols
are also printed.

Section 5: Utilities 311

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

-t Print the symbol information in a terse format that provides each symbol's
name, address, and type. The type is indicated by a single letter defined
as follows:

a absolute symbol, global

A absolute symbol, local

b bss symbol, local

B bss symbol, global

C comm variable

d data symbol, local

D data symbol, global

f file name

r register variable

s symbol from user defined section, local

S symbol from user defined section, global

t text symbol, local

T text symbol, global

U undefined symbol

-T Do not truncate symbol names and type information to fit in the column
space provided. If a name or type overflows the allotted space, the
columns to the right of the name or type will be shifted over.

-u Print usage information.

-U Print only undefined external symbols.

-v Sort symbols by value in ascending order. The same sorting restrictions
that apply to the -n flag also apply to the -v flag.

Examples

The following command dumps the symbol table from the object file hello.o :

nm68 hello.o

The output from the above invocation of nm68 is as follows:

Name Value Class Type Size Line Section

hello.c | |file | | | |

_main |00000064 |extern | int() | 82 | |.text

.bf |00000068 |func | | | 2 |.text

i | -4 |auto | int | | |(ABS)

.ef |000000b2 |func | | | 10 |.text

_printf | 0 |extern | | | |

_scanf | 0 |extern | | | |

312 Section 5: Utilities

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Note: Usually the output from nm68 will be too large to fit on a single screen. You will probably
want to redirect the output to a scratch file, using the redirection operator (>), and then
examine the display using a text editor.

The following command dumps the contents of the file and section headers that
are part of the executable file hello.out :

nm68 -h hello.out

The output from the above invocation of nm68 is listed below:

MAGIC_NUMBER: 0x0150
①

Wed Oct 21 01:20:18 1992
②

SECTIONS: 4
③

 SYMBOLS: 216
④

 (001932
⑤

, 002862
⑥

) FLAGS: 0x0003
⑦

A.OUT_MAGIC: 0x0107 VERSION: 300

TSIZE: 0017dc
⑧

 DSIZE: 000008
⑧

 BSIZE: 0000e0
⑧

 ENTRY: 005000
⑨

TSTART: 005000
➉

 DSTART: 006824
➉

.text
➊

ADDRESS: p-005000
➋

 v-005000
➌

 SIZE: 0017dc
➍

(0000d0
➎

)

FLAGS: 0120
➏

LINE_ENTRIES: 9
➐

(0018fc
➑

)

RELOC_ENTRIES: 0
➒

(000000
➓

)

.ld_tbl ADDRESS: p-0067dc v-0067dc SIZE: 000048 (0018ac) FLAGS: 0120

LINE_ENTRIES: 0 (001932)

RELOC_ENTRIES: 0 (000000)

.data ADDRESS: p-006824 v-006824 SIZE: 000008 (0018f4) FLAGS: 0140

LINE_ENTRIES: 0 (001932)

RELOC_ENTRIES: 0 (000000)

.bss ADDRESS: p-00682c v-00682c SIZE: 0000e0 (000000) FLAGS: 0180

LINE_ENTRIES: 0 (000000)

RELOC_ENTRIES: 0 (000000)

Key:

➀ All 68000 family executable files begin with 0x150. See section 1.4.2.1. Magic Number .
➁ Date the object file was created.
➂ Number of output sections in the object file.
➃ Number of symbols in the file.
➄ File offset (hexadecimal) to the start of the symbol table.
➅ File offset (hexadecimal) to the start of the string table.
➆ File header flags. See section 1.4.2.3 Flags , Table 1.4.
➇ Size in bytes (hexadecimal) of sections .text , .data and .bss .
➈ Entry point or starting address (hexadecimal) of program.
➉ Starting address (hexadecimal) of sections .text and .data .
➊ Section name. Empty if section is an unnamed ORG section.
➋ Physical address (hexadecimal) of section. See section 1.4.1.2 Physical and Virtual Addresses .
➌ Virtual address (hexadecimal) of section. See section 1.4.1.2 Physical and Virtual Addresses .
➍ Size in bytes (hexadecimal) of section.

Section 5: Utilities 313

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

➎ File offset (hexadecimal) to section data. Offset is zero if no data for the section.
➏ Section header flags. See section 1.4.4 Section Headers , Table 1.7.
➐ Number of line number entries associated with the section. See section 1.4.6 Line Number

Information .
❽ File offset (hexadecimal) to the start of the line number entries for the section.
➒ Number of relocation entries in the section. See section 1.4.5 Relocation Information .
➓ File offset (hexadecimal) to the start of the relocation entries for the section.

5.2. Object File Size Utility

Name

size68 – Sierra Systems Object File Size Utility

Syntax

size68 [-ltu] [obj_files . . .]

Description

The size68 utility takes Sierra Systems object files as arguments and prints size
and address information on each file and its sections. The object files obj_files
specified on the command line can be either relocatable or absolute COFF object
files. If no file name is specified, the file x.out is assumed. If a file name without
an extension is specified, the extension .out is assumed if the file cannot first be
found without the extension. If more than one file is specified, size68 also prints
the total sizes of all files and all sections with like names.

Command line flags are:

-l Print LOAD address for each section. The default is to print only the virtual
address of each section.

-t Suppress printing of section totals.

-u Print usage information.

Example

The following command displays the size and address information for each
section in the executable file hello.out :

size68 hello.out

The output from the above invocation of size68 is as follows:

Section Address Length Decimal

------- ------- ------ -------

.text 5000 17dc 6108

.ld_tbl 67dc 48 72

.data 6824 8 8

.bss 682c e0 224

Total: 190c 6412

314 Section 5: Utilities

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

315

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

Index

 - wildcard character, 6

quotation operator, 97

concatenation operator, 97

#define , 96, 97

#elif , 94

#else , 94

#endif , 94

#error , 100

#if , 94

#ifdef , 94

#ifndef , 94

#include , 94

#line , 47, 99

#pragma , 51, 100

#undef , 97

& line continuation character, 274

() expression grouping characters, 150

* location counter symbol (asm68k), 141

* wildcard character, 6

. location counter symbol (asm68), 141

.align , 169, 216

.ascii , 169

.bb , 19, 20, 24, 31

.bf , 18, 19, 21, 24, 31

.bin , 170, 216

.bsection , 171, 217

.bss , 10, 19, 24, 26, 140, 144, 171, 173,
188, 218, 220

.byte , 172, 218

.cmnt , 172, 219

.comm , 173, 220

.const , 10, 87

.data , 10, 19, 24, 140, 173, 221

.def , 174, 224

.dim , 175, 225

.double , 176, 226

.dsection , 177, 228

.eb, 19, 20, 24, 31

.echo , 178, 229

.ef, 19, 21, 24, 31

.elifdef , 179, 230

.else , 180, 231

.end , 180

.endc , 180, 232

.endef , 181, 233

.endif , 181, 233

.ends , 181

.eos , 19, 24, 31

.extend , 181, 234

.external , 182

.file , 19, 24, 31, 182, 235

.fill , 183

.float , 184, 236

.fpdata , 184

.global , 185, 237

.globl , 185, 237

.ifdef , 185, 240

.ifndef , 186, 242

.include , 187, 243

.lcomm , 188, 244

.ld_tbl , 10

.line , 189, 245

.ln , 190, 247

.long , 191, 248

.opt , 192, 251

.org , 195

.packed , 195

.page , 196

.reorg , 196

.scl , 197, 257

316 Index

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

.section , 198

.short , 199, 260

.single , 199

.size , 200, 261

.space , 201, 262

.struct , 202

.tag , 203, 264

.target , 19, 24

.text , 10, 19, 24, 26, 140, 203, 264

.tsection , 204, 265

.type , 205, 267

.val , 206, 268

.word , 207, 269

.xdef , 207

.xfake , 19, 24, 31

.xref , 208

<> parameter grouping characters, 273

= symbol assignment operator, 143

== symbol reassignment operator, 143

? parameter evaluation operator, 274

? wildcard character, 6

[] wildcard characters, 6

\@ local label designator, 274

__DATE__ , 101

__ds16u16, 82

__ds32s32, 82

__du16u16, 82

__du32u32, 82

__FILE__ , 101

__FLOAT__ , 101

__INT__ , 101

__LINE__ , 101

__line_ck , 48

__ms16u16, 82

__ms32s32, 82

__mu16u16, 82

__mu32u32, 82

__PCREL__ , 101

__SIERRA__ , 101

__stk_ck , 50

__TIME__ , 101

_edata , 19

_end , 19

_etext , 19

_line_ck , 86

_stk_ck , 86

_touch , 69

A

address bus size, 132, 303

alias, 44

alignment

See assembler, alignment.

asm , 53

asm68

See also assembler.

control directives, 167

data/fill directives, 166

debugging directives, 168

directive overview, 163

directive reference, 168 – 208

output directives, 167

section directives, 164

symbol directives, 165

asm68k

See also assembler.

control directives, 213

data/fill directives, 212

debugging directives, 214

directive overview, 209

directive reference, 215 – 270

output directives, 214

section directives, 210

symbol directives, 211

Index 317

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

assembler, 129

See also assembler macro.

See also assembly language.

See also effective addressing mode.

See also structured control macro.

absolute displacement sizing, 252

alignment, 134, 169, 216, 227

command file, 134

command line flags, 132 – 136

command line syntax, 132

environment variables, 136

error file, 135

file name conventions, 136

instruction optimization, 153

instruction set, 152 – 154

instruction set summary, 289 – 295

instruction sizing, 152, 252

instruction syntax, 138, 152

introduction, 129

listing file, 134, 135

output file, 134

overview, 129

PC-relative sizing, 251, 252

processor selection, 194, 253

source-level debugging, 134, 168, 174, 182,

190, 214, 224, 235, 237, 247

transcript file, 135

warning generation, 135

assembler macro, 271

definition, 271

examples, 275 – 277

invocation, 272

line continuation, 274

local label, 274

MEXIT, 274

NARG, 274

options, 252, 253

overview, 271

parameters, 273

assembly language, 137

See also expression.

See also label.

character set, 140

comm symbol, 144

expression evaluation, 150

expressions, 148 – 151

lcomm symbol, 144

location counter, 141

overview, 138

section overview, 140

section types, 140

statement syntax (asm68), 138

statement syntax (asm68k), 139

structure template, 141, 202, 250

symbol assignment, 143

symbol syntax, 142

auxiliary entry, 31

B

base register, 157, 162

BIN, 216

bit field, 65

internal representation, 66

BREAK , 281

BSECTION, 217

C

cast operator

See conversion, explicit.

char , 32, 53, 59, 60, 64, 78

character constant, 56, 146

escape sequences, 56, 57

character string, 57

concatenation, 58

escape sequences, 57

stringizing operator, 97

318 Index

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

COFF, 8, 133

See also file header.

See also relocation entry.

See also section.

See also section header.

See also symbol table.

See also symbol table entry.

auxiliary entry, 31

extensions, 16, 26, 32

file layout, 9

file structures, 10

function parameters, 32

line number entry, 17

magic number, 11

optional header, 12

storage class, 22

string table, 22, 36

com_fmt.txt , 10

COMLINE, 219

COMM, 220

comment delimiters, 101

Compiler, 41

alignment, 43, 44, 66

command file, 44

command line flags, 41, 43 – 51

debugging functions, 86

default settings, 42

error messages, 102 – 122

internal floating-point functions, 83

internal integer functions, 82

invocation, 41, 42

optimizations, 44, 68

register allocation, 90

register usage, 81

reserved keywords, 53

source-level debugging, 47, 49, 50

static storage initialization, 87

switch statement implementation, 92

translation limits, 52

volatile , 68

warning generation, 48, 50

const , 53, 67

CONTINUE, 282

conversion, 70 – 73

explicit, 70, 73

floating-point, 72, 83

floating-point and integer, 71

function argument, 75, 76

implicit, 70, 72, 73

integer, 71

overview, 70

restrictions, 73

usual arithmetic, 72

D

DC, 222

DCB, 223

debugging

See assembler, source-level debugging.

See compiler, source-level debugging.

DEF, 224

defined, 95

DIM, 225

directory structure, 7

displacement, 158

absolute long, 158, 252, 254

absolute short, 158, 252, 254

base, 158, 162, 163

byte, 158, 163

null, 158, 163

old-style syntax, 159, 162

outer, 158, 162, 163

sizing, 161

warning, 193, 252

word, 158, 163

DS, 227

DSECTION, 228

Index 319

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

E

effective addressing mode, 155 – 163

absolute long, 49, 162

absolute short, 50, 162

overview, 155

selection, 160 – 163

syntax, 158

terminology, 157

ellipsis, 74

ELSE, 285

ELSEC, 231

END, 232

ENDC, 232

ENDEF, 233

ENDF, 283

ENDI, 285

ENDM, 272

ENDW, 288

enum , 63

enumeration constants, 55

enumeration tag, 64

enumeration type, 63

environment variables, 7

EQU, 234

expression, 148

absolute, 150

complex relocatable, 150

simple relocatable, 150

F

FAIL , 235

FEQU, 235

file header, 11

flags, 12

file_fmt.txt , 10

fill value, 183, 192, 252

See also section, fill value.

floating-point arithmetic

See also compiler, internal floating-point

functions.

IEEE format, 83

TI BCD, 83

floating-point constant, 54, 148

floating-point types

internal representation, 61

FOPT, 236

FOR, 283

FORMAT, 236

function

argument passing, 73, 77

calling conventions, 73 – 81

declaration, 74

definition, 74

old-style, 75, 76

parameter access, 78

prototype, 74, 76

return value, 79

H

hole compression

See relocation hole compression.

I

IDNT, 237

IF, 285

IFC, 238

IFcc , 239

IFNC, 241

INCLUDE, 243

INCLUDE68, 7, 94, 137

index register, 157, 162

int , 55, 56, 59, 72, 78

integer constant, 54, 145

320 Index

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

integer types, 59

16-bit integers, 48, 59

alignment, 44

internal representation, 59

L

label

absolute, 143

definition, 143

external, 143

local, 143, 252, 274

relocatable, 143

static, 143

LCOMM, 244

LIB68 , 7, 300

LINE, 245

line number entry, 17

linker

command line flags, 300 – 301

include file, 301

library search, 300

map file, 301

output file, 301

LIST, 246

LLEN , 246

LN, 247

long int , 54, 59, 72, 78

M

macro, 96, 271

See assembler macro.

See preprocessor.

See structured control macro.

magic number, 11, 12

MASK2 , 248

MEXIT, 274

N

NARG, 274

nm68

See symbol table name utility.

NOFORMAT, 248

NOL, 249

NOLIST, 249

NOOBJ , 249

NOPAGE, 249

O

object file format

See COFF.

object file size utility, 7, 313

OFFSET, 250

OPT, 251

ORG, 254

P

PAGE, 254

parameter

See assembler macro, parameters.

PC-relative coercion, 160, 193, 253

physical address, 10, 310, 313

preprocessor, 93 – 101

argument substitution, 96, 97

macro examples, 98

predefined macros, 101

R

REG, 255

register , 90

relocation entry, 14, 303

absolute, 15

complex, 16

PC-relative, 15, 304

types, 15

Index 321

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

relocation hole, 15, 303

relocation hole compression, 133, 134, 303

REORG, 256

REPEAT, 287

S

SCL, 257

section, 10, 87, 140, 258

See also assembly language.

BSS-type, 140, 171, 217

creating, 141

data-type, 140

fill value, 141, 192, 201, 227, 252, 262

location counter, 196

text-type, 140, 265

uninitialized, 14

section header, 13

flags, 14

SET, 259

short int , 59, 78

SIERRA, 8, 94, 137

signed , 53, 59, 65

SIZE, 261

size68

See object file size utility.

SPC, 263

storage class, 22, 30

string table, 22, 36

structured control macro, 278

AND, 278, 280

BY, 280, 283

continuation, 280

DO, 280, 283, 288

DOWNTO, 280, 283

OR, 278, 280

overview, 278

reference, 280

structured control expression, 278

THEN, 280, 285

TO, 280, 283

suppressed register, 158, 163

symbol, 141, 302

See also assembly language.

.comm , 144, 173, 220

.lcomm , 144, 188, 244

absolute, 141, 302

assignment, 143, 145, 192, 234, 251, 259

case sensitivity, 142

comm, 144, 173, 220, 302

compiler locals, 145

defined, 302

external, 142, 173, 207, 208, 220, 269, 270

floating-point, 145

global, 302

lcomm, 144, 188, 244

local, 142, 302

relocatable, 141, 302

static, 142, 188, 244

undefined, 144, 302

symbol table, 18, 309

special symbols, 19

symbol table entry, 21

See also symbol types.

auxiliary, 21, 31

debugging symbols, 26

name, 22

section numbers, 26

special symbols, 24

storage class, 22

string table, 22, 36

uninitialized external, 26

value, 25

symbol table name utility, 7, 309

command line flags, 309 – 311

dump, 310

examples, 311

external symbol, 310

headers, 310

322 Index

TI-89 / TI-92 Plus Sierra C Assembler Reference Manual Not for Distribution Beta Version February 2, 2001

relocation and line number information, 310

static symbol, 310

terse format, 311

symbol types, 28

derived, 28, 30

fundamental, 28, 30

T

TAG, 264

TI BCD floating-point, 5, 54, 60, 61, 72, 78,
83, 148, 166, 176, 184, 212, 226, 236

trigraph sequences, 100

TSECTION, 265

tst

See _touch .

TTL, 266

TYPE, 267

U

unsigned , 54, 59, 65

UNTIL, 287

usual arithmetic conversions

See conversion, usual arithmetic.

V

va_arg , 74

va_start , 74

VAL , 268

virtual address, 10, 310, 313

void , 69

void pointer, 70

volatile , 53, 68

W

WHILE, 288

wildcard expansion, 6

X

XDEF, 269

XREF, 270

	TI-89 / TI-92 Plus Sierra C Assembler Reference Manual
	Important information
	Table of Contents
	Figures
	Tables

	Section 1: General Information
	Figures
	Tables
	General Information
	Introduction
	Command Line Wildcard Expansion
	Environment Variables
	Object File Format
	Definitions and Conventions
	Sections
	Physical and Virtual Addresses
	C Language COFF File Structures

	File Header
	Magic Number
	Optional Header Size
	Flags

	Optional Header
	Section Headers
	Relocation Information
	Relocation
	Complex Relocation

	Line Number Information
	Symbol Table
	Special Symbols
	Inner Blocks
	Symbols and Functions

	Symbol Table Entries
	Symbol Names
	Storage Class
	Storage Classes for Special Symbols
	Symbol Value Field
	Section Number Field
	Section Numbers and Storage Classes
	Type Entry
	Type Entries and Storage Classes

	Auxiliary Table Entries
	Filenames
	Sections
	Functions
	Beginning of Blocks and Functions
	End of Blocks and Functions
	Arrays
	Tag Names
	End of Structures
	Names Related to Structures, Unions, and Enumerations

	String Table

	Section 2: Compiler
	Figures
	Tables
	Compiler
	Introduction
	Invoking the Compiler
	Command Line Flags
	Usage
	Default Behavior
	Description of Flags

	Pragma Directives
	Translation Limits
	Reserved Keywords
	ASM Keyword
	ANSI C Keywords

	Constants
	Floating-Point Constants
	Integer Constants
	Enumeration Constants
	Character Constants

	Character Strings
	Types and Representations
	Integer Types
	Integer Representations
	Floating-Point Types
	Floating-Point Representations
	Enumeration Types
	Bit Field Description
	Bit Field Internal Representation
	Const Type Specifier
	Volatile Type Specifier
	Touch Operator
	Void Type Specifier
	Void Pointer (void *)

	Conversions
	General Considerations
	Integer Types
	Floating- Point and Integer Types
	Floating-Point Types
	Usual Arithmetic Conversions
	Restrictions

	Function Calling Conventions
	Declarations and Definitions
	Function Prototypes
	Old-Style Declarations
	Mixing Prototype and Old-Style Declarations

	Passing Argument Values
	Accessing Parameters
	Returning Values
	Register Usage

	Compiler-Generated Function Calls
	Internal Integer Arithmetic Functions
	Internal Floating-Point Functions
	Debugging Functions

	Sections
	Static Storage Initialization
	Compiler Algorithms
	Register Allocation
	Switch Statements

	The C Preprocessor
	Source File Inclusion
	Conditional Compilation
	Macro Replacement
	Argument Substitution
	The # Operator (stringizing)
	The ## Operator (concatenation)
	Rescanning and Further Replacement

	Macro Redefinition
	Macro Examples
	Line and Name Control
	Error Directive
	Pragma Directive
	Trigraph Sequences
	Comment Delimiters
	Predefined Macro Names

	Compiler Error Messages

	Section 3: Assembler
	Figures
	Tables
	Assembler
	Introduction
	Overview
	Prerequisite Reading
	Notational Conventions

	Invocation
	Command Line Syntax
	Command Line Flags
	File Name Conventions
	Environment Variables
	Invocation Examples

	Assembly Language
	Overview
	Assembler Statements
	Statement Syntax (asm68)
	Statement Syntax (asm68k)

	Character Set
	Sections
	Section Types
	Creating Sections
	Location Counter
	Structure Templates

	Symbols
	Symbol Syntax
	Labels
	Symbol Assignment
	Comm and Lcomm Symbols
	Undefined Symbols
	Compiler Locals
	Floating-Point Symbols

	Constants
	Integer Constants
	Character Constants
	Floating-Point Constants

	Expressions
	Operands
	Operators
	Expression Evaluation

	Instruction Set
	Syntax
	Instruction Sizing
	Instruction Optimization

	Effective Addressing Modes
	Overview
	Terminology
	Effective Address Syntax
	Addressing Mode Selection
	PC-relative Coercion
	Displacement Sizing
	Mode selection

	Asm68 Assembler Directives
	Asm68 Section Directives
	Asm68 Symbol Directives
	Asm68 Data/Fill Directives
	Asm68 Control Directives
	Asm68 Output Directives
	Asm68 Debugging Directives
	Asm68 Directive Reference
	align — Align Location Counter
	ascii — Generate Integer Data (Byte)
	bin — Include Contents of Binary File
	bsection — Begin / Resume a BSS-type Section
	bss — Begin / Resume the BSS-type Section .bss
	byte — Generate Integer Data (Byte)
	cmnt — Begin Comment Block
	comm — Define a comm Symbol
	data — Begin / Resume the Data-type Section .data
	def — Begin Symbol Attribute Block
	dim — Set Array Dimension Attribute
	double — Generate Floating-Point Data
	dsection — Begin / Resume a Data-type Section
	echo — Echo Message
	elifdef — Assemble If Alternative Symbol Defined
	else — Assemble If Converse True
	end — End Assembly
	endc — End Comment Block
	endef — End Symbol Attribute Block
	endif — End Conditional Assembly Block
	ends — End a Structure Template Section
	extend — Generate Floating-Point Data (Extended-Precision)
	extern / .external — Declare External a Referenced Symbol
	file — Set Name of Source File
	fill — Allocate a Block of Initialized Memory
	float — Generate Floating-Point Data (Single-Precision)
	fpdata — Generate Floating-Point Data
	global / .globl — Declare External a Defined Symbol
	ifdef — Assemble If Symbol Defined
	ifndef — Assemble If Symbol Not Defined
	include — Include Assembler Source File
	lcomm — Define an lcomm Symbol
	line — Set Line Number Attribute
	ln — Create Line Number Entry
	long — Generate Integer Data (Long-Word)
	opt — Set Assembler Options
	org — Begin an Absolute Data-type Section
	packed — Generate Floating-Point Data (Packed Decimal)
	page — Begin New Listing Page
	reorg — Reset the Location Counter in an Absolute Section
	scl — Set Storage Class Attribute
	section — Begin / Resume a Data-type Section
	short — Generate Integer Data (Word)
	single — Generate Floating-Point Data (Single-Precision)
	size — Set Size Attribute
	space — Allocate a Block of Uninitialized Memory
	struct — Begin a Structure Template Section
	tag — Set Tag Name Attribute
	text — Begin / Resume the Text-type Section .text
	tsection — Begin/Resume a Text-type Section
	type — Set Type Attribute
	val — Set Value Attribute
	word — Generate Integer Data (Word)
	xdef — Declare External a Defined Symbol
	xref — Declare External a Referenced Symbol

	Asm68k Assembler Directives
	Asm68k Section Directives
	Asm68k Symbol Directives
	Asm68k Data/Fill Directives
	Asm68k Control Directives
	Asm68k Output Directives
	Asm68k Debugging Directives
	Asm68k Directive Reference
	align — Align Location Counter
	bin / BIN — Include Contents of Binary File
	bsection / BSECTION — Begin / Resume a BSS-type Section
	bss — Begin / Resume the BSS-type Section .bss
	byte — Generate Integer Data (Byte)
	cmnt — Begin Comment Block
	COMLINE — Allocate a Block of Uninitialized Memory
	comm / COMM — Define a comm Symbol
	data — Begin / Resume the Data-type Section .data
	DC — Generate Integer / Floating-Point Data
	DCB — Allocate a Block of Initialized Memory
	def / DEF — Begin Symbol Attribute Block
	dim / DIM — Set Array Dimension Attribute
	double — Generate Floating-Point Data
	DS — Allocate a Block of Uninitialized Memory
	dsection / DSECTION — Begin / Resume a Data-type Section
	echo — Echo Message
	elifdef — Assemble If Alternative Symbol Defined
	else — Assemble If Converse True
	ELSEC — Assemble If Converse True
	END — End Assembly
	endc — End Comment Block
	ENDC — End Conditional Assembly Block
	endef / ENDEF — End Symbol Attribute Block
	endif — End Conditional Assembly Block
	EQU — Define an Integer Symbol
	extend — Generate Floating-Point Data (Extended-Precision)
	FAIL — Generate Error Message
	FEQU — Define a Floating-Point Symbol
	file — Set Name of Source File
	float — Generate Floating-Point Data
	FOPT — Set Assembler Floating-Point Options
	FORMAT — Format Assembly Listing
	global / .globl — Declare External a Defined Symbol
	IDNT — Set Name of Source File
	IFC — Assemble If Strings Equal
	IFcc — Assemble If Condition True
	ifdef — Assemble If Symbol Defined
	IFNC — Assemble If Strings Not Equal
	ifndef — Assemble If Symbol Not Defined
	include / INCLUDE — Include Assembler Source File
	lcomm / LCOMM — Define an lcomm Symbol
	line / LINE — Set Line Number Attribute
	LIST — Enable Assembly Listing
	LLEN — Set Line Length of Listing File
	ln / LN — Create Line Number Entry
	long — Generate Integer Data (Long-Word)
	MASK2 — Assemble For Mask2 Chip
	NOFORMAT — Do Not Format Assembly Listing
	NOL / NOLIST — Disable Assembly Listing
	NOOBJ — Suppress Object Code Generation
	NOPAGE — Do Not Page Listing File
	OFFSET — Begin a Structure Template Section
	opt / OPT — Set Assembler Options
	ORG — Begin an Absolute Data-type Section
	PAGE — Begin New Listing Page
	REG — Define a Register List Symbol
	REORG — Reset the Location Counter in an Absolute Section
	scl / SCL — Set Storage Class Attribute
	SECTION — Begin / Resume a Data-type Section
	SET — Define / Redefine an Integer Symbol
	short — Generate Integer Data (Word)
	size / SIZE — Set Size Attribute
	space — Allocate a Block of Uninitialized Memory
	SPC — Generate Blank Lines in Listing File
	tag / TAG — Set Tag Name Attribute
	text — Begin / Resume the Text-type Section .text
	tsection / TSECTION — Begin / Resume a Text-type Section
	TTL — Set Title in Listing File
	type / TYPE — Set Type Attribute
	val / VAL — Set Value Attribute
	word — Generate Integer Data (Word)
	XDEF — Declare External a Defined Symbol
	XREF — Declare External a Referenced Symbol

	Asm68k Macros
	User-Defined Macros
	Macro Definition
	Macro Invocation
	Parameters
	Local Labels
	NARG Symbol
	MEXIT Directive
	Macro Examples

	Structured Control Macros
	Structured Control Expressions
	Macro Invocation
	Structured Control Reference

	BREAK — Terminate Loop Execution
	CONTINUE — Begin Next Loop Iteration
	FOR . . . ENDF — Loop Based on Counter
	IF . . . ELSE . . . ENDI — Perform Conditional Execution
	REPEAT . . . UNTIL — Loop Until Condition True
	WHILE . . . ENDW — Loop While Condition True

	Instruction Set Summary

	Section 4: Linker
	Linker
	Introduction
	Link68 Inputs and Outputs
	Options
	Library Search Options
	Option Flags

	Object Files
	Sections

	Symbols
	Relocation Entries
	Relocation Hole Compression
	Reserved Symbols

	Section 5: Utilities
	Utilities
	Symbol Table Name Utility
	Object File Size Utility

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

