# Erable 3.024 

Bernard Parisse<br>Institut Fourier (CNRS UMR 5582)<br>Université de Grenoble I<br>F-38402 St Martin d'Hères Cédex<br>Tél. $(33-0) 476514314$<br>Bernard.Parisse@ujf-grenoble.fr

July 8, 1998


#### Abstract

This is the manual of the Erable computer algebra system for the HP48 calculators. Section describes the end user license. Section describes how to install Erable on your HP48. Section 3 gives an overview of the capabilities of Erable, compared to other computer algebra systems available on calculators. Section $\#$ explains the user interface of Erable. The rest of the manual gives more details on Erable functions topic by topic and the appendix starting from a Frequently Asked Questions (section (B) gives some references.


## Contents

1 license ..... 5
2 Installation. ..... 5
2.1 Simplified installation for a GX. ..... 5
2.2 All other cases. ..... 6
2.2.1 Getting the binaries from a computer. ..... 7
2.2.2 Getting the binaries from another HP48. ..... 7
2.2.3 Installing the binaries ..... 7
2.2.4 Installing the user keys redefinition. ..... 7
2.2.5 Improve your installation ..... 8
2.2 .6 Abstract of the installation commands ..... 8
3 Introduction. ..... 8
3.1 Overview ..... 8
3.2 Warnings. ..... 10
3.3 Erable and alg48. ..... 10
3.4 Implementation notes. ..... 11
3.5 Next upgrades. ..... 11
4 Getting started. ..... 11
4.1 Current variable. ..... 12
4.2 Complex and real modes ..... 12
4.3 Main functions ..... 12
4.4 The main menul ..... 15
5 Simplifications. ..... 18
5.1 Rational simplifications instructions. ..... 18
5.2 Presimplifications instructions ..... 18
5.2.1 Linearization. ..... 18
5.2.2 Development. ..... 19
5.2.3 Trigonometry ..... 19
5.2.4 The TSTMP instruction ..... 19
5.3 Recurse flag. ..... 19
6 Limits, Taylor and asymptotic series. ..... 20
7 Derivation and integration. ..... 21
7. D Derivation ..... 21
7.2 Integration ..... 22
7.3 Integration by part ..... 23
8 Ordinary differential equations. ..... 24
8.1 Linear differential equations (systems) with constant coefficients. ..... 24
8.1.1 Laplace transform. ..... 24
8.1.2 Inverse laplace transform. ..... 24
8.1.3 Linear differential equations systems with constant coet- ficients. ..... 25
8.2 First order equations. ..... 26
9 Substitution, change of variables: EXEC. ..... 27
10 Arithmetic. ..... 28
10.1 Complex arithmetic ..... 28
10.2 Integer and polynomial arithmetic ..... 29
10.3 Intinities. ..... 30
10.4 Modular arithmetid ..... 30
11 Factorization. Solving equations. ..... 31
11.1 Summary of the instructions ..... 31
11.2 A word about factorization. ..... 33
12 Linear algebra. ..... 34
12.1 Building a matrix ..... 35
12.2 Operations ..... 35
12.3 Gauk -.Jordan row reduction ..... 35
12.3.1 Solving a linear system. ..... 36
12.3 .2 Inversion ..... 37
12.3 .3 Determinant ..... 37
12.4 Kernel and image of a linear application. ..... 37
12.4.1 Other examples. ..... 37
12.4.2 Stack input/output for reduction instructions. ..... 38
12.5 Diagonalization ..... 39
12.6 The MMOLT - instruction ..... 41
13 Multivariate analysis. ..... 42
14 Quadratic forms. ..... 43
15 Customization and other utilities. ..... 45
15.1 Data types. ..... 45
15.2 User flags. ..... 45
115.3 Conversions ..... 45
15.4 Other functions ..... 47
15.5 Permutations ..... 47
15.6 Variables ..... 47
15.7 Differential geometry ..... 48
16 Final remarks. ..... 48
A Frequently asked questions ..... 49B All functions of Erable- listed in alphabetic order 50
C User Keys. ..... 53
D User flags ..... 55
E Error codes for the SERIES command. ..... 56
FF Thanks to ... ..... 56

## 1 License

Erable v3.024 © $07 / 1998$ by Bernard Parisse, with integers routines from ALG48, (c) 1997 by Claude-Nicolas Fiechter and Mika Heiskanen, The S version is no more provided here. To compile it, get erablsrc.zip from: ftp://fourier.ujf-grenoble.fr/pub/hp48 and follow instructions in the file ersolv.s.

The Erable package is made of a KERNEL.LIB library and the ERABLEG.LIB library which needs the kernel library. The kernel library is a work based on ALG48 (using long integer routines) hence is submitted to the license of ALG48 (see the file license.txt). See eqstk.doc in eqstk.zip for license information about eqstk and readme.txt for information about minwriter. The rest of the package is submitted to the ERABLE license (see the file copying.doc).

## 2 Installation.

This section describes the installation of Erable with the kermit software. You must choose one of the method described in section (2.1) or in section (2.2). The first method will install Erable and some stack handling improvements (a modified eqstk and the minwriter editor), it is recommended for new users. Choose the second method if you have a SX or if you want to install Erable in port 1 or higher. If you have a $\mathrm{HP} 48 \mathrm{G}(\mathrm{X})$, you may use the X -modem protocol for faster transferts (look at section 2.2 and replace the command KGET by XGET except for the GXKEYS/SXKEYS file that you must download with kermit in binary mode).

### 2.1 Simplified installation for a GX.

Erable provides now a simplified installation procedure which should make it a lot easier for new users. Thanks to Mika Heiskanen and Claude-Nicolas Fiechter for letting me modify and distribute their eqstk library; to Jean-Yves Avenard (for the minwriter), and to Andre Schoorl (for ufl102) for letting me include their programs in the Erable distribution.

1. Go to the directory where you have unzipped erable.zip.
2. Run kermit on your computer. If you don't have kermit, you can get it at e.g. ftp://kermit.columbia.edu or at a mirror site. If your version of kermit does not work under Windows 95, restart your computer in MS-DOS mode and try again.
3. Set the line to the HP48, e.g. type
set port 2
if the HP is connected to the second serial port COM2 (for Linux type set line /dev/cua1).
4. To insure binary file transfer, type:
```
set file type binary
```

5. Type the following command to set the speed of kermit to 9600 bauds: set speed 9600
6. Put kermit in server mode, type:
serv
7. Now take your HP48. You must have at least 120K free in your HP48GX. If you do not have important data in your memory, press the ON key, then the A key, then the F key and release them, then press the F key to answer NO to Try to recover memory. Otherwise, if you are running a stack replacement like java or eqstk, switch to the HP48 built-in stack handler.
8. Type the left shift key followed by the 1 key, type the B menu key to select IOPAR, press the A menu key until line 1 looks:
IR/wire: wire
9. Press the $\alpha$ key, and type S E T U P then the space key then K G E T, release the $\alpha$ key and press the ENTER key. This will get the program SETUP from the computer to the HP. If an error occurs, verify the configuration of kermit and try again.
10. Press the VAR key, then the A menu key (for SETUP), this will get and install the binaries for you. If you don't have enough memory, an Insufficient memory error will occur. You may get a Object in use error if you are running stack replacement like java or eqstk, in this case, leave them (for java, type JAVA and for eqstk, type simultaneously ON and C). Otherwise, after about 10 minutes your HP48 will reboot.
11. After the reboot, press the VAR key, then the E menu key (again for SETUP). This will continue the installation and reboot the calculator after about 1 minute.
12. Eventually press the VAR key, then the A menu key (for INIT). This will launch the modified eqstk stack handler. Congratulations, you're done!!

The installation is completed, all should work smoothly. You can go to section (3)

### 2.2 All other cases.

You must first get the binary either from a computer or from another HP48 where Erable is installed. Then you have to install the binaries and eventually install the user keys redefinition.

### 2.2.1 Getting the binaries from a computer.

Connect your HP to your computer. Run kermit in server mode on your computer, and type either:
\{ KERNEL.LIB ERABLEG.LIB algbg GXKEYS \} KGET (HP48 GX)
or
\{ KERNEL.LIB erable.lib algb SXKEYS \} KGET (HP48SX)
If you have the metakernel, you should rename UKEYS to GXKEYS on your computer before the transfer and you should get STARTEQW as well to enable the use of some Erable commands in the EQW environment by hitting the CST key.

### 2.2.2 Getting the binaries from another HP48.

Check that both HP48 are in IR mode for I/O transferts.
If Erable is installed in a RAM card, check that the RAM card is writeable (otherwise the RCL function below will fail).
Put the recieving HP48 in server mode.
On the giving HP (where Erable is installed), call the SENDIR program if you have it or type the following little program:

```
<< :&:787 RCL :&:788 RCL RCLKEYS -> KERNEL.LIB ERABLEG.LIB GXKEYS
    << { KERNEL.LIB ERABLEG.LIB GXKEYS } SEND
    >>
>>
```

and EVAL it.

### 2.2.3 Installing the binaries

The kernel library must be installed in port 0 or port 1 , for port 0 type:
'KERNEL.LIB' DUP RCL SWAP PURGE 0 STO
or for port 1:
'KERNEL.LIB' DUP RCL SWAP PURGE 1 STO
The Erable library may be installed in any port, for example in port 2:
'ERABLEG.LIB' DUP RCL SWAP PURGE 2 STO (or 'erable.lib' DUP RCL SWAP PURGE 2 STO for a HP48SX)

### 2.2.4 Installing the user keys redefinition.

This step is optional but recommended.

- if you got algb or algbg from your computer, go in the algb or algbg folder and hit INIT. This will assign keys for the user mode.
- if you got GXKEYS (or SXKEYS) from another HP, type: 'GXKEYS' DUP RCL SWAP PURGE STOKEYS (or 'SXKEYS' DUP RCL SWAP PURGE STOKEYS) to assign keys for user mode.


### 2.2.5 Improve your installation

If you are short on memory, you can erase parts or the whole algb (respectively algbg) directory: keep SENDIR if you want to transfert Erable to another HP48. You can erase the GXKEYS (or SXKEYS) variable in the \{ HOME \} directory unless you want to customize the user key redefinition of Erable. If you have assigned Erable user key redefinition, you may decide to delete the main menu of the HP48, which is mainly useful for new users of the HP48GX: to do this, type:
22.1 DELKEYS

If you have a HP48GX with 128 K , I recommend to install EQSTK.LIB, MINWRT12 and UFL3.LIB. This will leave your HP48GX with 18K of RAM.

If you have enough memory, you can download the other directory and on-line help (fr or us).

If you install Erable user keys redefinition but you don't install the MINWRT12, you must unassign the downarrow key by typing
35.1 DELKEYS
(Otherwise hiting the downarrow key will return 'EDITM')
If you don't install EQSTK.LIB, you must unassign the left shift-downarrow key by typing
35.2 DELKEYS

### 2.2.6 Abstract of the installation commands

This is the list of commands in the algb or algbg directory:

- GETALL: downloads directories with some programs using Erable
- INIT: downloads the Erable libraries if they are not installed and reboots. Otherwise, installs GXKEYS or SXKEYS as user keys redefinition and reboots.
- PURG: purge the algb or algbg directory
- SENDIR: used to transfert the Erable libraries and the user keys assignement from one HP to another HP. Before calling SENDIR, you must check that both HP48 are in IR mode (in the I/O menu) and you have to put the recieving HP48 in server mode.
- SETFR: set some flags: e.g. European date display, or radian mode, ...


## 3 Introduction.

### 3.1 Overview.

Erable is a computer algebra system for the HP48. The main features are simplifications (including complexes and square roots), integration, first order differential equations, partial fraction decomposition, Laplace and inverse Laplace transform, limits, Taylor and asymptotic series, row reduction to echelon form of matrices, linear system (including over and underdetermined), eigenvalues and
eigenvectors, quadratic forms, permutations, variables substitution, ... With Erable you will be able to solve most problems solved by a TI92 and some problems which are not solved by a TI92: some integrals (the Risch algorithm is not implemented in the TI92), some Taylor series, arithmetic, diagonalization of matrices, change of variables,...
If you have both alg48 and Erable, then you have the most complete computer algebra system currently available on a calculator (HP, TI and CASIO).

Examples:

$$
\begin{array}{clll}
\begin{array}{cl}
\frac{1+\sqrt{2}}{1+2 \sqrt{2}} & \text { EXPA }
\end{array} & \frac{3}{7}+\frac{1}{7} \sqrt{2} \\
e^{i \pi / 6} & \text { TSIMP } & \frac{\sqrt{3}}{2}+\frac{i}{2} \\
\ln (1+i) & \text { TSIMP } & \frac{\ln (2)}{2}+\frac{1}{4} \pi i \\
\frac{1}{e^{x}-1} & \text { RISCH } & \left(\frac{1}{e^{x}-1} d x=\ln \left(e^{x}-1\right)-x\right. \\
\lim _{x \rightarrow 0} \frac{y^{x}-1}{x} & \text { LIMIT } & \ln (y) & 0 \\
\left(\begin{array}{lll}
1 & 1 & a \\
1 & a & 1 \\
a & 1 & 1
\end{array}\right) & \operatorname{rref} & \left(\begin{array}{lll}
2-a-a^{2} & 0 & -2+a+a^{2} \\
0 & 0 \\
0 & 0
\end{array}\right.
\end{array}
$$

Examples not solved natively by a TI92:

$$
\begin{array}{rcl}
\sin (x) /\left(e^{x}-1\right), x, 4 & \text { SERIES } & 1-\frac{1}{2} x-\frac{1}{12} x^{2}+\frac{1}{12} x^{3}+O\left(x^{4}\right) \\
\cos (x)^{2} & \text { LAP } & \frac{1}{2 x}+\frac{1}{4(x-2 i)}+\frac{1}{4(x+2 i)} \\
\frac{1}{\left(x^{2}+1\right)(x+1)} & \text { ILAP } & \frac{-1}{2} \cos (x)+\frac{1}{2} \sin (x)+\frac{1}{2} e^{-x} \\
y^{\prime}=x y^{2} & \text { DSOLVE EXPA } & y=\frac{y_{0}}{e^{-1 / 2 x^{2}+1 / 2 x_{0}^{2}}} \\
\int_{0}^{1}\left(1+2 x^{2}\right) e^{x^{2}} d x & \text { EXPA } & e \\
\int_{a}^{b} \frac{e^{x}}{x} d x, \quad e^{x}=y & \text { EXEC } & \int_{e^{a}}^{e^{b}} \frac{y}{y \ln (y)} d y \\
\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right) & \text { JORDAN } & \text { Char :1:(1,0); Eigen :1:( }-1,-1)
\end{array}
$$

### 3.2 Warnings.

- Using a computer algebra system does not mean that you don't have to think. Most of the time, all works perfectly and you get the answer within 30 seconds. But sometimes, after 1 or 2 minutes, you don't get the answer or you get a Insufficient memory error. In this case, you should think "Is there a different way to get the answer? Is there a way which will be easier for the system?" And most of the time, there is a better way! Think of double integrals where you can reverse the integration order or define integrals where you may do a variable translation to have less variables, or linearity in inverse Laplace transform, ... You should learn math and algorithms to get the best of any computer algebra system. And a system is never complete, you will need to program sometimes!
- Most of the problems in the real life don't have exact answers but can only be solved approximately. Think of integrals, differential equations, large matrices (say e.g. $100 \times 100$ ), ... Before learning how to solve exactly a problem, I strongly recommend that you learn how to solve numerically a problem. Then for a real life problem, you will know when you must stop finding an exact solution and begin to use a numerical algorithm.


### 3.3 Erable and alg48.

Erable is partially derived from the alg48 package. The arithmetic functions of Erable are derived from those of alg48. Erable and alg48 have some other common features like simplifications, partial fraction expansion or rational integration. The main differences are:

- Erable is most of the time slower (about 2 times I would say, this is only a mean, sometimes alg48 is 3 times faster than Erable, sometimes Erable is 1 to 2 faster than alg48). Why? Because Erable handles complexes and square roots natively: e.g. Erable simplifies expressions like ( $1+$ $i) /(1+2 i)=\frac{3-i}{5},(1+\sqrt{2}) /(1-2 \sqrt{2})=-\frac{5}{7}+\frac{-3}{7} \sqrt{2}, e^{5 i \pi / 6}=-\frac{1}{2} \sqrt{3}+\frac{i}{2}$. Hence arithmetic operations in Erable must be generic, that's why they are slower. On the other hand, Erable treats matrices as global objects for simplifications, as alg48 simplifies matrices element by element, hence Erable may be faster if matrices are involved.
- Erable accepts strings embedded in symbolics, this means that if you EXPAnd $(5 x+12)^{16}$ with Erable you'll get the exact answer. You may also do arithmetic operations on strings representing integers (e.g. try "123456789123456789" DUP MULT)
- Erable handles numerical data (reals which are not integers and complexes with non integral real and/or imaginary parts)
- Erable has a partial implementation of the Risch integration algorithm: it handles most of the common integrals, not only rational fractions.
- alg48 (version 4 ) implements the complete factorization algorithm over the rationals, Erable finds only first order factors of the square-free factorization and then, for 1 -variable polynomials, calls the numeric solver if necessary and tries to rebuild 2 nd order factor. Hence, alg48 factors the expanded form of $\left(x^{4}+x^{3}+1\right)\left(x^{4}+x+1\right)$ but not $x^{4}+1$ and Erable does not factor the first example but factors the second one.
- The main specific feature of alg48 is the Gröbner base computation. The main specifics features of Erable are eigenvalues and eigenvectors of matrices, differential equations (first order: linear, Bernouilli, homogenous; linear with constant coefficients), limits and Taylor series, quadratic forms, permutations, variable substitutions.

If you have enough memory, do like me: keep both on your calc and choose the right instruction!

### 3.4 Implementation notes.

This software is written in ML and Sysrpl with HP48 supported entries and standard instructions (and a few unsupported but static entries), hence it should work on all versions of the HP48. Of course, you should backup your calc before trying it: no software is bug free!

This package was written on a 90 Mhz Pentium PC running under Linux (RedHat 4.2), the GNU emacs editor, my patched version of the x48 emulator (with almost instantaneous file transfers) with JAZZ installed, the gtools package (HP48 GNU compiler) and kermit.

### 3.5 Next upgrades.

The latest versions are available by anonymous ftp in the directory:
ftp://fourier.ujf-grenoble.fr/pub/hp48/
If you have a WEB client (like Netscape), you may prefer to go to my professional homepage:
http://www-fourier.ujf-grenoble.fr/~parisse/english.html
or to my personal homepage:
http://perso.wanadoo.fr/bernard.parisse/english.html

## 4 Getting started.

This section explains the interface of Erable. It is assumed that you have installed the user keys redefinition as explained in section (2.2.4). Now you must switch your calc to user mode. Look at the status lines, if USER appears, then you are done, otherwise (or if NORM appears when using JAVA) you must type the left shift key followed by the $\alpha$ key once or twice (try once and type a key, if USER disappears then type the left shift- $\alpha$ key sequence twice).

### 4.1 Current variable.

When you start Erable (and each time you reset it by typing VER followed by the ENTER key), the current variable is set to ' X '. The DEL key is assigned to X . It is therefore easy to enter a symbolic expression depending of X because you do not need to press the $\alpha$ key. You may need to modify the current variable. This is done by changing the content of the VX variable (in the \{ HOME $\}$ directory). For example to set the current variable to Y, type: Y 'VX' STO

### 4.2 Complex and real modes

Erable has two major modes: complex and real mode. The user flag 13 is set in complex mode and cleared in real mode (default state). This mode affects the way Erable outputs results. For example, partial fraction decomposition is made over $\mathbb{C}$ or over $\mathbb{R}$ depending of the current mode. If you see unwanted $i$ on the stack, this means that Erable is probably in complex mode. For G/GX users, the key sequence $\alpha$-right shift-CST provides an easy way to switch to complex or real mode using arrow keys to select the mode (type the ENTER key to confirm). HP48S/SX users can go to real mode either by typing 13 CF or by typing VER (which reset all flags to their default state) and can switch to complex mode by typing 13 SF .

### 4.3 Main functions

The keys redefined by Erable are most of the time preceded by the $\alpha$ and right-shift keys. For example, the add addition function of Erable is obtained in USER mode by hitting threes keys: $\alpha$, Right Shift,+ .

The same method applies for other arithmetic operations. The $+,-, *, /$, $y^{x}, \sqrt{x}, \pm, 1 / x, \partial, \int$ keys are redefined (after $\alpha$ and Right Shift ) as add, SUBT, MULT, DIV1, POWER, SQRT, CHS, INVL, der1, RISCH. These commands are Erable commands for addition, subtraction, multiplication, division, power, square root, change sign, derivation and integration with respect to the current variable 1 .

All other Erable functions may be reached by the MTH-Erable menu or by a key preceded by $\alpha$-right shift. To launch the MTH-Erable menu, type the MTH key, use arrow keys or hit a number to select a topic and type the ENTER key. After that you select the desired command by hitting the white A-F keys or search further by hitting the NXT key.

Remark 1 A main menu of the HP48GX is available by hitting the PRG key and may be useful for beginners. Note that the former MTH and PRG key definition are reached by $\alpha$-right shift-MTH or $\alpha$-right shift-PRG. If you want to delete the

[^0]PRG key assignement, type 22.1 DELKEYS (note that the 0.BACK option of the MTH menu will no longer work)

You can directly reach a topic of Erable by hitting $\alpha$-right shift followed by the number of the topic in the MTH-Erable menu. For example, if you hit $\alpha$-right shift-1, you will get the BASE ALGEBRA menu, that is the most useful commands of Erable that are illustrated with an example below:

- EXPA (expand an expression): $\frac{(X+1)^{4}}{X^{2}-1}$ EXPA $\frac{X^{3}+3 X^{2}+3 X+1}{X-1}$
- COLC (factorize an expression):
$X^{4}-1 \operatorname{COLC}\left(X^{2}+1\right)(X+1)(X-1)$
- der1 (derive an expression with respect to the current variable): $\ln (\ln (X))^{2} \quad$ der $1 \quad 2 \frac{1}{X} \frac{1}{\ln (X)} \ln (\ln (X))$
- RISCH (integrate an expression with respect to the current variable): $e^{X} \sin (X)^{2} \quad$ RISCH $\quad e^{X} \frac{1}{2}+e^{X}\left(\left(-\sin (2 X) \frac{1}{5}+\frac{-1}{10} \cos (2 X)\right)\right.$
- LIMIT (of the expression at stack level 2, you must specify the variable and the limit point at level 1, e.g. ' $\mathrm{X}=0$ '):
$\left(1+\frac{1}{X}\right)^{X}, X=\infty$ LIMIT $e$
- TAYLR (the built-in one):
$\sin (X), X 4$ TAYLR $\quad X-\frac{1}{3!} X^{3}$
- EXEC (to make a substitution at stack level 2, you must specify the substitution at level 1, e.g. ' $\mathrm{X}=1+\mathrm{Y}^{\prime}$ ):
$\ln \left(X^{2}+1\right)+\arctan (X), X=2$ EXEC $\ln \left(2^{2}+1\right)+\arctan (2)$
- SOLV (to isolate a variable at level 1 in an expression at level 2):
$X^{4}-1, X \operatorname{SOLV} X,\{1-1$ 'i' '-i' $\}$
- FSIGN (sign of a rational fraction):
$X^{2}-X-2$ FSIGN returns ' X ' : $\{+1-2+\}$. You read the sign starting from $-\infty$ at the left to $+\infty$ at the right. 1 and 2 are here zeroes from the rational fraction, in general the value appearing in the list are roots or poles.
- IPP (integration by part: see (7.3):
$\int_{1}^{2} \ln (X) d X, X \quad$ IPP $\quad \int_{1}^{2} \ln (X) d X=2 \ln (2)-\int_{1}^{2} 1 d X$
(applies $\int u v^{\prime}=[u v]-\int u^{\prime} v$ where $\ln (X)$ is the function $u$ and the argument $X$ is the function $v$ )

Some of these commands are directly assigned to a shortcut:

- the EXPA command is assigned to the $\alpha$-right shift-SPC sequence,
- the EXEC command is assigned to the $\alpha$-right shift-EVAL sequence,
- $i$ is assigned to the CST key,
- $X$ is assigned to the DEL key,
- $\infty$ or $+\infty$ is assigned to the $\alpha$-right shift-DEL sequence,
- $-\infty$ is assigned to the $\alpha$-left shift-DEL sequence,

Here is a brief description of all the functions of Erable which may be launched this way:

- $\alpha$-right shift-1: basic algebra commands:

EXPA, COLC, der1, RISCH, LIMIT, TAYLR, EXEC, SOLV, FSIGN, IPP (see above)

- $\alpha$-right shift-2: complex:
re, im, conj, arg, abs and $i$. Note that you can always get $i$ if you hit the CST key.
- $\alpha$-right shift-3: trigonometry:

TEXPA (trigonometric expand), TRIGLIN (trig. linearization), SINCOS (convert complex exp and $\ln$ to trigonometric expressions), TRIG (applies $\sin ^{2}+\cos ^{2}=1$ to simplify an expression), TRIGCOS (same as TRIG, returns only cosines if possible), TRIGSIN (same as TRIGCOS but returns only sines if possible), HALFTAN (convert to tan of the half-angle), ->SC2 (convert $\tan$ to sin and cos of the double angle), $\mathrm{T}->\mathrm{SC}$ (convert tan to sin and cos of the same angle).

- $\alpha$-right shift-4: matrices rref (row reduction to echelon form), JORDAN (diagonalization of matrices), det (determinant), PCAR (characteristic polynomial), SYST (solves a linear system), SOLGEN (returns all solutions of a linear system), RDET (determinant by row reduction), RANG (half-row reduction), idn (symbolic identity matrix), LCXM (to build a matrix), HILBERT and VAND to build Hilbert and Vandermonde matrices.
- $\alpha$-right shift-5, conversions:

AXL (numeric to symbolic matrices or conversely), EXEC (substitution), SINCOS (exponentials and logarithms to sines and cosines), EXPLN (sines and cosines to exponentials), FXND (fraction to numerator and denominator or equality to left and right handsides), NDXF (numerator and denominator to fraction), AXQ and QXA (matrix to symbolic representation of quadratic forms and conversely)

- $\alpha$-right shift-6, integer and polynomial arithmetic:

DIV2 (euclidean division), GDC1 (usual greatest common denominator), GCD3 (extended gcd), ABCUV (Bézout identity), LCM1 (least common multiple), PF (partial fraction decomposition), COLC (factorization), DIVIS (list of divisors), SIMP2 (simplification of stack levels 2 and 1), EULER (Euler indicatrix), fact (factorial), comb $\binom{n}{p}$ ).

- $\alpha$-right shift-7, solve and factorization:

FROOTS (roots and poles of a fraction with multiplicity), FCOEF (reverse of FROOTS), SOLV (isolate a variable in an equation), LNCOLC (collect logarithms), COLC (factorization), EXEC (substitution)

- $\alpha$-right shift-8, exponentials and logarithms:

EXPLIN (linearization of exponentials), EXPLN (convert sines and cosines to exponentials), LNCOLC (collect logarithms), TEXPA (expand logarithms and exponentials), TSIMP (transcendental presimplification)

- $\alpha$-right shift-9, differential calculus:
der (derivative and gradient), RISCH (integration), IPP (integration by part), SERIES (asymptotic series expansion), LIMIT (limits), DSOLVE (ordinary first order differential equation solver), LDEC (linear differential equation with constant coefficients solver), LAP (Laplace transform), ILAP (invert Laplace transform)

An easy way to configure Erable is to type the $\alpha$-right shift-CST sequence (for Erable MODES) and select the mode you want to switch to.

Let's finish by redefined keys which are not $\alpha$-right shifted:

- On SX models, the $\rightarrow Q$ and $\rightarrow$ NUM keys (not alpha shifted) are redefined to handle matrices. They toggle user flags 12, 14 and 15 (XNUM to clear and XQ to set) and system flag 2.
- On a G/GX models, use $\alpha-$ Right Shift -Q or $\rightarrow$ NUM (not shifted).


### 4.4 The main menu

If you hit the PRG key in user mode, you will get a main menu for the HP48, not only for Erable. This menu will help new users of the HP48. Experienced users can remove this key assignment, saving some memory (using the command 22.1 DELKEYS). Here is a brief description of this main menu:

1. EDITORS:

- EDIT LEVEL 1:

To modify the object at stack level 1 (shortcut: downarrow)

- VIEW LEVEL 1:

To view (not modify) the object at stack level 1 (shortcut: left shiftdownarrow)

- EDIT STACK:

To Delete, copy or move object from one stack level to another stack level (shortcut: uparrow or right shift-uparrow)

- SPEC. CHAR.:

To get special characters (shortcut: right shift-PRG)

- NEW EQUATION:

To enter a new equation in the EquationWriter environment (shortcut: left shift-ENTER)

- NEW TEXT:

Enter a new string with the Minwriter editor. See the Minwriter documentation for editing keys.

- NEW MATRIX:

Enter a numeric array in the MatrixWriter environment (shortcut: right shift-ENTER)

- NEW LIST:

Enter a new list with the Minwriter editor.

- NEW PROGRAM:

Enter a new program with the Minwriter editor.

- PICTURE:

Modify the graphic object (e.g. the graph of a function) in the PICTURE environment (shortcut: left shift-rightarrow)
2. VAR, I/O:

- MEMORY:

The memory handler of the HP48: see your variable and their contents (shortcut: right shift-VAR)

- SEND/GET:

The Input/Output menu of the HP48, to exchange files with a computer or another HP48 (shortcut: right shift-1)

- PORTS:

Management of your RAM/ROM card extensions (shortcut left shift1)
3. PROGRAMS:

- USER PROG:

The programmation menu of the HP48 (shortcut in user mode: $\alpha$ right shift-PRG)

- LIBRARIES:

The libraries installed (shortcut rightshift-2)
4. PHYSICS

- EQ. LIBRARY:

The Equation Library of the HP48 (shortcut: right shift, 3)

- CONSTANTS:

Physical constants and other utilities (shortcut left shift-3). Choose COLIB (B menu key) to get either the library of constants (CONLI) or the CONST function (convert e.g. 'c' at level 1 to the speed of light)

- DATE \& TIME:

To set or modify the date and the time, and compute with dates and time (shortcut: left shift-4)
5. SETUP

- CALC MODES:

Modes of the HP48: system flags, angle format, clock display, ... (shortcut right shift-CST)

- RESET ERABLE:

Like the VER command of Erable: restore standard state (no shortcut)

- REAL MODE:

Put Erable in real mode, like the command 13 CF

- COMPLEX MODE:

Put Erable in complex mode, like the command 13 SF

- INTEGER ARIT:

Assumes now that you are doing arithmetic on integers, not polynomials, like the command 10 SF

- POLYN. ARIT:

Assumes now that you are doing arithmetic on polynomials, not integers, like the command 10 CF

- NUMERIC MODE:

Asumes now that your integer input are not exact but numeric, like the command XNUM

- SYMBOLIC MODE:

Assumes now that you integer input are exact, not numeric approximations, like the command XQ

- TIME SETUP:

The TIME menu of the HP48 to set, browse alarms and date/time (shortcut right shift-4)
6. STATISTICS

The STAT menu of the HP48: single-var, frequencies, fit data, summary stats (shortcut: right shift-5)
7. UNITS:

The UNITS menu of the HP48: length, area, volume, time, speed, mass, force, energy, power, pressure, temperature, electricity, angle, light, radioactivity, viscosity (shortcut: right shift, 6)
8. NUMERIC

The built-in numerical functions of the HP48:

- MATH FNCS
vectors, matrices, list, hyperbolic, real fonctions, base probability, Fast Fourier Transform, complex, constants: the built-in MTH menu (shortcut in user mode: $\alpha$-right shift-MTH)
- SOLVE EQN

The SOLVE menu of the HP48: numeric or semi-numeric solutions for equations, differential equations, polynomial, linear systems, financial problems (shortcut: left shift-7)
9. GRAPH

If you want to plot the function at stack level 1, choose PLOT LEVEL 1, otherwise choose PLOT MENU
10. ERABLE

To launch the Erable main menu if you don't remember that the MTH key does it directly. See description above.

## 5 Simplifications.

Two kinds of simplifications are provided: full rational simplification (EXPA) and transcental presimplification (TEXPA, EXPLIN, TRIGLIN, TRIGSIN, TRIGCOS, ..., LNCOLC, TSIMP). In many situations, full rational simplification achieve the whole simplification, but sometimes you will need to detect relations between exponentials and logarithms; in this situation you should call TEXPA, TRIGLIN, ..., TSIMP, followed by EXPA or COLC to finish the simplification.

### 5.1 Rational simplifications instructions.

EXPA does a complete simplification of an expression viewed as a rational fraction, COLC tries to factorize a symbolic. For convenience, arithmetic operations of Erable perform automatic rational simplifications: e.g. add (shortcut: $\alpha$ right shift- + ) is equivalent to + EXPA.

### 5.2 Presimplifications instructions

To simplify non rational expressions, you will most of the time apply identities like $\ln (x y)=\ln (x)+\ln (y)$ or conversely and after you will call EXPA.

### 5.2.1 Linearization.

Exponential and trigonometric linearization are implemented via:

- EXPLIN: $e^{x} e^{y} \rightarrow e^{x+y}$ and for integral powers $\left(e^{x}\right)^{n}=e^{n x}$
- TRIGLIN: $\sin (x) \sin (y)=\frac{1}{2}(\cos (x-y)-\cos (x+y))$ and similar identities, $\sin (x)^{n}$ and $\cos (x)^{n}$ for $n$ integer


### 5.2.2 Development.

The TEXPA instruction applies the following identities:

- $e^{x+y}=e^{x} e^{y}$ and $e^{n x}=\left(e^{x}\right)^{n}$ for $n$ integer,
- $\ln (x y)=\ln (x)+\ln (y)$.

Warning: this identity is only valid module $2 i \pi$

- $\sin (x+y)=\sin (x) \cos (y)+\sin (y) \cos (x)$ and $\cos (x+y)=\cos (x) \cos (y)-$ $\sin (x) \sin (y)$


### 5.2.3 Trigonometry

The remaining trigonometric simplifications instructions are:

- EXPLN and SINCOS to apply Euler idendities in both directions
- TRIGCOS, TRIGSIN: replace $\sin ^{2}$ [resp. $\cos ^{2}$ ] by $1-\cos ^{2}$ [resp. $\left.1-\sin ^{2}\right]$
- TRIG: replace complex logarithms with arctan functions, then does TRIGCOS or TRIGSIN (according to the last call to one of these functions)
- TAN2SC: replace tan by $\sin / \cos$
- TAN2SC2: replace $\tan (x)$ by $\sin (2 x) /(1+\cos (2 x))$ or by $(1-\cos (2 x)) / \sin (2 x)$.
- HALFTAN: replace $\sin (x), \cos (x)$ and $\tan (x)$ in terms of $\tan (x / 2)$


### 5.2.4 The TSIMP instruction

TSIMP is used to minimize the number of rational "variables". It may be used if RISCH fails because it returns an expression which is "weak-normalized". Note that TSIMP considers trigonometric functions as complex exponentials, and simplifies them this way and that the output of TSIMP is affected by the state of the flag 13 (complex flag): if flag 13 is cleared, then complex logarithms and exponentials are converted to arctan and sin/cos functions.

### 5.3 Recurse flag.

If flag 21 is set, "variables" of an expression are simplified recursively (global name are evaluated, integrals are evaluated by a call to RISCH). Warning: derivatives of user-functions are not evaluated (you have to do an explicit substitution with EXEC for this).

## 6 Limits, Taylor and asymptotic series.

The program SERIES computes Taylor series, asymptotic development and limit at finite and infinite points. It should cover a lot of weird limits, even some that are not handled by the TI92 (not surprising!) nor by maple (more surprising!) like:

$$
\lim _{x \rightarrow 0} \sin (1 / x+x)-\sin (1 / x)
$$

The LIMIT instruction may be used if you need only the limit. Note that SERIES handles more limits than LIMIT, but is a lot slower for trivial cases. SERIES can not be used with non-exact arguments (like 0.1) and should not be used with parameters. LIMIT may give strange results with parameters. If you see a warning message, you will get a binary integer as answer, this means that SERIES or LIMIT was not successful, the binary integer is an error code.

Syntax of SERIES:
Put on the stack the following arguments in this order

- the function $f(x)$
- the variable if the limit point is 0 or an equation $x=a$ if the limit point is $a$ (and the variable is $x$ ). This entry is optional if the stack as only 1 argument.
- the order for series expansion (optional), by default 4 (minimum 2, maximum 20). If the order is a positive integer, the series expansion is made from the right, if the order is a negative integer from the left. For bidirectional series expansions, give the order as a binary integer (e.g. \#5d).

Type SERIES, this computes the bidirectional limit at level 3. At level 2, you get a list of two elements: the series expansion and the rest order. They are expressed in terms of a small parameter $h$. At level $1, h$ is expressed in terms of the initial variable (hence calling EXEC would return the series expansion and the rest in terms of the initial variable).

Remark 2 - Note that the series expansion is not always fully truncated, don't forget to look at the rest. If you need to truncate the series expansion, split the list on the stack (hit the EVAL key) and call the TRUNC function.

- Sometimes SERIES will not be successful and returns an error code. You can look at $\mathbb{Q}$ for more details about the failure.
- For mono-directional series expansion, either precise the order as a positive or negative integer, or for default order, put an equation $x=a+0$ for a left-directional series expansion at a or $x=a-0$ for a right-directional series expansion.
- For limits at infinity: you may use the $\infty$ symbol (from keyboard type $\alpha$ right shift-DEL in user mode or $\alpha$-right shift-I in normal mode). To get $X=+\infty$, type $X=\infty$, then hit EVAL

Examples:
$1 / x x=\infty$ SERIES
$1 / x x=+\infty$ SERIES
$1 / x x=-\infty$ SERIES
$\sin (x) / x x$ SERIES
$\sin (x) / x x=+\infty$ SERIES
$\sqrt{( } 2+x) x 5$ SERIES
$\sin (1 / x+x)-\sin (x) x$ SERIES
$\left(\ln \left(-\ln \left(x+x^{2}\right)\right)-\ln (-\ln (x))\right) * \ln (x) / x x=0+0$ SERIES
The syntax of LIMIT is similar: put the function and the 'variable=limit_point' equation on the stack. Note that you can not force the order for series expansions and LIMIT handles only bidirectional limits (except at infinity). LIMIT returns only the limit at stack level 1.

Erable can handle relatively complex limits, like the example above (extracted from the Mupad on-line help):

$$
\frac{\exp \left(\frac{e^{-x}}{e^{-x}+e^{\frac{-2 x^{2}}{x+1}}} x\right)-e^{x}}{x}
$$

$X=\infty$ LIMIT returns $-e^{2}$.
In addition Erable provides the:

- TRUNC instruction which truncates a series expansion at level 2 with respect to the rest at level 1.
- DIVPC instruction which make a division in ascending power up to an integer order. The numerator is at level 3 , the denominator at level 2 and the order at level 1.

These instructions may be used to understand series expansions without cumbersome calculations.

## 7 Derivation and integration.

### 7.1 Derivation

The Erable derivation instructions are der and der1, they compute the derivative of a (list of) function(s) like the built-in instruction but do not evaluate numeric expressions (like $\sqrt{2}$ or $\frac{1}{2}$ ). der1 is used for derivation with respect to the variable contained in VX and takes only one argument (the function to derive). der is used with 2 arguments: the (list of) function(s) to derive at level 2 and the variable with respect to which you want to derive at level 1. If level 1 is a list, der returns the gradient of level 2 :
2: ' $\mathrm{X}^{\wedge} 2+2 * \mathrm{X} * \mathrm{LN}(\mathrm{Y})-1 / \mathrm{Y}^{\prime}, 1:\{\mathrm{X} Y\}$
$\rightarrow$ \{ ' $\left.2 * \mathrm{X}+2 * \mathrm{LN}(\mathrm{Y})^{\prime}, 2 * \mathrm{X} *(1 / \mathrm{Y})+1 / \mathrm{Y}^{\wedge} 2^{\prime}\right\}$
der returns $\mathrm{d} j \mathrm{Z}(\mathrm{X}, \mathrm{Y}, \ldots)$ for the derivative of the user-defined function $\mathrm{Z}(\mathrm{X}, \mathrm{Y}, \ldots$ )
with respect to the $j$-th variable of $z(x, y, \ldots)$.
Examples:
Suppose that $x \rightarrow z(x)$ is the primitive of $\sqrt{x^{3}-1}$. Type ' $\mathrm{Z}(\mathrm{X})$ ' X der, you get $\partial_{1} z(x)$ on the stack. Enter $\sqrt{x^{3}-1}$ and hit $=$ then enter DEFINE. Now, you can type ' $\mathrm{Z}\left(\mathrm{X}^{\wedge} 2\right)^{\prime} \mathrm{X}$ der EVAL and get $2 x \sqrt{\left(x^{2}\right) 3-1}$.
Try 'Y(X,X^2)' X der.

### 7.2 Integration

The main integration command are RISCH and EXPA. The RISCH program accepts functions as input and (tries to) return the primitive. EXPA should be called for symbolic expressions which contains the $\int$ symbol. The last computed antiderivative is stored in the variable PRIMIT. The variable ERABLEMSG contains additionnal information if RISCH returns an unevaluated antiderivative (with a $\int$ sign).

Some examples for RISCH:

- $\frac{1}{x^{2}-4} \rightarrow \frac{1}{4} \ln (x-2)-\frac{1}{4} \ln (x+2)$
- $x \ln (x) \rightarrow \frac{1}{2} x^{2} \ln (x)-\frac{1}{4} x^{2}$
- $\sqrt{x^{2}-1} \rightarrow \frac{1}{2} \ln \left(-x+\sqrt{x^{2}-1}\right)+\frac{x}{2} \sqrt{x^{2}-1}$ :
- $1 /(\sin (x)+2) \rightarrow \frac{-2}{3} \sqrt{3} \arctan \left(\frac{-2 \tan (x / 2)-1}{3} \sqrt{3}\right)$

The RISCH program must sometimes be used in conjunction with the TSIMP function to get "weak normalization". If you get No closed form in ERABLMSG, try TSIMP and RISCH again, if you get again the message No closed form, this does not mean that RISCH failed, but that your input does not admit an antiderivative which may be expressed in terms of elementary functions.

Remark 3 - RISCH is only a partial implementation of the Risch algorithm: it works with pure transcendental extensions (i.e. square root are generically not allowed), and exponential polynomial parts must not contain logarithms or other exponentials. Examples:

$$
\ln \ln (x), \quad \frac{1}{e^{x^{2}+1}-1}, \quad x^{3} e^{\left(\frac{x+1}{x+2}\right)}
$$

are allowed (and returned since they do not have a antiderivative which may be expressed with elementary functions), but:

$$
\sqrt{\ln (x)^{2}-1}, \quad e^{\ln (x)^{2}+1}
$$

are not allowed as input.
In addition to this partial implementation, RISCH can integrate fractions of the type $F\left(x, \sqrt{a x^{2}+b x+c}\right)$.

- You can not use the name of the current variable as a parameter name in an integral, for example if VX is set to X , evaluation of:

$$
\int_{0}^{T}\left(X^{2}-Y^{2}\right) d Y
$$

does not return a correct answer, because $X$ in the integral is a parameter. You can however use $X$ as integration variable, e.g.

$$
\int_{0}^{T}\left(X^{2}-Y^{2}\right) d X
$$

works.
For integrals with bounds, the right instruction is EXPA.
Example of EXPA usage (in real and symbolic mode):

$$
\int_{1}^{2} \frac{1}{x^{3}+1} \operatorname{EXPA} \frac{\ln (3)-2 \ln (2)}{6}+\frac{\pi}{18} \sqrt{3}
$$

If you have still computed the antiderivative e.g. with RISCH, you can evaluate it between two bounds using PREVAL. Arguments of PREVAL are a function $f(x)$ at level 3, lower and upper bounds $a$ and $b$ at level 2 and 1. It returns $f(b)-f(a)$ ( $x$ is the variable contained in VX ).

Remark 4 Warning: EXPA does not detect discontinuities of the antiderivative. It blindly computes the value at both end of the integration interval (by a call to LIMIT, hence infinite bounds are allowed) and returns the difference. For example, $\int_{0}^{2 \pi} \frac{1}{\sin (x)+2}$ returns 0 . You should always check the answer numerically and if the answers are not the same, you have to study the antiderivative for discontinuities.

### 7.3 Integration by part

Integration by part is implemented via the IPP command. You have to put a defined integral $\int_{a}^{b} f(t) d t$ at level 2 and a function $u(t)$ at level 1 . Let $v=f / u^{\prime}$, then IPP returns

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u^{\prime} v(t) d t=[u v(t)]_{a}^{b}-\int_{a}^{b} u v^{\prime}(t) d t
$$

You may call IPP twice or more. In this case, the transformation applies on the first integral of the second member of the equality.
Example:
-

$$
\int_{0}^{x} \arcsin (t)^{2} d t
$$

' ${ }^{\prime}$ ' IPP $\sqrt{1-T^{2}}$ IPP EXPA returns the antiderivative of $\arcsin (x)^{2}$.

- Try:

$$
\int_{0}^{x} \exp (t) \sin (2 t) d t
$$

with $\exp (t)$ IPP twice. The resulting equality may be used to compute the antiderivative (RISCH may be called directly on this example, but IPP gives a pedagogical approach)

## 8 Ordinary differential equations.

### 8.1 Linear differential equations (systems) with constant coefficients.

The most efficient tool for these equations is the Laplace transform defined by:

$$
Y(s)=\mathcal{L}(y)(s)=\int_{0}^{\infty} e^{-s t} y(t) d t
$$

Example: solve $y^{\prime}+2 y=\cos (x)$. Apply $\mathcal{L}$, since:

$$
\mathcal{L}\left(y^{\prime}\right)(s)=s \mathcal{L}(y)(s)-y(0)
$$

we get:

$$
(s+2) \mathcal{L}(y)(s)=\mathcal{L}(\cos (x))(s)+y(0)
$$

hence:

$$
y(x)=\mathcal{L}^{-1}\left(\frac{\frac{s}{s^{2}+1}+y(0)}{s+2}\right)=\mathcal{L}^{-1}\left(\frac{\frac{s}{s^{2}+1}}{s+2}\right)+y(0) \mathcal{L}^{-1}\left(\frac{1}{s+2}\right)
$$

since $\mathcal{L}(\cos (x))(s)=s /\left(s^{2}+1\right)$. This method is implemented by the LDEC instruction. It takes the second member at level 2 (here $\cos (x)$ ), and the characteristic equation at level 1 (here $x+2$ ) and returns the solution vanishing at the origin at level 1 , the characteristic equation at level 2 , and 1 at level 3 . Be sure that the current variable name contained in VX is the right one!

### 8.1.1 Laplace transform.

The program LAP takes the function $f$ as argument and returns $\mathcal{L}(f)$ (Laplace transform is performed with respect to the variable contained in VX).

### 8.1.2 Inverse laplace transform.

The program ILAP performs inverse Laplace transform of rational fractions. Example: for $x /\left(\left(x^{2}+1\right)(x+2)\right.$, type ' $\mathrm{X} /\left(\mathrm{X}^{\wedge} 2+1\right)$ ' ' $\mathrm{X}+2$ ' / ILAP to get the answer:

$$
y(x)=\frac{1}{5}(2 \cos (x)+\sin (x))+\frac{-2}{5} e^{-2 x}
$$

Remark 5 The name of the Laplace variable is the same name as the normal variable (and is contained in VX ).

### 8.1.3 Linear differential equations systems with constant coefficients.

Example: suppose we want to solve the following system:

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(x)=y_{1}(x)-y_{2}(x)+1 \\
y_{2}^{\prime}(x)=2 y_{1}(x)+4 y_{2}(x)+e^{x}
\end{array}\right.
$$

with initial data $y_{1}(0)=y_{2}(0)=0$.
For scalar linear differential equations with constant coefficients, it is a wellknown procedure to use Laplace transform, e.g. to solve

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(x)
$$

one would perform the $\mathcal{L}$-transform and get:

$$
\left(a s^{2}+b s+c\right) \mathcal{L}(y)=\mathcal{L}(f)(s)+a\left(s f(0)+f^{\prime}(0)\right)+b f(0)
$$

where $f(0)$ and $f^{\prime}(0)$ are the initial consitions at $x=0$. If $\mathcal{L}(f)$ is a rational fraction, ILAP allows you to recover $y$ by inverse Laplace transform of

$$
\frac{\mathcal{L}(f)(s)+a\left(s f(0)+f^{\prime}(0)\right)+b f(0)}{a s^{2}+b s+c}
$$

But this method may be applied to systems of linear differential equations as well. The aim of LDEC is to help you solving 1st order systems (note that higher order systems may always be rewritten as 1 st order systems). Let $y=\left(y_{1}, \ldots, y_{n}\right)$ be a vector of functions of $x$ and suppose that we want to solve:

$$
y^{\prime}=A y+b
$$

where $A$ is a $n \times n$ constant matrix and $b$ a vector of $n$ functions of $x$. Denote by $\mathcal{L}(b)$ the vector of the $n$ Laplace transform of the $n$ functions of $b$, and by $y(0)$ the vector of $n$ initial data at $x=0$. Then

$$
(s I-A) \mathcal{L}(y)=\mathcal{L}(b)+y(0)
$$

( $I$ denotes the identity matrix), hence:

$$
\mathcal{L}(y)=(s I-A)^{-1}(\mathcal{L}(b)+y(0))
$$

and:

$$
\begin{equation*}
y=\mathcal{L}^{-1}\left[(s I-A)^{-1}(\mathcal{L}(b))\right]+\mathcal{L}^{-1}\left[(s I-A)^{-1} y(0)\right] \tag{1}
\end{equation*}
$$

The purpose of LDEC is to compute

$$
y=\mathcal{L}^{-1}\left((s I-A)^{-1}(\mathcal{L}(b))\right)
$$

the solution with initial data $y(0)=0$, given $A$ and $b$. The stack should be prepared as:
stk2: $b$
stk1: $A$,
then type LDEC and you will get $y$ at stack level 1 . Stack level 3 is the comatrix, stack level 2 is the determinant of $(s I-A)$.

Let's do it for the example above:
First put $b$ on the stack: \{ 1 ' $\operatorname{EXP}(X)$ ' $\}$ (here VX is set as usual to ' X '). Now put the matrix $A$ on the stack:
\{ \{ $1-1$ \} \{ 24 \} \}
After calling LDEC, we get:

$$
\left\{\begin{array}{l}
y_{1}=-1 / 2 e^{x}-2 / 3+2 e^{2 x}-5 / 6 e^{3 x} \\
y_{2}=1 / 3-2 e^{2 x}+5 / 3 e^{3 x}
\end{array}\right.
$$

At level 2, we have $\operatorname{det}(s I-A)$ (with $s=X)$ :

$$
\operatorname{det}(s I-A)=(2-s)(3-s)
$$

and level 3 is the comatrix of $s I-A$ :

$$
\left(\begin{array}{cc}
-4+s & -1 \\
2 & -1+s
\end{array}\right)
$$

Level 2 and 3 will be useful if we want to compute the solution of the LDEC with non-zero initial data, e.g. $y_{1}(0)=1, y_{2}(0)=2$. If we look at Equation (11), we see that we have to add $\mathcal{L}^{-1}\left[(s I-A)^{-1} y(0)\right]$ to the previous solution. To do this, type \{ 12$\}$, multiply by the comatrix from level 3 , multiply by the inverse of the determinant from level 2 (you can note divide a vector, you must first invert the determinant and then multiply):

$$
(s I-A)^{-1}(1,2)=\left(\frac{-6+s}{6-5 s+s^{2}}, \frac{2 s}{6-5 s+s^{2}}\right)
$$

call ILAP:

$$
\left(4 e^{2 x}-3 e^{3 x},-4 e^{2 x}+6 e^{3 x}\right)
$$

and add the result to the previous solution:

$$
\left\{\begin{array}{l}
y_{1}=-1 / 2 e^{x}-2 / 3+6 e^{2 x}-23 / 6 e^{3 x} \\
y_{2}=1 / 3-6 e^{2 x}+23 / 3 e^{3 x}
\end{array}\right.
$$

### 8.2 First order equations.

The DSOLVE program recognizes and solves the following equation types:

- $y^{\prime}(x)=f(y(x))$,
- $y^{\prime}(x)=f(x, y(x))$ with $f$ homogenous,
- $y^{\prime}(x)=g(x) y(x)+h(x) y(x)^{\alpha}, \quad \alpha \in \mathbb{R}$ (Bernouilli type)
- $y^{\prime}(x)=f(x) g(y)$ (separable, if $f$ and $g$ are rational fractions)
- $y^{\prime}(x)=f(x) y(x)+g(x)$ (linear)

The input is the function $f(x, y(x))$ or an equation like ' $\mathrm{d} 1 \mathrm{Y}(\mathrm{X})+\mathrm{Y}(\mathrm{X})=2$ '. Examples:

```
Y(X)^2+Y(X) DSOLVE (incomplete)
X*Y(X)+1-X^2 DSOLVE (linear)
(Y(X)-X)/(Y(X)+X) DSOLVE (homogenous)
Y(X)^ 2+X*Y(X) DSOLVE (Bernouilli)
```

The output may be $y$ as a function of $x$ or $x$ as function of $y$ or $x$ and $y$ as a function of $t$ (parametric solution) for an homogenous ode. The equation type is stored in the ODETYPE variable.

## 9 Substitution, change of variables: EXEC.

The EXEC programs checks the object type at stack level 1 and performs the corresponding action:

- one algebraic substitution:

If stack 1 is an equation ('objA=objB'), replace objA by objB in stack2.
The syntax is 'old_name=expression' EXEC.
oldname may be a global name, an expression (in this case, the first global name in this expression will be isolated) or a user-defined function.
Examples:
$-X^{\wedge} 2+2 * X+5{ }^{\prime} \quad{ }^{\prime} \mathrm{X}=1$ ' EXEC: evaluate an expression at $x=1$.
$-{ }^{\prime} \mathrm{X}=\mathrm{Y}^{\wedge} 2^{\prime}$ EXEC: change of variables, works in integrals too
$-{ }^{\prime} 2 * Z(X)-X * d 1 Z(X){ }^{\prime}, Z(X)=X^{\wedge} 2$ EXEC: in a differential equation, replace the function $z(x)$ by $x^{2}$.

- ' $\mathrm{Z}(\mathrm{X})+\mathrm{d} 1 \mathrm{Z}(\mathrm{X})^{\prime}, \mathrm{Z}(\mathrm{X})=\operatorname{EXP}(-\mathrm{X}) * \mathrm{Y}(\mathrm{X})$ ' EXEC:
change of function in a differential equation.
$-{ }^{\prime} \mathrm{X}^{\wedge} 2+\mathrm{X} * \operatorname{COS}(\mathrm{X}){ }^{\prime}{ }^{\prime} \mathrm{X}^{\wedge} 2=1-\mathrm{Y}$, EXEC: replace $x^{2}$ by $1-y$ and replace $x$ by $\sqrt{1-y}$.
- multiple substitutions:

If stack 1 and 2 are lists, replace each object of list2 in stack level 3 by the corresponding object of list1. The syntax is \{ old_name_1 ... old_name_n \} \{ expr_1 ... expr_n \} EXEC
Note that here EXEC does only substitutions.
Examples:

replace $\sin (x)^{2}$ by $1-\cos (x)^{2}$ but does not replace $\sin (x)$ by $\sqrt{1-\sin (x)^{2}}$.
$-{ }^{\prime} \operatorname{COS}(\mathrm{X})+\mathrm{i} * \operatorname{SIN}(\mathrm{X})$ '
\{ SIN COS \}
\{ << i * EXP DUP INV - i 2 * / >>
<< i * EXP DUP INV + 2 / >>

## \}

EXEC
replace sin and cos by complex exponentials. If you call EXPA after you get $e^{i x}$.

- variable isolation:

If stack 1 is a symbolic but not an equality, EXEC tries to isolate stack level 1 in stack level 2. Example:

```
'x^2-5'
X
EXEC
```

returns ' $\mathrm{X}=$ = $\sqrt{5}$.

- doall function:

If stack 1 is a program, EXEC executes program at stack level 1 recursively on the components of a list object at stack level 2. Example: \{ 123 \} << NEG >> EXEC
is the same as $\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right\}$ CHS

## 10 Arithmetic.

### 10.1 Complex arithmetic

- re: real part
- im: imaginary part
- conj: conjugate
- abs: absolute value (modulus)
- arg: argument. Warning: for expressions containing variables, the returned argument is only valid modulo $\pi$.

Remark 6 If flag 13 is cleared (real mode), all global names and all non rational functions are considered as real w.r.t. the instructions RE, IM, CONJ. This could lead to false simplifications if a global name stays for a complex, or if a non-rational inverse function is called with a usually forbidden real argument, like $\operatorname{LN}(-1)$ or $\operatorname{ASIN}(2)$

Solution: either replace your global name, say 'Z', by 'X+iY' or set flag 13 (shortcut $\alpha$-right shift-CST or 13 SF )

### 10.2 Integer and polynomial arithmetic

You may force integer arithmetic by setting flag 10 (shortcut $\alpha$-right shift-CST or 10 SF ). Otherwise, polynomial arithmetic is assumed. This is important for instructions like GCD3 or ABCUV.

- DIV2: euclidean division. Stack 2 is the quotient, stack 1 the remainder.
- GCD1:
returns the greatest common divisor $d$ of two objects $a$ and $b$ (integers, Gauß integers, polynomials). Examples:
' $\mathrm{X} \wedge 2+2 * X+1$ ' ' $\mathrm{X}^{\wedge} 2+3 * \mathrm{X}+2$ ' GCD1 returns ' $\mathrm{X}+1$ '
2515 GCD1 returns 5
If flag 12 is clear returns 1 .
- LCM1: lowest common multiple $(\operatorname{GCD} 1(a, b) \times \operatorname{LCM} 1(a, b)=a \times b)$. Examples: ${ }^{\prime} \mathrm{X}^{\wedge} 2+2 * \mathrm{X}+1$ ' ' $\mathrm{X} \wedge 2+3 * \mathrm{X}+2$ ' LCM1 returns ' $(\mathrm{X} \wedge 2+2 * \mathrm{X}+1) *(\mathrm{X}+2)^{\prime}$
2515 LCM1 returns 75
- GCD3: extended gcd algorithm, given $x$ and $y$ returns $d, u$ and $v$ s.t.:

$$
u x+v y=d
$$

( $d$ is a multiple of the $g c d$ of $x$ and $y$ by an invertible, i.e. an integer in the univariate case)

- ABCUV: (Bezout identity)
solve the equation c=ax + by Examples:

```
' X^2+2*X+1', 'X^2+3*X+2, 'X+1' -> -1 1 1
' X^2+2*X+1', 'X^2+3*X+2' 1 -> 0
```

This means for the first case that:

$$
(X+1)=\left(X^{2}+2 X+1\right) *(-1)+\left(X^{2}+3 X+2\right) * 1
$$

as in the second case there is no solution because the $\operatorname{gcd}$ of $x^{2}+x+1$ and $x^{2}+3 x+2$ does not divide 1 .

- LGCD: returns the $g c d$ of a list of objects.
- SIMP2: simplifies two objects by dividing them by their GCD. Sets flags 12, 14 and 15. Ex:
stk2: 9, stk1: 6 SIMP2 -> stk2: 3, stk1: 2
- DIVIS: gives a list of divisors of an object. Example: 21 -> \{ 17321 \}
- fact and comb: like the built-in FACT and COMB instructions but for long integers.
- EULER: Euler indicatrix

Given an integer $n$, returns an integer $e$ : the number of integers lower than and prime with $n$.
Example:
for $n=25, e=20$ because $1,2,3,4,6,7,8,9,11,12,13,14,16,17,18$, $19,21,22,23,24$ are prime with 25 .

- PA2B2 (kernel library):

Given a prime $p$ which is 1 modulo 4 , returns a complex $z=a+i b$ such that $|z|^{2}=a^{2}+b^{2}=p$. Used for factorization of Gauß integers.

- XFRC:

Same as $\rightarrow Q$ but handles quadratic irrationals (recognize a quadratic irrational if its expansion in continued fraction is ultimately periodic of period less or equal to 3) Examples:

$$
1.20710678118 \rightarrow \frac{1}{2}+\frac{1}{2} \sqrt{2} \quad 1.5 \rightarrow \frac{3}{2}
$$

- ORND:
round object at stack level 2 , stack level 1 is the expected denominator of all rationals of the object. For example, . $49999999999+.2000000001 * x$ 10 ORND returns $.5+.2 * x$.


### 10.3 Infinities.

The arithmetic operations of Erable accept infinity arguments. The $+\infty$ symbol may be obtained from the keyboard by $\alpha$-right shift-I in normal mode or $\alpha$-right shift-DEL in user mode followed by ENTER. The $-\infty$ symbol is obtained by hitting the quote key, the - key and $\alpha$-right shift-I or $\alpha$-right shift-DEL followed by ENTER. $\infty$ and $-+\infty$ are understood as unsigned infinity (with the following exception: $\infty$ is understood as $+\infty$ in a bound of an integral or in a LIMIT instruction). The ? symbol means that the result of an operation is undefined. All operations involving? will return ? after simplifications.

Remark 7 The current release returns ? for some expressions which are not undetermined, like $(+\infty)^{-\infty}$.

Be aware of the fact that arithmetic operations on infinities may return false answers because Erable can not check for nullity if non rational expressions are encoutered. For example $(\sin (2 x)-2 \sin (x) \cos (x)) / 0$ will return $\infty$ instead of 0. This remark applies to the LIMIT instruction too (call SERIES if the answer of LIMIT seems false).

### 10.4 Modular arithmetic

You must first store an integer $n$ in the MODULO variable (by default $n$ is set to 2 ). All computations are made modulo this integer. The kernel library provide the following commands MODADD, MODSUBT, MODMULT, MODDIV, MODPOW
and MODINV for the usual operations. MODADD, MODSUBT, MODMULT, MODDIV now accepts polynomials and Gauß integers as well as integers as input. MODPOW accept polynomial as first argument, the second argument must be a positive integer.

Remark for alg48 users: these functions are analog to AADD, ASUB, ... applied to mod-polynomials (like ' $\left.\mathrm{MOD}\left(\mathrm{X}^{\wedge} 2+3 * \mathrm{X}+7,11\right)^{\prime}\right)$ ) but without MOD notation. I reserve the MOD notation for a future use with a polynomial as second argument so that it will be possible to compute e.g. in $\mathbb{Z} / 3 \mathbb{Z}[X] /\left(X^{2}+1\right)$.

## 11 Factorization. Solving equations.

### 11.1 Summary of the instructions.

- COLC: factorize a symbolic fraction (returns a symbolic). Factorization may be incomplete, but is squarefree and all first order factors are detected.
- LNCOLC: collect logarithms, e.g. $\ln (2)+\ln (3)$ LNCOLC returns $\ln (2 \times 3)$.
- SOLV: tries to isolate a variable name at stack level 1 in the symbolic expression located at level 2. Returns the variable name at level 2 and a list of solutions at level 1. Examples:
 level 2)
$-{ }^{\prime} 2 * \operatorname{SIN}(X){ }^{\wedge} 2-3 * \operatorname{SIN}(X)+1$ ' X SOLV returns
\{ '-(12*pi*n2+-5*pi)/6' '(12*pi*n2+pi)/6'
'-( $4 * \mathrm{pi} * \mathrm{n} 2+-\mathrm{pi}) / 2$ ' ' $(4 * \mathrm{pi} * \mathrm{n} 1+\mathrm{pi}) / 2$ ' \}
where n 1 and n 2 represent integers.
SOLV will be successful if the symbolic expression is a polynomial of a function of the variable or a product of polynomials. Otherwise it will fail. Hence, it may be useful to rewrite the symbolic expression using LNCOLC or/and COLC before calling SOLV. Example:
${ }^{\prime} \operatorname{LN}(\mathrm{X}-1)+\mathrm{LN}(\mathrm{X}+2)=2$ ' X SOLV doesn't work
but 'LN $(\mathrm{X}-1)+\mathrm{LN}(\mathrm{X}+2)=2$ ' LNCOLC X SOLV works
- FSIGN: returns the sign of a monovariate rational fraction as a list of signs + or - separated by roots or poles of the rational fraction, starting from $-\infty$ at the left tp $+\infty$ at the right of the list.
Example:
' $\left(X^{\wedge} 2-1\right) /\left(X^{\wedge} 3-7 * X^{\wedge} 2+16 * X-2\right)$ ' FSIGN
returns:
'X': \{-1 + $1-2-3+\}$
hence $\frac{x^{2}-1}{x^{3}-7 x^{2}+16 x-2}$ is negative for $x \in(-\infty,-1) \cap(1,2) \cap(2,3)$, positive for $x \in(-1,1) \cap(3,+\infty)$, and zero or infinite for $x \in\{-1,1,2,3\}$.
- FROOTS: given an object as input, outputs the list of var (stack level 3), the list polynomial (2), and the list of root/multiplicity (1) (each root is followed by its multiplicity). Examples:

```
* 'X^3-6*X^2+11*X-6'
    -> 3: { X }, 2:'X^3-6*X^2+11*X-6' , 1: { 2 1 3 1 1 1 }
* '1/X^2' -> 3: { X }, 2: '1/X^2', 1: { 0 -2 }
* 'X^2+2*X*Y+Y^2' ->
3: { X Y }, 2: 'X^2+2*X*Y+Y^2', 1: { '-Y' 2 }
```

For a symbolic, FROOTS factorizes with respect to the variable contained in VX, or if the symbolic is independant of VX with respect to the first variable of LVAR applied to the symbolic.
(For the SX version only):
If stack 1 is a real integer, FROOTS computes the roots of a list polynomial with numeric coefficient using Bairstow method (real coefficients) or Laguerre method (complex coefficients). During iterations, you can modify some parameters:

- E*10: $(\varepsilon \times 10)$ multiplies the test value by 10 , use this when there are multiple roots.
- E/10: divides the test value/10, for accurate precision (use this after you have found all multiple roots)
- RAND: reset current iteration (restart with random initial value)
- STOP abort iteration (for the next one or two roots)

Displayed are the last found roots and the current test value (to compare with the $\varepsilon$ value). Before starting the program, you must specify the $\varepsilon$ value and the number of test-successfully iterations using the following stack input:

- 3: list polynomial,
-2 : test value (positive real),
-1 : iteration number (real integer)
Example:

```
{ 1 -21 183 -847 2196 -3024 1728 }
1E-4
3
FROOTS
-> approximatively { 3 3 3 4 4 4 }
```

The result is bad since 3 and 4 are multiple roots.
(End of specificity of the SX version)

- FACTO: same stack as FROOTS but returns a list of "prime" factors instead of roots. Example:

```
* 'X^3-6*X^2+11*X-6'
    -> 3: { X }, 2: 'X^3-6*X^2+11*X-6', 1: { '(X-2)' 1 '(X-3)' 1 '(X-1)' 1 }
* 21 -> 3: { }, 2: 21, 1: { 3 1 7 1 }
```

- FCOEF: input is a list of roots/multiplicity, output is a fraction or polynomial with leading coefficient 1 having this roots (and poles). Example:
$\left\{\begin{array}{llllllll}1 & 1 & 2 & 1 & 3 & 1\end{array}\right\} \rightarrow{ }^{\prime}(\mathrm{X}-3) *(\mathrm{X}-2) *(\mathrm{X}-1)^{\prime}$
$\left\{\begin{array}{lllll}A & -1 & 2 & 1\end{array}\right\} \rightarrow{ }^{\prime}(X-2) /(X-A)$,


### 11.2 A word about factorization.

You should skip this section for a first reading. Factorization of polynomial is very important in several mathematical functions, like symbolic integration or matrix diagonalization. It is important to understand the mechanism used by Erable to perform this tasks.

Let's begin by recalling some mathematicals facts:

- Theorem (d'Alembert):

A polynomial of degree $n$ has exactly $n$ complex roots (counted with multiplicity).

- Formula exists to get the solution of polynomials up to order 4 but Galois proved the following theorem last century:
There is no formula for solving a generic polynomial of degree $\geq 5$ (by algebraic operations and extraction of $n$-th roots)

This means that you can not root a multivariate polynomial of order $\geq 5$ (for such polynomials, systems like Maple, Reduce, Axiom Mathematica or Mupad use algebraic extension), and that you can only root numerically a univariate polynomial of order $\geq 5$. Note that the generic solution of a polynomial of order 3 is still complicated and of order 4 very complicated. I think that it is not possible to handle the generic solution of polynomials of order 3 or 4 on the HP48 in a reasonable amount of time. Hence, only polynomial of order 2 are generically solved by Erable.

However, in some situations, you can root exactly polynomials of order $\leq$ 3 , by searching multiple roots and by finding obvious roots (or obvious factor). The rooting algorithm of Erable search first multiple roots by computing the gcd of the polynomial and his first derivative (this is the SQFFext algorithm in the source of Erable). Of course flag 12 must be set for this step to be done. If a univariate polynomial has only integer (or rational) coefficients,
you can find all rational solutions of this polynomial by testing a finite set of rationals (of the form numerator/denominator where numerator is a divisor of the constant coefficient and denominator a divisor of the leading coefficient). This is implemented in Erable by the nullnamed XLIB EVIDENText which is called if flag 14 is set. Hence, Erable detects all 1st order factors of a symbolic.

If exact solving fails, Erable calls the numeric solver for univariate polynomials (which is the HP48GX PROOT function in ERABLEG. LIB or the Bairstow or Laguerre algorithm in erable.lib) and tries to find second order polynomial with integer coefficients by coupling 2 approximate solutions (this was an idea of Mika Heiskanen implemented in POLYLIB). Hence Erable should find all rational and quadratic irrationals roots of a univariate polynomial (unless the polynomial is badly conditionned).

For multivariate polynomials, the two first steps are achieved (EVIDENText and SQFFext). Erable should find all rational multivariate roots of a polynomial (1st order factors). Unfortunately, Erable does not implement the exhaustive search of all 2 nd order (or greater) multivariate rational factors. This can be performed using the FCTR function of the ALG48 library.

Abstract of the Sysrpl XLIBs (include erextdec.h and erhash.h in your source code to use them) to factorize:

- EVIDENText: finds rational roots
- SQFFext: finds square-free factorization of a polynomial
- SOLVext: roots a univariate polynomial numerically and tries to rebuild quadratic irrationals roots

Abstract of the user commands to factorize:

- COLC:
for symbolic input calls SQFFext, then EVIDENText, does not call SOLVext, for list input calls only SQFFext
- FROOTS: calls SQFFext then EVIDENText then SOLVext,
- FACTO: calls SQFFext then EVIDENText, does not call SOLVext

Flags 12 and 14 may be cleared to skip respectively SQFFext and EVIDENText.

## 12 Linear algebra.

List of lists are used to represent symbolic matrices, in other words a symbolic matrix is entered like a numeric matrix, replacing [ by \{ and ] by \}. Symbolic vectors are allowed as well (represented as lists).

### 12.1 Building a matrix

To build a matrix, you may type it as usual with $\{$ and $\}$ instead of [ and ] or you may use one of the following instructions:

- idn: to build a symbolic identity matrix $I_{n}$ (if $n$ is at level 1 )
- LCXM: to build a matrix $A=\left(a_{i j}\right)_{1 \leq i \leq l, 1 \leq j \leq c}$. The command takes 3 arguments: $l, c$ and a program building $a_{i j}$ from $i$ and $j$. Example: 24 << SQ + >> LCXM returns a $2 \times 4$ matrix with $a_{i j}=i+j^{2}$.
- Vand and hilbert return Vandermonde and Hilbert matrices given respectively a list of objects or an integer.


### 12.2 Operations

Erable provides the arithmetic usual operations on matrices and vectors (add, SUBT, MULT, CHS) and:

- STUDMULT: (MATR directory) student multiplication of matrices (term by term)
- TR: trace of a matrix
- TRAN: transposed of a matrix (true transposed, no conjugation)
- XY: scalar product of two vectors
- cross: cross product of two 3 -d vectors.


### 12.3 Gauß -Jordan row reduction.

Summary of the instructions:

- rref: row reduction to echelon form. At level 2 , the list of pivoting coefficients is given, this is useful to treat particular cases.
- RANG: like rref but creates 0 only under the diagonal.
- det and RDET: determinant (using respectively the $O(n * n!)$ algorithm or row reduction)
- INVL: inverse of a matrix using row reduction
- LU2: given a square matrix, returns $L^{-1}$ and $U$ s.t. $A=L U$ (i.e. $A=$ stk2 $2^{-1} \times$ stk1) where $L$ and $U$ are lower and upper triangular (maybe w.r.t. to a permutation matrix, this means that computing the inverse of $L$ or $U$ is trivial). For comparison, the built-in LU returns three matrices $L, U$ and $P$ s.t. $A=P L U$.
- SYST and SOLGEN: solution of a linear system.

Note that all instructions using row reduction show intermediate steps if flag 1 is set ( 1 SF ). If flag 1 is cleared ( 1 CF ), you get directly the results.

### 12.3.1 Solving a linear system.

Suppose you want to find $(x, y)$ s.t.:

$$
\left\{\begin{array}{cccc}
m x+ & y & = & -2 \\
m x+ & (m-1) y & = & 2
\end{array}\right.
$$

where $m$ is a parameter. SYST instruction. Type a list containing the linear equations and as last element put the list of unknowns. Here:
\{ ' $\mathrm{M} * \mathrm{X}+\mathrm{Y}=-2$ ' $\quad \mathrm{M} * \mathrm{X}+(\mathrm{M}-1) * \mathrm{Y}=2$ ' $\{\mathrm{X} \mathrm{Y}\}\}$
Then call SYST or SOLGEN. For SYST, you get the solution at level 1, the list of particular cases at level 2 and the original system at level 3. For SOLGEN you get the same results but at level 2,3 and 4 and the paramatrized solution at level 1.

On the above example, we get at level 1 :
:X:'-2/(M-2)' :Y:'4/(M-2)'
At level 2 , you get the list of pivots. The result returned by SYST and SOLGEN is incorrect if one of the pivot is 0 . Here level 2 is:
\{ ' $\left.\mathrm{M}^{\prime} 2-2 * \mathrm{M}^{\prime}{ }^{\prime}-\mathrm{M}+2^{\prime}-1^{\prime} \mathrm{M}+-2^{\prime}\right\}$
Using M SOLV, we see that we have to solve for the particular cases $m=0$ and $m=2$. The commands SYST and SOLGEN create a variable named SYSTEM to help solving particular cases. To solve for $m=2$, recall SYSTEM on the stack, type ' $M=2$ ' EXEC, and call SYST.

For systems, the SOLGEN program provides another way of writing the solution as an affine space of solutions. Recall the matrix on the stack (simply hit SYSTEM), type:
' $\mathrm{M}=0$ ' $\operatorname{EXEC}$ SOLGEN
you get at level 2:
If \{ \}, \{ X Y \}=:\{ X -2 \}
(level 1 is the same as the result of SYST). This means that $(x,-2)$ is solution for every $x$. The If statement shows necessary conditions for the system to have solutions (here no condition, but if we try $m=2$ instead of $m=0$ the system has no solution: the If statement is If $\left\{\right.$ ' $\left.0=-1^{\prime}\right\}$ never fulfilled).

Another way to solve the system is the enter the matrix of the system \{ \{M 1-2\} \{ M 'M-1' 2 \} \}
and call rref to reduce it. You get at level 1: \{ \{ ' $M^{\wedge} 2-2 * M^{\prime} \quad 0{ }^{\prime}-2 * M$ ' \} \{ $\left.\left.0{ }^{\prime} M-2{ }^{\prime} 4\right\}\right\}$. This means that:

$$
\left(m^{2}-2 m\right) x=-2 m, \quad(m-2) y=4 .
$$

The reduction is correct iff all the coefficients in the list at level 2 are non 0 . You should have at level 2:
\{ 1 ' $\mathrm{M}-2$ ' \}
The second coefficient vanishes if $m=2$. You have to solve for this particular case again. To do this, you can use the variable named MATRIX (which is created if the argument contains at least one parameter). Recall this matrix and type:
'M=2' EXEC
This replace all occurences of M by 2 in the original matrix. Now type rref again, you get:
$\left\{\begin{array}{lllllllll}\{ & 1 & -2\end{array}\right\}\{0004\}$
The last line means that:

$$
0 x+0 y=4
$$

which is clearly impossible; the system has no solution.

### 12.3.2 Inversion

The INVL implements the Gauß method to invert matrices.

```
{ { '1/2' -1 }
    { 1 '2/3' } }
INVL returns
    { { '1/2' '3/4' }
        { '-3/4' '3/8' } }
```


### 12.3.3 Determinant

The RDET instruction implements Gauss row reduction to compute determinant.

```
{{1 T T T }
    {1 K T T }
    {1 T K T }
    {1 T T K } }
RDET -> ' (-T+K)*(-T+K)*(-T+K)'
```


### 12.4 Kernel and image of a linear application.

To get the kernel of a linear application $f$ with matrix $A$, enter the matrix $A$ and type KERN. This will return the parametrized equations of the kernel like SOLGEN.

To get a basis of the image of $f$, enter the matrix $A$, type: << TRAN rref >> the basis is made of the non-zeros lines of this matrix.

### 12.4.1 Other examples.

- $L U$ decomposition example:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

LU2 returns:

$$
L^{-1}=\left(\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right) \quad U=\left(\begin{array}{ll}
1 & 2 \\
0 & -2
\end{array}\right)
$$

We have $A=L U$.

- Rank of a matrix:

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 6 \\
-1 & 3 & 5 & 7 \\
2 & 1 & 0 & 1 \\
2 & 6 & 9 & 14
\end{array}\right)
$$

hit RANG, and look at the matrix:

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 6 \\
0 & 5 & 9 & 13 \\
0 & 0 & -13 & -16 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

the rank is 3 , the number of non zero lines (BTW you get a half reduced matrix)

- Linear relations between vectors

Suppose we want to know the rank and linear relations existing between
$v_{1}(1,2,0), v_{2}(-2,-1,1), v_{3}(0,3,1) \in \mathbb{R}^{3}$ :
$\left\{\begin{array}{llll}\{120 & \mathrm{V} 1\end{array}\right\}$
$\left\{\begin{array}{llll}-2 & -1 & 1 & \text { V2 }\end{array}\right\}$
$\{031$ V3 $\}\}$
then RANG, we get:

```
{ {1 2 2 0 V1 }
    {0 3 1 '2*V1+V2' }
    {000 ',-(2*V1)-V2+V3' } }
```

The family is of rank 2 (the 3 rd line is 0 ) and $-2 v_{1}-v_{2}+v_{3}=0$.

### 12.4.2 Stack input/output for reduction instructions.

| Program | Input | Output |
| :--- | :--- | :--- |
| LU2 | 1: matrix $A=L U$ | 3: pivots, $2: L^{-} 1,1: U$ |
| RANG | 1: matrix | 2: pivots, $1:$ half-reduced matrix |
| rref | 1: matrix | 2: pivots, 1: rref-ed matrix |
| RDET | 1: matrix | 1:determinant |
| INVL | 1: matrix | 1: inverse |
| SYST | $1:\{$ equations $\{$ unknown \} \} | 3: original system |
|  |  | $2:$ list of pivots |
|  |  | $1:$ result as a list of tagged algebraics |
| SOLGEN | $1:\{$ equations $\{$ unknown $\}\}$ | 4: original system |
|  |  | $3:$ list of pivots |
|  |  | $2:$ result, 1: list of tagged algebraics, |

### 12.5 Diagonalization

The diagonalization instructions are:

- MAD: given a square matrix, returns determinant, formal inverse, a list polynomial and the characteristic polynomial. The list polynomial $P_{A}$ is a matrix coefficient polynomail defined by the relation:

$$
\begin{equation*}
\left(x I_{n}-A\right) P_{A}(x)=M(x) I_{n}=M(x) I_{n}-M(A) \tag{2}
\end{equation*}
$$

where $M$ denotes the characteristic polynomial of $A$.

- PCAR: characteristic polynomial using det
- JORDAN: compute eigenvalues and eigenvectors (cf. infra)

Given a square matrix $A$, JORDAN returns 6 levels:

- $6: \operatorname{det}(A)^{-1}$
- 5: $A^{-1}$
- 4: list of eigenvalues (with multiplicities)
- 3: characteristic polynomial
- 2: minimal polynomial $M$ (it divides the characteristic polynomial)
- 1: list of characteristic spaces tagged by the corresponding eigenvalue (either a vector or a list of Jordan chains, each of them ending by a "Eigen:"-tagged eigenvector)


## Examples:

1. 

$$
A=\left(\begin{array}{llr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

returns:

6: 0
5: \{ \{ inf inf inf \}
\{ inf inf inf \}
\{ inf inf inf \} \}
4: \{0 1 '3/2+i/2*V3' 1 '3/2-i/2*V3' 1$\}$
3: ' $\mathrm{X}^{\wedge} 3-3 * \mathrm{X}^{\wedge} 2+3 * \mathrm{X}$ '
2: ' $\mathrm{X}^{\wedge} 3-3 * X^{\wedge} 2+3 * X^{\prime}$
1: $\left\{\quad: 0:\left\{\begin{array}{lll}1 & 1 & 1\end{array}\right\}\right.$
:'3/2+i/2*V3': \{1 '-1/2-i/2*V3' '-1/2+i/2*V3'\}
:'3/2-i/2*V3': \{1 '-1/2+i/2*V3' '-1/2-i/2*V3'\} \}

This means that $A$ has 3 eigenvalues $\frac{3 \pm \sqrt{3} i}{2}$, and a basis of eigenvectors is:

$$
\left\{(1,1,1),\left(1, \frac{-1 \mp i \sqrt{3}}{2}, \frac{-1 \pm i \sqrt{3}}{2}\right)\right\}
$$

corresponding to $0,(3+\sqrt{3} i) / 2,(3-\sqrt{3} i) / 2$. The characteristic and minimal polynomial are identical (this is generically the case) $X^{3}-3 X^{2}+3 X$. The matrix is not invertible and has a 0 determinant.
2. For the identity matrix $I_{2}$ (2 idn), we get:

6: 1
5: $\{\{10\}\}\left\{\begin{array}{lll} & 1\end{array}\right\}$
4: \{1 2\}
3: ' $\mathrm{X} \sim 2-2 * X+1$ '
2: 'X-1'
1: \{ :1, Eigen: \{ 01$\}: 1$, Eigen: \{ 10$\}\}$
The minimal polynomial is $X-1$, different from the characteristic poly-$\operatorname{nomial}(X-1)^{2}=X^{2}-2 X+1$.
3.

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 0 & 0 \\
1 & 0 & 3
\end{array}\right)
$$

4. An example with 1 parameter:
```
{{1 A }
    { A 1 } }
```

5. In dimension greater than 2, the factorization routines may fail. For this reason, you may have to call MAD, factor the characteristic polynomial (e.g. by trying the FCTR instruction of ALG48) before calling JORDAN. If you have ALG48 installed, try this:
```
{{ { 1 A A }
    {\begin{array}{lll}{1 A }}\end{array}}={
    {\begin{array}{llll}{A}&{1}&{1}\end{array}}}
MAD FCTR JORDAN
```

Note that this example is solved by typing JORDAN directly but it may fail in other situations.
6. Jordan cycles example:

$$
A=\left(\begin{array}{ccc}
3 & -1 & 1 \\
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

returns:

```
6: -4
5: : { { '1/4' '1/4, '-1/4' }
    { '-3/4, '5/4, ,-1/4' }
    { '-1/2' '1/2' '1/2' } }
4: { 2 2 1 1}
3: 'X^3-5*X^2+8*X-4'
2: 'X^3-5*X^2+8*X-4'
1: { :2, Char: { 2 2 1 } :2, Eigen:{ 1 1 0 } :1:{{0 1 1 } }
```

This means that 2 has multiplicity 2 , but the corresponding eigenspace is only 1 -dimensional (spanned by $(1,1,0)$ the last vector of the Jordan chain). The first vector $(2,2,1)$ is only a characteristic vector, his image by $(A-2 I)$ is the eigenvector $(1,1,0)$.

Remark 8 You can not use the current variable name as a parameter of a symbolic matrix that you want to diagonalize. This would lead to incorrect results. For example, is VX is set to X , you can not diagonalize the following matrix:

```
{{ 1 1 X }
    { 1 X X 1 }
    {\begin{array}{llll}{X}&{1}&{1}\end{array}}}
```

Workaround: make a change of variable, e.g. ' $\mathrm{X}=\mathrm{A}$ ' EXEC.

### 12.6 The MMULT- instruction.

This multiplication takes 3 arguments: 2 objects at levels 3 and 2, and a real at level 1: the product type:

- 0: matrix, matrix
- 1: matrix, vector
- 2: matrix, scalar,
- 3: vector, scalar
- 6: scalar, matrix
- 7: scalar, vector

It is useless in interactive mode (if you plan to write your own program over Erable, you may need MMULT to switch to internal mode data representation for speed).

## 13 Multivariate analysis.

Erable implements the following functions:

- der with a list of variables at level 1 returns the gradient of the expression at level 2 with respect to these variables.
Example:
$' \mathrm{X}+2 * \mathrm{Y},\{\mathrm{X} \mathrm{Y}\}$ der returns $\{12\}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.
- DIV returns the divergence of a list-vector at level 2 with respect to a list of variables at level 1 .
Example:
$\left\{{ }^{\prime} \mathrm{X}+2 * \mathrm{Y}^{\prime}, \mathrm{X}^{\wedge} 2+3 * \mathrm{Y}^{\wedge} 3^{\prime}\right\}\left\{\mathrm{X} Y\right.$ \} DIV returns ${ }^{\prime} 1+9 * \mathrm{Y}^{\wedge} 2^{\prime}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}$.
- CURL returns the rotationnal (same arguments as DIV)
- LAPL returns the laplacian of a symbolic expression at level 2 with respect to a list of variables at level 1 (same arguments as der, LAPL is simply a shortcut for der DIV)
- HESS returns at level 1 the hessian of a symbolic expression with respect to a list of variables (same arguments as der). Level 2 is the gradient. This is useful to find local minima and local maxima of a function: you find first the solutions of gradient $=0$ (you may use the Gröbner basis program of ALG48 to simplify this system and use the SOLV instruction to find all solutions), then you compute with EXEC the hessian at these critical points, and you find the signature of the critical point using GAUSS (in the other directory: see section (14).
Example:

$$
f(X, Y)=X^{4}+X Y+Y^{3}
$$

\{ X Y \} HESS returns at level 2:

$$
\left(4 X^{3}+Y, X+3 Y^{2}\right)=\left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}\right)
$$

and at level 1 :

$$
\left(\begin{array}{cc}
12 X^{2} & 1 \\
1 & 6 Y
\end{array}\right)
$$

To find critical points, you have to solve level $2=(0,0)$ :

$$
\left(4 X^{3}+Y, X+3 Y^{2}\right)=(0,0)
$$

hence $X=-3 Y^{2}$. Swap level 2 and 1, type ' $\mathrm{X}=-3 * \mathrm{Y}^{\wedge} 2^{\prime}$ ' EXEC, then 1 GET to have the first coordinate:

$$
4\left(-3 Y^{2}\right)^{3}+Y
$$

then Y SOLV. This equation has two real solutions: 0 and approximately 0.392026340842 giving two critical points. For $(0,0)$, the hessian is:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

hence $(0,0)$ is not an extremum (signature $(1,1)$ ). For the second point ( $Y=0.392026340842, X=-3 Y^{2}$ ), the hessian is:

$$
\left(\begin{array}{rl}
1.84421582297 & 1 \\
1 & -2.76632373445
\end{array}\right)
$$

hence is not an extremum.

## 14 Quadratic forms.

The main program is GAUSS (located in the other directory) to perform reduction of a quadratic form $q$. There are two ways to use GAUSS:

- symbolic input:

Input: a quadratic form $q$ (symbolic) at level 1 or the quadratic form $q$ at level 2 and the list of variables at level 1.
Output:

- stk5: $D$ the list of diagonal coefficients (only the number of positive and negative coefficients is characteristic of $q$ )
- stk4: $P$ (the columns vectors of $P^{-} 1$ form a $q$-orthogonal basis of $A$ at level 3)
- stk3: $A$ ( $A$ is the matrix of $q$ in the dual base of the coordinates-forms at level 2, we have $A=P^{t} D P$ where $P^{t}$ denotes the transposed of $P$ )
- stk2: list of variables
- stk1: symbolic as a sum of independent squares

Examples:

```
Example 1:
' X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2' GAUSS
5: { 1 '-25/6' '1/6' }
4: {{1 2 -1 } { 0 1 0 } { 0 5 6 } }
3: { { 1 2 -1 } { 2 4 3 } { -1 3 7 } }
2: { X Y Z }
1: '1/6*(6*Z+5*Y)^2+ -25/6*Y^2+(-Z+2*Y+X)^2'
```

```
Example 2: same example but with variable in the reverse order
' X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2' { Z Y X } GAUSS
5: { '1/7' '7/19' '-25/19' }
4: {{ { 7 3 -1 } { 0 '19/7, '17/7' } { 0 0 1 } }
3: { { 7 3 -1 } { 3 4 2 } { -1 2 1 } }
2: { Z Y X }
1: '-25/19*X^2+7/19*(17/7*X+19/7*Y)^2+1/7*(-X+3*Y+7*Z)^2
```

Example 3: if you want to orthogonalize with parameter, you need to
enter the list of variables of the quadratic form
${ }^{\prime} \mathrm{X}^{\wedge} 2+2 * A * X * Y$ ' \{ Y X \} GAUSS
5: \{ '-A^2' 1 \}
4: \{ \{ 10$\}\}\left\{\begin{array}{ll}1\end{array}\right\}$
3: \{ \{ 0 A \} \{ A 1$\}\}$
2: \{ Y X \}
1: ' $(X+A * Y)^{\wedge} 2-A^{\wedge} 2 * Y^{\wedge} 2^{\prime}$

- matrix input:

Input (stack level 1): the formal matrix $A$ of the quadratic form $q$
Output: at stack level $2 D$ the diagonal coefficients list and at stack level 1 the transition matrix $P$. We have $A=P^{t} D P$ where $P^{t}$ denotes the transposed of $P$. Note that to obtain a $q$-orthogonal basis, one can take the columns of the inverse $P^{-1}$ of $P$ ).
Example:
The matrix of $q$ defined by $q(x, y)=4 x^{2}+2 x y-3 y^{2}$ is:

$$
A=\left(\begin{array}{cc}
4 & 1 \\
1 & -3
\end{array}\right)
$$

(to get the matrix of $q$, enter ' $4 * \mathrm{X}^{\wedge} 2+2 * \mathrm{X} * \mathrm{Y}-3 * \mathrm{Y}^{\wedge} 2^{\prime}$, then the list of variables \{ X Y\} and hit QXA). Call GAUSS which returns:

2: \{ '1/4' ,-13/4' \}
1: $\left\{\{41\}\left\{\begin{array}{l}\text { \{ }\end{array}\right\}\right.$
this means that:

$$
A=\left(\begin{array}{ll}
4 & 0 \\
1 & 1
\end{array}\right) \times\left(\begin{array}{lc}
{ }^{1} 1 / 4^{\prime} & 0 \\
0 & \prime-13 / 4^{\prime}
\end{array}\right) \times\left(\begin{array}{ll}
4 & 1 \\
0 & 1
\end{array}\right)
$$

This means that:

$$
q(x, y)=4 x^{2}+2 x y-3 y^{2}=\frac{1}{4}(4 x+y)^{2}-\frac{13}{4} y^{2} .
$$

The other utilities are QXA and AXQ to switch from algebraic to matricial representation of a quadratic form (quadratic as symbolic to array). QXA accepts an optional list of variables at level 1.

## 15 Customization and other utilities.

### 15.1 Data types.

Data handled by Erable have two representations: the user representation which you use most all the time and the internal representation (used internally).

List of data types:

| True data | Example | User | Example | Internal | Example |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Integer | 5 | real, hex, string | 5 | hex | \#5 |
| Float | 5.02 | real | 5.02 | long real | \%\% 5.02 |
| Gauss integer | $1+2 i$ | symbolic | '1+2*i' | secondarie | :: \#1 \#2 ; |
| Complex | (1.1,2.3) | complex | (1.1,2.3) | long complex | C\%\% 1.12 .3 |
| Fractions |  | symbolic | '2/3' | symbolic | '\#2/\#3' |
| Irr. quadr. | $1+2 \sqrt{5}$ | symbolic | '1+2*V3' | program | << \#1 \#2 \#5 >> |
| Unknowns | $a, x$ | variables | A X | list | variable |
| Symbolics | $a+x^{2}$ | symbolic | ' $\mathrm{A}+\mathrm{X}^{-2}{ }^{\text {, }}$ | list | variable |
| Lists | $\left\{\begin{array}{lll}1 & i\end{array}\right\}$ | list | \{ 1 ' $i$ ' \} | list | \{ \#1: \#0 \#1; \} |
| Array | [ $\left.1 \begin{array}{ll}1 & 2\end{array}\right]$ | array | [ [ $\left[\begin{array}{lll}1 & 2\end{array}\right]\left[\begin{array}{lll}3 & 4\end{array}\right]$ | array | [ [ $\left.\begin{array}{llll}1 & 2\end{array}\right]\left[\begin{array}{lll}3 & 4\end{array}\right]$ |
| Symb. array | \{ 12 \} | list | \{ \{ 1 2 \} \{ 3 4 \} | list | \{ \{ \#1 \#2 \} \{ \#3 \#4 \} \} |

### 15.2 User flags.

You may change the behavior of Erable by clearing or setting some user flags (and the system flag -27). Here are the most important flags of Erable (see section (D) for a complete list):

- flag 1: display flag (if set then verbose mode selected)
- flag 10: integer arithmetic (if set then Erable expects integer arguments for instructions like GCD3, ABCUV or DIV2).
- flag 12: simplification flag (if set then Erable calls the gcd algorithm if needed)
- flag 13: complex flag (if cleared, all expressions are assumed to be real and Erable tries to return only real expressions)
- flag 15: real are integer flag (if set, real are assumed to be integer)
- flag 21: recurse flag (if set, the simplification algorithms EXPA and TSIMP will simplify in subexpressions)
- system flag -27: if set, then the user representation of complex numbers is symbolic.

To set a flag (e.g. flag 13), type 13 SF . To clear this flag, type 13 CF .

### 15.3 Conversions

- AXL: array $\leftrightarrow$ list conversion (transforms $\}$ to [] and conversely).
- EPSXO: strip leading zeros in list-polynomials, replace objects by 0 if their absolute value is less than EPS.
- FXND: splits a fraction in numerator (stack 2) and denominator (stack 1). Ex:
'(X+1)/A' FXND -> 2:X+1, 1:A
- NDXF: reverse of FXND. Ex:

12 NDXF -> '1/2'
Works for all data types (warning: you can get strange symbolics with NDXF).

- XNUM: convert level 1 to a numeric format like the build-in $\rightarrow$ NUM, but accepts lists (this was not the case on S/SX models). Clears flags 12, 14 and 15.
- XQ: convert level 1 to rational format, like the build-in $\rightarrow$ Q. Sets flags 12 , 14 and 15.
- idn: like the built-in IDN but returns a symbolic identity matrix.
- SXL (other directory, obsolete): Used for conversion to internal data type representation)
- VX variable-fraction representation conversion. Switches from algebraic to list-polynomials or fractions. Ex:
 ${ }^{\prime} X+3$ ' <--> $\left\{\begin{array}{ll}1 & 3\end{array}\right\}$
- General stack object conversion. Ex:

```
'X+3*SIN(X)'
{ { 1 '5*X' } { 'SIN(X)' 1 } }
{ 'X^2+7*X' '3*SIN(X)' }
#3h SXL ->
{ 'SIN(X)' X }
{ 3 {1 0 } }
{{1 {{ 5 0 } } } {{ { 0 } 0 } }
{{{170}}}{3 0 } }
```

To go back, type \{ \#0 \#1 \#2 \} SXL

- S2L (other directory, obsolete): convert an algebraic polynomial in a list polynomial. Ex:
' $1+2 *$ A' A S2L $->\{21\}$ Accepts lists. Ex: $\left\{{ }^{\prime} 1+\mathrm{A} '^{\prime} 2 * A-3 '\right\}$ A S2L $\left.\left.\rightarrow\left\{\begin{array}{llllll}\{1 & 1\end{array}\right\} 2-3\right\}\right\}$
- L2S (other directory, obsolete): converts back a list polynomial to an algebraic. L2S may be used for multiple variable polynomial evaluation. Ex:



### 15.4 Other functions

- HORN executes an Horner scheme. The syntax is:

```
stk2: P
stk1: r
-> 3: P div (X-r), 2: r, 1: P(r)
Ex: 'X^2+2*X+3' 5 -> 'X+7' 5 38
```

This means that $X^{2}+2 * X+3=(X+7)(X-5)+38$.

- PTAYL: fast Taylor development for polynomials:

2: $\mathrm{P}(\mathrm{X}), 1: r \mathrm{r}$ - $\mathrm{P}(\mathrm{X}-\mathrm{r})$
Example:
' $\mathrm{X}^{\wedge} 3+2 * \mathrm{X}$ ' 2 PTAYL $->$ ' $\mathrm{X}^{\wedge} 3+6 * \mathrm{X}^{\wedge} 2+14 * \mathrm{X}+12$ '
means that $X^{3}+2 X=(X-2)^{3}+6(X-2)^{2}+14(X-2)+12$

- LEGENDRE [resp. HERMITE and TCHEB]: given an integer $n$, returns the $n$-th degree Legendre [resp. Hermite and Tchebycheff] polynomial.
- PFEXEC: execute the program at level 1 in subexpressions between all + and - of the symbolic expression at level 2 . For example, try:
'1/2/(X^2-1)+1/4/(X^2-4)' << COLC >> PFEXEC
- XPRG: explodes a program on the stack or creates a program with stack level 1 components.
- tEval (other directory): evaluate object 1 and returns the time it tooks to evaluate it. Not as accurate as TIM of the hacker library.
- LATEX: converts a symbolic to a string, the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ traduction of the symbolic. To tex it on a computer, you must include the string in a math. environment (in $\$ \$$ or in $\backslash[\backslash]$ or in an equation environment, and you must include the file hp48.tex).


### 15.5 Permutations

A permutation is represented as a list of images of [1..n] e.g. $\{51243\}$ means $\sigma(1)=5, \sigma(2)=1, \sigma(3)=2, \sigma(4)=4$ and $\sigma(5)=3$. The P2C instruction converts this representation to the cycle decomposition, here $\{\{1532\}\{4\}\}$ (stack level 2 ) and computes the signature of $p$ (stack level 1). C2P converts back cycle decomposition to usual representation of permutations. CIRC compose 2 permutations in the usual representation (returns $\sigma_{\text {level } 2} \circ \sigma_{\text {level 1 }}$ ).

### 15.6 Variables

- LVAR: returns the list of "variables" of an algebraic. The list is sorted by reverse alphabetic order. Example:

$$
\left.{ }^{\prime} \operatorname{SIN}(A)+B * X+1 \text { ' }->\left\{X B{ }^{\prime} \operatorname{SIN}(A)\right)^{\prime}\right\}
$$

- LIDNT: list of global names of an algebraic Example:
' $\operatorname{SIN}(A)+B * X+1$ ' $->\{X B A\}$


### 15.7 Differential geometry

There is currently only one program available in the other directory, written in UserRPL by John Wilson, that I have translated into SysRPL, it is named TNBA for tangent, normal, binormal, acceleration. It takes a 3-dimensional vector (as a list) at level 1 (e.g. $\left\{{ }^{\prime} 2 * \mathrm{~T}^{\prime} 1^{\prime} \mathrm{T}^{\wedge} 2^{\prime}\right\}$ ) and returns the position, tangent, normal and binormal vectors as well as the tangential and normal acceleration.

## 16 Final remarks.

Remaining things to do:

- adapt and integrate the polynomial division routines of alg48 for speed,
- rewrite the Gauß reduction to include the Bareiss method,
- extend the Risch algorithm to multiples exponentials, and return an unevaluated integrals when there is no closed form,
- improve the factorization algorithm (Berlekamp method over $\mathbb{Z}[i])$.
- ...

I will probably build a contrib directory (or library) if I have sufficient material to do it, your RPL and SysRPL programs are welcomed. Otherwise, I would say that Erable over the Saturn architecture is almost finished since we have probably reached the microprocessor limits. Anyway, it is certainly sufficient to help maths students in their studies, which was my first aim.

I will probably switch to another project like working on $\mathrm{C}(++)$ on a fast CPU (it would be interesting to have a sysrpl implementation written in $\mathrm{C}(++)$, I would only have to rebuild a KERNEL. LIB to have a competitive Erable!).

## A Frequently asked questions

- When I call SETUP, I get the error STO Error with 0 at level 1. Why? You did not use kermit to download files to your HP48 and your software is case-insensitive, or your filesystem is case-insensitive and translated uppercase names to lowercase names. Please use kermit, and unzip the Erable archive over a case-sensitive filesystem or a filesystem where filenames are uppercase names. MS-DOS should work, as well as ext2 (Linux), but not VFAT (Windows 9x filesystem under Linux).
- When I call INIT, I get the RCL Error: Undefined Name with GXKEYS at level 1 on the stack. Why?
The reason is the same as above, but there is a simple workaround in this case. Type the following command line:
'gxkeys' DUP RCL 'GXKEYS' STO PURGE INIT
- How can I launch the eqstk stack replacement?

Type ASTK.

- ASTK does not launch eqstk. Why?

If you want to shutdown your calc, you must press the right shift followed by the ON key. If you press the ON key too fast, this will stop eqstk unexpectedly and ASTK will not work.
Workaround: type ON and C simultaneously, then again ASTK. If this doesn't work, you must reinstall eqstk.

- In previous versions of Erable, a CST menu was created. Is it gone?

Yes, the user interface is now completely handled by the user key redefinition, because this is faster. You may create you own CST menu if you want by compiling the SCST file from the original package.

- How can I simplify $\sqrt{x^{2}}$ ?

Type 28 SF to simplify $\sqrt{x^{2}}=|x|$. Otherwise $\sqrt{x^{2}}$ remains not modified. This flag setting is not the default because setting flag 28 means that subexpressions are always simplified and this slow down most simplifications.

- How can I simplify $|x|$ if I know that $x>0$ ?

Type 29 SF. If flag 29 is set, Erable will try to guess the sign of your expression: either at $x=0^{+}$or at $x=+\infty$ depending of the status of flag 24. The default is $x=+\infty$ but be aware that calling SERIES (directly or indirectly via LIMIT) sets flag 24 enabling guess at $x=0^{+}$.

- Sometimes, Erable can not find the antiderivative of $\sin (x)$. Why? You are in complex mode. In this mode, RISCH does not recognize trigonometric functions, you must convert them to complex exponentials (EXPLN) or go back to real mode ( 13 CF ).
- I have alg48 installed, I would like to use the factorization routines of alg48 inside Erable. Is it possible?
Yes, but since I experienced many crashes, this feature is not included in the released versions. You can compile you own version and try different configurations to get this working. To do this, install the HP GNU tools and erablsrc.zip, uncompress it and uncomment in kernel.s and erable.s the lines between
*teste la presence d'ALG48 and $*$ fin de test ....
Type compile to compile the whole package, download to your HP and test!


## B All functions of Erable- listed in alphabetic order

The following symbols will be used:

- \%: real
- C\%: complex
- $n$ : integer (real integer)
- []: numeric array
- $\{1\}$ : list
- $\{m\}$ : symbolic array
- $p$ : polynomial ( $\{p\}$ for a list-polynomial),
- $\{v\}$ : list of variables
- $s$ : symbolic object
- $v$ : variable (global name or irrational symbolic)
- $f:$ a fraction
- $N, D$ : numerator and denominator of a fraction
- o: object

List of all global variables in HOME, algb or algbg:

| Name | Function | Arguments | Returns |
| :--- | :---: | :---: | :---: |
| EPS | $\varepsilon$ |  | $\%$ |
| ERABLMSG | Risch log |  | string |
| INVLAP | Last inverse Laplace | nothing | $s$ |
| MATRIX | Last matrix | nothing | $m$ |
| MODULO | Arithmetic in $Z Z / n Z Z$ |  | $n$ |
| ODETYPE | Ordinary diff. equ. type |  | nothing |
| PRIMIT | Last primitive | $s$ |  |
| SYSTEM | Last system | nothing | $\{m v\}$ |
| GX/SX/UKEYS | User keys string | nothing | string |
| VX | integration variable | Rien | $v$ |
| fr | French short doc | nothing | string |
| us | English short doc | nothing | string |
| If you are short in memory, you can erase all variables in \{ HOME \} and subdirectories except EPS, vX and MODULO. |  |  |  |

Functions of the Erable library and of the other, algb or algbg directories:

| Name | Function | Arguments | Returns |
| :---: | :---: | :---: | :---: |
| ABCUV | Bezout $a x+b y=c$ | 3,2,1:a, b, c | 1:1 $[3,2: x, y]$ or 1: 0 |
| AXL | array $\leftrightarrow$ list | [] ou \{ m \} | \{ $m$ \} or [] |
| AXQ | array to $s$ quadratic form | $2:\{m\}, 1:\{v\}$ | s |
| C2P | Cycles $\rightarrow$ permutation | \{ cycles \} | $p$ |
| CHS | Change signe | $o$ | -o |
| COLC | Factorization | $\stackrel{s}{s}$ | ${ }^{s}$ |
| COSN | $\cos , \sin (n x) \rightarrow P(\cos x, \sin x)$ | $\begin{aligned} & n>0 \\ & n<0 \end{aligned}$ | $2:\left\{\begin{array}{c} 2: s, 1: s \\ \{p\}, 1:\{p\} \end{array}\right.$ |
| CIRC | Compose 2 permutations | 2:p $2,1: p_{1}$ |  |
| CURL | Rotationnal | 2: $\left\{s_{1} s_{2} s_{3}\right\}$ 1: $\{v\}$ | $\left\{s_{1}^{\prime} s_{2}^{\prime} s_{3}^{\prime}\right\}$ |
| DEGRE | Order | \{ $\{p\}$ | ${ }^{1}$ |
| DIV | Divergence | 2: $\left\{s_{1} \ldots s_{k}\right\}$ 1: $\{v\}$ | $s$ |
| DIV1 | Usual division | 2: $o_{2}, 1: o_{1}$ | $o_{2} / o_{1}$ |
| DIV2 | Euclidean division | 2: $o_{2}, 1: o_{1}$ | 2: $o_{2}$ div $o_{1}, 1: o_{2} \bmod o_{1}$ |
| DIVIS | List of divisors | , | \{1 \} |
| DIVPC | Division in ascending power | 3: s, 2: $s^{\prime}, 1: n$ | $s$ |
| DSOLVE | Solve $y^{\prime}(x)=f(y(x), x)$ | $f(y(x), x)$ | $y(x)$ |
| EPSX0 | Strip expression | $o$ | $o$ |
| EULER | Euler indicatrix | , | $\varphi(n)$ |
| EXEC | Substitution or doall | $\begin{gathered} \text { 2:\{1\}, 1: program } \\ 2: s, 1: o o_{1}=o_{2} \\ 3: s, 2:\{11\} 1:\{12\} \end{gathered}$ | $\text { 1: } \begin{gathered} \left\{\begin{array}{l} 1 \\ s \\ s \end{array}\right\} \\ \hline \end{gathered}$ |
| EXPA | Simplification |  | $o^{\prime}$ |
| EXPLN | Conversion to exp, $\ln$ | $s$ | $s$ |
| EXPLIN | Linearization of exp | $s$ | , $\frac{s}{}$ |
| FACTO | Factorization | o | 3: $\{v\}$ 2: $f, 1:\left\{f_{1} n_{1} f_{2} n_{2} \ldots\right\}$ |
| FCOEF | roots/poles $\rightarrow$ Fraction | $\left\{r_{1} n_{1} r_{2} n_{2} \ldots\right\}$ | , ${ }^{f}$ |
| $\underset{\text { FSIGN }}{\text { FROOTS }}$ | Factorization Sign a | ${ }_{o}$ | 3: $\{v\}$ 2: $f, 1:\left\{s_{1} n_{1} s_{2} n_{2} \ldots\right\}$ |
| FSIGN | Sign of a rational fraction | N | tagged list |
| FXND | Split a fraction | $f=N / D$ | 2: N, 1: $D$ |
| GAUSS | Gauß quadratic form reduction |  | $\begin{gathered} \text { 2: } D, 1: P \\ \text { 5: } D, 4: P, 3: A, 2:\{v\}, 1: s \\ \text { 5: } D, 4: P, 3: A, 2:\{v\}, 1: s \end{gathered}$ |
| GCD1 | Greatest common divisor | 2: $o_{2}, 1: o_{1}$ |  |
| GCD3 | GCD (solves $a u+b v=d$ ) | 2,1: $a, b$ | $\operatorname{GCD}(a, b)=d, u, v$ |
| HALFTAN | To half angle tangent |  |  |
| HERMITE HESS | Hermite polynomial Hessian | $\begin{gathered} \text { integer } n \\ 2: s, 1:\{v\} \end{gathered}$ | $\begin{aligned} & H_{n} \\ & \text { matrix } \end{aligned}$ |
| HILBERT | Hilbert matrix | integer $n$ | $n \times n$ matrix |
| HORN | Horner scheme | 2:p, 1: r | 3: $p /(X-r)$ 2: $r$, 1: $P(r)$ |
| ILAP | Inverse laplace transform | $s$ | $L^{-1}(\mathrm{~s})$ |
| INIT | Initialization | nothing | nothing |
| INVL | Inversion | $\bigcirc$ | $o^{-1}$ |
| IPP | Integration by part | $\int_{a}^{b} f(t) d t, u$ | $[u v]_{a}^{b}-\int_{a}^{b} u v^{\prime}(t) d t\left(v=f / u^{\prime}\right)$ |
| JORDAN KERN | Diagonalization | endomorphism | 7 to 1: cf. section 12 <br> 4 to 1: cf. section 12 |
| KERN LAP | Kernel of a lin. appl. Laplace transform | $\stackrel{m}{2: f, 1: g}$ | 4 to 1: cf. section 12 |
| LAPL | Laplacian | 2: $f, 1:\{v$ \} |  |
| LATEX | LATEX conversion | 1: $s$ | 1: string |
| L2S | Evaluation |  | $\begin{aligned} & p(v) \\ & p(v) \end{aligned}$ |
| LCM1 | Least common multiple | 2: $o_{2}, 1: o_{1}$ | $\operatorname{LCM}\left(o_{2}, o_{1}\right)$ |
| LCXM | Matrix creation | 3: r, 2: c, 1: prog | 1: $r \times c^{\text {matrix }}$ |
| $\begin{aligned} & \text { LDEC } \\ & \text { LEGENDRE } \end{aligned}$ | Lin Diff Equ Cst Coef Polynomials | $\begin{aligned} 2:\left\{\begin{array}{l} v\}, 1:\{m \\ \text { integer } r \end{array}\right\} \end{aligned}$ | 3,2: $(m-x)^{-1}, 1:(m-x)^{-1} v$ <br> list of $r+1$ polynomials |
| LGCD | GCD of a list | \{1 \} | $o=\mathrm{GCD}$ |
| LIDNT | List of variables | $s$ | 2: $s, 1:\{v\}$ |
| LIMIT | Limit | 3:s, 2:v, 1:n | s |
| LNCOLC | Collect log | $s$ | $s$ |
| LU2 | $L U$ decomposition | M | $L^{-1} 1, U$ |
| LVAR | list of variables | - | $\{v\}$ |
| MAD MMULT | inverse, char. polyn., etc. |  |  |
| MULT | product | 3: $o_{2}, o_{1}, n$ $2: o_{2}, o_{1}$ | $o_{2} \times o_{1}$ $o_{2} \times o_{1}$ |
| NDXF | create a fraction | 2: N, 1: D | $f=N / D$ |
| ORND | Round an object | 2: o, 1: $D$ | $o$ |


| P2C | Permutation $\rightarrow$ cycles | $p$ | 3: $p, 2$ : cycles, 1: signature |
| :---: | :---: | :---: | :---: |
| PCAR | Characteristic polynomial | endomorphism | $\sum^{s}$ |
| PF | Partial fraction | $\sum^{f}$ | $\sum_{i} f_{i}$ |
| PFEXEC | exec between + and - | $2: \sum_{i} f_{i} 1: \operatorname{prg}$ | $\sum_{i} \operatorname{prg}\left(f_{i}\right)$ |
| POWER | integral power | 2: o, 1: $n$ | $o^{n}$ |
| PREVAL | Evaluation | 3: primitive, 2,1 bornes | ${ }^{\text {s }}$, |
| PTAYL | Taylor for polynomials | 2: $P(X), 1: o$ | $P(X-o)$ |
| PURG | Purge $\operatorname{algb}(\mathrm{g})$ | nothing | nothing |
| QXA | $s$ quadratic form to array | 2: $s, 1:\{v\}$ | $2:\left\{m^{\{m\}, 1:\{ }\right\}$ |
| RANG | Réduction sous-diagonale | \{ m \} | 2: spec. cases, 1: $\left.{ }^{\text {m }} \mathrm{m}\right\}$ |
| RDET | Determinant (rref) | endomorphism \{ $m$ \} | 2: $\{m$ \}, 1: determinant |
| RISCH | Symbolic integration |  | , |
| S2L | Symbolic to list | 2: $0,1:\left\{v{ }^{\text {2: }} 0,1: v\right.$ | $2:\left\{\begin{array}{c} v \\ \{p, 1:\{p \end{array}\right\}$ |
| SCROLL | Scrolls a grob | grob |  |
| SERIES | Series | 3: s, 2: v, 1: $n$ | 6: 6-1: $s$ |
| SETFR | Set French Flags | nothing | nothing, |
| SIMP2 | Simplification | 2: $o_{2}, 1: o_{1}$ | 2: $o_{2}^{\prime}, 1: o_{1}^{\prime}$ |
| SINCOS | Exponential to sine/cosine |  | $s$ |
| SOLGEN | Solves a linear system Solve |  | cf. section 12 |
| SQRT | Square root | $n$ or C\% or $s$ | $2: x, 1$ : solution $n$ or $\mathrm{C} \%$ or $s$ |
| STUDMULT | "students" $\times$ of matrices | M, M ${ }^{\prime}$ | "M $\dot{M}^{\prime}$ " |
| SUBT | Subtraction | 2: $o_{2}, 1: o_{1}$ | $o_{2}-o_{1}$ |
| SXL | Conversion | Internal [user] | User [internal] |
| SYST | Solves a linear system | \{ eqns \{ v \} \} | cf. section 12 |
| TAN2SC | Tangent to sin/cos |  |  |
| TAN2SC2 | Tangent to $\sin / \cos 2 \theta$ |  |  |
| TCHEB | Polynomials | integer $r$ | list of $r+1$ polynomials |
| TEXPA | Expand transcendent functions | $s$ | - ${ }^{\text {P }}$ |
| TNBA | Tangent, normal, .. | \{v\} |  |
| TR | trace | [ ] or $\{m\}=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ | $\sum_{i=1}^{n} a_{i i}$ |
| TRAN | transposed | $\text { [] or }\{m\}$ | [] ou \{ $m$ \} |
| TRIG | Trigonometry: $\rightarrow$ sin, cos, arctan | s ${ }_{s}$ | $s$ |
| TRIGCOS | Trigonometry: $\sin ^{2} \rightarrow 1-\cos ^{2}$ | $s$ | $s$ |
| TRIGLIN | Trig. linearization | C\%, s ou $\{p\}$ | $s$ |
| TRIGSIN | Trigonometry: $\sin ^{2} \rightarrow 1-\cos ^{2}$ | $s$ | $s$ |
| TRUNC | Truncate an asymptotic expansion | 2: $s, 1:$ rest $s^{\prime}$ | $s$ |
| TSIMP | Simplification (transcendental) | $s$ | $s$ |
| VAND | Vandermonde matrix | list of objects | matrix |
| VER | Version | rien | \% 2.99 |
| XFRC | To quadratic irrational | $o$ | o |
| XNUM | $\rightarrow$ Numeric | o | o |
| XQ | $\rightarrow$ Rational | $\bigcirc$ | $\bigcirc$ |
| XY | Scalar product of 2 vectors | 2: $x$ 1: $y$ | $x . y$ |
| abs add | Absolute value Addition | $2: o_{2}^{s}, 1: o_{1}$ | $\stackrel{s}{s} o_{2}+o_{1}$ |
| arg | Argument | 2. $o_{2}, 1: s$ | $o_{2}+o_{1}$ |
| comb | Combinaisons | 2: $n, 1: n^{\prime}$ | $C_{\underline{n}}^{n}{ }^{\prime \prime}$ |
| conj | Conjugate |  | $\stackrel{\bar{o}}{ }$ |
| cross der | Wedge product derivative or gradient | 2: $x, 1: y$ 2: $s, 1: v$ | $x \wedge$ $1: s$ |
| der 1 | derivative | 2: $s, 1: v$ | 1: $s$ |
| det | Determinant (expand) | endomorphism | determinant |
| fact | Factorielle | $n$ | $n!$ |
| idn | identity | real integer or matrix | identity matrix |
| im | imaginary part | o | $\Im(o)$ |
| re | real part | o | $\Re(o)$ |
| rref | Row reduction | M | \{ s \}, reduced matrix |
| tEVAL | Execution time | ..., 1: o | EVAL(o), 1: time |

Functions of the kernel library. Don't forget to set an integer $n$ in the variable MODULO (by default $n=2$ ):

| Name | Function | Arguments | Returns |
| :--- | :---: | :---: | :---: |
| \{KERNEL.LIB\} | $(0: 788)$ |  |  |
| MODADD | Modular addition | $2: n_{1}, 1: n_{2}$ | $\left(n_{1}+n_{2}\right) \bmod n$ |
| MODSUBT | Modular subtraction | $2: n_{1}, 1: n_{2}$ | $\left(n_{1}-n_{2}\right) \bmod n$ |
| MODMULT | Modular multiplicatin | $2: n_{1}, 1: n_{2}$ | $\left(n_{1} * n_{2}\right) \bmod n$ |
| MODDIV | Modular division | $2: n_{1}, 1: n_{2}$ | $\left(n_{1} / n_{2}\right) \bmod n$ |
| MODPOW | Modular power | $2: n_{1}, 1: n_{2}$ | $n_{1}^{n_{2}} \bmod n$ |
| MODINV | Modular inversion | $1: n_{1}$ | $n_{1}^{-1} \bmod n$ |
| PA2B2 | Prime factorization | $1: p(p \equiv 1[4])$ | $1: a+i b / a^{2}+b^{2}=p$ |

## C User Keys.

From top left corner to bottom right corner, $\alpha-$ Right Shift -ed keys:

| Princ. Key | Reminder | Function |
| :--- | :--- | :--- |
| MTH |  | (normal MTH) |
| PRG |  | (normal PRG ) |
| CST | MODES | (Erable config, for GX only) |
| EVAL |  | EXEC |
| SIN | $\partial$ | der1 |
| COS | $\int$ | RISCH |
| $\sqrt{ }$ | $\sqrt{2}$ | SQRT |
| $y^{x}$ | $y^{x}$ | POWER |
| $1 / x$ | $1 / x$ | INVL |
| $\pm$ | $p m$ | CHS |
| DEL |  | $\infty$ |
| 7 | (solve, factor) |  |
| 8 | (exp and ln) |  |
| 9 | (diff. calc.) |  |
| $\vdots$ | $\vdots$ | DIV1 |
| 4 | (matrices) |  |
| 5 | (conversions) |  |
| 6 | (arithmetic) | MULT |
| $\times$ | $\times$ |  |
| 1 | (basic algebra) |  |
| 2 | (complex) |  |
| 3 | (trigonometry) | SUBT |
| - | - | EXPA |
| SPC |  |  |
| + | + | add |

Other redefined keys:

- G/GX only: MTH key (runs Erable main menu)
- G/GX only: PRG key (runs a HP48GX main menu)
- CST key: $i$
- DEL key: X
- right shift-DEL key: $-\infty$
- downarrow key (35.1): calls the Miniwriter. Type:
35.1 DELKEYS
if you do not have the Miniwriter installed. If you have JAZZ or TEDVV instead, you may redefine this keystroke by typing:
\{ TED 35.1 \} STOKEYS
- left shift-downarrow (35.2): calls AGROB followed by SCROLL. Needs eqstk or JAVA. Type:
35.2 DELKEYS
if you do not have eqstk or JAVA
- S/SX only: 33.2 (XQ) and 33.3 (XNUM)
- G/GX only: 33.2 (XNUM) and 35.6 (XQ).


## D User flags

List of the flags used by Erable (the sign * after the flag number means that the flag is cleared if VER is called, \# means that the flag is set if VERis called):

- 01: if set then verbose mode (details of some algorithms are shown) else quiet mode.
- 10: if set then Erable performs integer arithmetic otherwise Erable performs polynomial arithmetic
- \# 11: internal use, cleared if a non-rational algebraic is found
- \# 12: if clear then GCD returns always 1 (hence algebraics are not simplified and multiple roots of polynomials are not detected)
- \# 13: if set then complex mode, else real mode (modifies the way of simplifying expressions with re, im and conj and the way of rooting polynomials)
- \# 14: if set then searchs formal first order factors
- \# 15: if set enables construction of integer fractions and square roots of integers
- 16: internal use, if set then inverse Laplace transform
-     * 17: cleared to use user data representation, set to use internal data representation.
-     * 18: internally used by INT, if set then INT integrates a fraction of sin / cos
-     * 19: internally used by INT, if set then integration else partial fraction decomposition.
-     * 20: internally used by DIAG, if set then force multiplication of lists to be matrix times polynomials in Horner scheme
- \# 21: if set then recursive simplification for EXPA and TSIMP
-     * 22: if set then the rule $i^{2}=-1$ is not applied
-     * 23: if set then RISCH does not try linearity
-     * 24: if set then positivity of expressions are tested at $x=0$ instead of $x \rightarrow+\infty$.
- ${ }^{*} 25$ : if set then the rule $\sqrt{x}^{2}=x$ is not applied
- *26: if set then TRIG tries to return only sines, otherwise it returns cosines
- *28: determines whether embedded quotients are immediatly simplified or not (for example $2 / 4+3 / 6$ may be simplified first to $1 / 2+1 / 2$ and then to 1 or directly to $24 / 24=1$ ).
- *29: if set then $|x|$ is simplified to $x$ for every "variable" (as returned by LVAR)

You should only modify user flags $1,10,13,15$ and 21 to 29 .
Remark 9 System flag 27 (-27) affects the way symbolic complex numbers are displayed. System flag 2 affects the way symbolic constants are evaluated (for example $\pi$ is returned as a symbolic constant or as a numeric approximation). This flag is set or cleared by Erable according to the current mode of Erable (numeric or symbolic).

## E Error codes for the SERIES command.

- 1: can not determine series expansion for $\arctan (x)$ function with current argument $x$.
- 2: $\arcsin (x)$ not defined for infinite argument.
- 3: no series expansion for $\exp (x)$ at $x=\infty$ if $\operatorname{sign}$ is unknown.
- $4,5,6,7$ : failed to compare 2 variables.
- 8: can not determine order for the current rest.
- 9: negative argument for logarithm function.
- 10 (<Ah>): insufficent order. (You can try again with a larger order)
- 11 (<Bh>): can not find sign of argument of ABS function
- 16 (<10h>): numeric input are not allowed


## F Thanks to ...

Many people helped me during the creation and distribution of Erable:

- Claude-Nicolas Fiechter and Mika Heiskanen for letting me use their long integer routines for Erable. Special thanks to Mika for explanations about the source code of ALG48.
- Some of my students and netsurfers tested various versions of Erable and encouraged me to improve it: particularly Maurice Al-Khaliedy, Christophe Burdin, Craig Clifford, Jerome Coss, David Czinczenheim, Ludovic Dumaine, Eduardo (maciasval@mx2.redestb.es), Frederic Hermann, Eric Gorka, Stephane Monboisset, Lionel Pilot, Eric Saya, Quan Tong Duc, Samy Venin, John Wilson ... Special thanks to Gilles Virone who showed me first what an HP28/48 is able to do.
- Some math teachers, particularly Renée de Graeve and Scott Guth who made tests, suggestions and bug reports.
- all anonymous ftp sites administrators, particularly those of fourier.ujfgrenoble.fr (André Voutier), ftp.funet.fi, cbs.cis.com, hplyot.obspm.fr, hpcvbbs.cv.hp.com and wuarchive.wustl.edu,
- I used the following softwares to create Erable: the EQSTK, JAVA stack displays ([7], [[77]), the TED and Miniwriter editors ([[]3], [T]), the JAZZ debugger ([[I2]), the Metakernel ([[I4]), various compilers (JAZZ, the HP tools ([[Z]), the RPL based tools ([[16]) and eventually the GNU tools ([[5] ).
- I looked at the following book and softwares: [8], [3], [6], [G], [5], [TI], [TI], [ 9 ] . One of the best reference is certainly [4] and references therein. M. Heiskanen's WWW-homespage has a lot of interesting math links.


## References

[1] J.-Y. Avenard. miniwriter. http://www.epita.fr/~avenar_j, 1997.
[2] H. P. Corvallis. TOOLS.EXE. hpcvbbs.cv.hp.com ftp.funet.fi wuarchive.wustl.edu, 1991.
[3] P. Courbis and S. Lalande. Voyage au centre de la HP $48 S / S X$. Angkor, 1993.
[4] J. Davenport, Y. Siret, and E. Tournier. Calcul formel: Systèmes et algorithmes de manipulations algébriques. Masson, 1989.
[5] J. Ferrard. "Mathez" la HP 48 G/GX. D31 Diffusion (HP48), 1993.
[6] C. Ferraro. POLY46SX, POLY46GX, SMATH, SMATHGX. ftp.funet.fi ftp.cis.com hplyot.obspm.fr, 1993.
[7] C. N. Fiechter and M. Heiskanen. EQSTK92.ZIP. http://www.hut.fi/~mheiskan, 1997.
[8] C. N. Fiechter and M. Heiskanen. ALG48V42.ZIP. http://www.cs.pitt.edu/~fiechter/hp48 http://www.hut.fi/ ${ }^{\text {mheiskan, }} 1998$.
[9] B. Fuchssteiner. MuPAD. ftp://ftp.inria.fr/lang/MuPAD http://www.mupad.de, 1998.
[10] F. Gantmacher. Théorie des matrices, volume 1. Dunod, 1966.
[11] M. Heiskanen. POLYLIB.ZIP. http://www.hut.fi/~mheiskan, 1992,1995.
[12] M. Heiskanen. JAZZV65.ZIP. http://www.hut.fi/~mheiskan, 1996.
[13] M. Heiskanen. TED31.ZIP. http://www.hut.fi/ ${ }^{\text {mheiskan, } 1997 . ~}$
[14] Maubert Development Group. Metakernel, 48+. http://www.epita.fr/~avenar_j, 1998.
[15] M. Mikocevic. GNUTOOLS. ftp://srcm1.zems.fer.hr:/pub/hp48/tools2.1.9.zip, 1995.
[16] D. Müeller and R. Hellstern. RPL48V20.ZIP. ftp.funet.fi cbs.cis.com hplyot.obspm.fr, 1993.
[17] R. Steventon, A. Schoorl, and W. Laughlin. JAVA34.ZIP. ftp://ftp.cis.com/pub/hp48g/uploads/java34.zip http://www.engr.uvic.ca/~aschoorl, 1998.


[^0]:    ${ }^{1}$ This variable is contained in 'VX', it is by default set to ' X ', note that you can easily type X by hitting the DEL key
    ${ }^{2}$ This menu is not available on HP48 S/SX

