

 MATH LIBRARY version 2.10
 An almost complete math package for dealing with
 matrices and polynomials

 Written in SysRPL and Machine Language
 Library number 1211

 By Cesar Augusto Rorato Crusius - 1994

 NOTICE..3
 This program is Post-Cardware.........................3
 ABOUT...4
 LIMITATIONS and BUGS......................................5
 BE CAREFUL..5
 USER MODE...5
 GX COMPATIBILITY......................................5
 MATH DATA TYPES...6
 VERSION DIFFERENCES.......................................7
 Version 1.00 and 1.10.................................7
 Version 1.10 and 1.20.................................7
 Version 1.20 and 1.21.................................8
 Version 1.21 and 1.30.................................8
 Version 1.30 and 2.00.................................9
 Version 2.00 and 2.10.................................10
 SPEED MARKS (version 2.00)................................11
 MATH speed versus HP speed :-)........................12
 LIBRARY COMMANDS DESCRIPTION..............................14
 MADD..14
 MSUB..14
 MMLT..14
 MDIV..14
 MPWR..15
 MRoot...15
 MFCTP...15
 MCOEF...15
 MEVL..15
 MDER..16
 ZTRIM...16
 MDET..16
 MINV..16
 MTRN..17
 MIDN..17
 A<->L...17
 PR|L..17
 FRPRC...17
 ADPOL...19
 STDL..19
 EVALUES...20
 SVALUES...20
 MADJ..20
 MINOR...20
 MGET..21
 MPUT..21
 Row-..21

 page 1

 Row+..22
 Col-..22
 Col+..23
 RSwp..23
 CSwp..23
 MSIZE...23
 MTRACE..24
 ABOUT...24
 UTILITY PROGRAMS..25
 MVID..25
 MFLAG...25
 APPLICATION NOTES...26
 MEVL hints and suggestions............................26
 Interesting application of A<->L......................26
 Rank of a matrix......................................27
 Computing the determinant in a faster way.............27
 Successive divisions..................................27
 Ackermann's formula...................................27
 SPLIT...28
 A NOTE ON THE METHODS.....................................29
 THANKS TO...30

 page 2

 NOTICE

 * The program MATH 2.10 and the documentation in this
 file are provided "as is", and are subject to change
 without notice. I give no warranty of any kind with
 regarded to the software or documentation, including,
 but not limited to, the implied warranties of
 merchantability and fitness for a particular purpose.
 Cesar Augusto Rorato Crusius shall not be liable for any
 error or for incidental or consequential damages in
 connection with the furnishing, performance, or use of
 this software and documentation.

 * Sale of this material is not allowed without prior
 written permission of Cesar Augusto Rorato Crusius.

 * Non commercial distribution allowed, provided that the
 original documentation is preserved unchanged.

 * Modified versions are NOT allowed.

 * Use of any part of MATH library code is not allowed
 for any purpose, except, of course, when used directly
 from the MATH library. You cannot reproduce any part of
 MATH library code for any purpose without prior written
 permission of Cesar Augusto Rorato Crusius. Use of MATH
 library in commercial or shareware programs is not
 allowed.

 This program is Post-Cardware

 * If you use and enjoy this excellent program you MUST
 send me a post-card. It will not cost too much, and I'll
 appreciate a lot ! Send it to the following address:

 Cesar Crusius
 Caixa Postal 5193
 Trindade - Florianopolis - SC
 ZIP CODE 88040-970

 this address will work only 'til Jan 1996. So hurry up !

 page 3

 ABOUT

 As we know, many times we need to perform
 calculations only with numbers. Many times we need to do
 polynomial calculus (multiplication, division and so
 on). Then, if we go one step ahead, we will need to do
 the same calculations with symbolic polynomials. As we
 go deeper, we will need many more things: symbolic
 matrices, matrices of polynomials, matrices of symbolic
 polynomials, matrices of matrices, et cetera.

 MATH library is the way to do all those things! You
 can add a symbolic polynomial to a numerical matrix, and
 you'll get the correct answer: a symbolic matrix. Now
 you can get the inverse of the symbolic matrix, add a
 polynomial to this matrix and so on... Let's take an
 example. Let's do inv(sI-A) (familiar to engineers) in
 two ways (consider A=[[1 2][3 4]]):

 First method: using the symbol 'S'

 2:'S' 1:{{'S-1' -2} 2:{{'S-4' 2}
 1:[[1 2] MSUB {-3 'S-4'}} MINV {3 'S-1'}}
 [3 4]] 1:'(S-1)*(S-4)-6'

 The second method uses [1 0] as a polynomial for 'S':

 2:[1 0] 1:{{[1 -1] -2} 2:{{[1 -4] 2}
 1:[[1 2] MSUB {-3 [1 -4]}} MINV {3 [1 -1]}}
 [3 4]] 1:[1 -5 -2]

 As you can see, if you work with a lot of calculus
 THAT is the program you need.

 page 4

 LIMITATIONS and BUGS

 This program is very difficult to debug because of
 its high complexity. You can do almost everything with
 the commands. If you try to do something you think is
 right and get a wrong answer, please notice me and I'll
 try to fix the bug. Any suggestions are welcome.

 BE CAREFUL

 There are times when the program has no way to
 discover what you are trying to do. As an example, take
 {{A 1 2}}. What is that? A 1x3 matrix or a zero-degree
 polynomial with the idependent coefficient equal to the
 symbolic polynomial {A 1 2}? There's no way to discover.
 The program will, in those cases, take the first choice.
 So DO NOT try to add {{A 1 2}} with {{1 2}}, because the
 program will think that you're trying to add two
 matrices. Do {0 {A 1 2}} + {0 {1 2}} instead. This will
 work correctly.

 USER MODE

 In the library commands description, sometimes I say
 that you can assign some command to some key. When I say
 that, I mean that you can STAY IN USER MODE and continue
 to use the keys as if none command were assigned to them
 if the arguments do not match those of the library
 command.

 GX COMPATIBILITY

 As discovered by Michael Guravage, MATH may not work
 correctly if installed on a RAM card that lies on the
 second slot of a GX calculator. So, if you have a GX,
 install MATH on the main memory or on the first slot.

 page 5

 MATH DATA TYPES

 There are basically two kinds of data that you can use
 with MATH library: numerical and symbolic data. You
 represent numerical data with the "array" format of the
 HP48. Symbolic data is represented just replacing the
 "[]"s by "{}". Being that way, a numerical matrix for
 MATH have exactly the same format as for the calculator.
 Examples:

 numerical 2x2 matrix: [[1 2][3 4]]
 symbolic 2x2 matrix: {{ 1 2 }{ 3 A }}

 Polynomials are represented as vectors, and the vector
 elements are the coefficients of the polynomial.
 Example: the polynomial x^3+2*x+3, for MATH, is [1 0 2
 3]. Note that the polynomial variable is unknown! If you
 have symbolic coefficients you must use the symbolic
 format. Example: x^3+A*x^2+2*x+3 is represented as { 1 A
 2 3 }.

 page 6

 VERSION DIFFERENCES

 Version 1.00 and 1.10

 Now the library is GX compatible! When the program
 detects that it's being used on a GX, MRoot dispatches
 to the GX own PROOT.

 In version 1.0 MINV did not work correctly for 1x1
 matrices. Now it does.

 The program A<->L now works correctly when there are
 complex numbers involved.

 Some differences in MEVL, e.g. it can be used as PR|L
 for matrices. It also dispatches to the system EVAL when
 arguments are not matching.

 Many commands now dispatch to some system commands when
 arguments are not matching. Here are the list of the
 commands: MRoot dispatches to SQRT, MEVL dispatches to
 EVAL, MFCTP dispatches to XROOT and MDER dispatches to
 "delta". I made this so I can assign these commands to
 the corresponding system keys and I can stay in user
 mode to perform normal calculations.

 ADPOL accepts any combination of lists/polynomials and
 execute MFCTP on the arguments that are polynomials.

 When MFCTP receives a list it does nothing.

 A lot of changes in FRPRC. You better read the command
 description.

 Version 1.10 and 1.20

 MMLT and MDIV now works normally, i.e., there are no
 more "element-by-element" product and MDIV does not
 accept that Matrix/Array stuff.

 MMLT now can multiply a symbolic polynomial by a matrix.
 In earlier versions this was not allowed.

 MDIV now can divide a symbolic matrix by anything but an
 array. When dividing a polynomial by a zero-degree
 polynomial the answer is a single polynomial. If the
 remainder of a polynomial division is a zero-degree
 polynomial, then the remainder is only a number, and not
 a single-element array.

 A correction to the old version manual brings up a new
 capability of MEVL (it was already implemented in

 page 7

 version 1.10, but I forgot to mention it on the old
 version manual :-). If you have a matrix of polynomials
 you can execute MEVL exactly as if you have a
 polynomial, i.e., every polynomial in the matrix will be
 evaluated for the given point (and the point can be
 anything: a matrix, another polynomial and so on).

 EVECT and EVALUES commands added.

 MADD and MSUB return numerical arrays when you add or
 subtract a complex number from a matrix. In earlier
 versions they return symbolic matrices.

 Now the following commands test the matrix dimensions:
 MADD, MSUB, MMLT, MDET and MINV. The test is not
 complete, but make this commands much safer to use.

 MEVL now treats a real number as a zero-degree
 polynomial.

 ZTRIM is now transparent to objects that are not
 polynomials. When used on a zero-degree polynomial, the
 answer is the zero-degree coefficient. ZTRIM can also be
 used on a matrix.

 Version 1.20 and 1.21

 Some machine code added.

 A<->L now accepts a list with symbolic elements. The
 program computes the numerical value of the symbolic
 elements before the transformation.

 Version 1.21 and 1.30

 MADJ command added, so now you don't need to invert a
 matrix in order to compute its adjoint. MINOR command
 added to compute the minor matrix.

 Some utility commands added: MGET, MPUT, Row-, Row+,
 Col- and Col+. These commands follows the same syntax as
 for SX/GX GET and PUT, and Row+- & Col+- follows the
 same syntax as for GX ROW+- and COL+-, so now you can
 make a LOT of programs to deal with symbolic matrices.

 MINV is now much faster, because now the matrix
 determinant is computed in a very fast way. In fact, the
 determinant of the matrix M is equal to the first row of
 adj(M) times the first column of M!

 page 8

 Version 1.30 and 2.00

 SPEED! Now MATH is the fastest polynomial math program
 for the HP48 series! A lot of numerical polynomial tasks
 are performed 99% in machine language. The speed is
 improved by 1000% in many operations, such as MADD and
 MMLT (take a look at MPWR). Because of the internal
 representation for polynomials (arrays of long
 complexes), the precision is greater too! BELIEVE IT OR
 NOT, MATH's MEVL running under a version D HP48-SX is
 MUCH FASTER THAN HP48-G's PEVAL !!! MADD for arrays is
 FASTER THAN HP'S "+" !!!

 SIZE! MATH 2.00 keeps almost the same size as MATH 1.30,
 thanks to the new MRoot program. The new MRoot is a
 little bit slower than the old one (the old and good
 PROOT), but it's a good roots program too, and memory is
 at a premium in my "dinosaur" HP48-SX version D. The new
 MRoot can take the roots of polynomials with complex
 coefficients! If you have a G(X), then MRoot will
 dispatch to PROOT and change the output format to a
 list.

 MEVL can evaluate the nth-derivative (for any "n") of a
 polynomial as well!

 New commands added for numerical and symbolic matrices:
 RSwp, CSwp, MSIZE and MTRACE. EVECT has gone, and
 SVALUES (singular values) takes its place.

 Some corrections on Row+ and Col+. MGET is now user-
 proof (i think :-). MDET internally improved. It will
 test for zero pivots, so if your matrix have many zeros
 on the first row the program will execute A LOT faster.
 MDIV now divides complex coefficient polynomials.

 Some polynomial tasks will return simplified
 polynomials, if possible, by transforming complex
 polynomials into real ones. Example: If you execute MADD
 with [(1,1) (0,0)] and [(1,-1) (2,0)], you will get
 [2 2] instead of [(2,0) (2,0)].

 MROOT now is MRoot (there is a MROOT command in G
 series). But don't worry, your programs will keep
 working, 'cause the XLIB number remains the same.

 MGET and MPUT now accepts lists with symbolic elements.
 The programs will compute the numerical value of the
 symbolic elements.

 page 9

 Version 2.00 and 2.10

 Bug in SVALUES fixed, and now it works :-)

 MEVL now can compute the nth derivative of a symbolic
 polynomial too. MDER now passes automatically through
 symbolic matrices. MDIV now can divide a numerical
 polynomial by a symbolic element, and can divide complex
 coefficients polynomials.

 Col+ now returns a numerical matrix if the input
 arguments are two numerical matrices.

 All commands (except PR|L) now works correctly with
 LASTARG. MEVL will keep only the first element of the
 stack. However, this feature eated more than a half
 kbyte of your precious memory.

 page 10

 SPEED MARKS (version 2.00)

 I made some speed measures to compare MATH 1.30 and
 2.00, and here are the results. The tests were made on
 my HP48 version D with 32k. Only MATH was on the calc,
 so there were about 20k free. All LAST flags were
 enabled (thus slowing the speed). When two lines are
 presented for the same test, then the first line
 contains the results for real polynomial tests, and the
 second contains the results for complex polynomial
 tests. Note that my calculator is an SX, so if you have
 a GX you'll be even faster!

 +----------------+---------+---------+-----------+
 | command | v1.30 | v2.00 | improv (%)|
 +----------------+---------+---------+-----------+
 | V2 V1 MADD | 1.870 | 0.096 | 1847.92 |
 | | 2.084 | 0.101 | 1963.37 |
 +----------------+---------+---------+-----------+
 | V2 V1 MSUB | 1.948 | 0.173 | 1026.01 |
 | | 2.181 | 0.188 | 1060.17 |
 +----------------+---------+---------+-----------+
 | V2 V1 MMLT | 34.405 | 1.004 | 3326.79 |
 | | 48.726 | 1.202 | 3953.74 |
 +----------------+---------+---------+-----------+
 | V2 V1 MDIV | 23.925 | 3.093 | 673.52 |
 | | xxxxxx | 7.130 | xxxxxx |
 +----------------+---------+---------+-----------+
V1 2 MPWR	103.658	0.575	17927.47
	145.514	0.820	17645.61
[1 1] 10 MPWR	25.690	0.617	4063.70
+----------------+---------+---------+-----------+			
V2 (1+j) MEVL	1.709	0.177	865.54
	1.803	0.172	948.26
+----------------+---------+---------+-----------+			
V2 MDER	1.033	0.707	46.11
+----------------+---------+---------+-----------+			
FRPRC	87.067	18.385	373.57
+----------------+---------+---------+-----------+			
V1 MRoot	10.051	11.151	-9.86
	xxxxxx	32.799	xxxxx
+----------------+---------+---------+-----------+			
V1 MFCTP	10.278	11.388	-9.75
+----------------+---------+---------+-----------+			
V1roots MCOEF	11.757	0.849	1284.81
+----------------+---------+---------+-----------+			
M1 MDET	181.594	71.468	154.09
+----------------+---------+---------+-----------+			
M1 MINV	903.567	196.638	359.74
+----------------+---------+---------+-----------+			
M2 EVALUES	189.759	27.816	617.06
 +----------------+---------+---------+-----------+

 page 11

 The vectors and matrices used for the test were:

 V1real = [1 2 3 4 5 6 7 8 9 10]
 V1comp = (1,1)*V1real
 V2 = V1 ^ 2

 [[1 2 0 4 0]
 [5 3 4 0 6]
 M2 = [0 2 5 6 2]
 [0 3 2 -1 -1]
 [-5 3 1 -2 8]]

 M1 = [1 0] - M2

 FRPRC test: in normal mode, numerator = [100 0] and
 denominator = { [1 2 5] 3 [1 1] 3 [1 2] }

 Speed improvement = 100*(1.30/2.00 - 1)

 MATH speed versus HP speed :-)

 Just kidding, I love HP calcs, but you must look at
 this! Here are some speed comparsions between MATH
 commands and the similar HP commands. The HP used for
 the test was a version R HP48-G. The polynomials used
 were:

 real: P=[1 1] 40 MPWR
 cmplx: C=[1 1] 40 MPWR (1,1) *

 All results are in seconds. Take a special look at the
 comparsion between PEVAL and MEVL.

 +-------+-------+
 | HP48G | MATH |
 +-----------------------+-------+-------+
 | P P + vs MADD | 0.275 | 0.134 |
 +-----------------------+-------+-------+
 | C C + vs MADD | 0.649 | 0.147 |
 +-----------------------+-------+-------+
 | P (1,1) PEVAL vs MEVL | 1.080 | 0.218 |
 +-----------------------+-------+-------+
 | C (1,1) PEVAL vs MEVL | 1.338 | 0.227 |
 +-----------------------+-------+-------+

 Please note two things:

 i. MATH's MADD is faster AND more versatile than HP's
 command "+" for vectors: when adding two complex vectors
 (polynomials for MATH), MADD will return a real one if
 possible.

 ii. MATH's MEVL is faster AND more versatile than HP's
 command PEVAL: MEVL can evaluate the polynomial

 page 12

 derivatives AND will return a real value if possible
 (i.e. if the imaginary part of the result is zero).

 page 13

 LIBRARY COMMANDS DESCRIPTION

 In this section a complete description of the library
 commands will be given. You can use any of the library
 commands to make your own programs in user or SysRPL.
 What I'm trying to say is that I will NOT change the
 library ID or the XLIB numbers. The only command that
 can have it's XLIB number changed is ABOUT.

 MADD

 Takes two arguments and try to add them. If one argument
 is a matrix M and the other is anything but a matrix
 (x), the program will perform the sum xI+M. If x is a
 real number and M is a numerical matrix, the answer will
 be a numerical matrix, as expected. Anything is allowed
 (matrices of matrices of matrices of polynomials, and so
 on...).

 If you assign this program to the "+" key, be aware that
 the following operation won't be carried out in the USER
 mode:

 { 1 2 3 } 3 + ---> { 1 2 3 3 }

 Instead, you'll get { 1 2 6 }.

 MSUB

 Takes two arguments and try to subtract them. If one
 argument is a matrix M and the other is anything but a
 matrix (x), the program will perform xI-M or M-xI (it
 will do what you asked for). Anything is allowed.

 This program can be assigned to the key "-".

 MMLT

 Multiplication in numerical/symbolic form. You can do
 almost anything you want, e.g. multiply a numerical
 matrix by a symbolic polynomial, or a numerical
 polynomial by a symbolic polynomial. This program can be
 assigned to the key "*".

 MDIV

 Divides level 2 object by level 1 object. You cannot
 divide a matrix by an array, and level 1 object cannot
 be a symbolic matrix. If the arguments are not matching,
 the command dispatches to the HP own "/". When dividing
 a polynomial by another, the answer will be the result
 of the division on level 2 and the remainder on level 1.
 If the remainder is a zero-degree polynomial, it will be
 given as a number. If you divide a polynomial by a zero-

 page 14

 degree polynomial, the answer will be a single
 polynomial (obviously the remainder will be zero).

 MPWR

 Takes an object in level 2 and raises it to the nth
 power, where n is the value of the real number in level
 1. This program can be assigned to the user key "y^x"
 and you won't need to leave the user mode for the normal
 operation of the key.

 MRoot

 Takes a numerical polynomial in level 1 with real or
 complex coefficients and returns a list with the
 polynomial roots. If the polynomial have zero degree,
 then MRoot returns an empty list.

 You can assign this command to the user key SQRT.

 MFCTP

 Takes a polynomial (like MRoot, but only real
 coefficients are allowed) in level 1 and factorizes it,
 returning the list of the polynomials. If the argument
 is a list the program will simply do nothing. Note that
 the leading coefficient of the factored polynomial will
 be ONE no matter the value of the leading coefficient of
 the original polynomial.

 You can assign this command to the key XROOT.

 MCOEF

 Takes a list of roots in level 1 and returns the
 polynomial that have these roots. All the roots must be
 numerical, and they must correspond to a real
 coefficient polynomial. The leading coefficient of the
 resulting polynomial will be always one.

 MEVL

 Takes a polynomial (or a matrix of polynomials) P in
 level 2 (matrices of matrices of polynomials are
 allowed, and so on) and any object x in level 1 and
 computes P(x). P can be symbolic or numerical, and x can
 be anything (another polynomial or even a matrix). If
 the object on level 2 is a real number, MEVL will simply
 drop the level 1 object.

 If you want to evaluate the nth-derivative of a
 polynomial, add a hex-string with the value of "n" in
 the arguments. Example:

 page 15

 3: [1 2 3 4 5]
 2: 12
 1: # 3d

 MEVAL will compute the value of the 3rd derivative of
 the polynomial [1 2 3 4 5] at the point 12. It will
 return, in this case,

 1: 300

 You can assign this command to the key EVAL, but be
 aware -> this is a "strange" command. Strange things can
 happen if you try to use MEVL as the HP EVAL when there
 are more than one element in the stack (e.g., a list of
 variables on level 2 and anything on level 1), because
 MEVL will think that the list is a polynomial, and so
 on...

 If you have a G(X), please note that MEVL is FASTER THAN
 PEVAL.

 MDER

 Takes a polynomial in level 1 and computes its
 derivative. The polynomial can be symbolic.

 You can assign this command to the derivative key.

 ZTRIM

 Removes the left zeros of a polynomial or a matrix of
 polynomials. If the object is not a polynomial, nothing
 happens. If the result is a zero-degree polynomial, then
 ZTRIM will return only the first element of this
 polynomial.

 MDET

 Calculate the determinant of a square matrix. The matrix
 can contain anything: polynomials, symbolic elements or
 even matrices(!).

 MINV

 Calculate the inverse of a square matrix. You can have
 anything on the matrix. The program returns a numerical
 matrix if the input is a numerical matrix. If the input
 is a symbolic matrix, the program returns, in level 2,
 the adjoint matrix and, in level 1, the determinant. As
 we know, the inverse is: adjoint matrix divided by the
 determinant. Uses Faddeev method for symbolic matrices.

 You can assign this command to the key "1/x".

 page 16

 MTRN

 Calculate the transposed matrix. The matrix can be
 either symbolic or numerical.

 MIDN

 Creates an identity matrix with the dimension of level 1
 and with the diagonal elements equal to the level 2
 element.

 A<->L

 Transform a symbolic/numerical poly/matrix into a
 numerical/symbolic poly/matrix. The program will pass
 the HP-command ->NUM to every element on a symbolic
 representation, so now you can do things like

 { 1 '1/3' } ---> A<->L ---> [1 .3333...]

 PR|L

 Given a list on level 2 and a program on level 1,
 executes the program on every element of the list. This
 program has a maximum depth of 2. What does it means?
 The "depth" of PR|L is the "maximum recursivity depth"
 of the program. So a "depth" of 2 means that PR|L will
 pass the program through lists that are in the original
 lists, but not through lists into these ones. See the
 following examples:

 { 2 } << 2 + >> PR|L { 4 }
 {{ 2 }} << 2 + >> PR|L {{ 4 }}
 {{{ 2 }}} << 2 + >> PR|L {{{ 2 2 }}}

 If you want to override this depth limit, simply add one
 more parameter (a binary integer or a hex string)
 containing the maximum depth wanted. Example:

 {{{ 2 }}} << 2 + >> #3 PR|L {{{ 4 }}}

 FRPRC

 There are two types of partial fractions: the normal
 type and the "Z-type". In the normal type, the
 numerators' degrees are smaller than the denominators'
 degrees. In the "Z-type", the numerators can have the
 same degree as the denominators (very useful for Z-
 transforms). User flag 31 control the current mode of
 operation. If flag 31 is SET, then the normal type is
 used, otherwise "Z-type" is used.

 page 17

 Level 1 can be a numerical polynomial or a list of
 numerical polynomials representing Q. Example: if
 Q=(x+1)(x+2)x^2 the list of level 1 could be:

 { [1 1] [1 2] [1 0] 2 } or
 [1 3 2 0 0]

 You must note that the leading coefficient of the
 denominator polynomial MUST BE ONE! If this is not the
 case, you must re-arrange the polynomials to get the
 correct denominator polynomial. Complete example in
 normal type (don't forget to set flag 31): calculate the
 partial fractions of

 (x+1)/((x+4)^2 * (x+2) * x)

 2: [1 1]
 1: { [1 4] 2 [1 2] [1 0] }

 the output of FRPRC is

 1: {{ [-.15625] [1 4] 1 }
 { [-.375] [1 4] 2 }
 { [.125] [1 2] 1 }
 { [.03125] [1 0] 1 }}

 so the answer is

 -.15625 .375 .125 .03125
 -------- - -------- + ----- + ------
 (x+4) (x+4)^2 x+2 x

 If you want to use the "Z-type" partial fractions, you
 must first clear flag 31. To use this mode of operation
 there is one constraint to the numerator: it must have a
 degree higher than zero, and the zero-order coefficient
 must be zero. If you think that that's too bad, remember
 that when you calculate the step response in Z you must
 multiply the numerator by Z. So, if you use this mode to
 work in Z-domain, this constraint will be not a problem
 at all. The answer will always have its numerators with
 the zero-order coefficients equal to zero (better for
 inverse Z-transforms). Complete example: calculate the
 partial fractions of

 z/(z-1)(z-.5)

 With flag 31 cleared, the stack must be

 2: [1 0]
 1: { [1 -1] [1 -.5] }

 The program FRPRC will give you the answer:

 page 18

 1: {{ [2 0] [1 -1] 1 }
 { [-2 0] [1 -.5] 1 }}

 So the answer is

 2z 2z
 ---- - ----
 z-1 z-.5

 SOME DIFFERENCES FROM MATH 1.00: If you already have
 MATH 1.00, you'll soon notice that complete answers are
 always given. I did that because it seems to be better
 for the user and certainly it is better to make programs
 that use FRPRC. The old style FRPRC that takes a binary
 integer in level 1 is not allowed anymore.

 A bug or a limitation? :-) Try to, whenever possible,
 use the list format for the denominator. If you don't,
 strange things may happen, as discovered by Tyson
 Leistiko. Example: try to perform, in the normal mode,
 the following partial fractions:

 (a) -> [1] / [1 8 13 6]
 (b) -> [1] / { [1 6] [1 1] 2 }

 As you will note, the answers are different. Why?
 Because MRoot isn't precise enough to identify the
 multiple roots in -1 in the polynomial [1 8 13 6].

 ADPOL

 Make a FRPRC list from lists/polynomials.
 Examples:

 2: { [1 0] }
 1: [1 0] -> ADPOL -> 1: { [1 0] 2 }

 2: [1 2 1]
 1: [1 2 5] -> ADPOL -> 1: { [1 2 5] 1 [1 1] 2 }

 Note: one argument at least must be a numerical
 polynomial.

 STDL

 Prepares a list to be used by FRPRC (the program FRPRC
 automatically calls this program, so you will only use
 it if you will build your own programs).

 Example:

 1: { [1 0] [1 2] 2 [1 0] 3 [1 2] 5 [1 4] }

 page 19

 STDL gives

 1: { [1 0] 4 [1 2] 7 [1 4] 1 }

 EVALUES

 Takes a numerical square matrix (real or complex) on
 level 1 and returns the list of the Eigenvalues of the
 matrix. Example:

 1: [[3 -1 1]
 [-1 5 -1]
 [1 -1 3]]

 EVALUES will return

 1: { 2 3 6 }

 This program uses Faddeev's method to find the
 characteristic polynomial of the matrix and then
 executes MRoot. This program is slower than GX's EGVL.
 So, if you have a GX, you may want to use GX's own
 command. The fact is that an SX owner can build his
 programs using MATH's EVALUES and the programs will run
 without modification on any GX with MATH 1.20 or newer
 installed.

 SVALUES

 Takes a numerical matrix (real or complex) on level 1
 and returns the list of the singular values of the
 matrix. Example:

 1: [[3 -1 1]
 [-1 5 -1]]

 SVALUES will return

 1: { 2.63787896258 5.57149841414 }

 MADJ

 Computes the adjoint matrix. One more time, the input
 matrix can have anything as its elements. Uses Faddeev's
 method.

 MINOR

 Computes the minor matrix. You must put in level 3 the
 matrix, in level 2 the row and in level 1 the column to
 be removed. Example:

 page 20

 3: { { 1 2 } { c d } { f 5 } }
 2: 2
 1: 2

 MINOR will give you

 1: { { 1 } { f } }

 MGET

 Pick an element from a matrix/polynomial. As in MPUT,
 symbolic matrices can have ANY NUMBER OF dimensions! The
 command follows the same syntax as the HP command GET.
 Example:

 2: { { { { A B } } { { C D } } } }
 1: { 1 2 }

 MGET will give

 1: { { C D } }

 MPUT

 Puts an element into a matrix/polynomial. Note that only
 numbers can be putted into numerical matrices. Another
 important thing to note is that symbolic matrices can
 have ANY NUMBER OF dimensions, and not only two! The
 command follows the same syntax as the HP command PUT.
 Let's do an example with a symbolic matrix with four
 dimensions:

 3: { { { { 1 2 } } { { 3 4 } } } }
 2: { 1 2 1 2 }
 1: A

 MPUT will give

 1: { { { { 1 2 } } { { 3 A } } } }

 WARNING: In this version MPUT does not perform ANY tests
 on the giving index! If you give an invalid index you
 may (and certainly will) loose your memory!

 Row-

 Removes a row from a matrix. The program returns in
 level 2 the modified matrix and, in level 1, the removed
 row. If the original matrix has only one row, the
 program will return the unity matrix [[1]] or {{1}}.
 Example:

 page 21

 2: { { A B } { C D } { E F } }
 1: 2

 Row- will give you

 2: { { A B } { E F } }
 1: { C D }

 Row+

 Puts one or more rows into a matrix. You must put in
 level 3 the original matrix, in level 2 the row (or
 matrix of rows) and in level 1 the line where the rows
 will be inserted. If the number in level 1 is greater
 than the matrix dimensions, then the row(s) will be
 inserted at the end of the matrix. Example:

 3: [[1 2] [3 4]]
 2: { A B }
 1: 2

 Row+ will give

 1: { { 1 2 } { A B } { 3 4 } }

 Another example:

 3: { { 1 2 } { C 4 } { x y } }
 2: { { a b } { c d } }
 1: 3

 Row+ will give

 1: { { 1 2 } { C 4 } { a b } { c d } { x y } }

 Note that any combination of symbolic/numerical matrices
 are allowed.

 Col-

 Removes a column from a matrix. The program returns in
 level 2 the modified matrix and, in level 1, the removed
 column. If the original matrix has only one column, the
 program will return the unity matrix [[1]] or {{1}}.
 Example:

 2: { { A B } { C D } { E F } }
 1: 2

 Col- will give you

 page 22

 2: { { A } { C } { E } }
 1: { B D F }

 Col+

 Puts one or more columns into a matrix. You must put in
 level 3 the original matrix, in level 2 the column (or
 matrix of columns) and in level 1 the line where the
 columns will be inserted. If the number in level 1 is
 greater than the matrix dimensions, then the column(s)
 will be inserted at the end of the matrix. Example:

 3: [[1 2] [3 4]]
 2: { A B }
 1: 2

 Col+ will give

 1: { { 1 A 2 } { 3 B 4 } }

 Another example:

 3: { { 1 2 } { C 4 } { x y } }
 2: { { a b } { c d } { e f } }
 1: 3

 Col+ will give

 1: { { 1 2 a b } { C 4 c d } { x y e f } }

 Note that any combination of symbolic/numerical matrices
 are allowed.

 RSwp

 Exchange (swap) two rows of a matrix. The level 3 must
 contain the matrix and the levels 2 and 1 the index of
 the rows to be swapped.

 CSwp

 Exchange (swap) two columns of a matrix. The level 3
 must contain the matrix and the levels 2 and 1 the index
 of the columns to be swapped.

 MSIZE

 No more SIZE EVAL for polynomials and vectors! MSIZE
 will give you the size of the object in level 1. If the
 object is a polynomial (or a vector), then it will
 return just a number. If it is a matrix, MSIZE will
 return a list with the number of rows and columns.

 page 23

 MTRACE

 Computes the trace of a square matrix, i.e., the sum of
 the elements of the matrix diagonal. Of course it will
 work for symbolic matrices ;-)

 ABOUT

 Shows my name !!! :-)

 page 24

 UTILITY PROGRAMS

 Included with the package are some utility programs.
 Here is the description:

 MVID

 If you do not use my Control Package, then this program
 can be useful. Execute CNVID once or twice, until
 "(S/Z)MOD" appear on the top of the screen. The
 annunciators indicate what is the current type of
 partial fractions and the current MATH version.

 MFLAG

 Use MFLAG to change the type of partial fractions
 performed without have to (re)set the flag 31 by hand.
 Again, if you have Control Package you'll not need this
 program.

 page 25

 APPLICATION NOTES

 MEVL hints and suggestions

 This program can be used as PR|L if you have a symbolic
 matrix in level 2 and a program in level 1. In this
 case, the program will be evaluated for every matrix
 element, just as PR|L does.

 This program can be very useful for other tasks.
 Example: if you have the polynomial x^3 + 2*x^2 + 3 and
 want to make the variable substitution x=s+1, you can
 get the polynomial in s by typing:

 2: [1 2 0 3]
 1: [1 1]

 Now you execute MEVL (evaluates the polynomial when x is
 another polynomial) and get the answer:

 1: [0 1 5 7 6]

 Of course you can get the polynomial in x back by
 evaluating the s polynomial at [1 -1]

 1: [0 0 1 2 0 3]

 The leading zeros appears due to the evaluating
 algorithm. The answer is right anyway...

 Another thing that you can do with MEVL is to transform
 a numerical polynomial into a symbolic polynomial.
 Example:

 2: [1 2 3]
 1: 'S'

 MEVL will return '(S+2)*S+3'. Beside the fact that
 that's an "unusual" format for symbolic polynomials, the
 answer is right. And, as you see, this format is faster
 to evaluate and give better results than the "standard"
 format.

 Interesting application of A<->L

 A suggestion: when you get the inverse of some matrix,
 use A<->L and evaluate the program << ->Q >> over it (if
 you have a G series calculator you can simply execute
 the command ->Q). As an example, try to do this with the
 matrix [[3 1][-4 1]]. The symbolic matrix will be much
 better to visualize.

 page 26

 As you may note, the inverse procedure can be useful
 when entering matrices like [[1/3 1] [0 1/7]].
 Simply enter {{ '1/3' 1 }{ 0 '1/7' }} (some may prefer
 the matrix editor to this method). After that, use A<->L
 and get the numerical matrix.

 Rank of a matrix

 If you have a GX you have a command to compute the rank.
 But if you haven't, you can compute the rank by checking
 the number of non-zero singular values of the matrix.
 The following program will return the rank of a matrix:

 << SVALUES ZTRIM SIZE >>

 Computing the determinant in a faster way

 MDET now tests for zero pivots. So, if you have, on your
 matrix, a row with many zeros, swap (using RSwp) this
 row and the first. The determinant will be computed in a
 faster way. But don't forget to negate the result
 accordingly !

 Successive divisions

 This program is very useful, for example, if you want to
 simulate a digital system. It takes the numerator from
 the 3rd level, the denominator from the 2nd level and
 the number of divisions to carry out in the first level.
 The program will return a list with the values of the
 divisions.

 << OVER SIZE [0] SWAP RDM 4 ROLL MADD -> Q N P
 << { } 1 N
 START
 P Q MDIV [1 0] MMLT
 'P' STO 1 GET DUP 1 DISP +
 NEXT
 >>
 >>

 Ackermann's formula

 Suppose you have a SISO system dx=Ax+Bu and you want to
 use the control law u=Kx to place the poles of the
 closed-loop system at a certain location. Then you can
 use Ackermann's formula to compute the gain matrix K.
 This program computes this gain matrix using Ackermann's
 formula and the following data:

 3: A
 2: B
 1: { desired poles (MCOEF format) }

 page 27

 The program will give you the gain matrix K:

 << MCOEF -> A B P
 << B DUP 2 A SIZE 1 GET
 START A ROT * SWAP OVER 1000 Col+
 NEXT INV P A MEVL * SWAP TRN 0 * DUP
 SIZE -1 PUT SWAP *
 >>
 >>

 SPLIT

 The following program, "SPLIT", is a perfect example of
 how much work can be saved by using MATH and a little
 programming. Suppose you have the polynomial fraction
 P(s)/Q(s). Now you make s=jw, and you want to split the
 original fraction into the real and imaginary parts,
 Pr(w)/Qr(w) + j*Pi(w)/Qi(w). The following program will
 do the task: it takes P and Q from the stack and returns
 on level two the list { Pr Qr } and on level one the
 list { Pi Qi }

 << [(0;1) (0;0)] ROT OVER
 MEVL ROT ROT MEVL ZTRIM
 DUP CONJ ROT OVER MMLT ROT
 ROT MMLT RE OVER RE ZTRIM
 OVER 2 ->LIST ROT IM ZTRIM
 ROT 2 ->LIST
 >>

 Example: P(s)/Q(s) = 1/s(s+1)^2

 2: [1]
 1: [1 2 1 0]

 After SPLIT you'll get

 2: { [-2 0 0] [1 0 2 0 1 0 0] }
 1: { [1 0 -1 0] [1 0 2 0 1 0 0] }

 So the decomposition is:

 P(jw) -2 w^2 - 1
 ----- = --------------- + j*---------------
 Q(jw) w^4 + 2*w^2 + 1 w^5 + 2*w^3 + w

 page 28

 A NOTE ON THE METHODS

 MRoot uses Laguerre's method only. It works VERY well
 for polynomials with distinct roots, and is satisfactory
 for polynomials with multiple roots. If you want to know
 more about this method try the book "A SURVEY OF
 NUMERICAL MATHEMATICS", by Young and Gregory. If you
 are using a G(X), then MRoot is simply your PROOT with
 some modifications for interfacing with MATH.

 I use Faddeev's method a lot of times in the program.
 The method can be used to compute a lot of things of a
 matrix: the characteristic polynomial, the adjoint, the
 determinant and all the Eigenvectors. If you want to
 know more about Faddeev's method try the book "MATRIX
 THEORY", by Gantmacher.

 page 29

 THANKS TO

 I want to thank the following people for their support
 and suggestions:

 Andre Hentz (andre@lcmi.ufsc.br)
 Arie Leib Bukinsky (bukinsky@jct.al.il)
 David Peterson (18084DEP@msu.edu)
 Hoa Van Lai (imach@cc.utexas.edu)
 Joe Horn (joehorn@hpcvbbs.external.hp.com)
 Keith Maddock (madd0118@nova.gmi.edu)
 Marcelo Rodrigues (marcelor@acs.bu.edu)
 Marcus Kindel (kindel@inf.ufrgs.br)
 Mario Mozgy (mozgy@diana.zems.etf.hr)
 Michael Guravage (Michael.Guravage@cwi.nl)
 Mika Heiskanen (mheiskan@delta.hu.fi)
 Sean McNamee (seanmc@u.washington.edu)
 Tyson Leistiko (eleistik@elee.calpoly.edu)
 Vinicius Vasconcellos (cello@vortex.ufrgs.br)

 page 30

