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   NOTICE 
 
      * The program MATH 2.10 and the documentation in this 
      file are provided "as is", and are subject to change 
      without notice. I give no warranty of any kind with 
      regarded to the software or documentation, including, 
      but not limited to, the implied warranties of 
      merchantability and fitness for a particular purpose. 
      Cesar Augusto Rorato Crusius shall not be liable for any 
      error or for incidental or consequential damages in 
      connection with the furnishing, performance, or use of 
      this software and documentation. 
 
      * Sale of this material is not allowed without prior 
      written permission of Cesar Augusto Rorato Crusius. 
 
      * Non commercial distribution allowed, provided that the 
      original documentation is preserved unchanged. 
 
      * Modified versions are NOT allowed. 
 
      * Use of any part of MATH library code is not allowed 
      for any purpose, except, of course, when used directly 
      from the MATH library. You cannot reproduce any part of 
      MATH library code for any purpose without prior written 
      permission of Cesar Augusto Rorato Crusius. Use of MATH 
      library in commercial or shareware programs is not 
      allowed. 
 
   This program is Post-Cardware 
 
      * If you use and enjoy this excellent program you MUST 
      send me a post-card. It will not cost too much, and I'll 
      appreciate a lot ! Send it to the following address: 
 
      Cesar Crusius 
      Caixa Postal 5193 
      Trindade - Florianopolis - SC 
      ZIP CODE 88040-970 
 
      this address will work only 'til Jan 1996. So hurry up ! 
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   ABOUT 
 
   As we know, many times we need to perform 
      calculations only with numbers. Many times we need to do 
      polynomial calculus (multiplication, division and so 
      on). Then, if we go one step ahead, we will need to do 
      the same calculations with symbolic polynomials. As we 
      go deeper, we will need many more things: symbolic 
      matrices, matrices of polynomials, matrices of symbolic 
      polynomials, matrices of matrices, et cetera. 
 
   MATH library is the way to do all those things! You 
      can add a symbolic polynomial to a numerical matrix, and 
      you'll get the correct answer: a symbolic matrix. Now 
      you can get the inverse of the symbolic matrix, add a 
      polynomial to this matrix and so on... Let's take an 
      example. Let's do inv(sI-A) (familiar to engineers) in 
      two ways (consider A=[[1 2][3 4]]): 
 
      First method: using the symbol 'S' 
 
      2:'S'            1:{{'S-1' -2}         2:{{'S-4' 2} 
      1:[[1 2] MSUB  {-3 'S-4'}}  MINV     {3 'S-1'}} 
        [3 4]]        1:'(S-1)*(S-4)-6' 
 
      The second method uses [1 0] as a polynomial for 'S': 
 
      2:[1 0]       1:{{[1 -1] -2}     2:{{[1 -4] 2} 
      1:[[1 2] MSUB  {-3 [1 -4]}} MINV     {3 [1 -1]}} 
  [3 4]]        1:[1 -5 -2] 
 
   As you can see, if you work with a lot of calculus 
      THAT is the program you need. 
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   LIMITATIONS and BUGS 
 
   This program is very difficult to debug because of 
      its high complexity. You can do almost everything with 
      the commands. If you try to do something you think is 
      right and get a wrong answer, please notice me and I'll 
      try to fix the bug. Any suggestions are welcome. 
 
   BE CAREFUL 
 
   There are times when the program has no way to 
      discover what you are trying to do. As an example, take 
      {{A 1 2}}. What is that? A 1x3 matrix or a zero-degree 
      polynomial with the idependent coefficient equal to the 
      symbolic polynomial {A 1 2}? There's no way to discover. 
      The program will, in those cases, take the first choice. 
      So DO NOT try to add {{A 1 2}} with {{1 2}}, because the 
      program will think that you're trying to add two 
      matrices. Do {0 {A 1 2}} + {0 {1 2}} instead. This will 
      work correctly. 
 
   USER MODE 
 
      In the library commands description, sometimes I say 
      that you can assign some command to some key. When I say 
      that, I mean that you can STAY IN USER MODE and continue 
      to use the keys as if none command were assigned to them 
      if the arguments do not match those of the library 
      command. 
 
   GX COMPATIBILITY 
 
      As discovered by Michael Guravage, MATH may not work 
      correctly if installed on a RAM card that lies on the 
      second slot of a GX calculator. So, if you have a GX, 
      install MATH on the main memory or on the first slot. 
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   MATH DATA TYPES 
 
      There are basically two kinds of data that you can use 
      with MATH library: numerical and symbolic data. You 
      represent numerical data with the "array" format of the 
      HP48. Symbolic data is represented just replacing the 
      "[]"s by "{}". Being that way, a numerical matrix for 
      MATH have exactly the same format as for the calculator. 
      Examples: 
 
      numerical 2x2 matrix:  [[ 1 2 ][ 3 4 ]] 
      symbolic 2x2 matrix: {{ 1 2 }{ 3 A }} 
 
      Polynomials are represented as vectors, and the vector 
      elements are the coefficients of the polynomial. 
      Example: the polynomial x^3+2*x+3, for MATH, is [1 0 2 
      3]. Note that the polynomial variable is unknown! If you 
      have symbolic coefficients you must use the symbolic 
      format. Example: x^3+A*x^2+2*x+3 is represented as { 1 A 
      2 3 }. 
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   VERSION DIFFERENCES 
 
   Version 1.00 and 1.10 
 
      Now the library is GX compatible! When the program 
      detects that it's being used on a GX, MRoot dispatches 
      to the GX own PROOT. 
 
      In version 1.0 MINV did not work correctly for 1x1 
      matrices. Now it does. 
 
      The program A<->L now works correctly when there are 
      complex numbers involved. 
 
      Some differences in MEVL, e.g. it can be used as PR|L 
      for matrices. It also dispatches to the system EVAL when 
      arguments are not matching. 
 
      Many commands now dispatch to some system commands when 
      arguments are not matching. Here are the list of the 
      commands: MRoot dispatches to SQRT, MEVL dispatches to 
      EVAL, MFCTP dispatches to XROOT and MDER dispatches to 
      "delta". I made this so I can assign these commands to 
      the corresponding system keys and I can stay in user 
      mode to perform normal calculations. 
 
      ADPOL accepts any combination of lists/polynomials and 
      execute MFCTP on the arguments that are polynomials. 
 
      When MFCTP receives a list it does nothing. 
 
      A lot of changes in FRPRC. You better read the command 
      description. 
 
   Version 1.10 and 1.20 
 
      MMLT and MDIV now works normally, i.e., there are no 
      more "element-by-element" product and MDIV does not 
      accept that Matrix/Array stuff. 
 
      MMLT now can multiply a symbolic polynomial by a matrix. 
      In earlier versions this was not allowed. 
 
      MDIV now can divide a symbolic matrix by anything but an 
      array. When dividing a polynomial by a zero-degree 
      polynomial the answer is a single polynomial. If the 
      remainder of a polynomial division is a zero-degree 
      polynomial, then the remainder is only a number, and not 
      a single-element array. 
 
      A correction to the old version manual brings up a new 
      capability of MEVL (it was already implemented in 
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      version 1.10, but I forgot to mention it on the old 
      version manual :-). If you have a matrix of polynomials 
      you can execute MEVL exactly as if you have a 
      polynomial, i.e., every polynomial in the matrix will be 
      evaluated for the given point (and the point can be 
      anything: a matrix, another polynomial and so on). 
 
      EVECT and EVALUES commands added. 
 
      MADD and MSUB return numerical arrays when you add or 
      subtract a complex number from a matrix. In earlier 
      versions they return symbolic matrices. 
 
      Now the following commands test the matrix dimensions: 
      MADD, MSUB, MMLT, MDET and MINV. The test is not 
      complete, but make this commands much safer to use. 
 
      MEVL now treats a real number as a zero-degree 
      polynomial. 
 
      ZTRIM is now transparent to objects that are not 
      polynomials. When used on a zero-degree polynomial, the 
      answer is the zero-degree coefficient. ZTRIM can also be 
      used on a matrix. 
 
   Version 1.20 and 1.21 
 
      Some machine code added. 
 
      A<->L now accepts a list with symbolic elements. The 
      program computes the numerical value of the symbolic 
      elements before the transformation. 
 
   Version 1.21 and 1.30 
 
      MADJ command added, so now you don't need to invert a 
      matrix in order to compute its adjoint. MINOR command 
      added to compute the minor matrix. 
 
      Some utility commands added: MGET, MPUT, Row-, Row+, 
      Col- and Col+. These commands follows the same syntax as 
      for SX/GX GET and PUT, and Row+- & Col+- follows the 
      same syntax as for GX ROW+- and COL+-, so now you can 
      make a LOT of programs to deal with symbolic matrices. 
 
      MINV is now much faster, because now the matrix 
      determinant is computed in a very fast way. In fact, the 
      determinant of the matrix M is equal to the first row of 
      adj(M) times the first column of M! 
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   Version 1.30 and 2.00 
 
      SPEED! Now MATH is the fastest polynomial math program 
      for the HP48 series! A lot of numerical polynomial tasks 
      are performed 99% in machine language. The speed is 
      improved by 1000% in many operations, such as MADD and 
      MMLT (take a look at MPWR). Because of the internal 
      representation for polynomials (arrays of long 
      complexes), the precision is greater too! BELIEVE IT OR 
      NOT, MATH's MEVL running under a version D HP48-SX is 
      MUCH FASTER THAN HP48-G's PEVAL !!! MADD for arrays is 
      FASTER THAN HP'S "+" !!! 
 
      SIZE! MATH 2.00 keeps almost the same size as MATH 1.30, 
      thanks to the new MRoot program. The new MRoot is a 
      little bit slower than the old one (the old and good 
      PROOT), but it's a good roots program too, and memory is 
      at a premium in my "dinosaur" HP48-SX version D. The new 
      MRoot can take the roots of polynomials with complex 
      coefficients! If you have a G(X), then MRoot will 
      dispatch to PROOT and change the output format to a 
      list. 
 
      MEVL can evaluate the nth-derivative (for any "n") of a 
      polynomial as well! 
 
      New commands added for numerical and symbolic matrices: 
      RSwp, CSwp, MSIZE and MTRACE. EVECT has gone, and 
      SVALUES (singular values) takes its place. 
 
      Some corrections on Row+ and Col+. MGET is now user- 
      proof (i think :-). MDET internally improved. It will 
      test for zero pivots, so if your matrix have many zeros 
      on the first row the program will execute A LOT faster. 
      MDIV now divides complex coefficient polynomials. 
 
      Some polynomial tasks will return simplified 
      polynomials, if possible, by transforming complex 
      polynomials into real ones. Example: If you execute MADD 
      with [ (1,1) (0,0) ] and [ (1,-1) (2,0) ], you will get 
      [ 2 2 ] instead of [ (2,0) (2,0) ]. 
 
      MROOT now is MRoot (there is a MROOT command in G 
      series). But don't worry, your programs will keep 
      working, 'cause the XLIB number remains the same. 
 
      MGET and MPUT now accepts lists with symbolic elements. 
      The programs will compute the numerical value of the 
      symbolic elements. 
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   Version 2.00 and 2.10 
 
      Bug in SVALUES fixed, and now it works :-) 
 
      MEVL now can compute the nth derivative of a symbolic 
      polynomial too. MDER now passes automatically through 
      symbolic matrices. MDIV now can divide a numerical 
      polynomial by a symbolic element, and can divide complex 
      coefficients polynomials. 
 
      Col+ now returns a numerical matrix if the input 
      arguments are two numerical matrices. 
 
      All commands ( except PR|L ) now works correctly with 
      LASTARG. MEVL will keep only the first element of the 
      stack. However, this feature eated more than a half 
      kbyte of your precious memory. 
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   SPEED MARKS (version 2.00) 
 
      I made some speed measures to compare MATH 1.30 and 
      2.00, and here are the results. The tests were made on 
      my HP48 version D with 32k. Only MATH was on the calc, 
      so there were about 20k free. All LAST flags were 
      enabled (thus slowing the speed). When two lines are 
      presented for the same test, then the first line 
      contains the results for real polynomial tests, and the 
      second contains the results for complex polynomial 
      tests. Note that my calculator is an SX, so if you have 
      a GX you'll be even faster! 
 
  +----------------+---------+---------+-----------+ 
  | command  |  v1.30  |  v2.00  | improv (%)| 
  +----------------+---------+---------+-----------+ 
  | V2 V1 MADD  |   1.870 |   0.096 |  1847.92 | 
  |   |   2.084 |   0.101 |  1963.37 | 
  +----------------+---------+---------+-----------+ 
  | V2 V1 MSUB  |   1.948 |   0.173 |  1026.01 | 
  |   |   2.181 |   0.188 |  1060.17 | 
  +----------------+---------+---------+-----------+ 
  | V2 V1 MMLT  |  34.405 |   1.004 |  3326.79 | 
  |   |  48.726 |   1.202 |  3953.74 | 
  +----------------+---------+---------+-----------+ 
  | V2 V1 MDIV  |  23.925 |   3.093 |   673.52 | 
  |   |  xxxxxx |   7.130 |   xxxxxx | 
  +----------------+---------+---------+-----------+ 
  | V1 2 MPWR  | 103.658 |   0.575 | 17927.47 | 
  |   | 145.514 |   0.820 | 17645.61 | 
  | [1 1] 10 MPWR  |  25.690 |   0.617 |  4063.70 | 
  +----------------+---------+---------+-----------+ 
  | V2 (1+j) MEVL  |   1.709 |   0.177 |   865.54 | 
  |   |   1.803 |   0.172 |   948.26 | 
  +----------------+---------+---------+-----------+ 
  | V2 MDER  |   1.033 |   0.707 |    46.11 | 
  +----------------+---------+---------+-----------+ 
  | FRPRC   |  87.067 |  18.385 |   373.57 | 
  +----------------+---------+---------+-----------+ 
  | V1 MRoot  |  10.051 |  11.151 |    -9.86 | 
  |   |  xxxxxx |  32.799 |    xxxxx | 
  +----------------+---------+---------+-----------+ 
  | V1 MFCTP  |  10.278 |  11.388 |    -9.75 | 
  +----------------+---------+---------+-----------+ 
  | V1roots MCOEF  |  11.757 |   0.849 |  1284.81 | 
  +----------------+---------+---------+-----------+ 
  | M1 MDET  | 181.594 |  71.468 |   154.09 | 
  +----------------+---------+---------+-----------+ 
  | M1 MINV  | 903.567 | 196.638 |   359.74 | 
  +----------------+---------+---------+-----------+ 
  | M2 EVALUES  | 189.759 |  27.816 |   617.06 | 
  +----------------+---------+---------+-----------+ 
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      The vectors and matrices used for the test were: 
 
      V1real = [ 1 2 3 4 5 6 7 8 9 10 ] 
      V1comp = (1,1)*V1real 
      V2 = V1 ^ 2 
 
    [[ 1 2  0  4  0] 
     [ 5 3  4  0  6] 
      M2 =  [ 0 2  5  6  2] 
     [ 0 3  2 -1 -1] 
     [-5 3  1 -2  8]] 
 
      M1 = [ 1 0 ] - M2 
 
      FRPRC test: in normal mode, numerator = [ 100 0 ] and 
      denominator = { [ 1 2 5 ] 3 [ 1 1 ] 3 [ 1 2 ] } 
 
      Speed improvement = 100*( 1.30/2.00 - 1 ) 
 
   MATH speed versus HP speed :-) 
 
      Just kidding, I love HP calcs, but you must look at 
      this! Here are some speed comparsions between MATH 
      commands and the similar HP commands. The HP used for 
      the test was a version R HP48-G. The polynomials used 
      were: 
 
      real:  P=[1 1] 40 MPWR 
      cmplx: C=[1 1] 40 MPWR (1,1) * 
 
      All results are in seconds. Take a special look at the 
      comparsion between PEVAL and MEVL. 
 
         +-------+-------+ 
         | HP48G | MATH  | 
      +-----------------------+-------+-------+ 
      | P P + vs MADD      | 0.275 | 0.134 | 
      +-----------------------+-------+-------+ 
      | C C + vs MADD      | 0.649 | 0.147 | 
      +-----------------------+-------+-------+ 
      | P (1,1) PEVAL vs MEVL | 1.080 | 0.218 | 
      +-----------------------+-------+-------+ 
      | C (1,1) PEVAL vs MEVL | 1.338 | 0.227 | 
      +-----------------------+-------+-------+ 
 
      Please note two things: 
 
      i. MATH's MADD is faster AND more versatile than HP's 
      command "+" for vectors: when adding two complex vectors 
      (polynomials for MATH), MADD will return a real one if 
      possible. 
 
      ii. MATH's MEVL is faster AND more versatile than HP's 
      command PEVAL: MEVL can evaluate the polynomial 
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      derivatives AND will return a real value if possible 
      (i.e. if the imaginary part of the result is zero). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              page 13



 
 
 
   LIBRARY COMMANDS DESCRIPTION 
 
      In this section a complete description of the library 
      commands will be given. You can use any of the library 
      commands to make your own programs in user or SysRPL. 
      What I'm trying to say is that I will NOT change the 
      library ID or the XLIB numbers. The only command that 
      can have it's XLIB number changed is ABOUT. 
 
   MADD 
 
      Takes two arguments and try to add them. If one argument 
      is a matrix M and the other is anything but a matrix 
      (x), the program will perform the sum xI+M. If x is a 
      real number and M is a numerical matrix, the answer will 
      be a numerical matrix, as expected. Anything is allowed 
      (matrices of matrices of matrices of polynomials, and so 
      on...). 
 
      If you assign this program to the "+" key, be aware that 
      the following operation won't be carried out in the USER 
      mode: 
 
      { 1 2 3 } 3 + ---> { 1 2 3 3 } 
 
      Instead, you'll get { 1 2 6 }. 
 
   MSUB 
 
      Takes two arguments and try to subtract them. If one 
      argument is a matrix M and the other is anything but a 
      matrix (x), the program will perform xI-M or M-xI (it 
      will do what you asked for). Anything is allowed. 
 
      This program can be assigned to the key "-". 
 
   MMLT 
 
      Multiplication in numerical/symbolic form. You can do 
      almost anything you want, e.g. multiply a numerical 
      matrix by a symbolic polynomial, or a numerical 
      polynomial by a symbolic polynomial. This program can be 
      assigned to the key "*". 
 
   MDIV 
 
      Divides level 2 object by level 1 object. You cannot 
      divide a matrix by an array, and level 1 object cannot 
      be a symbolic matrix. If the arguments are not matching, 
      the command dispatches to the HP own "/". When dividing 
      a polynomial by another, the answer will be the result 
      of the division on level 2 and the remainder on level 1. 
      If the remainder is a zero-degree polynomial, it will be 
      given as a number. If you divide a polynomial by a zero- 
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      degree polynomial, the answer will be a single 
      polynomial (obviously the remainder will be zero). 
 
   MPWR 
 
      Takes an object in level 2 and raises it to the nth 
      power, where n is the value of the real number in level 
      1. This program can be assigned to the user key "y^x" 
      and you won't need to leave the user mode for the normal 
      operation of the key. 
 
   MRoot 
 
      Takes a numerical polynomial in level 1 with real or 
      complex coefficients and returns a list with the 
      polynomial roots. If the polynomial have zero degree, 
      then MRoot returns an empty list. 
 
      You can assign this command to the user key SQRT. 
 
   MFCTP 
 
      Takes a polynomial (like MRoot, but only real 
      coefficients are allowed) in level 1 and factorizes it, 
      returning the list of the polynomials. If the argument 
      is a list the program will simply do nothing. Note that 
      the leading coefficient of the factored polynomial will 
      be ONE no matter the value of the leading coefficient of 
      the original polynomial. 
 
      You can assign this command to the key XROOT. 
 
   MCOEF 
 
      Takes a list of roots in level 1 and returns the 
      polynomial that have these roots. All the roots must be 
      numerical, and they must correspond to a real 
      coefficient polynomial. The leading coefficient of the 
      resulting polynomial will be always one. 
 
   MEVL 
 
      Takes a polynomial (or a matrix of polynomials) P in 
      level 2 (matrices of matrices of polynomials are 
      allowed, and so on) and any object x in level 1 and 
      computes P(x). P can be symbolic or numerical, and x can 
      be anything (another polynomial or even a matrix). If 
      the object on level 2 is a real number, MEVL will simply 
      drop the level 1 object. 
 
      If you want to evaluate the nth-derivative of a 
      polynomial, add a hex-string with the value of "n" in 
      the arguments. Example: 
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      3: [ 1 2 3 4 5 ] 
      2: 12 
      1: # 3d 
 
      MEVAL will compute the value of the 3rd derivative of 
      the polynomial [ 1 2 3 4 5 ] at the point 12. It will 
      return, in this case, 
 
      1: 300 
 
      You can assign this command to the key EVAL, but be 
      aware -> this is a "strange" command. Strange things can 
      happen if you try to use MEVL as the HP EVAL when there 
      are more than one element in the stack (e.g., a list of 
      variables on level 2 and anything on level 1), because 
      MEVL will think that the list is a polynomial, and so 
      on... 
 
      If you have a G(X), please note that MEVL is FASTER THAN 
      PEVAL. 
 
   MDER 
 
      Takes a polynomial in level 1 and computes its 
      derivative. The polynomial can be symbolic. 
 
      You can assign this command to the derivative key. 
 
   ZTRIM 
 
      Removes the left zeros of a polynomial or a matrix of 
      polynomials. If the object is not a polynomial, nothing 
      happens. If the result is a zero-degree polynomial, then 
      ZTRIM will return only the first element of this 
      polynomial. 
 
   MDET 
 
      Calculate the determinant of a square matrix. The matrix 
      can contain anything: polynomials, symbolic elements or 
      even matrices(!). 
 
   MINV 
 
      Calculate the inverse of a square matrix. You can have 
      anything on the matrix. The program returns a numerical 
      matrix if the input is a numerical matrix. If the input 
      is a symbolic matrix, the program returns, in level 2, 
      the adjoint matrix and, in level 1, the determinant. As 
      we know, the inverse is: adjoint matrix divided by the 
      determinant. Uses Faddeev method for symbolic matrices. 
 
      You can assign this command to the key "1/x". 
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   MTRN 
 
      Calculate the transposed matrix. The matrix can be 
      either symbolic or numerical. 
 
   MIDN 
 
      Creates an identity matrix with the dimension of level 1 
      and with the diagonal elements equal to the level 2 
      element. 
 
   A<->L 
 
      Transform a symbolic/numerical poly/matrix into a 
      numerical/symbolic poly/matrix. The program will pass 
      the HP-command ->NUM to every element on a symbolic 
      representation, so now you can do things like 
 
      { 1 '1/3' } ---> A<->L ---> [ 1 .3333... ] 
 
   PR|L 
 
      Given a list on level 2 and a program on level 1, 
      executes the program on every element of the list. This 
      program has a maximum depth of 2. What does it means? 
      The "depth" of PR|L is the "maximum recursivity depth" 
      of the program. So a "depth" of 2 means that PR|L will 
      pass the program through lists that are in the original 
      lists, but not through lists into these ones. See the 
      following examples: 
 
      { 2 }     << 2 + >> PR|L { 4 } 
      {{ 2 }}   << 2 + >> PR|L {{ 4 }} 
      {{{ 2 }}} << 2 + >> PR|L {{{ 2 2 }}} 
 
      If you want to override this depth limit, simply add one 
      more parameter (a binary integer or a hex string) 
      containing the maximum depth wanted. Example: 
 
      {{{ 2 }}} << 2 + >> #3 PR|L {{{ 4 }}} 
 
   FRPRC 
 
      There are two types of partial fractions: the normal 
      type and the "Z-type". In the normal type, the 
      numerators' degrees are smaller than the denominators' 
      degrees. In the "Z-type", the numerators can have the 
      same degree as the denominators (very useful for Z- 
      transforms). User flag 31 control the current mode of 
      operation. If flag 31 is SET, then the normal type is 
      used, otherwise "Z-type" is used. 
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      Level 1 can be a numerical polynomial or a list of 
      numerical polynomials representing Q. Example: if 
      Q=(x+1)(x+2)x^2 the list of level 1 could be: 
 
      { [ 1 1 ] [ 1 2 ] [ 1 0 ] 2 } or 
      [ 1 3 2 0 0 ] 
 
      You must note that the leading coefficient of the 
      denominator polynomial MUST BE ONE! If this is not the 
      case, you must re-arrange the polynomials to get the 
      correct denominator polynomial. Complete example in 
      normal type (don't forget to set flag 31): calculate the 
      partial fractions of 
 
      (x+1)/((x+4)^2 * (x+2) * x) 
 
      2: [ 1 1 ] 
      1: { [ 1 4 ] 2 [ 1 2 ] [ 1 0 ] } 
 
      the output of FRPRC is 
 
      1: {{ [ -.15625 ] [ 1 4 ] 1 } 
   { [ -.375 ]   [ 1 4 ] 2 } 
   { [ .125 ]    [ 1 2 ] 1 } 
   { [ .03125 ]  [ 1 0 ] 1 }} 
 
      so the answer is 
 
      -.15625  .375    .125    .03125 
      -------- - -------- + ----- + ------ 
       (x+4) (x+4)^2     x+2      x 
 
      If you want to use the "Z-type" partial fractions, you 
      must first clear flag 31. To use this mode of operation 
      there is one constraint to the numerator: it must have a 
      degree higher than zero, and the zero-order coefficient 
      must be zero. If you think that that's too bad, remember 
      that when you calculate the step response in Z you must 
      multiply the numerator by Z. So, if you use this mode to 
      work in Z-domain, this constraint will be not a problem 
      at all. The answer will always have its numerators with 
      the zero-order coefficients equal to zero (better for 
      inverse Z-transforms). Complete example: calculate the 
      partial fractions of 
 
      z/(z-1)(z-.5) 
 
      With flag 31 cleared, the stack must be 
 
      2: [ 1 0 ] 
      1: { [1 -1] [1 -.5] } 
 
      The program FRPRC will give you the answer: 
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      1: {{ [ 2 0 ] [ 1 -1 ] 1 } 
   { [ -2 0 ] [ 1 -.5 ] 1 }} 
 
      So the answer is 
 
       2z     2z 
      ---- - ---- 
      z-1    z-.5 
 
      SOME DIFFERENCES FROM MATH 1.00: If you already have 
      MATH 1.00, you'll soon notice that complete answers are 
      always given. I did that because it seems to be better 
      for the user and certainly it is better to make programs 
      that use FRPRC. The old style FRPRC that takes a binary 
      integer in level 1 is not allowed anymore. 
 
      A bug or a limitation? :-) Try to, whenever possible, 
      use the list format for the denominator. If you don't, 
      *strange* things may happen, as discovered by Tyson 
      Leistiko. Example: try to perform, in the normal mode, 
      the following partial fractions: 
 
      (a) -> [ 1 ] / [ 1 8 13 6 ] 
      (b) -> [ 1 ] / { [ 1 6 ] [ 1 1 ] 2 } 
 
      As you will note, the answers are different. Why? 
      Because MRoot isn't precise enough to identify the 
      multiple roots in -1 in the polynomial [ 1 8 13 6 ]. 
 
   ADPOL 
 
      Make a FRPRC list from lists/polynomials. 
      Examples: 
 
      2: { [ 1 0 ] } 
      1: [ 1 0 ]      -> ADPOL -> 1: { [ 1 0 ] 2 } 
 
      2: [ 1 2 1 ] 
      1: [ 1 2 5 ]    -> ADPOL -> 1: { [ 1 2 5 ] 1 [ 1 1 ] 2 } 
 
      Note: one argument at least must be a numerical 
      polynomial. 
 
   STDL 
 
      Prepares a list to be used by FRPRC (the program FRPRC 
      automatically calls this program, so you will only use 
      it if you will build your own programs). 
 
      Example: 
 
      1: { [ 1 0 ] [ 1 2 ] 2 [ 1 0 ] 3 [ 1 2 ] 5 [ 1 4 ] } 
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      STDL gives 
 
      1: { [ 1 0 ] 4 [ 1 2 ] 7 [ 1 4 ] 1 } 
 
   EVALUES 
 
      Takes a numerical square matrix (real or complex) on 
      level 1 and returns the list of the Eigenvalues of the 
      matrix. Example: 
 
      1: [[  3 -1  1 ] 
   [ -1  5 -1 ] 
   [  1 -1  3 ]] 
 
      EVALUES will return 
 
      1: { 2 3 6 } 
 
      This program uses Faddeev's method to find the 
      characteristic polynomial of the matrix and then 
      executes MRoot. This program is slower than GX's EGVL. 
      So, if you have a GX, you may want to use GX's own 
      command. The fact is that an SX owner can build his 
      programs using MATH's EVALUES and the programs will run 
      without modification on any GX with MATH 1.20 or newer 
      installed. 
 
   SVALUES 
 
      Takes a numerical matrix (real or complex) on level 1 
      and returns the list of the singular values of the 
      matrix. Example: 
 
      1: [[  3 -1  1 ] 
   [ -1  5 -1 ]] 
 
      SVALUES will return 
 
      1: { 2.63787896258 5.57149841414 } 
 
   MADJ 
 
      Computes the adjoint matrix. One more time, the input 
      matrix can have anything as its elements. Uses Faddeev's 
      method. 
 
   MINOR 
 
      Computes the minor matrix. You must put in level 3 the 
      matrix, in level 2 the row and in level 1 the column to 
      be removed. Example: 
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      3: { { 1 2 } { c d } { f 5 } } 
      2: 2 
      1: 2 
 
      MINOR will give you 
 
      1: { { 1 } { f } } 
 
   MGET 
 
      Pick an element from a matrix/polynomial. As in MPUT, 
      symbolic matrices can have ANY NUMBER OF dimensions! The 
      command follows the same syntax as the HP command GET. 
      Example: 
 
      2: { { { { A B } } { { C D } } } } 
      1: { 1 2 } 
 
      MGET will give 
 
      1: { { C D } } 
 
   MPUT 
 
      Puts an element into a matrix/polynomial. Note that only 
      numbers can be putted into numerical matrices. Another 
      important thing to note is that symbolic matrices can 
      have ANY NUMBER OF dimensions, and not only two! The 
      command follows the same syntax as the HP command PUT. 
      Let's do an example with a symbolic matrix with four 
      dimensions: 
 
      3: { { { { 1 2 } } { { 3 4 } } } } 
      2: { 1 2 1 2 } 
      1: A 
 
      MPUT will give 
 
      1: { { { { 1 2 } } { { 3 A } } } } 
 
      WARNING: In this version MPUT does not perform ANY tests 
      on the giving index! If you give an invalid index you 
      may (and certainly will) loose your memory! 
 
   Row- 
 
      Removes a row from a matrix. The program returns in 
      level 2 the modified matrix and, in level 1, the removed 
      row. If the original matrix has only one row, the 
      program will return the unity matrix [[1]] or {{1}}. 
      Example: 
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      2: { { A B } { C D } { E F } } 
      1: 2 
 
      Row- will give you 
 
      2: { { A B } { E F } } 
      1: { C D } 
 
   Row+ 
 
      Puts one or more rows into a matrix. You must put in 
      level 3 the original matrix, in level 2 the row (or 
      matrix of rows) and in level 1 the line where the rows 
      will be inserted. If the number in level 1 is greater 
      than the matrix dimensions, then the row(s) will be 
      inserted at the end of the matrix. Example: 
 
      3: [ [ 1 2 ] [ 3 4 ] ] 
      2: { A B } 
      1: 2 
 
      Row+ will give 
 
      1: { { 1 2 } { A B } { 3 4 } } 
 
      Another example: 
 
      3: { { 1 2 } { C 4 } { x y } } 
      2: { { a b } { c d } } 
      1: 3 
 
      Row+ will give 
 
      1: { { 1 2 } { C 4 } { a b } { c d } { x y } } 
 
      Note that any combination of symbolic/numerical matrices 
      are allowed. 
 
   Col- 
 
      Removes a column from a matrix. The program returns in 
      level 2 the modified matrix and, in level 1, the removed 
      column. If the original matrix has only one column, the 
      program will return the unity matrix [[1]] or {{1}}. 
      Example: 
 
      2: { { A B } { C D } { E F } } 
      1: 2 
 
      Col- will give you 
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      2: { { A } { C } { E } } 
      1: { B D F } 
 
   Col+ 
 
      Puts one or more columns into a matrix. You must put in 
      level 3 the original matrix, in level 2 the column (or 
      matrix of columns) and in level 1 the line where the 
      columns will be inserted. If the number in level 1 is 
      greater than the matrix dimensions, then the column(s) 
      will be inserted at the end of the matrix. Example: 
 
      3: [ [ 1 2 ] [ 3 4 ] ] 
      2: { A B } 
      1: 2 
 
      Col+ will give 
 
      1: { { 1 A 2 } { 3 B 4 } } 
 
      Another example: 
 
      3: { { 1 2 } { C 4 } { x y } } 
      2: { { a b } { c d } { e f } } 
      1: 3 
 
      Col+ will give 
 
      1: { { 1 2 a b } { C 4 c d } { x y e f } } 
 
      Note that any combination of symbolic/numerical matrices 
      are allowed. 
 
   RSwp 
 
      Exchange (swap) two rows of a matrix. The level 3 must 
      contain the matrix and the levels 2 and 1 the index of 
      the rows to be swapped. 
 
   CSwp 
 
      Exchange (swap) two columns of a matrix. The level 3 
      must contain the matrix and the levels 2 and 1 the index 
      of the columns to be swapped. 
 
   MSIZE 
 
      No more SIZE EVAL for polynomials and vectors! MSIZE 
      will give you the size of the object in level 1. If the 
      object is a polynomial (or a vector), then it will 
      return just a number. If it is a matrix, MSIZE will 
      return a list with the number of rows and columns. 
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   MTRACE 
 
      Computes the trace of a square matrix, i.e., the sum of 
      the elements of the matrix diagonal. Of course it will 
      work for symbolic matrices ;-) 
 
   ABOUT 
 
      Shows my name !!! :-) 
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   UTILITY PROGRAMS 
 
      Included with the package are some utility programs. 
      Here is the description: 
 
   MVID 
 
      If you do not use my Control Package, then this program 
      can be useful. Execute CNVID once or twice, until 
      "(S/Z)MOD" appear on the top of the screen. The 
      annunciators indicate what is the current type of 
      partial fractions and the current MATH version. 
 
   MFLAG 
 
      Use MFLAG to change the type of partial fractions 
      performed without have to (re)set the flag 31 by hand. 
      Again, if you have Control Package you'll not need this 
      program. 
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   APPLICATION NOTES 
 
   MEVL hints and suggestions 
 
      This program can be used as PR|L if you have a symbolic 
      matrix in level 2 and a program in level 1. In this 
      case, the program will be evaluated for every matrix 
      element, just as PR|L does. 
 
      This program can be very useful for other tasks. 
      Example: if you have the polynomial x^3 + 2*x^2 + 3 and 
      want to make the variable substitution x=s+1, you can 
      get the polynomial in s by typing: 
 
      2: [ 1 2 0 3 ] 
      1: [ 1 1 ] 
 
      Now you execute MEVL (evaluates the polynomial when x is 
      another polynomial) and get the answer: 
 
      1: [ 0 1 5 7 6 ] 
 
      Of course you can get the polynomial in x back by 
      evaluating the s polynomial at [ 1 -1 ] 
 
      1: [ 0 0 1 2 0 3 ] 
 
      The leading zeros appears due to the evaluating 
      algorithm. The answer is right anyway... 
 
      Another thing that you can do with MEVL is to transform 
      a numerical polynomial into a symbolic polynomial. 
      Example: 
 
      2: [ 1 2 3 ] 
      1: 'S' 
 
      MEVL will return '(S+2)*S+3'. Beside the fact that 
      that's an "unusual" format for symbolic polynomials, the 
      answer is right. And, as you see, this format is faster 
      to evaluate and give better results than the "standard" 
      format. 
 
   Interesting application of A<->L 
 
      A suggestion: when you get the inverse of some matrix, 
      use A<->L and evaluate the program << ->Q >> over it (if 
      you have a G series calculator you can simply execute 
      the command ->Q). As an example, try to do this with the 
      matrix [[3 1][-4 1]]. The symbolic matrix will be much 
      better to visualize. 
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      As you may note, the inverse procedure can be useful 
      when entering matrices like [[ 1/3 1 ] [ 0 1/7 ]]. 
      Simply enter {{ '1/3' 1 }{ 0 '1/7' }} (some may prefer 
      the matrix editor to this method). After that, use A<->L 
      and get the numerical matrix. 
 
   Rank of a matrix 
 
      If you have a GX you have a command to compute the rank. 
      But if you haven't, you can compute the rank by checking 
      the number of non-zero singular values of the matrix. 
      The following program will return the rank of a matrix: 
 
      << SVALUES ZTRIM SIZE >> 
 
   Computing the determinant in a faster way 
 
      MDET now tests for zero pivots. So, if you have, on your 
      matrix, a row with many zeros, swap (using RSwp) this 
      row and the first. The determinant will be computed in a 
      faster way. But don't forget to negate the result 
      accordingly ! 
 
   Successive divisions 
 
      This program is very useful, for example, if you want to 
      simulate a digital system. It takes the numerator from 
      the 3rd level, the denominator from the 2nd level and 
      the number of divisions to carry out in the first level. 
      The program will return a list with the values of the 
      divisions. 
 
      << OVER SIZE [ 0 ] SWAP RDM 4 ROLL MADD -> Q N P 
  << { } 1 N 
     START 
      P Q MDIV [ 1 0 ] MMLT 
      'P' STO 1 GET DUP 1 DISP + 
     NEXT 
  >> 
      >> 
 
   Ackermann's formula 
 
      Suppose you have a SISO system dx=Ax+Bu and you want to 
      use the control law u=Kx to place the poles of the 
      closed-loop system at a certain location. Then you can 
      use Ackermann's formula to compute the gain matrix K. 
      This program computes this gain matrix using Ackermann's 
      formula and the following data: 
 
      3: A 
      2: B 
      1: { desired poles (MCOEF format) } 
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      The program will give you the gain matrix K: 
 
      << MCOEF -> A B P 
  << B DUP 2 A SIZE 1 GET 
     START A ROT * SWAP OVER 1000 Col+ 
     NEXT INV P A MEVL * SWAP TRN 0 * DUP 
     SIZE -1 PUT SWAP * 
  >> 
      >> 
 
   SPLIT 
 
      The following program, "SPLIT", is a perfect example of 
      how much work can be saved by using MATH and a little 
      programming. Suppose you have the polynomial fraction 
      P(s)/Q(s). Now you make s=jw, and you want to split the 
      original fraction into the real and imaginary parts, 
      Pr(w)/Qr(w) + j*Pi(w)/Qi(w). The following program will 
      do the task: it takes P and Q from the stack and returns 
      on level two the list { Pr Qr } and on level one the 
      list { Pi Qi } 
 
      << [ (0;1) (0;0) ] ROT OVER 
  MEVL ROT ROT MEVL ZTRIM 
  DUP CONJ ROT OVER MMLT ROT 
  ROT MMLT RE OVER RE ZTRIM 
  OVER 2 ->LIST ROT IM ZTRIM 
  ROT 2 ->LIST 
      >> 
 
      Example: P(s)/Q(s) = 1/s(s+1)^2 
 
      2: [ 1 ] 
      1: [ 1 2 1 0 ] 
 
      After SPLIT you'll get 
 
      2: { [ -2 0 0 ] [ 1 0 2 0 1 0 0 ] } 
      1: { [ 1 0 -1 0 ] [ 1 0 2 0 1 0 0 ] } 
 
      So the decomposition is: 
 
      P(jw)    -2       w^2 - 1 
      ----- = --------------- + j*--------------- 
      Q(jw)   w^4 + 2*w^2 + 1  w^5 + 2*w^3 + w 
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   A NOTE ON THE METHODS 
 
      MRoot uses Laguerre's method only. It works VERY well 
      for polynomials with distinct roots, and is satisfactory 
      for polynomials with multiple roots. If you want to know 
      more about this method try the book "A SURVEY OF 
      NUMERICAL MATHEMATICS", by Young  and Gregory. If you 
      are using a G(X), then MRoot is simply your PROOT with 
      some modifications for interfacing with MATH. 
 
      I use Faddeev's method a lot of times in the program. 
      The method can be used to compute a lot of things of a 
      matrix: the characteristic polynomial, the adjoint, the 
      determinant and all the Eigenvectors. If you want to 
      know more about Faddeev's method try the book "MATRIX 
      THEORY", by Gantmacher. 
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