| EARNING
keras

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with Keras..................... 2
REMIAIKS . . 2
o= 10] 0] 2 2
INStAllAtioN AN SELUDottt e 2
InStallatioN o 2
CON I U ON . . . 3
Switching from TensorFIow t0 Thean0. 4
Getting Started with Keras : 30 SECONG.t e e e 4
Chapter 2: Classifying Spatiotemporal Inputs with CNNs, RNNs, and MLPs............................| 6
o0 T 1o o 6
REMIAIKS . . 6
= 1] 0] [T 6
VGG-16 CNN and LSTM for Video ClassifiCation.oooiii e 6
Chapter 3: Create a simple Sequential Model...................... 8
o0 T 1o o 8
= 1] 0] [T 8
Simple Multi Layer Perceptron wtih Sequential ModelS. 8
Chapter 4: Custom loss function and metricsinKeras.........................oi 9
0T [o 1o o 9
RIS . 9

[1 11] o [T 9
Euclidean diStanCe 10SS. oo it 9
Chapter 5: Dealing with large training datasets using Keras fit_generator, Python generato. 10
I OAUCTION. . e 10
RIS . . 10
e 1111 o [T U 10
Training a model to Classify VIABOS. i e e e 10

Chapter 6: Transfer Learning and Fine TuningusingKeras........................ocooiiiin, 13

I OUCHI ON . o e e 13

EX APl . .. 13
Transfer Learning using Keras and VGGttt e e e 13
Loading pre-trained Weights. 13
Create a new network with bottom layers taken fromVGG....................................... 14
Remove multiple layers and insertanewoneinthemiddle... 14

(04 (=70 [X 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: keras

It is an unofficial and free keras ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official keras.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/keras
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with keras

Remarks

Guiding principles
* Modularity

A model is understood as a sequence or a graph of standalone, fully-configurable modules that
can be plugged together with as little restrictions as possible. In particular, neural layers, cost
functions, optimizers, initialization schemes, activation functions, regularization schemes are all
standalone modules that you can combine to create new models.

*« Minimalism

Each module should be kept short and simple. Every piece of code should be transparent upon
first reading. No black magic: it hurts iteration speed and ability to innovate.

» Easy extensibility

New modules are dead simple to add (as new classes and functions), and existing modules
provide ample examples. To be able to easily create new modules allows for total expressiveness,
making Keras suitable for advanced research.

* Work with Python

No separate models configuration files in a declarative format. Models are described in Python
code, which is compact, easier to debug, and allows for ease of extensibility.

Examples

Installation and Setup

Keras is a high-level neural networks library, written in Python and capable of running on top of
either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation.
Being able to go from idea to result with the least possible delay is key to doing good research.
Use Keras if you need a deep learning library that:

» Allows for easy and fast prototyping (through total modularity, minimalism, and extensibility).

» Supports both convolutional networks and recurrent networks, as well as combinations of the
two.

» Supports arbitrary connectivity schemes (including multi-input and multi-output training).

* Runs seamlessly on CPU and GPU.

https://riptutorial.com/ 2

Installation

Keras uses the following dependencies:

* numpy, scipy

* pyyami
» HDF5 and h5py (optional, required if you use model saving/loading functions)

» Optional but recommended if you use CNNs: cuDNN
* scikit-image (optional, required if you use keras built-in functions for preprocessing and
augmenting image data)

Keras is a high-level library that provides a convenient Machine Learning API on top of other low-
level libraries for tensor processing and manipulation, called Backends. At this time, Keras can be
used on top any of the three available backends: TensorFlow, Theano, and CNTK.

Theano is installed automatically if you install Keras using pip. If you want to install Theano
manually, please refer to Theano installation instructions.

TensorFlow is a recommended option, and by default, Keras uses TensorFlow backend, if
available. To install TensorFlow, the easiest way is to do

$ pip install tensorflow

If you want to install it manually, please refer to TensorFlow installation instructions.

To install Keras, cd to the Keras folder and run the install command:

$ python setup.py install

You can also install Keras from PyPI:

$ pip install keras

gnfiguration

If you have run Keras at least once, you will find the Keras configuration file at:

~/.keras/keras. json

If it isn't there, you can create it. The default configuration file looks like this:

"image_dim_ordering": "tf",
"epsilon": le-07,
"floatx": "float32",

https://riptutorial.com/

https://keras.io/backend/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/

"backend": "tensorflow"

Switching from TensorFlow to Theano

By default, Keras will use TensorFlow as its tensor manipulation library. If you want to use other
backend, simply change the field backend to either "theano" Or "tensorfiow", and Keras will use the
new configuration next time you run any Keras code.

Getting Started with Keras : 30 Second

The core data structure of Keras is a model, a way to organize layers. The main type of model is
the Sequential model, a linear stack of layers. For more complex architectures, you should use
the Keras functional API.

Here's the Sequential model:

from keras.models import Sequential

model = Sequential ()

Stacking layers is as easy as .add ():

from keras.layers import Dense, Activation

model.add (Dense (output_dim=64, input_dim=100))
model.add (Activation ("relu"))

model .add (Dense (output_dim=10))

model.add (Activation ("softmax"))

Once your model looks good, configure its learning process with .compiile ():

model.compile (loss="'categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

If you need to, you can further configure your optimizer. A core principle of Keras is to make things
reasonably simple, while allowing the user to be fully in control when they need to (the ultimate
control being the easy extensibility of the source code).

from keras.optimizers import SGD
model.compile (loss="'categorical_crossentropy', optimizer=SGD (lr=0.01, momentum=0.9,

nesterov=True))

You can now iterate on your training data in batches:

model.fit (X_train, Y_train, nb_epoch=5, batch_size=32)

Alternatively, you can feed batches to your model manually:

https://riptutorial.com/ 4

https://keras.io/getting-started/sequential-model-guide/
http://keras.io/getting-started/functional-api-guide

model.train_on_batch (X _batch, Y_batch)

Evaluate your performance in one line:

loss_and_metrics = model.evaluate (X_test, Y _test, batch_size=32)

Or generate predictions on new data:

classes = model.predict_classes (X_test, batch_size=32)
proba = model.predict_proba (X_test, batch_size=32)

Building a question answering system, an image classification model, a Neural Turing Machine, a
word2vec embedder or any other model is just as fast. The ideas behind deep learning are simple,
so why should their implementation be painful?

You will find more advanced models: question-answering with memory networks, text generation
with stacked LSTMs, etc in example folder.

Read Getting started with keras online: https://riptutorial.com/keras/topic/8695/getting-started-with-
keras

https://riptutorial.com/ 5

https://github.com/fchollet/keras/tree/master/examples
https://riptutorial.com/keras/topic/8695/getting-started-with-keras
https://riptutorial.com/keras/topic/8695/getting-started-with-keras

C_hapter 2. Classifying Spatiotemporal Inputs
with CNNs, RNNs, and MLPs

Introduction

Spatiotemporal data, or data with spatial and temporal qualities, are a common occurrence.
Examples include videos, as well as sequences of image-like data, such as spectrograms.

Convolutional Neural Networks (CNNSs) are particularly suited for finding spatial patterns.
Recurrent Neural Networks (RNNs), on the other hand, are particularly suited for finding temporal
patterns. These two, in combination with Multilayer Perceptrons, can be effective for classifying
spatiotemporal inputs.

Remarks

In this example, a VGG-16 model pre-trained on the ImageNet database was used. If a trainable
VGG-16 model is desired, set the VGG-16 weights parameter to none for random initialization and
set the cnn.trainable attribute to True.

The number and kind of layers, units, and other parameters should be tweaked as necessary for
specific application needs.

Examples

VGG-16 CNN and LSTM for Video Classification

For this example, let's assume that the inputs have a dimensionality of (frames, channels, rows,
columns), and the outputs have a dimensionality of (classes).

from keras.applications.vggl6 import VGG1l6

from keras.models import Model

from keras.layers import Dense, Input

from keras.layers.pooling import GlobalAveragePooling2D
from keras.layers.recurrent import LSTM

from keras.layers.wrappers import TimeDistributed

from keras.optimizers import Nadam

video = Input (shape=(frames,
channels,
rows,
columns))
cnn_base = VGG1l6 (input_shape=(channels,
rows,
columns),
weights="imagenet",
include_top=False)
cnn_out = GlobalAveragePooling2D () (cnn_base.output)
cnn = Model (input=cnn_base.input, output=cnn_out)

https://riptutorial.com/

cnn.trainable = False
encoded_frames = TimeDistributed (cnn) (video)
encoded_sequence = LSTM(256) (encoded_frames)
hidden_layer = Dense (output_dim=1024, activation="relu") (encoded_sequence)
outputs = Dense (output_dim=classes, activation="softmax") (hidden_layer)
model = Model ([video], outputs)
optimizer = Nadam(lr=0.002,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-08,
schedule_decay=0.004)
model.compile (loss="categorical_ crossentropy",
optimizer=optimizer,
metrics=["categorical_accuracy"])

Read Classifying Spatiotemporal Inputs with CNNs, RNNs, and MLPs online:

https://riptutorial.com/keras/topic/9658/classifying-spatiotemporal-inputs-with-cnns--rnns--and-
mlps

https://riptutorial.com/

https://riptutorial.com/keras/topic/9658/classifying-spatiotemporal-inputs-with-cnns--rnns--and-mlps
https://riptutorial.com/keras/topic/9658/classifying-spatiotemporal-inputs-with-cnns--rnns--and-mlps

C_hapter 3: Create a simple Sequential Model

Introduction

The sequential model is a linear stack of layers.

Examples

Simple Multi Layer Perceptron wtih Sequential Models
You can create a Sequential model by passing a list of layer instances to the constructor:

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential ([
Dense (32, input_dim=784),
Activation('relu'),
Dense (10),
Activation('softmax'),

1)
You can also simply add layers via the .add () method:

model = Sequential ()
model.add (Dense (32, input_dim=784))
model.add (Activation('relu'))

Models must be compiled before use:

model.compile (loss='binary_crossentropy',
optimizer="'sgd',
metrics=["'accuracy'])

Read Create a simple Sequential Model online: https://riptutorial.com/keras/topic/8850/create-a-
simple-sequential-model

https://riptutorial.com/

https://riptutorial.com/keras/topic/8850/create-a-simple-sequential-model
https://riptutorial.com/keras/topic/8850/create-a-simple-sequential-model

C_hapter 4: Custom loss function and metrics
In Keras

Introduction

You can create a custom loss function and metrics in Keras by defining a TensorFlow/Theano
symbolic function that returns a scalar for each data-point and takes the following two arguments:
tensor of true values, tensor of the corresponding predicted values.

Note that the loss/metric (for display and optimization) is calculated as the mean of the
losses/metric across all datapoints in the batch.

Remarks

Keras loss functions are defined in losses.py

Additional loss functions for Keras can be found in keras-contrib repository.

Examples

Euclidean distance loss
Define a custom loss function:

import keras.backend as K

def euclidean_distance_loss(y_true, y_pred):

Euclidean distance loss
https://en.wikipedia.org/wiki/Euclidean_distance

:param y_true: TensorFlow/Theano tensor

:param y_pred: TensorFlow/Theano tensor of the same shape as y_true
:return: float

return K.sqgrt (K.sum(K.square (y_pred - y_true), axis=-1))
Use it:
model.compile (loss=euclidean_distance_loss, optimizer='rmsprop')

Read Custom loss function and metrics in Keras online:
https://riptutorial.com/keras/topic/10674/custom-loss-function-and-metrics-in-keras

https://riptutorial.com/

https://github.com/fchollet/keras/blob/master/keras/losses.py
https://github.com/farizrahman4u/keras-contrib
https://riptutorial.com/keras/topic/10674/custom-loss-function-and-metrics-in-keras

C_hapter 5: Dealing with large training
datasets using Keras fit_generator, Python
generators, and HDF5 file format

Introduction

Machine learning problems often require dealing with large quantities of training data with limited
computing resources, particularly memory. It is not always possible to load an entire training set
into memory. Fortunately, this can be dealt with through the use of Keras' fit_generator method,

Python generators, and HDFS5 file format.

Remarks

This example assumes keras, numpy (as np), and h5py have already been installed and imported.
It also assumes that video inputs and labels have already been processed and saved to the
specified HDFS5 file, in the format mentioned, and a video classification model has already been
built to work with the given input.

Examples

Training a model to classify videos

For this example, let model be a Keras model for classifying video inputs, let X be a large data set
of video inputs, with a shape of (samples, frames, channels, rows, columns), and let Y be the
corresponding data set of one-hot encoded labels, with a shape of (samples, classes). Both
datasets are stored within an HDF5 file called video_data.h5. The HDF5 file also has the attribute
sample_count for the number of samples.

Here is the function for training the model with fit_generator

def train_model (model, video_data_fn="video_data.h5", validation_ratio=0.3, batch_size=32):

""" Train the video classification model

wun

with hbpy.File (video_data_fn, "r") as video_data:
sample_count = int (video_data.attrs["sample_count"])
sample_idxs = range (0, sample_count)
sample_idxs = np.random.permutation (sample_idxs)
training_sample_idxs = sample_idxs[0:int ((l-validation_ratio) *sample_count)]
validation_sample_idxs = sample_idxs[int ((l-validation_ratio) *sample_count) :]
training_sequence_generator = generate_training_sequences (batch_size=batch_size,

video_data=video_data,

training_sample_idxs=training_sample_idxs)
validation_sequence_generator = generate_validation_sequences (batch_size=batch_size,
video_data=video_data,

https://riptutorial.com/ 10

validation_sample_idxs=validation_sample_idxs)
model.fit_generator (generator=training_sequence_generator,

validation_data=validation_sequence_generator,
samples_per_epoch=len(training_sample_idxs),
nb_val_samples=len(validation_sample_idxs),
nb_epoch=100,
max_dg_size=1,
verbose=2,
class_weight=None,
nb_worker=1)

Here are the training and validation sequence generators

def generate_training_sequences (batch_size, video_data, training sample_idxs) :
""" Generates training sequences on demand
mmw
while True:
generate sequences for training

training_sample_count = len(training_sample_idxs)
batches = int (training_sample_count/batch_size)
remainder_samples = training_sample_count%batch_size

if remainder_samples:

batches = batches + 1
generate batches of samples
for idx in xrange (0, batches):

if idx == batches - 1:
batch_idxs = training_sample_idxs[idx*batch_size:]
else:
batch_idxs = training_sample_idxs[idx*batch_size:idx*batch_size+batch_size]

batch_idxs = sorted (batch_idxs)

X = video_data["X"] [batch_idxs]
Y video_datal["Y"] [batch_idxs]

yield (np.array(X), np.array(Y))

def generate_validation_sequences (batch_size, video_data, validation_sample_idxs) :

""" Generates validation sequences on demand

nnn

while True:
generate sequences for validation
validation_sample_count = len(validation_sample_idxs)
batches = int (validation_sample_count/batch_size)
remainder_samples = validation_sample_count%batch_size
if remainder_samples:

batches = batches + 1

generate batches of samples
for idx in xrange (0, batches):

if idx == batches - 1:
batch_idxs = validation_sample_idxs[idx*batch_size:]
else:
batch_idxs = validation_sample_idxs[idx*batch_size:idx*batch_size+tbatch_size]

batch_idxs = sorted (batch_idxs)

X = video_data["X"] [batch_idxs]
Y video_datal["Y"] [batch_idxs]

yield (np.array(X), np.array(Y))

https://riptutorial.com/

Read Dealing with large training datasets using Keras fit_generator, Python generators, and HDF5
file format online: https://riptutorial.com/keras/topic/9656/dealing-with-large-training-datasets-
using-keras-fit-generator--python-generators--and-hdf5-file-format

https://riptutorial.com/ 12

https://riptutorial.com/keras/topic/9656/dealing-with-large-training-datasets-using-keras-fit-generator--python-generators--and-hdf5-file-format
https://riptutorial.com/keras/topic/9656/dealing-with-large-training-datasets-using-keras-fit-generator--python-generators--and-hdf5-file-format

C_hapter 6: Transfer Learning and Fine Tuning
using Keras

Introduction

This topic includes short, brief but comprehensive examples of loading pre-trained weights,
inserting new layers on top or in the middle of pre-tained ones, and training a new network with
partly pre-trained weights. An example for each of out-of-the-box pre-trained networks, available in
Keras library (VGG, ResNet, Inception, Xception, MobileNet), is required.

Examples

Transfer Learning using Keras and VGG

In this example, three brief and comprehensive sub-examples are presented:

Loading weights from available pre-trained models, included with Keras library
Stacking another network for training on top of any layers of VGG

Inserting a layer in the middle of other layers

Tips and general rule-of-thumbs for Fine-Tuning and transfer learning with VGG

Loading pre-trained weights

Pre-trained on ImageNet models, including VGG-16 and VGG-19, are available in Keras. Here
and after in this example, VGG-16 will be used. For more information, please visit Keras
Applications documentation.

from keras import applications

This will load the whole VGG1l6 network, including the top Dense layers.

Note: by specifying the shape of top layers, input tensor shape is forced
to be (224, 224, 3), therefore you can use it only on 224x224 images.
vgg_model = applications.VGGl6 (weights='imagenet', include_top=True)

If you are only interested in convolution filters. Note that by not

specifying the shape of top layers, the input tensor shape is (None, None, 3),
so you can use them for any size of images.

vgg_model = applications.VGGl6 (weights='imagenet', include_top=False)

If you want to specify input tensor

from keras.layers import Input

input_tensor = Input (shape=(160, 160, 3))

vgg_model = applications.VGGl6 (weights='imagenet',
include_top=False,
input_tensor=input_tensor)

https://riptutorial.com/ 13

https://keras.io/applications/
https://keras.io/applications/

To see the models' architecture and layer names, run the following
vgg_model.summary ()

Create a new network with bottom layers
taken from VGG

Assume that for some specific task for images with the size (160, 160, 3), you want to use pre-
trained bottom layers of VGG, up to layer with the name viock2_poo1.

vgg_model = applications.VGGl6 (weights='imagenet',
include_top=False,
input_shape=(160, 160, 3))

Creating dictionary that maps layer names to the layers
layer_dict = dict ([(layer.name, layer) for layer in vgg_model.layers])

Getting output tensor of the last VGG layer that we want to include
x = layer_dict|['block2_pool'].output

Stacking a new simple convolutional network on top of it

= Conv2D (filters=64, kernel_size=(3, 3), activation='relu') (x)
= MaxPooling2D (pool_size=(2, 2)) (x)

Flatten () (x)

= Dense (256, activation='relu') (x)

= Dropout (0.5) (x)

= Dense (10, activation='softmax') (x)

XoOXOX X X X =
I

Creating new model. Please note that this is NOT a Sequential () model.
from keras.models import Model
custom_model = Model (input=vgg_model.input, output=x)

Make sure that the pre-trained bottom layers are not trainable
for layer in custom_model.layers[:7]:
layer.trainable = False

Do not forget to compile it

custom_model.compile (loss="'categorical_crossentropy',
optimizer="'rmsprop',
metrics=["'accuracy'])

Remove multiple layers and insert a new one
In the middle

Assume that you need to speed up VGG16 by replacing biocki_convi and block2_convz With a
single convolutional layer, in such a way that the pre-trained weights are saved. The idea is to
disassemble the whole network to separate layers, then assemble it back. Here is the code
specifically for your task:

https://riptutorial.com/

vgg_model = applications.VGGl6 (include_top=True, weights='imagenet')

Disassemble layers
layers = [1 for 1 in vgg_model.layers]

Defining new convolutional layer.
Important: the number of filters should be the same!
Note: the receiptive field of two 3x3 convolutions is 5x5.
new_conv = Conv2D (filters=64,
kernel_size=(5, 5),
name="new_conv',
padding='same') (layers[0] .output)

Now stack everything back
Note: If you are going to fine tune the model, do not forget to
mark other layers as un-trainable
X = new_conv
for i in range (3, len(layers)):
layers([i] .trainable = False
x = layers[i] (x)

Final touch

result_model = Model (input=layer[0].input, output=x)

Read Transfer Learning and Fine Tuning using Keras online:
https://riptutorial.com/keras/topic/10887/transfer-learning-and-fine-tuning-using-keras

https://riptutorial.com/

https://riptutorial.com/keras/topic/10887/transfer-learning-and-fine-tuning-using-keras

Credits

Chapters Contributors

Getting started with

1 Arman, Community, FalconUA
keras
Classifying
Spatiotemporal .
2 . Robert Val
Inputs with CNNs, ohert vaieneE
RNNs, and MLPs
3 Create a simple Arman, Sam Zeng

Sequential Model

Custom loss function .
4 . FalconUA, Sergii Gryshkevych
and metrics in Keras

Dealing with large
training datasets
using Keras

i Robert Valenci
> fit_generator, Python o - /AENCE
generators, and
HDF5 file format
Transfer Learning
6 and Fine Tuning FalconUA

using Keras

https://riptutorial.com/

https://riptutorial.com/contributor/2326911/arman
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4789373/falconua
https://riptutorial.com/contributor/5896419/robert-valencia
https://riptutorial.com/contributor/2326911/arman
https://riptutorial.com/contributor/5862248/sam-zeng
https://riptutorial.com/contributor/4789373/falconua
https://riptutorial.com/contributor/5215538/sergii-gryshkevych
https://riptutorial.com/contributor/5896419/robert-valencia
https://riptutorial.com/contributor/4789373/falconua

	About
	Chapter 1: Getting started with keras
	Remarks
	Examples
	Installation and Setup

	Installation
	Configuration
	Switching from TensorFlow to Theano
	Getting Started with Keras : 30 Second

	Chapter 2: Classifying Spatiotemporal Inputs with CNNs, RNNs, and MLPs
	Introduction
	Remarks
	Examples
	VGG-16 CNN and LSTM for Video Classification

	Chapter 3: Create a simple Sequential Model
	Introduction
	Examples
	Simple Multi Layer Perceptron wtih Sequential Models

	Chapter 4: Custom loss function and metrics in Keras
	Introduction
	Remarks
	Examples
	Euclidean distance loss

	Chapter 5: Dealing with large training datasets using Keras fit_generator, Python generators, and HDF5 file format
	Introduction
	Remarks
	Examples
	Training a model to classify videos

	Chapter 6: Transfer Learning and Fine Tuning using Keras
	Introduction
	Examples
	Transfer Learning using Keras and VGG

	Loading pre-trained weights
	Create a new network with bottom layers taken from VGG
	Remove multiple layers and insert a new one in the middle
	Credits

