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1 Acknowledgments, Copyright & Disclaimer of Warranty

All the files of the ALG48 library are copyrighted (©) by Claude-Nicolas Fiechter and Mika Heiskanen.

A1.G48 is distributed in the hope that it will be useful, but the copyright holders provide the
program “as is” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchandability and fitness for a particular
purpose. In no event will the copyright holders be liable to you for damages, including
any general, special, incidental or consequential damages arising out of the use or
inability to use the program.

This version of ALG48 is a GiftWare release. You may use it as long as you like, but only for
non-commercial purposes and only as a private person. Permission to copy the whole, unmodified,
ALG48 library is granted provided that the copies are not made or distributed for resale (excepting
nominal copying fees) and provided that you conspicuously and appropriately include on each copy
this copyright notice and disclaimer of warranty.

Special thanks to Dominique Rodriguez for his ' TEX version of the documentation for ALG48 v2.1,
on which this document is based, and to Joe Horn for his many useful comments, suggestions and
detailed bug reports.

2 Overview

AL.G48 is a comprehensive symbolic math package for the HP48. It includes commands for algebraic
simplification, factorization, partial fraction expansion, symbolic integration, symbolic matrices ma-
nipulation, and for solving systems of nonlinear polynomial equations.

ALG48 differs from other math packages for the HP48 in two important aspects:

1. ALG48 can manipulate, simplify, and factorize multivariate polynomials and functions, i.e.,
algebraic expressions with several variables.

2. ALG48 only does ezact calculation, using unlimited precision integers and advanced computer
algebra algorithms (as opposed to doing approximate calculation using floating point numbers
and numerical algorithms). This not only means you will not get wrong or approximate results
(2.00001, 4.9999 and the like), but also that all and only exact simplifications are performed.

Below are some examples of ALG48 operations. The time taken for the commands on a HP48GX (with
60K free) are given in brackets.

e Simplification of multivariate polynomials and rational functions:

1— )
1 _*Iy
5 = L +$g:/g RSIM[1.8s] = inv(z? + 2y + y?)
Y _1+ z (y—x_r)
y—=z



including polynomials and rational functions with non-rational subexpressions:
sin(a) — 1

sin(a) + 1

cos(a) sin(a) — cos(a) —sin(a) + 1

cos(a) sin(a) + cos(a) — sin(a) — 1 RSIM[0.9s] =

Complete factorization of polynomials and rational functions:

T52° — 43528 + 85227 — 57625 — 66325 + 30272* — 491123 + 340222 — 735z
FCTR [4.9s] =
3z (22 =32+ 1) (z*+ 2 —-5) - (ha —T)?

including polynomials and rational functions in several variables:
325y 4+ 9xty? — 323y? + 2123y — 223 + 2%y? — 622y + 522
+3zy3 + 172y — 14z — > + Ty?> — 5y + 35
FCTR[11.2s] =

(2?2 +3zy—y+7) - 323y — 22 + y? +5)

Simplification of non-rational expressions:

125 +49 - (z+1)

2 3
ASIM[13.6s] = —H\/x -1+ H\/&n -5

including exponential functions:
zexp(3In(z) + In(2?)) — 1

ASIM[4.8s] = 2z + 222 42
In ( exp(z? — 1))

and trigonometric functions:

2

cos(asin(sin(z) — cos(z))) sin(z) cos(z)

In(sin(z))

In(sin(z) cos(x) tan(x)) ASTM[9.8s] =

Partial fraction expansion along one or several variables:
23y? — 323y + 323 — 2%y? + 222y — 32?2 — zy* + 52y’ — Sxy? + Sry — v + 3y? — 2y

22y? — 3wy + 22% — xyP + 2ey? + vy — 2v + y° — 3y% + 2y
PF[8.3s] =

z
y+m+y—2_y—1+x—y+x—1

Rational function integration:

2727 — 4225 — 10625 — 472* + 22423 — 14722 + 313z + 138
1528 — 1527 + 1526 — 6025 + 90x* — 10523 + 4522 + 60z — 45

r RINT[8.8s] =

— 11 1
.%gim+\/§.atan<%> —|—§IH(JL‘3—|—CE—|—1)




e Symbolic vector and matrix operations:

— Inverse
3 227 1 20+ 1 (=42t —1)/(22) 22
4z 2z% 2 AINV[5.5s] = —22? 2z -1
222 —1 22 -2t =2 (4e* +3)/(22) -2
— Determinant
1 ¢t ¢t t
1 £k &t t 3 012 97,42 3 3
Lt okt MDET [1.6s] = k” — 3kt + 3kt —t®> FCTR[1.88] = (k—1)
1 ¢t t k

— Addition, Subtraction, Negation, Multiplication, Division, Exponentiation, Transpose,

e Solution of systems of linear equations (Az = b) with symbolic coefficients

1 1—t 2 —4 inv(—2t)
b: | 2 A:| 3/2—-t 3 =5 ADIV[3.3s] = = : | (Tt+1)/(4%)
3 5/2+t 5 —T 3/4

e Solution of systems of nonlinear polynomial equations using Grobner bases

2 +ry—y+1=0 N
—Bry—z+2y*-2=0 {x y} GSOLVE[4.9s] = { o {
222 — 329> + 27 —3y+ 1 =0 y

20 — 6y —5H
1492 + 21y + 9

Additional features include:

e Provides arithmetic operations on unlimited-size integer numbers, including modular arith-
metic, integer factorization, and primality testing.

e Can be used to easily calculate with fractions.
e Can perform algebraic operations over finite fields (modular polynomials).

e Can handle polynomials and rational functions of arbitrary degrees and with arbitrary many
variables (limited only by your HP48’s memory and by your patience).

e Entirely written in system-RPL and machine language.

3 Installation

3.1 Platforms and ports

ALG48 version 4.2 takes approximately 50Kb of memory and should work in any port of a HP48GX
or SX. Because of its size ALG48 version 4.2 cannot be use on a HP48G with 32Kb of memory. The



library was developed on a HP48GX version P and tested in ports 0, 1 and 2. Previous versions were
reported to also work properly on the HP48SX.

ALG48 can safely be run from a covered port (2-33) of a HP48GX and uses a special technique to
avoid the usual slowdown associated with running a library from a covered port. The downside of
this special technique, however, is that ALG48 cannot be run from a covered port if the RAM card
i Card Slot 1 1s merged with user memory. If you try, rather than risking to crash your calculator,
ALG48 will generate a “Missing Library” error. If you want to keep your card 1 merged you have
to put ALG48 in port 0.

Note: If you have ALG48 in a covered port and want to use the special functions library SpecFun or
any other library that uses ALG48 internal routines, you must put that library in the same port as
ALG48 or in port 0. Also, if you are running the library from a covered port, only use the provided
user commands and do not try to access internal routines of the library directly, since this might
crash your calculator.

3.2 Installation procedure

ALG48 is a regular auto-attaching library (library number 909). To install it on your HP48 download
the file alg48.1ib onto your calculator (in binary mode), put the content of the created variable on
the stack, store it in the port of your choice (e.g., ?ALG48.LIB’ DUP RCL SWAP PURGE 0 STO), and
power-cycle the calculator.

The basic operation commands defined in ALG48 (AADD, ASUB, ANEG, AMUL, ADIV, AINV, APOW, see
Section 4) are intended to be assigned to the corresponding keys (+ - +/- * / 1/x =) of the
calculator. To do this you can type:

{S APOW 45.1 AINV 46.1 ANEG 52.1 ADIV 65.1 AMUL 75.1 ASUB 85.1 AADD 95.1} STOKEYS

Thereafter, whenever the calculator is in user mode, pressing one of these keys will call the cor-
responding ALG48 command, and, if the arguments provided do not match those handled by the
library (see the Command Reference in appendix) the standard command will be called. Therefore
you can stay in user mode and still perform “regular” operations. In addition, these commands
have algebraic aliases, which means that you can stay in user mode when typing a symbolic expres-
sion (in what HP calls algebraic-entry mode) and still get the usual symbols (+ = +/- * / 1/x ~)
when pressing the corresponding keys. Note, however, that in program-entry mode you will get the
ALG48 command names (APOW, AINV, etc.), and that ANEG will not behave exactly like the regular
+/- operation. The program AKEYS, distributed with the library, performs a more sophisticated key
assignment that solves these problems (see the file AKEYS.TXT for a detailed explanation).

4 Commands

4.1 Generalities

To ensure exact results ALG48 only works with integer and rational numbers and produces a “Bad
Argument Type” error if it finds a fractional number in the input. If the expressions you have contain
fractional numbers, you must convert them first into rational numbers by using the command ->Q
or =>Qm of the HP48, or by using the program QPI (©) by Mika Heiskanen. An advantage of QPI is



that it will also convert real arrays into symbolic matrices and complex numbers in (a, b) form into
the a + bi form, appropriate for ALG48.

The commands in ALG48 can be divided into eight groups, according to the kind of operations they
perform:

. Simplification commands: RSIM FCTR ASIM RORD RAT—>

They are used to simplify symbolic expressions or all the elements of a symbolic matrix or
vector.
Basic operations commands: AADD ASUB ANEG AMUL ADIV AINV APOW

They are used to do basic calculation (+ - +/- * / 1/x =) on several kind of objects:

e Symbolic matrices and vectors;
e Symbolic expressions;

e Fractions;

e Modular polynomials;

e Unlimited precision integers.

Grobner bases commands GBASIS GSIMP GSOLVE

They are used to solve systems of nonlinear polynomial equations.

. Symbolic matrix commands: MDET MLU MTRN MIDN

Perform specific operations on symbolic matrices.

Calculus commands: PF RINT

Perform partial fraction expansion and integration on symbolic rational functions.
Algebraic commands: GCD LCM

Perform specific operations on polynomials or unlimited precision integers.
Modular arithmetic: MOD+ MOD- MOD* MOD/ MODPOW MODINV

Perform modular arithmetic operations on unlimited precision integers.

Prime number operations: PRIM? PRIM+ PRIM-

Perform operations related to prime numbers on unlimited precision integers.

We describe below how to use these groups of commands to manipulate different kinds of objects.

The Command Reference in appendix gives a brief definition and the stack diagram of each command.

4.2

Rational expressions simplification

AL.G48 provides two powerful commands for simplifying multivariate polynomials and rational func-
tions. These commands will work on any algebraic expressions by treating them as the quotient of

two polynomials in several “variables”, which can actually be non-rational subexpressions (see the
second example in Section 2).



RSIM - Simplifies a symbolic expression as a rational function and returns it in (ex-
panded) canonical form;

FCTR — Simplifies a symbolic expression as a rational function and factorizes it into a
product of irreducible factors.

The simplification consists of two main steps

1. Multiplying out all products of polynomials and collecting the terms of same degree for the
numerator and denominator polynomials;

2. Simplification of the rational function by the multivariate polynomial greatest common divisor
(GCD) of the the numerator and denominator.

Depending on the type of the simplified rational function, RSIM returns it in one of the following
forms:

e If the denominator of the rational function is a constant, then the result is returned as a
polynomial with possibly rational coefficients;

e If the numerator of the rational function is a constant, then the result is returned as the inverse
of a polynomial with possibly rational coefficients;

e If both the numerator and the denominator of the rational function contain variables, then
the result is returned as the ratio of two polynomial with integer coefficients.

Similarly, FCTR returns the simplified rational function as either

e The product of its factors (which are all polynomials with integer coefficients) multiplied by a
possibly rational coefficient;

e The inverse of such a product;

e The ratio of two such products.

FCTR computes the true factorization of a polynomial over the integers (or, equivalently, over the
field of rational numbers), and not approximate roots over the real or complex field as computed
by a root finding program (like the command ROOT or PROOT of the HP48). Polynomials of arbitrary
degree can be irreducible over the integer, and a factorization might therefore entail high degree
polynomials. For instance:

220 — 2215 £ 2210 — 2% —2 FCTR[3.68] = (2'° — 25 —1) (2" —2° +2)

ALG48 version 4.2 uses Berlekamp p-adic factorization algorithm and can compute the complete fac-
torization of virtually any polynomial (up to degree 256). For more on RSIM and FCTR performances
see Section 4.16.

ALG48 also provides the command RAT->, which operates like RSIM, but returns the numerator and
denominator of the simplified rational function as two separated polynomials. In addition, the
commands GCD and LCM respectively compute the greatest common divisor and the least common
multiple of two polynomials. These two functions do not accept rational functions as input, since
the GCD and LCM are not well-defined notions in this case.

All the simplification commands produce a “Infinite Result” error if the denominator of the
simplified expression is zero.



4.3 Output format for polynomials

All the ALG48 commands output polynomials in expanded canonical form. In the polynomials the
terms are arranged into descending order of their degrees, and the “variables” in the terms are
arranged in lexicographic order, with the true variables (global and local names) first, followed by
the non-rational subexpressions. E.g.,

‘ax?y? exp(x) exp(y) + xy* — 2exp(z) + 3.

Sometimes, however, this output format may not be the most appropriate. In some cases a different
order for the variables or a “recursive” format, where one or several variables are considered “main”
variables and the others are treated as coefficient, may be preferable. The command RORD in ALG48
let you simplify and “re-order” polynomials in such ways.

The command RORD takes two arguments, viz., the symbolic expression to simplify and a main
variable or list of main variables. The output polynomial will be expanded with respect to the main
variable(s), while the remaining variables will be treated as coefficients. In addition, the order of the
variables in the list will be used in the output. The following examples illustrate different possible
outputs of RORD on a particular polynomial.

2ax? — ay + b’y + ba? + z%y + 3y

x RORD = (2a + by + b+ y)z? — (ay — 3y)
{x y} RORD = (b+ 1)z?y + (2a + b)2? — (a — 3)y
{y x} RORD = (b+ 1)yz? — (a — 3)y + (2a + b)z?

{x y a b} RORD =  2%yb + z?y + 22%a + 2%b — ya + 3y

4.4 General algebraic expressions simplification

RSIM and FCTR leave any non-rational (sub)expressions unchanged and treat i (the complex unit) like
any other variable. To simplify non-rational algebraic expressions (like square- and yth-root, expo-
nentials, logarithmic, trigonometric and hyperbolic functions) and expressions that involve complex
arguments ALG48 provides the command ASIM.

Unlike the simplification of rational expressions, the simplification of general algebraic expressions
is somewhat subjective and heuristic in nature. No algorithm will do it optimally in all cases. ASIM
does the following;:

e Recursively applies RSIM to every “rational” subexpression

e Simultaneously applies rules to simplify non-rational expressions

Applies trigonometric transformations and expands the exponentials, logarithms, etc.

Simplifies the resulting expression as much as possible,

Merges the remaining exponentials, logarithms, square-roots, and trigonometric functions.



In addition, ASIM simplifies the quadratic algebraic extensions (i and the square roots of irreducible
integers) and moves them to the numerator of the expressions. E.g.,

2142
i+v2-1
If the calculator is in Radian mode, ASIM also substitutes the exact value of the trigonometric

functions for arguments that are integer multiples of 7, /2, and 7/4. A table of the rules that ASTM
uses to simplify and expand non-rational expressions is given in appendix.

ASTM = —i+V2+1.

ASIM takes the principal solution approach to simplification, that is, it performs simplifications that
hold in the most common or “natural” case, but that are not necessarily true in all cases. For
instance, ASIM simplifies Vz? into z, even though, strictly speaking, this is valid only when z is
positive, and it simplifies acos(cos(z)) into x which is only true for 0 < z < 7 (the “principal” case).

4.5 Automatic simplification flag

ALG48 uses the user flag number 5 as an automatic simplification flag. When the flag is set the
result of any basic operation commands is automatically simplified, as by an application of RSIM.
For instance:

2% —x when the automatic simplification flag is set

1
T3 <enter> 2z ANUL= { (z — %)(21@) when the flag is clear

Since the simplification of rational functions can be time consuming (see 4.16), it is sometimes
preferable to do a series of operations without simplifying the intermediate results (i.e., with the
automatic simplification flag clear) and then to simplify explicitly the final result by using RSIM.

4.6 Partial fraction expansion

The command PF computes the partial fraction expansion of a rational function. By default, if the
rational function contains several variables, PF computes the partial fraction expansion along all the
variables. More precisely, PF first computes the partial fraction expansion along the first variable
(in the usual lexicographic order) and then, if there is a term whose denominator does not depend
on the first variable, expands it along the second variable, and so on, until all the terms have been
expanded as much as possible.

In general, the final result will depend on the order in which the expansion along the different
variables i1s performed. Because of that, PF takes a list of variables as an optional second argument.
This list of variable specifies along which variables the expansion should be done and the order in
which it should be computed. As an example, consider the rational function given in Section 2,

23y? — 3a3y + 323 — x%y? + 22%y — 322 — xy* + Saxy® — 8xy? + bay — 7 + 3% — 2y
22y? — 322y + 227 — xyd + 22y? + 2y — 22+ y3 — 3y? + 2y '

Here is the output of PF, first with no optional argument, then with {z} and {y, 2} respectively as



optional arguments.

I y y
y—2 y—-1 z—y =z-1
zy? —3zy+ 3z + 93 — 3P + 2 Y Y
y2—3y+2 +:p—y+m—1
Y x x x

PF -1 — —
{y =} - +y+m—1 y—:t:+y—'2 y—1

PF = y+x+

{x} PF =

In the first case the expansion was done on z first and then on y; in the second case the expansion
was done on x alone; and in the third case the expansion was done on y first and then on z. Note
in particular that the first and third outputs are different (though equal, of course), and not merely
the same fractions in different orders.

4.7 Rational functions integration

The command RINT computes the indefinite integral of rational functions. It takes two arguments:
the expression to integrate and the integration variable. If the expression to integrate contains
non-rational subexpressions that depend on the integration variable or contains algebraic extensions
(like \/E) then RINT produces a "Bad Argument Value'" error. Even though it is not explicit in
the output, like any indefinite integral, the integral returned by RINT is defined up to an additive
constant. That is, the general solution for the indefinite integral is the output of RINT plus an
arbitrary constant.

In general, the indefinite integral of a rational function will have a rational part and a logarithmic
part. The rational part is a “regular” rational function in the integration variable, and the logarith-
mic part is a sum of logarithms whose arguments are polynomials in the integration variable and
whose coefficients are constants. E.g.,

50525 — 8842 — 2028z* 4 796523 — 1121822 4+ 8771z — 4119
2827 — 2825 — 22425 + 8122* — 142823 + 148422 — 840x + 196
x RINT[6.5s] =
1522 — 39z + 28 19

31
—In(z — 1)+ = In(a® + 32” — 22 + 7).
o RV S S

It is always possible to compute the rational part of the integral and RINT uses Horowitz’s algorithm
to compute it quickly without computing the partial fraction expansion of the rational function. For
instance,

44127 4+ 7802° — 28612°% + 40852% + 769523 + 371322 — 432532 + 24500
926 4+ 625 — 6524 + 2023 + 13522 — 154z + 49

x RINT[3.3s] =

44125 4 6782° — 2412x* — 1447223 + 1803322 4+ 112562 — 12544
182* — 1223 — 7222 4 108z — 42 '

On the other hand, the coefficients in the logarithmic part are solutions of potentially high-degree
equations and cannot always be represented analytically (in closed-form). RINT gives an analytical

10



solution only if the coefficients are solutions of equations of degree two or less, i.e., if the coefficients
can be expressed exactly in terms of rational numbers and radicals. Otherwise RINT leaves the
corresponding part of the integral unsolved. For instance, RINT completely solves the following
integral since the it can be given explicitely in terms of radicals and fractions,

x2 —

x RINT = i\/ﬁln(m —V2) - %\/iln(m—}— V2).

In the contrary, RINT leaves the following integral unsolved because the solution can only be expressed
in terms of the roots of an equation of degree three,

1 1
———— X RINT= int{ ——,2].
3+ 2 (333 +2 )
When appropriate, to avoid logarithms with complex arguments and coefficients, RINT uses arctan-
gents in the logarithmic part of the integral. E.g.,

1 x
x RINT= —/2-atan | — ) .

2 <x/§ >
Because of the limited speed of the calculator, RINT does not use the general Rothstein-Trager
method to compute the logarithmic part of the integral and in some cases will fail to give an analytical
solution when one exists. For instance, RINT fails to solve completely the following integral,

z2 42

627 + 725 — 382° — 53z* + 4023 + 9622 — 38z — 39
28 — 1026 — 825 + 2324 + 4223 4+ 1122 — 102 — 5

x RINT[16.7s] =

1 1 . (62° 4+ 62* — 82 — 1827 + 82 48
L /B n(@ = vVB) — 5 In(z + VB) +int [ o )
75V/5 In(z = V5) = V5 In(z +/5) +in ( 26 — bzt — 823 — 222 + 22 + 1 I)

even though the integral of the last term can be given analytically as
(14+V3)In(z® =322 — (1 4+V3)z - 1)+ (1 —V3) In(z® + V322 — (1 = V3)z - 1).

Note however that RINT never introduces unnecessary algebraic extensions to express the integral
and can always solve integral whose logarithmic part only entails logarithms with polynomials of
degree two or less, regardless of the degree of the rational function itself.

4.8 Symbolic matrix manipulation

ALG48 represent (n X m) symbolic matrices by lists of the form

{{[111 . .alm}{azl .. .[lQm} . .{(lnl - anm}}

where each element a;; is either a real number, a variable or a symbolic expression. Similarly,
symbolic vectors [(n x 1) matrices] are represented by lists of the form {a; ...a,}.

All the symbolic matrix commands of ALG48 check that their arguments are valid symbolic matrices
and will produce a "Bad Argument Type'" error otherwise. In addition, the commands that accept
non-square matrices as arguments will also accept symbolic vectors and will return symbolic vectors
when appropriate.

ALG48 provides the following symbolic matrix commands [below, “scalar” denotes a real number, a
variable or a symbolic expression, and [ is the identity matrix]:

11



AADD - Adds two symbolic matrices or vectors, or, given a square matrix A and a scalar
x, computes A + x1.

ASUB — Subtracts two symbolic matrices or vectors, or, given a square matrix A and a
scalar z, computes A — z7 (or z] — A).

ANEG — Negates all the elements of a symbolic matrix or vector.

AMUL — Multiplies two symbolic matrices or vectors, or a scalar with a symbolic matrix
or vector.

ADIV — Multiplies a symbolic matrix, vector or scalar by the inverse of a square symbolic
matrix or scalar; can be used to solve systems of linear equations as shown in
Section 2.

AINV — Computes the inverse of a square symbolic matrix.
APOW — Raises a square symbolic matrix to an integer power.
MDET — Computes the determinant of a square symbolic matrix.
MLU — Computes the Crout (LU) decomposition of a square symbolic matrix.
MTRN — Transposes a symbolic matrix or vector.

MIDN — Given an integer number n returns the (n x n) identity symbolic matrix.

The Crout LU decomposition computed by the command MLU combines the lower triangular matrix L
and the upper triangular matrix U in a single square matrix. The command also returns the number
of “pivots” (iterations) completed, which is a lower bound on the rank of the matrix. If the matrix
is invertible then the number is equal to the dimension of the matrix. Both AINV and ADIV produce
a "Infinite Result" error if applied to a non-invertible (singular) matrix.

The result of the basic operation AADD, ASUB, AMUL, and APOW is simplified or not depending on
whether the automatic simplification flag is set (see 4.5), whereas the result of ADIV, AINV, MDET,
and MLU is always simplified. In addition, RSIM, FCTR, and ASIM can be used to simplify all the
elements of a symbolic matrix or vector.

In general the time taken by the matrix manipulation commands increases quickly with the di-
mensions of the matrices involved. Specifically, for square n X n matrices, the time taken by the
commands AINV, ADIV, AMUL, APOW, MDET, and MLU is proportional to n3, and the time taken by the
other commands is proportional to n?. ALG48 version 4.2 can nevertheless handle relatively large
matrices in a reasonable amount of time. For instance, ALG48 takes only 3.5s to invert exactly the
following 6 x 6 matrix, and about 18s to invert it back.

1 2 0 4 0 1
5 0 4 0 6 3
0 2 5 6 2 -1
0 -1 2 -1 -1 9
-5 3 1 =2 8 0
1 0 -2 1 0 3

Note also that the time taken by these commands largely depends on whether the elements of the
symbolic matrices are numbers or symbolic expressions, and on the number of variables involved in
the symbolic expressions.

12



4.9 Nonlinear equations and Grobner bases commands

As mentionned in the previous section, ADIV let you easily compute the exact solutions of a system
of linear equations. Solving a system of nonlinear equations is usually much harder. Even a single
univariate equation of degree greater than four cannot in general be explicitely solved in terms
of rational numbers and radicals. Tt is however possible, using a root finder program (like the
command ROOT or PROOT of the HP48), to compute good approximate numerical solutions of a
nonlinear univariate equation. We can therefore consider that a system of nonlinear equations is
solved if we have reduced it into an equivalent form in which the roots can be obtained easily with
a root finder program.

Solving a linear system typically involves “eliminating” unknowns from equations to obtain an
equivalent triangularized system which is then easy to solve. This process is known as Gaussian
elimination. Grobner bases generalize this approach to solve systems of nonlinear polynomial equa-
tions. The Grobner basis of a system of polynomial equations is a set of equations that has the same
solutions as the original system but that is simpler, in a mathematically well-defined way, than the
original system.! For example, consider the following system of nonlinear equations,

24yz = 2
v +zz = 3
ry+22 = 5,

which is represented in ALG48 by a list containing three symbolic equations. Its Grobner basis
computed by the command GBASIS is

361z — 8827 + 8722° — 269023 + 23752
361y + 827 + 522° — 7402° + 14252
828 — 1002° + 4382* — 76022 + 361,

where the missing right-hand-side of the equations are implicitly understood to be zero. Even though
this new system might look at first more complex than the original one, it is actually much easier
to solve because it is triangularized. The last equation depends on z alone, the second equation
depends only on y and z, and the first equation depends only on z and z. Thus, using a root finder
program, you can easily compute the (eight) solutions for z from the last equation, and then, by
backsubstitution, the corresponding solutions for y and z.

It is well known that the existence and number of solutions of a system of linear equations can be
neatly characterized in terms of the number of variables and independent equations of the system.
There is no such simple characterization for nonlinear systems. In general the Grobner basis for
a system of nonlinear equations can have fewer or more equations than the original system. If
there are as many equations as there are variables, and if the equations are sorted according to their
leading term, the basis will often, but not always, be in triangular form suitable for backsubstitution.
Moreover, if the system has no solution then the basis will include a constant and will reduce to 1.
E.g.,

22+ 4y? —17=0

22y —3y* +8=0 {x y} GBASIS = 1.

zy? —5zy+1=0

1 A mathematical definition of Grébner bases is beyond the scope of this document. Interested readers are referred
to, e.g., Gribner bases: a computational approach to commutative algebra, Thomas Becker and Volker Weispfenning,
Springer-Verlag, NY, 1993. A more detailed explanation about the Grobner commands in ALG48 and a large number
of examples can also be found in the “Grobner” document that is distributed with ALG48.
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Even though Grobner bases are in a sense minimal, they are not unique, and a system of equations
can have several different (though equivalent) bases. The basis depends in particular on the order of
the terms in the polynomials and on the order in which the variables are “eliminated”. ALG48 always
uses a lexicographic ordering for the terms (see Section 4.3) and all the Grobner commands expect
a list of variables on Stack Level 1 that specifies the order of the variables. The list of variables also
specifies which variables are main variables (as opposed to coefficients) for the output format, like
in the command RORD. For instance, in the example below, z, y and z are the main variables, and ¢
is treated as a parameter,

cx+(e+y+z=1 T +cz
r+ey+(c+)z=2 {x y z} GBASIS = y—clz+1
(c+Dz4+y+cz=-1 (4 1)z = (c+2).

A different and much more complicated basis would have been obtained if the regular lexicographic
order, with ¢ first, had been used.

Beside GBASIS, there are two additional Grobner commands in ALG48: GSOLVE and GSIMP. The
command GSOLVE computes the Grobner basis of a system of polynomial equations and then factors
the basis as much as possible to determine independent sets of solutions. Each set of solutions is
represented by its own set of equations, and the number of independent sets of solutions is return
on Stack Level 1. For instance,

2zy(z +y— 1) + 32%y(z +y — 1)?
IQ(fb +y— 1)3 + 31‘2y(33 +y— 1)2 {x y} GSOLVE

returns the real number 3 on Stack Level 1, and the following three systems of equations on Stack
Level 2, 3 and 4, respectively:

3z —1

This means that the system has three independent sets of solutions: the point z = 1/3,y = 1/6;
the line z = 1 — y; and the line x = 0. Incidentally, the equations in this example are the partial
derivatives, with respect to = and y, of the bivariate function f(z,y) = ?y(z +y — 1)3. Hence, the
solutions found correspond to the critical points and singularity lines of f.

Section 2 provides an other example of GSOLVE. There the system has two independent sets of
solution, one corresponding to z = 0,y = 1, the other given by the system

20— 6y — 5
14y? + 21y + 9.

Using for instance the command QUAD or PROOT of the HP48 it is easy to determine the two complex
solutions corresponding to that latter system: z = i—}— 29—8\/71', y= —% + 23—8\/72 and their conjugates.
The command GSIMP computes the Grobner basis for a given system of polynomial equations and
then reduces an equation with respect to that system. The equation to reduce is given on Stack
Level 3, the system of equations on Level 2, and the list of variables on Level 1. GSIMP lets you
answer questions of the form what s the value of this equation, given that these side relations hold.
For instance, consider the following problem from the Dutch Mathematics Olympiad of 1991:

Let a, b, ¢ be real numbers such that a4+b4c¢ =3, a?4+62+c? =9, and a3+ b3 +¢3 = 24.
Compute a* + b* 4 ¢*.
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With GSIMP you immediatly get the solution.
3: a* 4+ b* 4+ ¢t

2: {a+b+c=3
a2+ 4+c2=9
ad 4+ b3 4 3 =24}

1: {ab,c}

GSIMP[1.7s] = 69.

Note that if we had computed the solutions for a, b, and ¢ using for instance GBASIS or GSOLVE we
would have obtained an irreducible third degree polynomial (with 3 real roots). Hence, computing
the actual values for a, b, ¢ and then substituting them back into a* 4+ b* 4+ ¢* would have involved
considerably more work than with GSIMP.

4.10 Verbose mode flag

Grobner bases calculations are complex operations. Even some apparently simple nonlinear systems
can lead to extremely complex bases, with high-degree equations and large coefficients. Needless to
say, these calculations can be time-consuming, and not all systems can be solved within the memory
and speed limits of the HP48.

ALG48 uses the user flag number 1 as a verbose mode flag. When the flag is set the Grobner
commands display some messages on the top three lines of the screen while they execute. The
messages describe the operations that the command is currently performing. This allows the user
to monitor the progresses the calculator is making toward a solution. If it becomes apparent that a
solution cannot be obtained in a reasonable amount of time, the command can be aborted as usual,
by pressing the CANCEL (ON) key.

4.11 Calculating with fractions

ALG48 can be used to easily calculate with fractions, especially if the basic operation commands are
assigned to the corresponding keys of the calculator (see Section 3).

To facilitate the keying of fractions, ADIV and AINV applied to integer arguments return a symbolic
fraction instead of evaluating the result as a real number. Thus, to calculate an expression using
fractions just type the expression in regular RPN, as you would to evaluate it using real numbers.
For instance, to compute 3/4 + 1/6, you just type:

3 <enter> 4 ADIV = '3/4
6 AINV = '1/6
AADD = "11/12

Note: Make sure the automatic simplification flag is set when calculating with fractions, otherwise
the expressions will not be evaluated (see 4.5).
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4.12 Algebraic operations on modular polynomials

ALG48 can be used to perform algebraic operations on modular polynomials, i.e., polynomials whose
coefficients belong to the finite ring 7, generated by some positive number n, and all the operations
are performed modulo n. Usually, n will be a prime number; in that case Z, is a finite field.

Modular polynomials are represented in ALG48 by regular symbolic expressions with a MOD operation
at the end. E.g.,

¢ (2*X"2+5%X-1) MOD 13°’.

ALG48 uses the “symmetric” representation when i1t outputs modular polynomials, that is, it uses
coefficients in the range —[n/2]...|n/2] when the modulo is n.

All the basic operations commands AADD, ASUB, ANEG, AMUL, ADIV, AINV, and APOW, as well as the
commands GCD, LCM, and RSIM can be used with modular polynomials. For instance,

(22 — 2) mod 5

2
(32 — 2) mod 5 AMUL = (z° — 1) mod 5.

When used with modular polynomials ADIV returns both the quotient (on Stack Level 2) and the
remainder of the division (on Stack Level 1). E.g.,

(z? + 1) mod 5 (22 — 2) mod 5
(3z — 2) mod 5 ADIV = 2 mod 5 ’

All these commands generate a “Bad Argument Type” error if the expressions are not polynomials,
if the moduli are not positive whole numbers, or if the moduli do not have the same value in all the
arguments.

4.13 Unlimited precision integer arithmetic

Internally ALG48 does all its calculations using unlimited precision integers. These unlimited pre-
cision integers are represented by hexstrings (binary integers) of variable length (rot limited to 64
bits), with a sign-magnitude format (one sign nibble and a variable length unsigned magnitude).
For instance, the number 1 is represented by the two-nibble hexstring #01h, whereas the number 254
is represented by the eighteen-nibble hexstring #0100..0h. Negative numbers are identical except
for the sign nibble which is set to F. For instance, the number -1 is represented by the two-nibble
hexstring #F1h and —2%* is represented by the eighteen-nibble hexstring #F100..0h. Finally, zero
is represented by the one-nibble hexstring #0h. Note that the two-nibble hexstring #F1ih does not
represent the same number as the three-nibble hexstring #0F1h (which represents the number 241).

You can use ALG48 to do unlimited precision integer arithmetic directly by using the basic operation
commands (except AINV) with binary integer arguments (or one binary integer and a real number).
For example

#2 <enter> 65 APOW

computes the exact value of 25°. Note, however, that the HP48 will only display the value of the 64
(or whatever your binary word size currently is) lowest-significant bits of long hexstrings. Therefore,
in the example above, the result will be displayed as #0h since the lowest 64 bits are all zeros. To
overcome this problem, ALG48 provides the command Z<->S that converts a variable length hexstring
into a (character) string giving its value in decimal, or vice versa. Thus typing
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#2 <enter> 65 APOW Z<->S returns "3689348814711903232"

which is the exact value of 25°. As an additional example, the following little user-RPL program
computes the exact factorial of its single real argument, and returns it as a string;:

<< #1h 1 ROT FOR i i AMUL NEXT Z<->S >>

Running it with 100 as argument gives

"933262154439441526816992388562667004907159682643816214685
929638952175999932299156089414639761565182862536979208272
23758251185210916864000000000000000000000000”

As a typing short-cut, ZS is an alias name for the Z<->S command.

4.14 Advanced algebraic operations on unlimited precision integers

In addition to the basic operation commands, several commands of ALG48 perform advanced alge-
braic computations on unlimited precision integers.

GCD  — Greatest common divisor of two integers

LCM — Least common multiple of two integers

PRIM? — Check whether a number is prime

PRIM+ — Returns the next (larger) prime number

PRIM- — Returns the previous (next smaller) prime number

FCTR — Factorization into prime numbers

The integer argument(s) for all these commands, except FCTR, can be given (in any combination)
as (integer) real numbers, unlimited precision binary integers, or strings representing the number
in decimal. Here are some examples of the primality testing commands. The first number below is

227 _ 1, which is the 12th Mersenne number, and which is known to be prime.
"170141183460469231731687303715884105727" PRIM? [588] = 1 (: prime)
"130529377836972488251268578591" PRIM7? [8s] = 0 (= not prime)

#1234567890123456d PRIM+[6s] = #1234567890123481d
#1234567890123456d PRIM-[4s] = #1234567890123439d

Because of its use as a simplification command, FCTR leaves real numbers unchanged and will only
factor integers given as binary integers or as strings. If the number is given as a binary integer FCTR
returns a list with the prime factors. If the number is given as a string, the factors are given in a
symbolic form. For instance

#130529377836972488251268578591d FCTR [34s] =
{ #2647d #3691d #5113d #11779d #398609d #556517681d }
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and
"130529377836972488251268578591" FCTR [348] =

2647 - 3691 - 5113 - 11779 - 398609 - 556517681

FCTR uses advanced integer factorization algorithms and can factor relatively large numbers. How-
ever no “efficient” (polynomial-time) algorithm is known for factoring arbitrarily large integers and
it is widely believed that no such algorithm can exist. Thus FCTR will factor completely only rea-
sonably small numbers (up to 20-30 digits) or larger numbers that consist only of small factors. To
avoid running forever, if FCTR does not make any progress after one minute it returns the number
unfactored (or only partially factored). As always, you can also abort the computation by pressing
the CANCEL (ON) key.

In the contrary, the primality testing algorithm (used by PRIM?, PRIM+ and PRIM-) can handle very
large numbers. However the algorithm is randomized and might, with very low probability, say that
a number is prime when it is not (but will never say that a number is not prime when in fact it is).

4.15 Modular arithmetic on unlimited precision integers

AL.G48 provides six commands specifically to perform modular arithmetic on unlimited precision
integers. These commands take three arguments (two operands A and B, and a modulus N), except
MODINV which takes only two arguments (A and N). Here again the arguments can be given as
(integer) real numbers, binary integers, or strings.

MOD+ — (A+ B) mod N

MOD- — (A— B)mod N

MOD* — (A-B) mod N

MOD/ — (A-C)mod N, where C' is the inverse modulo N of B

MODPOW — (AP) mod N

MODINV — inverse modulo N of A

If A and N are relatively prime numbers (with A < N), the inverse modulo N of A is the (unique)
number C' that satisfies

(A-C)mod N = 1.

If no such inverse exists, 1.e., if A and N are not relatively prime, then MODINV returns #0h. Similarly,
MOD/ returns #Oh if its second and third arguments are not relatively prime.

4.16 Performances

Algebraic computations, like the simplification, factorization, partial fraction expansion or integra-
tion of rational functions, are complex operations and are generally time-consuming for non-trivial
problems. Therefore, even though ALG48 is written in sysRPL and machine language, any operation
that involves such operations is not instantaneous on the HP48.

ALG48 version 4.2 can nevertheless perform most simplifications quite quickly. Section 2 gives some
examples with their timings. [The times given throughout this document were obtained on a HP48GX
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with approximately 60Kb of free memory.] Even complex simplifications can be handled in a rea-
sonable amount of time. For instance, ALG48 version 4.2 takes only 8s to simplify the relatively large
three-variable rational below.
6x%—126c% 24 78c y22+oty+ata 41322 — 2122y 2 —212%9y%22 41322y 222 +130%y 2 — 210y 2+ 137y 2 2+ 2oy + 20242
9z542x4yz—189x3y324+117x3y2243x3—4202y4224+26x2y223+18x2—63zy32+39zy22+4ryz+6

6x3+:cy+xz+1

ALG48 is also very fast at simplifying polynomials (multiplying out the products and collecting the
terms of same degree). For instance, RSIM takes only 1s to simplify the following expression:

(x 4+ 1) — (x —1)'? RSIM[L.1s] = 242'" 4 4402° + 158427 + 15842° + 4402> + 24z,

As a comparison, the program EXCO (Expand & Collect completely), described in HP’s Advanced
User’s Reference Manual (p.2-20), was not able to obtain the solution in 10 hours. Using extrapola-
tion from the time taken by EXCO to perform simpler binomial expansions, John Stebbins estimated
that it would take EXCO more than 18 days (!) to find the solution of this example.

The factorization of polynomials is comparatively slow, especially for multivariate problems. Simple
factorizations, however, are performed quite fast. For instance, FCTR takes only slightly more than
2s on the following example:
32y + 92% —rxy® — b2y’ — 22y — 18z +y* — P + 6y —y+5
FCTR [2.2s] =
Bz —y +y—5) (zy+3z—y? —1).

Even some seemingly complex factorizations can be performed quickly, like the following one, taken
from Mathematica’s book, that ALG48 solves in 15s,

40965°— 143365 Ty+43008z 7 +16768z°y% — 155904z +1693445°—5600z°y>+1955525°y? — 63504055y +2963525°
—1919z%y* —83244x%y> +849366x*y? — 1148364z y+194481c*+ 700z 3y — 974453y * —43394453y> 4162993625y 2
— 77792455y 426222y® +8568z2y° +158760y* — 9631442 %y> 41166886z %y2 +28zy +1680xy®
+317520y°+148176zy*— 777924z y>+y®+84y +2646y°+37044y5+194481y*

FCTR[15.28] = (= — y)*(8x +y + 21)™.

ALG48 version 4.2 uses Berlekamp p-adic factorization algorithm and, given enough time, can com-
pute the complete factorization of virtually any polynomials (up to degree 256), even if they are
square-free and contain high-degree factors. E.g.,

24?0 g0 221 210225 1 FCTR[125s] = (2 -2 42—z’ 1) (242 42" 427 +1);

18—yt FCTR[16s] = (= —y)(;r—}—y)(:z:2 — :Ey+y2)(:b2 +my+y2)(1‘6 — 33 —|—y6)(1‘6 + 233 —|—y6).

Even large multivariate polynomials can be handled in a reasonable amount of time. For instance,
AL.G48 can factor the numerator and the denominator of the large three-variable rational above in
about a minute.

6x%—1262% 24+ 78s%y224oty+ota41323 2122y 2 —2122y3 2241322y 22 +130 %y 2 — 210y 2+ 132y 2 2+ 2oy + 20242

FCTR [59s] = (23 — 2123z + 132y2? + 2) - (623 + zy + 22 + 1);
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9x5+2:c4yz—189x3y32+117x3y22+3:c3—42x2y4z2+26x2y223+18x2—63:cy32+39:cyz2+4:cyz+6

FCTR[65s] = (92? + 2zyz + 3) - (23 — 21293z + 132yz? + 2).

As a first approximation, the running time of the simplification and factorization algorithms used
in ALG48 increases exponentially with the number of variables and polynomially (but fast —Ilike n?)
with the maximum total degree n of the polynomials involved. In theory the factorization algorithm
can also take exponential time in the degree of the polynomial, but this is usually not the case in
practice. However, as illustrated by the examples above, the actual time taken by the simplification
and factorization commands varies greatly depending on the properties of the polynomial involved
(e.g., whether the polynomial is square-free or not, whether the factors are all linears, etc.).

4.17 Remarks

Here are a few additional things to note about ALG48’s commands.

e ASIM is the only command of ALG48 that handles complex arguments directly in their (z,y)
form. All other commands will produce a "Bad Argument Type" error if they finds such
complex argument in the input. However, complex arguments in the form ‘z + yi’ are handled
properly, with ¢ treated as any other variable.

e If they are given equations as input RSIM and ASIM will simplify both side of the equation
independently. On the other hand, FCTR does not accept equations as input, and produce a
"Bad Argument Type' error in this case.

e Before trying to factor a polynomial or rational function, FCTR blindly simplifies it into canon-
ical form (expands it completely and collects the terms of same degree). Therefore, if you have
a large polynomial already partially factored it might be a good idea to split it first using the
command 0BJ-> of the calculator, and then apply FCTR to each term separately.

e Even though ALG48 internally uses unlimited precision integers for all its computations, the
HP48 can only handle real numbers inside symbolics. Thus ALG48 cannot input or output unlim-
ited precision integers from or into algebraic expressions, and will produce a "Bad Argument
Value" error if a number in the input is too big to be represented exactly by a real. For
instance:

’1/2’ 65 APOW = ’1/3.6894..E19’ 1 AAAD = Bad Argument Value

Therefore, if for example you want to do unlimited precision arithmetic with fractions, you
have to handle the numerator and denominator separately as two unlimited precision binary
integers.
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5 Contact

Gifts :-), bug reports, and constructive comments and suggestions can be sent to either one of the
following addresses.

Claude-Nicolas Fiechter Mika Heiskanen

Department of Computer Science Jamerantaival 7 C 355

University of Pittsburgh 02150 Espoo, Finland

Pittsburgh, PA 15260, U.S.A. e-mail: mheiskan@delta.hut.fi

e-mail: fiechter@cs.pitt.edu
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A Simplification Rules for ASIM

The tables below list the rules that ASIM uses to simplify and expand non-rational expressions.
Converse rules are used to merge back the square-roots, exponential and trigonometric functions
remaining after the simplification. The rules can of course combine. For instance, xroot(z,2) is
first transformed into (1/2)| then into \/z, to which the square-root rules are applied, and so forth.
For the transformation from sin(z)? into cos(z)? and vice versa (and the corresponding hyperbolic
rules), a special mechanism is used to ensure that the more appropriate of the two transformations is
used in each subexpression. Below z, y and z stand for any subexpression, n is any integer number
and 7 is the complex unit.

Square and Square Root

expression | simplified note
cos(z)? 1 —sin(z)?
sin(z)? 1 — cos(z)?
cosh(z)? sinh(z)? + 1
sinh(z)? cosh(z)? — 1
Wak ;
N (Vx)? + simplify as power
\/inv(z) inv (v/z)
Ve 2(1/4)
exp(z) exp(z/2)
alog(z) alog(z/2)
V=z i
VET | R
z/y VE/ Y
z/V vz
NEYE inv(y/z) if x nonreal
ay/n+b c+dy/n for integer solutions

Power and XRoot

expression | simplified note
17 1
20
0® 0 ifz#0
x(-v) inv(z¥)
inv(z)¥ inv(z¥)
(x¥)* 22
(I . y)Z I‘:EZ . yZ
(x/y)? x* [y
exp(z)Y exp(y - z) | if y nonreal
alog(z)Y alog(y - #) | if y nonreal
(V)Y z/2) if y nonreal
(—z)” " if n even integer
(v/z)" zn? if n even integer
(Vz)" (=D/2 /& | if n odd integer
z(n/?) (Vz)" if n integer
xroot(z, y) y(1/%) + simplify as power
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Exponential

expression simplified note
e’ exp(z)
exp(0) 1
exp(%'mri) 1,14,-1,or —i | depending on n
exp(In(z)) T
exp(—z) inv(exp(z))
exp(z +y) | exp(z)-exp(y)
exp(z —y) | exp(z)/exp(y)
exp(yIn(z)) zY if y is “simple”
ALOG Function
expression simplified note
alog(n) integer ifn>0
alog(n) 1/integer ifn<0
alog(log(z)) z
alog(—z) inv(alog(z))
alog(z +y) | alog(x) - alog(y)
alog(z — y) | alog(x)/alog(y)
alog(ylog(z)) zY if y is “simple”
Natural Logarithm
expression | simplified
In(1) 0
In(—1) i
In(7) imi
In(exp(z)) z
In(inv(z)) —In(xz)
In(\/z) In(z)/2
In(zy) In(z) + In(y)
In(z/y) In(z) — In(y)
In(zY) yln(z)
In(—z) In(z) + mi
Base 10 Logarithm
expression simplified
log(1En) n
log(alog(z)) x
log(inv(z)) —log(z)
log(vz) | log(z)/2
log(xy) | log(x) + log(y)
log(x/y) | log(x) — log(y)
log(2¥) ylog(x)
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Trigonometric Functions
expression simplified
sin(asin(z)) x
sin(acos(z)) V1—2z2
sin(atan(z)) z/\/1+ z?

sin(—z) —sin(z)
cos(acos(z)) x
cos(asin(z)) V1—z2
cos(atan(z)) 1/V/1 + 22

cos(—z) cos(z)
tan(atan(z)) x
tan(asin(z)) z/V1 — x?
tan(acos(z)) V1-—z2/x

tan(—z) — tan(z)
tan(1z) sin(.:b)/(cos(x) +1)
tan(z) sin(z)/ cos(z)

Hyperbolic Functions

expression simplified
sinh(0) 0
sinh(asinh(z)) x

sinh(atanh(z)) z/V1—2?
cosh(0) 1
cosh(acosh(z)) x

cosh(asinh(z)) V1+ x?
cosh(atanh(z)) 1//1 — 22
0

tanh(0)
tanh(atanh(z)) x
tanh(asinh(z)) I/\/m
tanh(z) sinh(z)/ cosh(z)

Inverse Trig. and Hyp. Functions

expression simplified
asin(0) 0
asin(sin(z)) x
acos(cos(z)) x
atan(0) 0
atan(tan(z)) x
asinh(0) 0
asinh(sinh(z)) x
acosh(cosh(z)) x
atanh(0) 0
atanh(tanh(z)) x
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Absolute Value

expression | simplified
abs(n) |n|
abs(?) 1
abs() T
abs(—z) abs(z)
abs(abs(z)) abs(z)
Real Part
expression | simplified
re(n) n
re(7) 0
re(m) T
re(re(z)) re(z)
re(im(r)) im(z)
re(conj(z)) re(z)
re(abs(z)) abs(z)
re(—z) —re(z)
re(z + y) re(z) + re(y)
re(z — y) re(z) —re(y)

Imaginary Part

expression simplified
im(n) 0
im(4) 1
im(m) 0
im(im(z)) 0
im(re(z)) 0
im(conj(z)) —im(z)
im(abs(z)) 0
. im(—z) —im(.m)
im(z+y) | im(z)+im(y)
im(z —y) | im(z) —im(y)
Conjugate
expression simplified
conj.(n) n
con.J(i) —1
conj(m) T
conj (conj(a:)) x
conj (.re(:b)) .re('r)
conj(im(z)) im(z)
conj(abs(z)) abs(z)
conj(—z) —conj(z)
conj(z +y) | conj(z)+ conj(y)
conj(z —y) | conj(z) — conj(y)
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B Command Reference

We give below a listing of all the commands provided by ALG48 with stack diagrams showing the

argument(s) they require. We use the following abbreviations

rory Real numbers.
z Integer real number.
n Positive integer real number.
#z Unlimited precision binary integer (hexstring).
#n Positive binary integer (hexstring).
77" Character string representing a number in decimal.
‘symb’ Symbolic expression or variable.
%’ Variable (local or global).
s Scalar (real number, variable, or symbolic expression).
{ vector } Symbolic vector, represented by a list of the form {a;

...an} where each a; is a scalar.

{{ matrix }}

Symbolic matrix, represented by a list of the form {{a1;
...@im} ... {an1 ... apm}} where each a;; is a scalar.

{{ sq-matrix }}

Square symbolic matrix.

{ JXJ 7y? ?Z? }

List of variables.

{’eql’ ’eq2’ } | System of equations, represented by a list of symbolic equa-
tions or expressions. Expressions are interpreted as equa-
tions with zero on the right-hand side.

{ s-list } List whose elements are either scalars or s-list themselves

(includes vectors, matrices, and system of equations).

The entries marked with an asterisk (%) in the stack diagrams are the operations affected by the
status of the automatic simplification flag (see Section 4.5).

e RSIM - Rational simplification command

Levell — Level 1
‘symb_1"’ — ’symb_2’
{slist_1 } — {slist2 }
z — z

e FCTR — Factorization command

Z —

” .,

Z —

Level 1 — Level 1
‘symb_1" — ‘symb_2’
{slist_1 } — {slist_2 }

7
#z — { #z1 #22 ... #zk }

z1%22% ...

*zk’
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e AADD — Algebraic addition command

o AMUL

Level 2 Level 1 — Level 1
{{ matrix_1 }}  {{ matrix2 }} — {{ matrix2 + matrix_1 }} (%)
{ vector_1 } { vector.2 } — { vector_-2 4 vector_1 } (%)
{{ sq-matrix }} s = {{T*s + sq-matrix }} (%)
s {{ sq_matrix }} = {{ sq_matrix + T*s }} (%)
‘symb_1’ ‘symb_2’ — ‘symb_2+symb_1’ (%)
symb’ X — x+symb’ (%)
X ‘symb’ — ‘symb—+x’ (%)
#z1 #72 — #23
#z1 72 — #23
zl #72 — #23
e ASUB — Algebraic subtraction command
Level 2 Level 1 — Level 1
{{ matrix_1 }}  {{ matrix2 }} — {{ matrix_2 - matrix_1 }} (%)
{ vector_1 } { vector.2 } — { vector_2 - vector_1 } (%)
{{ sq-matrix }} 8 —  {{T*s - sq_matrix }} (%)
s {{ sq-matrix }} =  {{ sq_-matrix - T*s }} (%)
‘symb_1’ ‘symb_2’ — ‘symb_2-symb_1’ (%)
‘symb’ X — "x-symb’ (%)
X 'symb’ — ‘'symb-x’ (%)
#z1 22 — #23
#z1 72 — #23
zl 22 — #23
— Algebraic multiplication command
Level 2 Level 1 — Level 1
{{ matrix_1 }} {{ matrix2 }} — {{ matrix 2 * matrix_1 }} (%)
{{ matrix }} { vector } — {{ matrix * vector }} (%)
{ vector } {{ matrix }} —  {{ matrix * vector }} (%)
{{ matrix }} 8 - {{ s * matrix }} (%)
8 {{ matrix }} — {{ matrix * s }} (%)
{ vector } 8 - { s * vector } (%)
8 { vector } — { vector * s } (%)
‘symb_1’ ‘symb 2 — ’symb_2*symb_1’ (%)
‘symb’ X — "x*symb’ (%)
X ‘symb’ — ‘symb*x’ (%)
#z1 22 — #23
#z1 72 — #23
zl 22 — #23
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e ADIV - Algebraic division command

Level 2

Level 1 —

Level 1

{{ matrix }} {{ sq-matrix }} — {{ matrix * (sq-matrix)~-1 }}

e APOW

e AINV

{ vector } {{ sq-matrix }} = {{ vector * (sg-matrix)~-1 }}
8 {{ sq-matrix }} =  {{ s * (sq-matrix)~-1 }}
{{ matrix }} 8 - {{ matrix / s }}
{ vector } 8 - { vector /s }
‘symb_1’ 'symb_2’ — ’symb_1 /symb_2’
‘'symb’ X — 'symb/x’
X ‘'symb’ — 'x/symb’
X y — x/y’
H#z1 #22 — #23
#z1 72 — #23
zl 22 — #23
- Algebraic exponentiation command
Level 2 Level 1 — Level 1
{{ sq-matrix }} z = {{ (sq-matrix)~z }} (%)
‘symb’ 7 — ‘symb~z’ (%)
#z1 #n = 22
#z1 n — 22
Al #n = 22
e ANEG - Algebraic negation command
Level1 — Level 1
{slist_1 } — {slist2 }
‘symb’ — ’-symb’
#z1 — #z2
- Algebraic inverse command
Level 1 — Level 1
{{ sq-matrix }} — {{ (sq-matrix)~-1 }}
‘'symb’ — INV(symb)’ (%)
X — /% (%)

e MDET

- Symbolic matrix determinant

Level 1

— Level 1

{{ sg-matrix }}

— ’det(sq-matrix)’

e MLU -

Symbolic matrix LU decomposition

Level 1

— Level 2

Level 1

{{ sg-matrix_1

1} = {{ sq-matrix 2 }}

n

e MTRN

- Symbolic matrix transpose

Level 1

— Level 1

{{ matrix_1 }}
{ vector }

— {{ matrix_2 }}
— {{ matrix }}
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e MIDN - Symbolic identity matrix

Level 1 — Level 1
n  — {{ (n x n) identity-matrix }}

e Z<->S or ZS - Conversion from unlimited precision integer to string

Level 1 — Level 1
#Z % 77Z77
77Z77 % #Z

z - #z

e GCD - Greatest Common Divisor command

Level 2 Level 1 — Level 1l
‘poly_1’ ‘poly 2’ — ’poly_ged’
‘poly’ X — 7
X ‘poly’ — 7
zl 72 — z3
zl #22/7227 —  H#23

#21/721”  22/#22/722" — 23

e LCM - Least Common Multiple command

Level 2 Level 1 — Level 1l
‘poly_1’ ‘poly2” — ’polylcm’
‘poly’ X — ’polydcm’
X ‘poly’ — ’polydcm’
zl 72 — z3
zl #22/722” — 23

#21/721”  22[/#22/722” —  #23

e RAT-> - Rational to stack command

Level 1 —  Level 2 Level 1
rational function’ = ‘numerator’ ’denominator’
X — X 1.0

e ASIM — Algebraic simplification command

Levell — Level 1
‘symb_1” — ’symb_2’
{slist_l } — {slist2 }
(z,y) —= ‘z+uyi
z — z

e MOD+ — Modular addition

Level 3 Level 2 Level 1 — Level 1
21 /#2127 22/#22/722” n/#n/"’n” — 23
e MOD- — Modular substraction

Level 3 Level 2 Level 1 — Level 1
2l /#21[721”  22/#22/722” n/#n/"’n” — 23
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MOD* — Modular multiplication

Level 3 Level 2 Level 1 — Level 1

21 /#21 7217 22/#22/722” n/#n/"n” =  F#23

MOD/ — Modular division

Level 3 Level 2 Level 1 — Level 1

21 /#217217  22/#22/722” n/#n/"'n” — 23

MODPOW — Modular exponentiation

Level 3 Level 2 Level 1 — Level 1

71 /#21[721”  22/#22/722” n/#n/"'n” — 23

MODINV — Inverse modulo N

Level 2 Level 1 — Level 1

71 /#21/721”  n/#n/"n” —  $22

PRIM? — Prime testing

Level 1 — Level 1

z/#2/72” — 0/1
PRIM+ — Next prime

Level 1 — Level 1

2/#2/"7” —  H#n

PRIM- — Previous prime

Level 1 — Level 1

z/#2)°7 —  #n
RORD — Reorder polynomial

Level 2 Levell — Levell

‘poly_1’ x’ — ’poly_2’
z x’ — z
7poly_17 7X7 7y7 7Z7 } % 7poly_27
z { 7X7 7y7 7Z7 } % Z

PF — Partial fraction expansion

Level 2 Level 1 — Level 1

P { 7X7 7y7 7Z7 } N =

z — z

‘symb_1’ { ’x’’y’ 2" } = ’symb 2’

‘symb_1" — ’symb_2’

RINT - Rational function integration

Level 2 Level 1l — Level 1

‘symb_1’ X — ’symb_2’
z xR
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e GBASIS — Grobner basis of a system of polynomial equations

Level 2 Levell — Level 1
{ 7eq1? ?eq23} { 3X7 7y7 ’Z’}%{ ’equ 3eq27 }/

e GSOLVE — Solutions of a system of polynomial equations

Level 2 Levell — Leveln+1 ... Level 2 Level 1

{’eql’’eq2’ } {’xX"y'’2 } = {’eql’’eq2’ },...{ eql’ 'eq2’ }, n

e GSIMP — Reduction of an expression given a system of side relations

Level 3 Level 2 Levell — Levell
‘symbl”  {’eql’’eq2’ } {’x’’y’ 'z’ } = ’symb2’
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