Tutorial 7: Conditionals

Introduction:

What we now will learn is a very important topic in every programming language. We will learn how to use conditionals. Conditionals are very important because they test something. If something is true or not true then run the following code else do something else. If Sys-RPL is one of your first languages, learn this topic well and make your own variations.
New Commands:

%number1 %number2 %=

--> FLAG
* %= needs two (real) numbers. It test whether number1 is equal to number2. If this is case it drops TRUE on the stack, else it drops FALSE.

FLAG IT
* If the FLAG is TRUE, the next code is executed else it skips the next code.

OBJECT1 OBJECT2 EQUAL

--> FLAG
* Checks if OBJECT1 is equal to OBJECT2. If true it drops TRUE, else FALSE.

OBJECT1 OBJECT2 EQ

--> FLAG
* Checks if OBJECT1 is equal to OBJECT2. If true it drops TRUE, else FALSE.

More information: although these commands seem the same, they are not. Whereas EQUAL checks if the content from the two objects are the same, EQ only checks the addresses. Don’t get it?
E.g.: ONE has the address: #04053 (you can find that in the Entry39.h file), but when you write # 1 it doesn’t have that address (it has a dynamic address). If we would compare ONE with # 1 EQUAL would return TRUE, whereas EQ would return FALSE. Since the addresses of the two arguments are not the same! If we would compare ONE with ONE both EQUAL and EQ would return TRUE. The advantage of using EQ instead of EQUAL is that it is much faster.

OBJECT1 OBJECT2 EQUALNOT

--> FLAG
* Checks if OBJECT1 is NOT equal to OBJECT2. If true it drops TRUE, else FALSE.

FLAG ITE
* If the FLAG is TRUE, the next code is executed and the second is skipped. if FALSE the next code is skipped
and the second code is executed.

%number1 %number2 %< or %> or %<= or %>=

--> FLAG
There are few commands listed here. But it’s quite obviously what they do (personal opinion). %< checks if number 1 is smaller than number2. %> checks if number1 is bigger than number 2. %<= Checks if number1 is smaller or equal to number2. And %>= checks if number1 is bigger than or equal to number2.
FLAG case
This command acts a little bit like IT, but also like COLA and SKIP. There are many variations possible with this command.
The code:

Create an aplet with the name ‘Conditionals’ and the filename ‘tests’.
Create a variable called A. now scroll down till the beginning of your program, clear the screen first and than store 30.214 (real number) in A.

Now we are going to test if the value in A is equal to 30.124. We all know that it is true, but does the calculator know it? Let’s find it out! Take the value from A and compare it with 30.124 (real number). And if true display “Yes indeed!” on row 1. There are two ways of dealing with this problem or you use EQUAL or you use %=. The difference between the two is that %= only can be used to test if real numbers are equal and EQUAL can be used on every object. If the objects are the same TRUE is put on the else FALSE is put on the stack. Of course in this example the objects are the same and so TRUE is put on the stack. Now we are going to use IT. IT stands for If True.

Note: If you only have one command to execute it’s not necessary to add :: and ;

tip: To make the source more readable I’ve worked with spaces. You should too!

Be aware that you can replace %= with EQUAL. Now compile your program and send it to your calculator. What do you see? “Yes indeed!”! Now we are going to test A if is not equal to 30.124(real number). Change %= or EQUAL in EQUALNOT.

Now compile your program and run it on the calculator. What does it display? Nothing, because the test was FALSE, the If True clausal was skipped. Now we are going to test if the value from A is smaller then % 20 if that is true than we will display “it’s < 20” else we will display “it’s > 20”. Using the If Then Else command isn’t much different from using the if then statement. Just add an E to the IT and after you have written what you must do when you the test is true you write (don’t forget the “::” and “;”) what the calculator must do when the statement is false. Let’s apply that on our case. Delete everything after the A@. Replace it with this:

Get it? Well it isn’t hard to understand, don’t you think? Compile the thing and run it on your calculator. You could easily replace %< with %>. Compile the program again and see the change. Other test are %>= (bigger or equal to) and %<= (smaller or equal to).
I want to spend the next few lines on two things case and EQ. We shall begin with case. case is a instruction that comes in a lot, lot combinations with other words. If the conditional is true, the next object is executed, but only the next object. The rest of the code is skipped. So if TRUE is the case, case act like the command COLA (remember last lesson?). If the conditional is FALSE the next object is skipped and execution. So when the case is false, case is the same as SKIP (if you want to know more about skip read “programming in sys-rpl”). Let’s try to use case in an example. Let’s begin with deleting everything after we have stored % 30.124 in A. Make a label called CheckA.

In label CheckA we are going to compare A to % 30.124 if it’s equal to each other.

Be aware that you can change %= in EQUAL. Instead of writing IT now write case. After you have done that write :: to say that here begins what we have to when the case is true and write ; to say that here ends the code when the case is true.

Now after the case :: write DROP. DROP tells the compiler that here comes the TRUE statement.

Now display “A is = 30.124” on row 1. Now after the first ; clear the screen.
Here is the solution:

Run the code and see the result. If you would have used IT here the screen would have been erased. But with the case command it didn’t (it skipped everything after the true statement was ended). You never know when this command may come in handy. If you want to know more about case read ‘programming in sys-rpl’.
Now the second thing that I wanted to tell you was about the EQ command. EQ is essentially the same as EQUAL, with one major difference! Where EQUAL checks if the content is the same EQ doesn’t (it checks the addresses of the objects). So in non programmer’s terms % 3 is not the same as %3, because they occupy two different addresses in the memory! Let’s try to use EQ in an example:

Delete everything what we have previously written. Store SIX in A. Now check if the content of A equal is to # 6, instead of using #= or EQUAL use EQ this time. If that is the case or true (you may use case or IT here). Then display “A is = SIX” on row1.

Compile the code and what do you see? Nothing! Go back to your code change # 6 into SIX. Compile the code again and what do you see? Yes “A is = SIX”. The advantage of EQ is that it’s much faster than EQUAL. So this command is preferred over EQUAL. To test binary numbers use #conditional instead of %conditional.
Screenshots:

[image: image1.png]A is = s4.l=9

[image: image2.png]=i

This was it for tutorial 7 conditionals. Later we will see more conditionals, but for now you can help yourselves with this tutorial. The next tutorials will explain loops.
NAMELESS _Action

::

*		 Begin of the program		*

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

 % 30.214 A!

 % 30.214 A!

 A@

 % 30.214 %=

 IT

 ::

 $ "Yes indeed!"

 DISPROW1

 ;

 A@

 % 30.214 EQUALNOT

 IT

 ::

 $ "Yes indeed!"

 DISPROW1

 ;

 A@

 % 20 %<

 ITE

 ::

 $ "A is < 20"

 DISPROW1

 ;

 ::

 $ "A is > 20"

 DISPROW1

 ;

	Link	_CheckA

endLink

RPL

DEFINE Main		INT_00

DEFINE Entry	INT_01

DEFINE Exit		INT_02

DEFINE Action	INT_03

DEFINE CheckA	INT_04

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

 % 30.214 A!

**

*		 End of the program		*

**

;

NAMELESS _CheckA

::

;

NAMELESS _CheckA

::

 A@ % 30.124 %=

;

 A@ % 30.124 %=

 case

 ::

 ;

;

 A@ % 30.124 %=

 case

 ::

 DROP

 ;

;

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

 % 30.214 A!

 CheckA

**

*		 End of the program		*

**

;

NAMELESS _CheckA

::

 A@ % 30.124 %=

 case

 ::

 DROP

 $ "A is = 30.124"

 DISPROW1

 ;

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

;

*		 Begin of the program		*

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

 SIX A!

 A@ # 6 EQ

 IT

 ::

 $ "A is = SIX"

 DISPROW1

 ;

© 2004 Michaël De Coninck and Colin Croft

