Michaël’s cosy programmers’ corner.

Hi this month it’s part 1 about input forms. Let’s begin:

Everyone who has programmed in HP-Basic knows that input forms needs a lot of arguments. Well then do I have good news for you! In Sys-rpl you need even MORE arguments to make an input form (that’s my humour then I guess(). And I‘m not talking about one or two more, but quite a lot more…

But don’t go running away now, just because of that. You have to see it from the positive side. The Sys-Rpl input form is much more versatile than the HP-Basic one (lists, strings, etc. you can put more text on the screen and have much more control over the input form etc.). Anyway let’s begin:

Make an aplet with the name ‘input form’ and as file name ‘inputform’ in WSR 1.1b. Scroll down till the beginning of the program and delete the usual lines.
Input forms exist out of two main parts, namely fields and labels. With labels I mean the text like e.g.: “A is =” and with fields I mean the black boxes where you can enter things. In Sys-rpl, unlike HP-Basic, you can have more fields than labels (and vice versa). In this example where going to make a simple input form, where we are going to enter real values.

We are going to start with defining the labels, where they have to be on the screen, and what they have to say. We are going to place “A is =” on the coordinates (13,16). So write "A is =" THIRTEEN SIXTEEN. Now when the input form will be made the text will be somewhere in the middle of the screen.

Now we are going to make a field where we can enter real numbers and only real numbers. We begin with defining the message handler. What is a message handler? Well that is something which we can manipulate the input form (or the particular field) with. E.g.: You can add a ‘A…Z’ key, change the soft buttons, and much more. But in this example we don’t need a message handler (but in a later lesson we will, so don’t worry). So we write 'DROPFALSE. This indicates that we don’t have a message handler. Now we have to define the X-coordinate, the Y-coordinate, the length of our field, and the height of our field. All of these arguments have to be BINTS. As X-coordinate we take 44. So write BINT44. For the Y-coordinate we do most of the time Y-coordinate of the label - 2. In this case that is 16 – 2 = 14. So we write: BINT14. Of course it’s your choice so do whatever you want. Now we have to define the length of the field. Here it’s 78 pixels wide. So write: BINT78. And now as a last thing we have to tell the compiler what the height is of the black box. Normally that is nine. But of course that’s up to you to decide. Anyway we will write: BINT9. So far we have:

Now we are going to define the type of field we want. We can choose between a field where the user can enter something, the user can enter things or choose out of a list, or the user can only choose out of list with elements. For more information about this I refer to the ‘programming in Sys-rpl’ document. We are going to make a field where the user can enter something. To do that we simple have to write ONE. Or BINT1 (what you prefer, that is actually the same). Now we say to the input form which things he may allow. We only want to allow real numbers so we write { ZERO }. Actually you may also write just ZERO. The { } is actually if you want to allow more than one thing. Like BINTs and reals too. But that is not the case here. Now we define how the field has to decompile the numbers we entered. Using Standard mode (FOUR) or using the current mode (TWO). We use the Standard mode so write FOUR. Now we define the help string the field has to display. “Enter a value for A” will do perfectly in this example. So write: "Enter a value for A.". Now we have to give ChooseData and the ChooseDecompile. Don’t ask me what it is. Because I don’t know it. I only know that in 90% (probably even more) of the cases it has to be (for both ChooseData and ChooseDecompile) MINUSONE. So write MINUSONE and again MINUSONE. Or write MINUSONE DUP. Now we must say which value the field must have as initial value (when the inputs form is displayed). %1 is a nice value, so lets take %1. After that we have to say which value if del is pressed. Let’s take the same value. So %1. Or write DUP. If you are still with me, your code should look like this:

We are almost there so don’t give up now! We are in the ending stadium. We only have to a few thing anymore. Now we have to define how many labels and fields there are. We have one label (‘A is=’) and one field. So write ONE DUP. We also have to define a message handler that counts for the whole input form. But we don’t want a message handler so write again: 'DROPFALSE. Now we only have to give our input form a title. Input form is an appropriate title. So let write that: "Input Form". As last we have to write the command that will take all these arguments and make an input form with it. Write: DoInputForm. So we have:

Before we see the result let’s do still one thing. What if cancel is pressed? Well let’s go to the label Entry. So write NOTcase Entry. Now compile the program and see what you hard work has brought up. The number you’ve entered is put on the stack so do whatever you want with it. Store it in a variable or do calculations with it. That was it for this lesson. As a finish I will give the whole source with comments.

*			Labels				*

"A is =" THIRTEEN SIXTEEN ("A is =" will be showed at coordinate 13,16)

**

*			Fields			 *

**

'DROPFALSE 			(no message handler)

* Message handlers are things to control the input forms.

* E.g. you can add A..Z, change soft buttons (those buttons in

* the black buttons) and etc. with those

BINT44			(x-coordinate = 44)

BINT14			(y-coordinate = 14)

BINT78			(the lenght of the "black box")

BINT9				(the height of the "black box" normally 9)

* The next thing allows you to give the user a option to choose

* whether he has only a few options to choose from or he can enter

* anything.

ONE				(says it is a DATA FIELD)

* The next thing allows you to control what the users enters.

* here are only real numbers allowed.

{ ZERO }			(only real numbers are allowed)

FOUR				(STD mode be used)

* exercice: change FOUR to TWO							 *

* Than put your calculator to FIX 3 for example					 *

* notice the difference?								 *

"Enter a value for A."						(help string)

MINUSONE								(always MINUSONE)

MINUSONE								(always MINUSONE)

%1									(ResetValue)

DUP				(InitValue same as ResetValue in this example)

ONE DUP			(there is one field and one label)

'DROPFALSE			(there is no message handler)

*the difference with this and the other message handler is this one is *for whole the input form.

"Input Form"		(title from the input form)

DoInputForm		(make an input form with all the arguments above)

NOTcase			(what if cancel was pressed?)

Entry				(then return to label Entry)

* The value what the user entered is put on the stack

* lets do the value you entered * 2

* and display the result in a Messagebox

%2 %* DO>STR Ck&DoMsgBox

Entry				(then return label Entry)

"A is =" THIRTEEN SIXTEEN

'DROPFALSE

BINT44

BINT14

BINT78

BINT9

ONE

{ ZERO }

FOUR

"Enter a value for A."

MINUSONE

MINUSONE

%1

DUP

ONE DUP

'DROPFALSE

"Input Form"

DoInputForm	

"A is =" THIRTEEN SIXTEEN

'DROPFALSE

BINT44

BINT14

BINT78

BINT9

ONE

{ ZERO }

FOUR

"Enter a value for A."

MINUSONE

MINUSONE

%1

DUP

"A is =" THIRTEEN SIXTEEN

'DROPFALSE

BINT44

BINT14

BINT78

BINT9		

© 2004 Michaël De Coninck

