Michaël’s cosy programmers’ corner.

Hi this month we will learn everything about lists. Let’s start right away:

Make an aplet with the name ‘Lists’ and the same file name in WSR 1.1b. Let’s begin with making two variables called List1 and List2. Scroll down till the beginning of the program and delete the usual lines. Now write the code to clear the screen.

You can basically store everything in a list! Ranging from BINTS to strings, you even can store lists inside lists. Well let’s try to store % 1.1, "Colin" and ONE in List1. So write under HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP: { % 1.1 "Colin" ONE } List1!. Now let us try to store a list inside a list. Write under the previous code { { %0 %0 } { %1 % 2.1234568 } } List2! It’s isn’t that hard: open a list with ‘{’ put spaces between different elements and quit the list with ‘}’. You’re code should be:

Now that we have stored something in List1 and List2 we are going to display the content of those lists on the screen. So take the values out of those lists (it’s the same as taking a value out of variable). Make strings from them and display them on row 1 and row2. You’re code should look like this (ignore the comment):

Compile your aplet. Transfer it to your HP-39/40g and run it. Notice that the BINT in our first list is displayed as UNKNOWN.

Be able to make lists is a nice thing doing something useful with them is another. E.G.: let’s say we want to have the second value of the first list (Colin). We use NTHCOMPDROP. NTHCOMPDROP is a one word command for NTHELCOMP DROP. NTHELCOMP needs two arguments namely a list and a BINT. It checks if the BINT isn’t bigger than there are elements in the list and puts FALSE (if the BINT wasn’t bigger) or TRUE (if the BINT was bigger) on the stack. Then if the case was FALSE it’s puts the object on the stack that was on the place specified by the BINT. Since I’m not interested in getting TRUE or FALSE I use NTHELCOMP DROP. But because NTHCOMPDROP is a little bit smaller in size I use that instead. We want to display Colin on row 3 till a key is pressed. Colin is the second object of list 1. So we need List1@ and TWO as arguments. So write List1@ TWO NTHCOMPDROP. Now display it on row 3 (remember Colin is already a string) and add a waitforkey. Your code should look like this:

So that works. What I want to do now is replace the % 1.1 in list 1 with a string hello. For that we have the command PUTLIST. PUTLIST needs three arguments an object, a BINT and a list. It replaces the object that is on the place defined by the BINT in the list you have defined with the object you have defined. So we write "Hello" ONE List1@ PUTLIST. Now store the result back in List1. The code should look like this, notice that I have added code to display the list on row 1.

Let’s store something totally new in List 1. E.g.: { %2 } List1!. Now I want to add a different list to my List 1. So now I need to use the command &COMP. &COMP needs two arguments a list and a second list. It adds the second list to the first one. We want to add { %3 % 4.123 } to our list 1. So our first argument is List 1 and our second { %3 % 4.123 }. Write List1@ { %3 % 4.123 } &COMP. Store the result back in List 1. Your code so far (I added again some code to display the list):

As a last exercise we are going to count how many elements there are in our list. We use the command LENCOMP for that. It uses only one argument… Guess which… Yes indeed a list. So write List1@ LENCOMP. The number of elements that are in the list is now put on the stack. But it isn’t a real number, but a BINT. So to display it we have to make a real number from (and also make a string of it, of course). The code (again I felt free to add the code to display the number on the screen):

There are more things you can do with lists but that is for another lesson.
HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

List1@ LENCOMP

UNCOERCE DO>STR DISPROW1				

* If you also want the list to be returned use DUPLENCOMP

{ %2 } List1!

* Let's add a new list to list1 *

List1@ { %3 % 4.123 } &COMP List1!

List1@ DO>STR DISPROW3			

WaitForKey		

DISPROW3

WaitForKey	

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

"Hello" ONE List1@ PUTLIST List1!

List1@ DO>STR

DISPROW1		

List1@ TWO NTHCOMPDROP

DISPROW3

WaitForKey	

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

{ % 1.1 "Colin" ONE } List1!

{ { %0 %0 } { %1 % 2.1234568 } } List2!

List1@ DO>STR

DISPROW1

* Notice that the bint is displayed as UNKNOWN

List2@ DO>STR

DISPROW3

WaitForKey

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

{ % 1.1 "Colin" ONE } List1!

{ { %0 %0 } { %1 % 2.1234568 } } List2!

© 2004 Michaël De Coninck

