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Chapter 1

Foreword and Motivation

Significant progress has recently been made by applying tools from classical projective and algebraic
geometry to fundamental problems in computer vision. To some extent this work was foreshadowed
by early mathematical photogrammetrists. However the modern approach has gone far beyond these
early studies, particularly as regards our ability to deal with multiple images and unknown camera
parameters, and on practical computational issues such as stability, robustness and precision. These
new techniques are greatly extending the scope and flexibility of digital photogrammetric systems.

This tutorial provides a practical, applications-oriented introduction to the projective geometry
needed to understand these new developments. No currently available textbook covers all of this
material, although several existing texts consider parts of it. Kanatani’s book [11] studies many
computational and statistical aspects of computer vision in a projective framework. Faugeras [4]
investigates the geometric aspects of 3D vision, including several of the projective results obtained by
his team before 1993. The collections edited by Mundy, Zisserman and Forsyth [18, 19] summarize
recent research on the applications of geometric invariants to computer vision: projective results are
central to this programme.

Mathematical introductions to projective geometry can be found in many books. A standard text
covering the necessary aspects of both projective and algebraic geometry is Semple and Kneebone
[23]. Unfortunately this is currently out of print, however many scientific libraries have it and it is
said to be reprinting soon.

Synopsis: Chapter 1 provides initial motivation and discusses the perspective model of image pro-
jection. Chapter 2 formally describes the basic properties of projective space. Chapter 3 considers
projective invariants and the cross ratio. Chapter 4 compares the basic structures of projective, affine
and Euclidean geometries and shows how to specialize from one to the other. Finally, chapter 5
considers the problems of 3D reconstruction using uncalibrated cameras and camera auto-calibration
under various prior hypotheses.

How to read these notes

You should be familiar with elementary calculus and linear algebra. Exercises are provided foreach
chapter. You should at least skim through these: some just provide practice with the required compu-
tations, but others consider important problems and pitfalls and need to be addressed more carefully.
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1.1 Intuitive Considerations About Perspective Projection

1.1.1 An Infinitely Strange Perspective

The study of projective geometry was initiated by the painters of the Italian Renaissance, who wanted
to produce a convincing illusion of 3D depth in their architectural paintings. They made considerable
use of vanishing points and derived several practically useful geometric constructions, for example to
split a projected square into four equal sub-squares, or to find the projection of a parallelogram when
the projection of two of its sides are known.

*

*

*
*

*

*

*

*

*

*

Figure 1.1: Landscape with horizon

Look at figure 1.1: the edges of the road are parallel lines in 3D space, but in the image they
appear to converge as they recede towards the horizon. The line of the horizon is formed by the
“infinitely distant points” orvanishing directionsof the ground plane. Any pair of parallel, horizontal
lines appears to meet at the point of the horizon corresponding to their common direction. This is
true even if they lie at different heights above the ground plane. Moreover, any two horizontal planes
appear to come together in the distance, and intersect in the horizon line or “line at infinity”.

All of these “intersections at infinity” stay constant as the observer moves. The road always seems
to disappear at the same point (direction) on the horizon, and the stars stay fixed as you walk along:
lines of sight to infinitely distant points are always parallel, because they “(only) meet at infinity”.

These simple examples show that our usual concepts of finite geometry have to be extended to
handle phenomena “at infinity” that project to very finite locations in images.

1.1.2 Homogeneous Coordinates

How can we handle all this mathematically? — Every point in an image represents a possible line
of sight of an incoming light ray: any 3D point along the ray projects to the same image point, so
only the direction of the ray is relevant, not the distance of the point along it. In vision we need
to represent this “celestial” or “visual sphere” of incoming ray directions. One way to do this is by
their two image (e.g. pixel) coordinates(x; y). Another is by arbitrarily choosing some 3D point
along each ray to represent the ray’s direction. In this case we need three “homogeneous coordinates”
instead of two “inhomogeneous” ones to represent each ray. This seems inefficient, but it has the
significant advantage of making the image projection process much easier to deal with.

In detail, suppose that the camera is at the origin(0; 0; 0). The ray represented by “homogeneous
coordinates”(X; Y; T ) is that passing through the 3D point(X; Y; T ). The 3D point� � (X; Y; T ) =
(�X; �Y; �T ) also lies on (represents) the same ray, so we have the rule that rescaling homogeneous
coordinates makes no difference:

(X; Y; T )� �(X; Y; T ) = (�X; �Y; �T)

4



If we suppose that the image plane of the camera isT = 1, the ray through pixel(x; y) can be
represented homogeneously by the vector(x; y; 1) � (xT; yT; T ) for any depthT 6= 0. Hence, the
homogeneous point vector(X; Y; T ) with T 6= 0 corresponds to the inhomogeneous image point
(XT ;

Y
T ) on the planeT = 1.

But what happens whenT = 0? — (X; Y; 0) is a valid 3D point that defines a perfectly normal
optical ray, but this ray does not correspond to any finite pixel: it is parallel to the planeT = 1 and
so has no finite intersection with it. Such rays or homogeneous vectors can no longer be interpreted
as finite points of the standard 2D plane. However, they can be viewed as additional “ideal points” or
limits as(x; y) recedes to infinity in a certain direction:

lim
T!0

(
X

T
;
Y

T
; 1) � lim

T!0
(X; Y; T ) = (X; Y; 0)

We can add such ideal points to any 3D plane. In 2D images of the plane, the added points at infinity
form the plane’s “horizon”. We can also play the same trick on the whole 3D space, representing
3D points by four homogeneous coordinates(X; Y; Z; T ) � (�X; �Y; �Z;�T ) � (XT ;

Y
T ;

Z
T ; 1) and

adding a “plane at infinity”T = 0 containing an “ideal point at infinity” for each 3D direction,
represented by the homogeneous vector(X; Y; Z; 0). This may seem unnecessarily abstract, but it
turns out that 3D visual reconstruction is most naturally expressed in terms of such a “3D projective
space”, so the theory is well worth studying.

Line coordinates: The planar line with equationax+ by+ c = 0 is represented in homogeneous
coordinates by the homogeneous equation(a; b; c) �(X;Y; T ) = aX+bY +cT = 0. If the line vector
(a; b; c) is (0; 0; 1)we get the special “line”T = 0 which contains only ideal points and is called the
line at infinity. Note that lines are represented homogeneously as 3 component vectors, just as points
are. This is the first sign of a deep and powerfulprojective dualitybetween points and lines.

Now consider an algebraic curve. The standard hyperbola has equationxy = 1. Substitute
x = X

T ; y = Y
T and multiply out to getXY = T 2. This is homogeneous of degree 2. In fact, in

homogeneous coordinates, any polynomial can be re-expressed as a homogeneous one. Notice that
(0; �; 0)and(�; 0; 0)are valid solutions ofXY = T 2: the homogeneous hyperbola crosses the~x axis
smoothly aty = 1 and the~y axis smoothly atx = 1, and comes back on the other side (see fig.
1.2).

Figure 1.2: Projectively, the hyperbola is continuous as it crosses the~x and~y axes

Exercise 1.1 : Consider the parabolay = x2. Translate this into homogeneous coordinates and
show that the line at infinity is tangent to it. Interpret the tangent geometrically by considering the
parabola as the limit ask tends to1 of the ellipse2kx2+ (y � k)2 � k2 = 0 (hint: this has tangent
y = 2k).
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Exercise 1.2 : Show that translation of a planar point by(a; b) is equivalent to multiplying its ho-
mogeneous coordinate column vector by0

B@ 1 0 a

0 1 b
0 0 1

1
CA

Exercise 1.3 : Show that multiplying the affine (i.e. inhomogeneous) coordinates of a point by a2�2
matrixA is equivalent to multiplying its homogeneous coordinates by0

B@ A
0
0

0 0 1

1
CA

What is the homogeneous transformationmatrix for a point that is rotated by angle� about the origin,
then translated by(a; b)?

1.2 The Perspective Camera

1.2.1 Perspective Projection

Following Dürer and the Renaissance painters,perspective projectioncan be defined as follows (see
fig. 1.3). Thecenter of projectionis at the originO of the 3D reference frame of the space. The image
plane� is parallel to the(~x; ~y) plane and displaced a distancef (focal length) along the~z axis from
the origin. The 3D pointP projects to the image pointp. The orthogonal projection ofO onto�
is theprincipal pointo, and the~z axis which corresponds to this projection line is theprincipal axis
(sometimes called theoptical axisby computer vision people, although there is no optic here at all).

x

y

z
o

O

P

p

Π

f

Figure 1.3: Standard perspective projection

Let (x; y) be the 2D coordinates ofp and(X; Y; Z) the 3D coordinates ofP . A direct application
of Thales theorem shows that:

x =
fX

Z
y =

fY

Z

We can assume thatf = 1 as different values off just correspond to different scalings of the image.
Below, we will incorporate a full camera calibration into the model. In homogeneous coordinates, the
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above equations become:

0
B@ x

y

1

1
CA �

0
B@ X

Y

Z

1
CA =

0
B@ 1 0 0 0

0 1 0 0
0 0 1 0

1
CA
0
BBB@

X
Y

Z
1

1
CCCA

In real images, the origin of the image coordinates is not the principal point and the scaling along each
image axis is different, so the image coordinates undergo a further transformation described by some
matrixK. Also, the world coordinate system does not usually coincide with the perspective reference
frame, so the 3D coordinates undergo a Euclidean motion described by some matrixM (see exercise
1.3), and finally we have:

0
B@ x

y
1

1
CA � K

0
B@ 1 0 0 0

0 1 0 0
0 0 1 0

1
CAM

0
BBB@

X
Y

Z
1

1
CCCA (1.1)

M gives the 3D position and pose of the camera and therefore has six degrees of freedom which
represent theexterior (or extrinsic) camera parameters. In a minimal parametrization,M has the
standard 6 degrees of freedom of a rigid motion.K is independent of the camera position. It contains
the interior (or intrinsic) parameters of the camera. It is usually represented as an upper triangular
matrix:

K =

0
B@ sx s� u0

0 sy v0
0 0 1

1
CA (1.2)

wheresx and sy stand for the scalings along the~x and ~y axes of the image plane,s� gives the
skew (non-orthogonality) between the axes (usuallys� � 0), and(u0; v0) are the coordinates of the
principal point(the intersection of the principal axis and the image plane).

Note that in homogeneous coordinates, the perspective projection model is described by linear
equations: an extremely useful property for a mathematical model.

1.2.2 Real Cameras

Perspective (i.e. pinhole) projection is an idealized mathematical model of the behaviour of real
cameras. How good is this model? — There are two aspects to this: extrinsic and intrinsic.

Light entering a camera has to pass through a complex lens system. However, lenses are designed
to mimic point-like elements (pinholes), and in any case the camera and lens is usually negligibly
small compared to the viewed region. Hence, in most practical situations the camera is “effectively
point-like” and rather accurately satisfies theextrinsic perspectiveassumptions:(i) for each pixel, the
set of 3D points projecting to the pixel (i.e. whose possibly-blurred images are centered on the pixel)
is a straight line in 3D space; and(ii) all of the lines meet at a single 3D point (theoptical center).

On the other hand, practical lens systems are nonlinear and can easily introduce significant dis-
tortions in theintrinsic perspectivemapping from external optical rays to internal pixel coordinates.
This sort of distortion can be corrected by a nonlinear deformation of the image-plane coordinates.

There are several ways to do this. One method, well known in the photogrammetry and vision
communities, is to explicitly model the radial and decentering distortion (see [24]): if the center of
the image is(u0; v0), the new coordinates(x0; y0) of the corrected point are given by

x0 = x+ k1xr
2 + k2xr

4 + k3xr
6 + P1(2x

2 + r2) + 2P2xy

y0 = y + k1yr
2 + k2yr

4 + k3yr
6 + P2(2y

2 + r2) + 2P1xy

where x = x� u0; y = y � u0; r = x2 + y2
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This linearizes the image geometry to an accuracy that can reach2 � 10�5 of the image size [1]. The
first order radial distortion correctionk1 usually accounts for about 90% of the total distortion.

A more general method that does not require knowledge of the principal point and makes no
assumptions about the symmetry of the distortion is based on a fundamental result in projective ge-
ometry:

Theorem: In real projective geometry, a mapping is projective if and only if it maps lines onto either
lines or points.

Hence, to correct for distortion, all we need to do is to observe straight lines in the world and
deform the image to make their images straight. Experiments described in [2] show accuracies of up
to1�10�4 of the image for standard off-the-shelf CCD cameras. Figure 1.4 illustrates the process: line
intersections are accurately detected in the image, four of them are selected to define a projective basis
for the plane, and the others are re-expressed in this frame and perturbed so that they are accurately
aligned. The resulting distortion corrections are then interpolated across the whole image. Careful

P
43

P

2
P1

P

G1 G
2

G3 G4

(a) Points are first located with respect to a
four point projective basis

P
43

P

2
P1

P

G1 G
2

G3
G4’ ’

’’

(b) A projective mapping then brings the
points back to their aligned positions

Figure 1.4: Projective correction of distortion

experiments showed that an off-the-shelf (512 � 512) CCD camera with a standard frame-grabber
could be stably rectified to a fully projective camera model to an accuracy of1=20 of a pixel.
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Chapter 2

Basic Properties of Projective Space

2.1 Projective Space

Given a coordinate system,n-dimensional realaffine spaceis the set of points parameterized by the
set of alln-component real column vectors(x1; : : : ; xn)> 2 IRn.

Similarly, the points of realn-dimensionalprojective spaceIP n can be represented byn + 1-
component real column vectors(x1; : : : ; xn+1)> 2 IRn+1, with the provisos that at least one coor-
dinate must be non-zero and that the vectors(x1; : : : ; xn+1)> and(�x1; : : : ; �xn+1)> represent the
same point ofIPn for all � 6= 0. Thexi are calledhomogeneous coordinatesfor the projective point.

2.1.1 Canonical Injection ofIRn into IP
n

Affine spaceIRn can be embedded isomorphically inIPn by the standard injection(x1; : : : ; xn) 7�!
(x1; : : : ; xn; 1). Affine points can be recovered from projective ones withxn+1 6= 0 by the mapping

(x1; : : : ; xn+1) � (
x1
xn+1

; : : : ;
xn
xn+1

; 1) 7�! (
x1
xn+1

; : : : ;
xn
xn+1

)

A projective point withxn+1 = 0 corresponds to an ideal “point at infinity” in the(x1; :::; xn) direc-
tion in affine space. The set of all such “infinite” points satisfying the homogeneous linear constraint
xn+1 = 0 behaves like a hyperplane, called the hyperplane at infinity.

However, these mappings and definitions are affine rather than projective concepts. They are
only meaningful if we are told in advance that(x1; : : : ; xn) represents “normal” affine space and
xn+1 is a special homogenizing coordinate. In a general projective space any coordinate (or linear
combination) can act as the homogenizing coordinate and all hyperplanes are equivalent — none is
especially singled out as the “hyperplane at infinity”. These issues will be discussed more fully in
chapter 4.

2.1.2 Projective Mappings

Definition: A nonsingular projective mappingbetween two projective spaces is any mapping defined
by multiplication of homogeneous coordinates by a full rank matrix. Acollineationon IP n is an
invertible projective mapping ofIPn onto itself.

All projective mappings can be represented by matrices. As with homogeneous coordinate vec-
tors, these are only defined up to a non-zero rescaling.
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Example: IP 1 7�! IP 1. The general case of a collineation is: 
x
t

!
7�!

 
a b
c d

! 
x
y

!
=

 
ax+ by
cx+ dy

!

with ad � cd 6= 0. Providedt 6= 0 andcx + d 6= 0, this can be rewritten in inhomogeneous affine
coordinates as:  

x
1

!
7�!

 
ax+ b
cx+ d

!
�

 
ax+b
cx+d

1

!

Property: A translation in affine space corresponds to a collineation leaving each point at infinity
invariant.

Proof: The translation(x1; :::; xn; 1) 7�! (x1 + a1; :::; xn + an; 1) can be represented by the
matrix:

A =

0
BBBB@

1 � � � 0 a1
...

. ..
...

...
0 � � � 1 an
0 � � � 0 1

1
CCCCA

ObviouslyA(x1; :::; xn; 0)> = (x1; :::; xn; 0). tu

More generally, any affine transformation is a collineation, because it can be decomposed into a
linear mapping and a translation:0

B@
y1
...
yn

1
CA = A

0
B@

x1
...
xn

1
CA +

0
B@

t1
...
tn

1
CA

In homogeneous coordinates, this becomes:0
BBBB@

y1
...
yn
1

1
CCCCA =

0
BBBB@

A

t1
...
tn

0 : : : 0 1

1
CCCCA

0
BBBB@

x1
...
xn
1

1
CCCCA

Exercise 2.1 : Prove that a collineation is an affine transformation if and only if it maps the hyper-
plane at infinityxn+1 = 0 into itself (i.e. all points at infinity are mapped onto points at infinity).

Camera calibration: Assuming that the camera performs a exact perspective projection (see 1.1.2),
we have seen that the image formation process can be expressed as a projective mapping fromIP 3 to
IP 2. Projective camera calibrationis the computation of the projection matrix associated with this
mapping. This is usually done using a set of points whose 3D locations(X; Y; Z; T )> are known. If
a pint projects to pixel coordinates(u; v), the projection equations can be written:

0
B@ �u

�v
�

1
CA = P

0
BBB@

X

Y
Z

1

1
CCCA

Taking ratios to eliminate the unknown scale factor�, we have:

u =
p11x+ p12y + p13z + p14
p31x+ p32y + p33z + p34

v =
p21x+ p22y + p23z + p24
p31x+ p32y + p33z + p34

(2.1)
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As P is only defined up to an overall scale factor, this system has 11 unknowns. At least 6 points are
required for a unique solution, but usually many more points are used in a least squares optimization
that minimizes the effects of measurement uncertainty.

The projection matrixP contains both interior and exterior camera parameters. We will not
consider the decomposition process here, as the exterior orientation/interior calibration distinction is
only meaningful when projective space is reduced to Euclidean.

Exercise 2.2 : Assuming perspective projection centered at the origin onto planez = 1, and a~x; ~y
image reference frame corresponding to the~x; ~y directions of the 3D reference frame, prove that the
projection matrixP has the form

P =

0
B@ 1 0 0 0

0 1 0 0
0 0 1 0

1
CA

The null space ofP (the set ofX such thatPX = 0) corresponds to which 3D pointX? What does
the 3D point(x; y; 0) project to?

2.1.3 Projective Bases

A projective basisfor IPn is any set ofn + 2 points ofIPn, non + 1 of which lie in a hyperplane.
Equivalently, the(n+ 1)� (n+ 1) matrix formed by the column vectors of anyn + 1 of the points
must have full rank.

It is easily checked thatf(1; 0; : : : ; 0)>; (0; 1; 0; : : : ; 0)>; : : : ; (0; : : : ; 0; 1)>; (1; : : : ; 1)>g forms
a basis, called thecanonical basis. It contains the points at infinity along each of then coordinate
axes, the origin, and theunit point(1; : : : ; 1)>. Any basis can be mapped into this standard form by
a suitable collineation.

Property: A collineation onIPn is defined entirely by its action on the points of a basis.

A full proof can be found in [23]. We will just check that there are the right number of constraints
to uniquely characterize the collineation. This is described by an(n+1)� (n+1) matrixA, defined
up to an overall scale factor, so it has(n+1)2� 1 = n(n+2) degrees of freedom. Each of then+2
basis point imagesAbi � b0i providesn constraints (n+1 linear equations defined up a common scale
factor), so the required total ofn(n + 2) constraints is met.

Exercise 2.3 : Consider three non-aligned pointsai in the plane, and their barycenter g. Check that
in homogeneous coordinates(x; y; 1), we have

g �
3X

i=1

ai

An analogous relation holds for the unit point in the canonical basis.

2.1.4 Hyperplanes and Duality

The Duality Principle

The set of all points inIRn whose coordinates satisfy a linear equation

a1X1 + : : :+ anXn + an+1 = 0 ~X 2 IRn

is called ahyperplane. Substituting homogeneous coordinatesXi = xi=xn+1 and multiplying out,
we get a homogeneous linear equation that represents ahyperplane inIPn:

(a1; : : : ; an+1) � (x1; : : : ; xn+1) =
n+1X
i=1

aixi = 0 ~x 2 IPn (2.2)
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Notice the symmetry of equation (2.2) between the hyperplane coefficients(a1; :::; an+1) and the
point coefficients(x1; :::; xn+1). For fixed~x and variable~a, (2.2) can also be viewed as the equation
characterizing the hyperplanes~a passing through a given point~x. In fact, the hyperplane coefficients
~a are also only defined up to an overall scale factor, so the space of all hyperplanes can be considered
to be another projective space called thedualof the original spaceIPn. By the symmetry of (2.2), the
dual of the dual is the original space.

An extremely importantduality principlefollows from this symmetry:

Duality Principle : For any projective result established using points and hyperplanes, a symmetrical
result holds in which the roles of hyperplanes and points are interchanged: points become planes, the
points in a plane become the planes through a point,etc.

For example, in the projective plane, any two distinct points define a line (i.e. a hyperplane in
2D). Dually, any two distinct lines define a point (their intersection). Note that duality only holds
universally in projective spaces: for example in the affine plane parallel lines do not intersect at all.

Desargues Theorem

Projective geometry was invented by the French mathematician Desargues (1591–1661) (for a bi-
ography in French, seehttp://bib1.ulb.ac.be/coursmath/bio/desargue.htm). One of his theorems is
considered to be a cornerstone of the formalism. It states that “Two triangles are in perspective from
a point if and only if they are in perspective from a line” (see fig. 2.1):

Theorem: LetA;B;C andA0; B; C 0 be two triangles in the (projective) plane. The linesAA0; BB0; CC0

intersect in a single point if and only if the intersectionsof correspondingsides(AB;A0B0), (BC;B0C0),
(CA;C 0A0) lie on a single line.

A A’

B

B’

C

C’

P

Figure 2.1: Two triangles in a Desargueian configuration

The theorem has a clear self duality: given two triplets of linesfa; b; cg andfa0; b0; c0g defining
two triangles, the intersections of the corresponding sides lie on a line if and only if the lines of
intersection of the corresponding vertices intersect in a point.

We will give an algebraic proof: LetP be the common intersection ofAA0; BB0; CC0. Hence
there are scalars�; �; ; �0; �0; 0 such that:

�A � �0A0 = P
�B � �0B0 = P

C � 0C0 = P

9>=
>; =)

8><
>:

�A � �B = �0A0 � �0B0

�B � C = �0B0 � 0C0

C � �A = 0C0 � �0A0

This indicates that the point�A � �B on the lineAB also lies at�0A0 � �0B0 on the lineA0B0, and

12



hence corresponds to the intersection ofAB andA0B0, and similarly for�B � C = BC \ B0C0

andC � �A = CA \ C 0A0. But given that

(�A� �B) + (�B � C) + (C � �A) = 0

the three intersection points are linearly dependent,i.e. collinear. tu

Exercise 2.4 : The sun (viewed as a point light source) casts on the planar ground the shadow
A0B0C0 of a triangular roofABC (see fig. 2.2). Consider a perspective image of all this, and show
that it is a Desargueian configuration. To which 3D line does the line of intersections in Desargues
theorem correspond? If a further pointD in the planeABC produces a shadowD0, show that it is
possible to reconstruct the image ofD from that ofD0.

P

A

B

B’ A’

C’

C

∆

D’

Figure 2.2: Shadow of a triangle on a planar ground

Hyperplane Transformations

In a projective space, a collineation can be defined by its(n+ 1)� (n+ 1) matrixM with respect to
some fixed basis. IfX andX 0 are the coordinate vectors of the original and transformed points, we
have

X
0

= MX:

This maps hyperplanes of points to transformed hyperplanes, and we would like to express this as
transformation of dual (hyperplane) coordinates. LetA andA0 be the original and transformed hy-
perplane coordinates. For all pointsX we have:

AX = 0() A0X 0 = 0() A0MX = 0

The correct transformation is thereforeA0M = A or:

A0 = AM�1

13



or if we choose to represent hyperplanes by column vectors:

A0
t
= (M�1)tAt

Of course, all of this is only defined up to a scaling factor. The matrixM� = (M�1)t is sometimes
called thedualof M .

2.2 Linear Algebra and Homogeneous Coordinates

This section gives some examples of the power of linear algebra on homogeneous coordinates as a
tool for projective calculations.

2.2.1 Lines in the Plane and Incidence

We will develop the theory of lines in the projective planeIP 2. Most of the results can also be
extended to higher dimensions.

LetM = (x; y; t)> andN = (u; v; w)> be homogeneous representatives for two distinct points
in the plane (i.e. M andN are linearly independent 3-vectors:M 6= �N ). LetL = (a; b; c) be a the
dual coordinates of a line (hyperplane) in the plane. By the definition of a hyperplane,M lies onL
if and only if the dot productL �M vanishes,i.e. if and only if the 3-vectorL is orthogonal to the
3-vectorM . The lineMN throughM andN must be represented by a 3-vectorL orthogonal to both
M andN , and hence proportional to the cross productM �N :

L �M �N =

0
B@ yw � tv

tu� xw
xv � yu

1
CA

Since� is bilinear, the mappingM !MN for fixedN is a linear mapping defined by the matrix0
B@ 0 w �v
�w 0 u

v �u 0

1
CA

The vectorN generates the kernel of this mapping.

Another way to characterize the lineMN is as the set of pointsP = �M+�N for arbitrary�; �.
Evidently

(M �N) � P = �(M �N) �M + �(M �N) �N

= 0 + 0 = 0

Dually, if L andL0 are two lines defined by their dual coordinates, then�L+ �L0 is some other
line through the intersectionX of L andL0 (sinceL �X = 0 = L0 �X implies(�L+ �L0) �X = 0).
As � : � varies, this line traces out the entire pencil of lines throughX . By duality,X = L� L0.

One further way to approach lines is to recall that ifM , N andP are collinear,each point is a
linear combination of the two others. In particular, the3 � 3 determinantjMNP j vanishes. IfM
andN are fixed, this provides us with a linear constraint thatP must satisfy if it is to lie on the line:
jMNP j = (M �N) � P = 0.
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2.2.2 The Fixed Points of a Collineation

A pointA is fixed by a collineation with matrixH exactly whenHA � A, i.e. HA = �A for some
scalar�. In other words,A must be a right eigenvector ofH . Since an(n + 1) � (n + 1) matrix
typically hasn+1 distinct eigenvalues, a collineation inIPn typically hasn+1 fixed points, although
some of these may be complex.

H maps the line through any two fixed pointsA andB onto itself:H(�A+�B) = ��A+��B.
In addition, ifA andB have the same eigenvalue (� = �), �A + �B is also an eigenvector and
the entire lineAB is pointwise invariant. In fact, the pointwise fixed subspaces ofIPn underH
correspond exactly to the eigenspaces ofH ’s repeated eigenvalues (if any).

Exercise 2.5 : Show that the matrix associated with a plane translation has a triple eigenvalue, but
that the corresponding eigenspace is only two dimensional. Provide a geometric interpretation of
this.

Exercise 2.6 : In 3D Euclidean space, consider a rotation by angle� about the~z axis. Find the
eigenvalues and eigenspaces, prove algebraically that the rotation axis is pointwise invariant, and
show that in addition the “circular points” with complex coordinates(1; i; 0; 0)> and(1;�i; 0; 0)>

are fixed.
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Chapter 3

Projective Invariants & the Cross Ratio

Following Klein’s idea of studying geometry by its transformations and invariants, this chapter fo-
cuses on the invariants of projective geometry. These form the basis of many other results and help to
provide intuition about the structure of projective space. The simplest projective invariant is thecross
ratio, which generates a scalar from four points of any 1D projective space (e.g.a projective line).

3.1 Some Standard Cross Ratios

3.1.1 Cross-Ratios on the Projective Line

Let M andN be two distinct points of a projective space. The dimension of the underlying space
is irrelevant: they might be points in the projective line, plane or 3D space, hyperplanes,etc. The
projective line betweenM andN consists of all pointsA of the form

A = �M + �N

Here(�; �) are the coordinates ofA in the 2D linear subspace spanned by the coordinate vectorsM
andN . Projectively,(�; �) are only defined up to an overall scale factor, so they really represent
homogeneous coordinates on the abstract projective lineIP 1 fromM toN , expressed with respect to
the linear basis of coordinate vectorsfM;Ng.

LetAi; i = 1; : : : ; 4 be any four points on this line. Their cross ratiofA1; A2;A3; A4g is defined
to be:

fA1; A2;A3; A4g =
(�1�3 � �3�1)(�2�4 � �4�2)

(�1�4 � �4�1)(�2�3 � �3�2)
(3.1)

=
(�1=�1 � �3=�3)(�2=�2 � �4=�4)

(�1=�1 � �4=�4)(�2=�2 � �3=�3)

a=0 = 1 is a permissable value for the cross ratio. If the numerator and denominator both vanish at
least three of the�=� must be identical, so by l’Hˆopital’s rule the cross ratio is 1. The key property
of the cross ratio is that it is invariant under collineations and changes of basis. In other words, it is a
projective invariant.

Theorem: The cross ratio does not depend on the choice of basisM andN on the line. IfH is a
collineation, thenfA1; A2;A3; A4g = fHA1; HA2;HA3; HA4g.

See [23] for detailed proofs. In fact, invariance under collineations need only be verified on the
projective lineIP 1:
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Exercise 3.1 : On the projective line, collineations are represented by nonsingular2� 2 matrices: 
�0

�0

!
=

 
a b

c d

! 
�

�

!
ad� cd 6= 0

Show explicitly that the cross ratio is collineation invariant (Hint:��0 � �0� = det
�� �0

� �0

�
).

Cross Ratios and Length Ratios: In (�; �) coordinates on the lineMN ,N is represented by(0; 1)
and serves as the “origin” andM is represented by(1; 0) and serves as the “point at infinity”. For an
arbitrary pointA = (�; �) 6� (1; 0), we can rescale(�; �) to � = 1, and representA by its “affine
coordinates”(�; 1), or just� for short. Since we have mappedM to infinity, this is just linear distance
along the line fromN . Hence, setting�i = 1 in 3.1, the cross ratio becomes a ratio of length ratios.
The ancient Greek mathematicians already used cross ratios in this form.

Exercise 3.2 : Let D be the point at infinity on the projective line, and letA;B;C be three finite
points. Show that

fA;B;C;Dg=
AC

BC

Exercise 3.3 If MN is the line between two pointsM andN in the projective plane, use the(�; �)
parameterizationand the results of section 2.2.1 to show that the cross ratio of four pointsA;B;C;D
on the line is

fA;B;C;Dg=
(A� C) � (B �D)

(A�D) � (B � C)

Cross Ratios and Projective Bases: In section 2.1 we saw that any 3 distinct points on the projec-
tive line can be used as a projective basis for it. (NB: if we also specify their homogeneous scales,
only two are needed, as withM andN above). The cross ratiok = fA;B;C;Dg of any fourth
pointD with the points of a projective basisA;B;C definesD uniquely with respect to the basis.
Rescaling to�i = 1 as above, we have

�4 =
(�1 � �3)�2 + (�3 � �2)�1k

(�1 � �3) + (�3 � �2)k
(3.2)

As this is invariant under projective transformations, the cross ratio can be used to invariantly position
a point with respect to a projective basis on a line. A direct application is reconstruction of points on
a 3D line using measured image cross ratios.

Exercise 3.4 : In an image, we see three equally spaced trees in a line. Explain how the position of
a fourth tree in the sequence can be predicted. If the first tree lies at� = 0 on the image line, the
second lies at1 and the third atc, what is the image coordinate of the fourth tree?

3.1.2 Cross Ratios of Pencils of Lines

Let U andV be two lines in the projective plane, defined by their dual coordinate vectors. Consider
a set of linesfWig defined by:

Wi = �iU + �iV

with the(�i; �i) defined up to scale as usual.fWig belongs to thepencil of linesthrough the inter-
section ofU andV (c.f. section 2.2.1), so eachWi passes through this point. As in section 3.1.1, the
cross ratiofW1;W2;W3;W4g is defined to be the cross ratio of the four homogeneous coordinate
pairs(�i; �i). Dually to points, we have:
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Theorem: The cross ratio of any four lines of a pencil is invariant under collineations.

Cross ratios of collinear points and coincident lines are linked as follows:

Theorem: The cross ratio of four lines of a pencil equals the cross ratio of their points of intersection
with an arbitrary fifth line transversal to the pencil (i.e. not through the pencil’s centre) — see fig.
3.1.

O

A B 

C D

A’

B’C’

D’

Figure 3.1: The cross ratio of four lines of a pencil

In fact, we already know that the cross ratios of the intersection points must be the same for any
two transversal lines, since the lines correspond bijectively to one another under a central projection,
which is a collineation.

The simplest way to establish the result is to recall the line intersection formulae of section 2.2.1.
If U andV are the basis 3-vectors for the line pencil, andL is the transversal line, the intersection
points ofL with U , V and�U + �V are respectivelyL� U , L� V and�(L� U) + �(L� V ). In
other words, the(�; �) coordinates of a line in the basisfU; V g are the same as the(�; �) coordinates
of its intersection withL in the basisfL� U; L� V g. Hence, the two cross ratios are the same.

Another way to prove the result is to show that cross ratios of lengths along the transversal line
can be replaced by cross ratios of angle sines, and hence are independent of the transversal line chosen
(c.f fig. 3.1):

AC �BC

AD �BD
=

sin(OA;OC) sin(OB;OD)

sin(OA;OD) sin(OB;OC)
(3.3)

However, this is quite a painful way to compute a cross ratio. A more elegant method uses determi-
nants:

Theorem (Möbius): LetLi; i = 1; : : : ; 4 be any four lines intersecting inO, andAi; i = 1; : : : ; 4
be any four points respectively on these lines, then

fL1; L2;L3; L4g =
j OA1A3 j j OA2A4 j

j OA1A4 j j OA2A3 j
(3.4)

wherej OAiAj j denotes the determinant of the3 � 3 matrix whose columns are the homogeneous
coordinate vectors of pointsO, Ai andAj .

This 19th century result extends gracefully to higher dimensions. To prove it, let(a; b; 1); (x; y; 1)
and(u; v; 1) be the normalized affine coordinate vectors ofO;Ai andAj . Then

jOAiAj j =

�������
a x u

b y v
1 1 1

������� =
�������
a x� a u� a

b y � b v � b
1 0 0

�������
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= ~OAi � ~OAj = jOAij jOAj j � sin(OAi; OAj)

The vector’s lengths cancel out of the cross ratio of these terms, and if the coordinate vectors do not
have affine normalization, the scale differences cancel out too. tu

Projective Bases for the Projective Plane: Any four distinct coplanar points (no three of which
are collinear) form a projective basis for the plane they span. Given four such pointsA;B;C;D, a
fifth pointM in the plane can be characterized as the intersection of one line of the pencil throughD

with one line of the pencil throughB (see fig. 3.2). Hence,M can be parameterized by two cross
ratios (one for each pencil). This construction fails whenM lies on the lineDB: in this case, another
family of pencils has to be considered. This is a common phenomenon in projective spaces: a single
system of coordinates does not cover the entire space without singularities or omissions.

A

C

B

D

M

Figure 3.2: Locating a fifth point in a plane

Four-point bases can be used directly for visual reconstruction of coplanar 3D points. Given four
known points on a 3D plane and their perspective images, a fifth unknown point on the plane can
be reconstructed from its image by expressing the image in terms of the four known image points,
and then using the same homogeneous planar coordinates(�; �; �) to re-create the corresponding 3D
point.

3.1.3 Cross Ratios of Planes

A pencil of planesin IP 3 is a family of planes having a common line of intersection. The cross ratio
of four planes�i of a pencil is the same as the cross ratio of the linesli of intersection of the planes
with fifth, transversal plane (see fig. 3.3). Once again, different transversal planes give the same cross
ratio as the figures they give are projectively equivalent. The M¨obius formula also extends to this
case: letP;Q be any two distinct points on the axis of the plane pencil, andAi; i = 1; : : : ; 4 be points
lying on each plane�i (not on the axis), then

f�1;�2; �3;�4g =
j PQA1A3 j j PQA2A4 j

j PQA1A4 j j PQA2A3 j

wherej PQAiAj j stands for a4� 4 determinant of 4-component column vectors.

3.2 Harmonic Ratios and Involutions

3.2.1 Definition

Let A;B;C;D be four points on a line with cross ratiok. From the definition of the cross ratio,
it follows that the4! = 24 possible permutations of the points yield 6 different (but functionally
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l3
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l1

Figure 3.3: A pencil of planes

equivalent) cross ratios:

fA;B;C;Dg = fB;A;D;Cg

= fC;D;A;Bg

= fD;C;B;Ag

= 1=fA;B;D;Cg= k

fA;C;B;Dg = 1=fA;C;D;Bg= 1� k

fA;D;B;Cg = 1=fA;D;C;Bg = 1� 1=k

In some symmetrical cases, the six values reduce to three or even two. When two points coincide,
the possible values are0, 1 and1. With certain symmetrical configurations of complex points the
possible values are�e2�i=3 and�e�2�i=3. Finally, whenk = �1 the possible values are�1, 1=2 and
2. The Ancient Greek mathematicians called this aharmonic configuration. The couples(A;B) and
(C;D) are said to beharmonic pairs, and we have the following equality:

fA;B;C;Dg= fA;B;D;Cg= fB;A;C;Dg= fC;D;A;Bg = �1:

Hence, the harmonic cross ratio is invariant under interchange of points in each couple and also (as
usual) under interchange of couples, so the couples can be considered to be unordered. Given(A;B),
D is said to beconjugatetoC if fA;B;C;Dg forms a harmonic configuration.

Exercise 3.5 : If C is at infinity, where is its harmonic conjugate?

The previous exercise explains why the harmonic conjugate is considered to be a projective ex-
tension of the notion of an affine mid-point.

3.2.2 The Complete Quadrangle

Any set of four non-aligned pointsA;B;C;D in the plane can be joined pairwise by six distinct lines.
This figure is called thecomplete quadrangle. The intersections of opposite sides (including the two
diagonals) produce three further pointsE; F;G (see fig. 3.4).

Property: The pencil of four lines based at each intersection of opposite sides is harmonic. For
examplefFA; FB;FE; FGg = �1.

A simple proof maps the quadrangle projectively onto a rectangle, sendingF andG to points at
infinity in two orthogonal directions. The four lines of the pencil become parallel, with one being at
infinity. The line throughE is obviously half way between those throughA andB, so by the previous
exercise the line configuration is harmonic. tu
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D
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Figure 3.4: The complete quadangle

Exercise 3.6 : Given the imagesa; b; c of two pointsA;B on a 3D line and its 3D vanishing point
(point at infinity)C, construct the projection of the mid-point ofAB using just a ruler.

3.2.3 Involutions

Definition: An involution is non-trivial projective collineationH whose square is the identity:
H2 = Id.

Property: The mapping taking a point to its harmonic conjugate is an involution.

By the definition of a harmonic pair, the mapping is its own inverse. Using the cross ratio formula
(3.2), it is straightforward to check that it is also projective. tu

Exercise 3.7 : Consider the affine line,i.e. the projective line with the point at infinity fixed. Show
that the only affine involutions (projective involutions fixing the point at infinity) are reflections about
a fixed point (e.g.x! �x, reflection about0). Deduce that on the projective line, all involutionswith
one fixed point have two fixed points, and thence that they map points to their harmonic conjugates
with respect to these two fixed points.

Exercise 3.8 : (NB: This is an algebraic continuation of the previous exercise). Let a collineationH
be represented by a2 � 2 matrix as in exercise 3.1. Prove that ifH is an involution thena = �d.
Show thatH always has two distinct fixed points, either both real or both complex. Give anH that
fixes the complex points(i; 1)> and(�i; 1)>, and show that ifx0 = Hx, thenfA;B; x; x0g = �1.
Given the invariance of the cross ratio under complex collineations, show that all involutions of the
projective line map points to their harmonic conjugates with respect to the two fixed points of the
involution.

Involutionsare useful when dealing with images of symmetrical objects. Consider the simple case
of a planar object with reflection symmetry, as in fig. 3.5. In 3D, the lines joining corresponding points
of the object are parallel. In the image, all such lines meet at the projection of the associated point at
infinity S. The projection of the line of symmetry consists of points conjugate toS with respect of
pairs of corresponding points on the shape. There is a plane involution of the image mapping points
on the object to their opposites, and fixingS and each point of the symmetry axis. Also, any line
through any two points of the figure meets the line through the two opposite points on the axis: hence
the axis is easy to find given a few correspondences. All this extends to 3D symmetries: see [22]
chapter 8.
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Figure 3.5: Perspective view of a planar symmetrical shape

3.3 Recognition with Invariants

Invariant measures like the cross ratio contain shape information. This can be used in several ways,
for instance to identify objects seen by a camera. For simplicity, we will restrict ourselves to planar
objects here, so that the mapping from scene points to image ones is one to one. The full 3D case
is harder. For example, no 3D invariant can be extracted from a single perspective image of a set
of general 3D points, unless something further is known about the point configuration (for instance,
that some of them are coplanar). For 3D invariants from two images, see [7]. For an overview of
projective invariants for planar shape recognition, see [22].

3.3.1 Generalities

Four aligned points provide a projective invariant, the cross ratio. If we only allow affine transforma-
tions, three aligned points are enough to provide an invariant: the ratio of their separations. Finally,
limiting ourselves to rigid planar motions, there is an invariant for only two points: their separation.
In other words, invariants are only defined relative to agroupG of permissable transformations. The
smaller the group, the more invariants there are. Here we will mainly concentrate on the group of
planar projective transformations.

Invariants measure the properties of configurations that remain constant under arbitrary group
transformations. A configuration may contain many invariants. For instance 4 points lead to 6 differ-
ent cross ratios. However only one of these isfunctionally independent: once we know one we can
trivially calculate the other five. In general, it is useful to restrict attention to functionally independant
invariants.

An important theorem tells us how many independant invariants exist for a given algebraic con-
figuration. LetC be the configuration and dof(C) its number of degrees of freedom,i.e. the number
of independant parameters needed to describe it, or the dimension of the corresponding parameter
manifold. Similarly, let dof(G) be the number of independent parameters required to characterize a
transformation of groupG; let GC be the subgroup ofG that leaves the configuration invariant as a
shape; and let dof(GC) be thisisotropy subgroup’s number of degrees of freedom. Then we have the
following theorem [6]:
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Theorem: The number of independant invariants of a configurationC under transformationsG is

dof(C)� dof(G) + dof(GC)

Consider a few examples:

1. LetG be the 2 dof group of affine transformations on the line. No continuous family of affine
transformations leaves 3 collinear points (which have 3 dof) invariant: dof(GC) = 0. So there
is 3� 2 + 0 = 1 independant invariant,e.g.one of the length ratios.

2. LetG be the 3 dof group of rigid transformations in the plane andC be the 3 dof configuration
of two parallel lines.GC is the 1 dof subgroup of translations parallel to this line, so there is
3� 3 + 1 = 1 independant invariant,e.g. the distance between the lines.

3. Two conics in the projective plane have2 � 5 = 10 dof. The planar projective group has 8 dof
and no continuous family of projective transformations leaves two conics globally invariant;
therefore there are10� 8 + 0 = 2 invariants for such a configuration.

In practice, the isotropy subgroup(GC) often reduces to the identity. The assumption it has 0 dof
is known as the “counting argument”. However, it can be very difficult to spot isotropies, so care is
needed:

Exercise 3.9 : In the projective plane, consider two linesL; L0 and two pointsA;B in general
position. How many invariants does the counting argument suggest? However there is at least one
invariant: A;B and the intersections ofAB withL andL0 define a cross ratio. Exhibit the isotropy
subgroup and show that it has 1 dof. (Hint: MapA;B to infinity and the intersection of the lines to
the origin: what is the isotropy subgroup now?)

3.3.2 Five Coplanar Points

Now consider the simple case of 5 coplanar points in general position. This example will show that
although the theory provides a nice framework, it does not give all the answers.

The isotropy subgroup is the identity: even four of the points are sufficient to define a unique
projective basis. There are therefore5 � 2 � 8 + 0 = 2 independent projective invariants. In section
3.1.2, we showed that two suitable invariants can be obtained by taking cross ratios of pencils of lines
through any two of the points.

Ideally, we would like to be able to recognise one among a set of such configurations by comput-
ing the two cross ratios from image data and searching a database for the closest known configuration
with those invariant values. This raises two questions:
1) Which of the5! = 120 possible orderings of the image points was used for the invariant stored in
the database?
2) How should proximity of cross ratios be measured?

The first point is a combinatorial/correspondence problem. One way to attack this is to create
combinations of invariants that are unchanged under permutations of the points. For example, the 6
possible values of a cross ratio can be combined into a symmetric, order independent form such as

k2 +
1

k2
+ (1� k)2 +

1

(1� k)2
+ (1�

1

k
)2 + (

k

k� 1
)2

Exercise 3.10: The simplest symmetrical polynomials would be the sum or product of all the values.
Why are these not useful?
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Even given this, we still have to choose two of the five points as base points for the symmetrized
cross ratios. Again we can form some symmetric function of the5 � 4 = 20 possiblities. We could
take the maximum or minimum, or some symmetric polynomial such as:

I1 =
5X

i=1

ai; I2 =
X
i6=j

aiaj

The problem with this is that each time we symmetrize the invariants lose discriminating power.

To compare invariants, something like the traditional Mahalanobis distance can be used. However,
most projective invariants are highly nonlinear, so the distance has to be evaluated separately at each
configuration: using a single overall distance threshold� usually gives very bad results. In fact,
close to degenerate configurations — here, when three of the points are almost aligned — even well-
designed Mahalanobis metrics may be insufficient. Such configurations have to be processed case-
by-case (usually, they are discarded).

Hence, even with careful design, the results of this indexation approach are not very satisfac-
tory. An exhaustive test on randomly generated point configurations was performed in [17], with the
conclusion that no usable trade off between false positives and false negatives existed.

However, the results can be improved by several order of magnitude by the following process:

1. Given that convexity and order is preserved under perspective image projections (although not
under general projective mappings!), classify the 5 point configurations into one of the three
classes described in fig. 3.6

P1

P2

P3P4

P5
P5

P5

P1
P1

P2

P2

P3

P3

P4

P4

a) b) c)

Figure 3.6: Three topologically different configurations for 5 points

2. For each class, compute the possible cross ratios. For instance, for class (a) there are five
possibilities for the five vertices of the polygon, with the points considered in clockwise order.

3. For each set of (redundant) invariants, compute the Mahalanobis distance, index, and perform
final classification by projective alignment with each of the retrieved candidate configurations.

Ordering the points allows the use of raw (non-symmetrized) cross ratios, which significantly
improves the discriminating power. It also makes the invariant computation specific to each class
of object considered. With random noise of 1.5 pixel in a512 � 512 image, this process prunes on
average about 799 of every 800 configurations. These results have also been validated by independent
experiments [14].
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Chapter 4

A Hierarchy of Geometries

We saw in chapter 2 that there is a standard mapping from the usual Euclidean space into projective
space. The question is, if only the projective space is known, what additional information is required
to get back to Euclidean space. We will only consider the case of the plane and 3D space, but the
extension to arbitrary dimensions is straightforward. For more detailed expositions in the same spirit
as this tutorial, see [5] for a geometric presentation and [15] for a computer vision oriented one.

In his Erlanger Programme (1872), Felix Klein formulated geometry as the study of a space of
points together with a group of mappings, the geometric transformations that leave the structure of
the space unchanged. Theorems are then just invariant properties under this group of transformations.
Euclidean geometry is defined by the group of rigid displacements; similarity or extended Euclidean
geometry by the group of similarity transforms (rigid motions and uniform scalings); affine geometry
by the the group of affine transforms (arbitrary nonsingular linear mappings plus translations); and
projective geometry by projective collineations.

There is a clear hierarchy to these four groups:

Projective� Affine � Similarity � Euclidean

As we go down the hierarchy, the transformation groups become smaller and less general, and the
corresponding spatial structures become more rigid and have more invariants. We consider each step
of the hierarchy in the following sections, specializing each geometry to the next in turn.

4.1 From Projective to Affine Space

4.1.1 The Need for Affine Space

Projective geometry allows us to discuss coplanarity, and relative position using the cross ratio or its
derivatives. However in standard projective space there is no consistent notion ofbetweenness. For
instance, we can not uniquely define the line segment linking two pointsA;B. The problem is that
projective lines are topologically circular: they close on themselves when they pass through infinity
(except that infinity is not actually distinguished in projective space — all points of the line are equal).
So there are two equally valid segments linking two points on a projective line:A+�B for � in either
[0;+1] and in[�1; 0].

One solution to this problem is to distinguish a set (in fact a hyperplane) of points at infinity in
projective space: this gives us affine space.

A related problem occurs if we try to define the convex hull of a set of points. Figure 4.1 illustrates
the behavior of the convex hull for two different affine interpretations of the plane,i.e. for two
different choices of the line at infinity. In the first case, the line at infinity (the ideal line) does not
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pass through the intuitive convex hull (fig. 4.1a), so the convex hull remains similar to the intuitive
one. But in figure 4.1b the line cuts the intuitive convex hull, soB andC turn out to be inside the
calculated hull in this case. (No side of the calculated convex hull ever cuts the line at infinity). Note
that in this case, we need only know whether the ideal line passes through the desired convex hull or
not; this naturally extends to the ideal plane in the 3D space (see [21]).

line at infinity

A
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D
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lin
e 
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to E

to D

a b
)

)

Figure 4.1: The convex hull depends on the position of the hyperplane at infinity

Another important limitation when working with projective geometry is that it does not allow us
to define the midpoint of a segment: the midpoint is defined by a simple ratio and projective geometry
deals only with cross ratios.

4.1.2 Defining an Affine Restriction

As we have seen in chapter 2, affine transformations leave the line at infinity invariant. In fact the
group of affine transformations is just the subgroup of the projective group that maps this line (or
plane) onto itself. Any line can be chosen to be fixed, and then the projective subgroup that leaves
this line fixed defines a valid affine space.

Usually we want to interpret the fixed line as being the effective line at infinity of a hidden affine
space. For example, this happens when a 3D plane is projected to an image under perspective pro-
jection. The line at infinity of the 3D plane is projected to a corresponding “horizon line”, which is
not usually at infinity in the image. Once this horizon line has been identified and fixed, the affine
geometry defined is the one pertaining to the original 3D plane, and not to the camera image plane.
To implement this, we just need to find a change of coordinates that maps this line to the one with
dual coordinate vector(0; 0; 1).

Sometimes (as with the real horizon) this horizon line is actually visible in the image. If not,
we might use some prior knowledge about the scene to compute its position. For instance, if we
know that two 3D lines are parallel, their intersection directly gives the image of one point at infinity.
Another useful piece of information is the 3D distance ratio of three aligned points. The cross ratio of
the ideal point on the line through these is the same as the distance ratio in affine space, so the image
of the ideal point can be computed from (3.2), given the affine ratio and the projections of the three
points.

Exercise 4.1 : You observe the perspective image of a plane parallelogram. Derive an algebraic
expression for the plane’s horizon (i.e. the projection of the line at infinity) in terms of the vertex
projectionsa; b; c; d.

Exercise 4.2 : You observe the image of three parallel, equally spaced, coplanar lines. Explain how
to compute the horizon line of the plane.

26



Once the ideal line (or plane) has been located in projective space, computing affine information
is straightforward. Stating that�1 should have equationt = 0 yields 2 independent linear constraints
on the last line of the permissible collineation matricesW (3 in 3D).

4.2 From Affine to Euclidean Space

Here, by Euclidean space we actually mean space under the group of similarity transforms,i.e. we
allow uniform changes of scale in addition to rigid displacements. This permits a very elegant alge-
braic formulation, and in any case scale can never be recovered from images, it can only be derived
from prior knowledge or calibration. (You can never tell from images whether you are looking at the
real world or a reduced model). In practice, Euclidean information is highly desirable as it allows us
to measure angles and length ratios.

Last century, Laguerre showed that Euclidean structure is given by the location in the plane at
infinity �1 of a distinguished conic, whose equation in a Euclidean coordinate system is(

x2 + y2 + z2 = 0
t = 0

(4.1)

This is known as theabsolute conic
 [13, 23]. All points lying on it have complex coordinates so it
is a little difficult to picture, but for the most part it behaves just like any other conic.

Exercise 4.3 : Show that the absolute conic
 is mapped onto itself under scaled Euclidean transfor-
mations. From there, show that the corresponding image conic is invariant under rigid displacements
of the camera, provided that the camera’s internal parameters remain unchanged.

As in the projective to affine case, prior Euclidean information is needed to recover Euclidean
structure from affine space. Perhaps the easiest way to do this is to reconstruct known circles in 3D
space. Algebraically, each such circle intersects�1 in exactly two complex points, and these always
belong to
 [23]. 
 itself can be reconstructed from three such circles. Let the resulting equation be

X tQX = (x; y; z)

0
B@ a1 a4 a5

a4 a2 a6
a5 a6 a3

1
CA
0
B@ x

y
z

1
CA = 0

A change of coordinates is needed to bring
 into the form of equation (4.1). As the matrix Q is
symmetric, there is an orthogonal matrix P such that:

Q = P t

0
B@ �1 0 0

0 �2 0
0 0 �3

1
CAP

SettingX 0 = PX , we have:

X tQX = (X 0)t

0
B@ �1 0 0

0 �2 0
0 0 �3

1
CAX 0

With a further rescaling along each axis, we get equation (4.1).

Another way to proceed is to use the basic extended Euclidean invariant: the angle� between two
coplanar linesL andL0. Such angles also put a constraint on
 and can be used to compute it. LetA
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andA0 be the intersections of the two lines with�1. Let I andJ be the intersections with
 of the
(line at infinity in the) plane defined by these two lines. Laguerre’s formula states that:

� =
1

2i
log(fA;A0; I; Jg)

We can writeI = A + tA0, J = A + t0A0. With this notation,fA;A0; I; Jg = t=t0 = e2i�. If we
require that bothI andJ lie on
 we get the constraint equations

t2A0TQA0 + 2tATQA0 + ATQA = 0

e4i�t2A0TQA0 + 2e2i�tATQA0 + ATQA = 0 (4.2)

A polynomial constraint on Q is easily derived. Eliminatet2 between the above equations:

2tATQA0�(� � 1) + ATQA(�2 � 1) = 0 with � = e2i�

extractt from this

t = �
(� + 1)

2�

ATQA

ATQA0

and substitute into (4.2) to provide a quadratic polynomial constraint onQ:

(1 + �)(ATQA)(A0TQA0)� 2(ATQA0)2 = 0

Theoretically, the absolute conic
 can be computed from the above constraint given 5 known angles.
However, in practice there does not seem to be a closed form solution and in our experiments we have
used different Euclidean constraints. But the above discussion does clearly show the relationships
between the different layers of projective, affine and Euclidean reconstruction, and specifies exactly
what structure needs to be obtained in each case.

4.3 Summary

Projective spaceIPn is invariant under then(n+ 2) parameterprojective groupof (n+1)� (n+1)
matrices up to scale (8 dof in 2D, 15 dof in 3D). The fundamental projective invariant is the cross
ratio which requires four objects in a projective pencil (one parameter configuration, or homogeneous
linear combination of two basis objects�X+�Y ). Projective space has notions of subspace incidence
and an elegant duality between points and hyperplanes, but no notion of rigidity, distance, points ‘at
infinity’, or sidedness/betweenness. It is the natural arena for perspective images and uncalibrated
visual reconstruction.

N -dimensionalaffine spaceis invariant under then(n+1) parameteraffine groupof translations
and linear deformations (rotations, non-isotropic scalings and skewings). Affine space is obtained
from projective space by fixing an arbitrary hyperplane to serve as the hyperplane of points ‘at in-
finity’: requiring that this be fixed putsn constraints on the allowable projective transformations,
reducing them to the affine subgroup. The fundamental affine invariant is ratio of lengths along a line.
Given 3 aligned pointsA;B;C, the length ratioAB=AC is given by the cross ratioA;B;D;C, where
D is the line’s affine point at infinity. Affine space has notions of ‘at infinity’, sidedness/betweenness,
and parallelism (lines meeting at infinity), but no notion of rigidity, angle or absolute length.

Similarityor scaled Euclidean spaceis invariant under then(n + 1)=2 + 1 parametersimilarity
groupof rigid motions (rotations and translations) and uniform scalings. The fundamental similarity
invariants are angles and arbitrary length ratios (including non-aligned configurations). Euclidean
space is obtained from affine space by designating a conic in the hyperplane at infinity to serve as the
absolute conic. The similarity group consists of affine transformations that leave then(n+ 1)=2� 1

28



parameters of this conic fixed. Angles can be expressed using the cross ratio and properties of this
conic. Scaled Euclidean space has all the familiar properties of conventional 3D space, except that
there is no notion of scale or absolute length.

Fixing this final scale leaves us with then(n + 1)=2 parameterEuclidean groupof rigid motions
of standardEuclidean space.
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Chapter 5

Projective Stereo vision

The projective approach to stereo vision investigates what can be done with completely uncalibrated
cameras. This is very important, not only because it frees us from the burden of calibration for certain
tasks, but also because it provides mathematical background for many aspects of stereo vision and
multiple image algebra, such as self calibration techniques.

The subject was perhaps investigated by mathematical photogrammetrists in the 19th century, but
if so the results do not seem to have survived. More recently, following an unnoticed paper by Thomp-
son [25] in 1968, work on projective invariants around 1990 and the 1992 projective reconstruction
papers of Faugeras [3] and Hartley [9] launched an enormous burst of research in this field.

5.1 Epipolar Geometry

5.1.1 Basic Considerations

Consider the case of two perspective images of a rigid scene. The geometry of the configuration is
depicted in fig. 5.1. The 3D pointM projects to pointm in the left image andm0 in the right one.
LetO andO0 be the centres of projection of the left and right camera respectively. TheM ’s epipolar

O O’

M

m’
m

e e’

Figure 5.1: Epipolar geometry

plane[O;O0;M ] intersects the image planes in two conjugate lines calledM ’s epipolar lines. These
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pass respectively through the imagesm andm0 and the pointse ande0 of intersection of the image
planes with the base line[O;O0]. These conjugate points are called theepipolesof the stereo rig.

Now letM move around in space. The epipolar planes form a pencil of planes through[O;O0],
and the epipolar lines form two pencils of lines throughe ande0 respectively.

Key Property: The epipolar line-line and line-plane correspondences are projective.

Proof: Perspective projection through any third point on[O;O0] provides the required projective
collineation. tu

Projectively, the epipolar geometry is all there is to know about a stereo rig. It establishes the
correspondencem $ m0, and allows 3D reconstruction of the scene to be carried out up to an
overall 3D projective deformation (which is all thatcan be done with any number of completely
uncalibrated cameras, without further constraints). An important practical application of epipolar
geometry is to aid the search for corresponding points, reducing it from the entire second image to a
single epipolar line. The epipolar geometry is sometimes obtained by calibrating each of the cameras
with respect to the same 3D frame, but as the next section shows, it can easily be found from a few
point correspondences, without previous camera calibration.

5.1.2 The Fundamental Matrix

Letm = (x; y; t)t be the homogeneous coordinates of a point in the first image ande = (u; v; w) be
the coordinates of the epipole of the second camera in the first image. The epipolar line throughm

ande is represented by the vectorl = (a; b; c)t = m � e (c.f. section 2.2.1). The mappingm ! l is
linear and can be represented by a3� 3 rank 2 matrixC:0

B@ a
b

c

1
CA =

0
B@ yw� zv

zu � xw

xv � yu

1
CA =

0
B@ 0 w �z
�w 0 u

z �u 0

1
CA
0
B@ x

y

z

1
CA (5.1)

The mapping of epipolar linesl from image 1 to the corresponding epipolar linesl0 in image 2 is
a collineation defined on the 1D pencil of lines throughe in image 1. It can be represented (non-
uniquely) as a collineation on the entire dual space of lines inIP 2. LetA be one such collineation:
l0 = Al.

The constraints onA are encapsulated by the correspondence of 3 distinct epipolar lines. The first
two correspondences each provide two constraints, because a line in the plane has 2 dof. The third
line must pass through the intersection of the first two, so only provides one further constraint. The
correspondence of any further epipolar line is then determined, for example by its cross ratio with the
three initial lines. SinceA has eight degrees of freedom and we only have five constraints, it is not
fully determined. Nevertheless, the matrixF = AC is fully determined. Using (5.1) we get

l0 = ACm = Fm (5.2)

F is called thefundamental matrix. AsC has rank 2 andA has rank 3,F has rank 2. The right kernel
ofC — and henceF — is obviously the epipolee. The fact that all epipolar lines in the second image
pass throughe0 (i.e. e0t � l0 = 0 for all transferredl0) shows that the left kernel ofF is e0: e0tF = 0.

F defines a bilinear constraint between the coordinates of corresponding image points. Ifm0 is
the point in the second image corresponding tom, it must lie on the epipolar linel0 = Fm, and hence
m0t � l0 = 0 (c.f. 5.1). The epipolar constraint can therefore be written:

m0tFm = 0 (5.3)
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Figure 5.2: An example of automatic epipolar geometry computation

5.1.3 Estimating the Fundamental Matrix

To obtain the epipolar geometry, we need to estimateF . This can be done using some initial point
correspondences between the images. Equation (5.3) shows that each matching pair of points between
the two images provides a single linear constraint onF . This allowsF to be estimated linearly (up
to the usual arbitrary scale factor) from 8 independent correspondences. However,F as defined has
only seven degrees of freedom: 2 fromC (the epipole position) and 5 fromA. Algebraically,F has
9 linear coefficients modulo one overall scale factor, but the rank 2 condition implies the additional
constraintdet (F ) = 0. Hence,F can actually be computed from only 7 matches in general position
plus the rank constraint. However, since the latter is a cubic there will generally be three possible
solutions in this case.

Figure 5.2 shows what can be done with a good automatic epipolar geometry algorithm. However,
for good results, some care is needed. The discussion below is inspired by a paper of R. Hartley [8].

Assume that we have already found some matchesm $ m0 between the images. Each corre-
spondence provides a linear constraint on the coefficients ofF : m0tFm = 0. Expanding, we
get:

xx0f11 + xy0f12 + xf13 + yx0f21 + yy0f22 + yf23 + x0f31 + y0f32 + f33 = 0

where the coordinates ofm andm0 are respectively(x; y; 1)t and(x0; y0; 1)t. Combining the equa-
tions obtained for each match gives a linear system that can be writtenAf = 0, wheref is a vector
containing the 9 coefficients ofF , and each row ofA is built from the coordinatesm andm0 of a
single match. SinceF is defined only up to an overall scale factor, we can restrict the solution forf to
have norm 1. We usually have more than the minimum number (8) of points, but these are perturbed
by noise so we will look for a least squares solution:

min
kfk=1

kAfk2

AskAfk2 = f tAtAf , this amounts to finding the eigenvector associated with the smallest eigenvalue
of the 9 � 9 symmetric, positive semidefinite normal matrixAtA. There are standard numerical
techniques for this [20]. However, this formulation does not enforce the rank constraint, so a second
step must be added to the computation to project the solutionF onto the rank 2 subspace. This can
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be done by taking the Singular Value Decomposition ofF and setting the smallest singular value to
zero. Basically, SVD decomposesF in the form

F = QDR

whereD is diagonal, andQ andR are orthogonal. Setting the smallest diagonal element ofD to 0
and reconstituting gives the desired result.

The above method is standard, but if applied na¨ıvely it is quite unstable. A typical image coordi-
nate in a512� 512 image might be� 200. Some of the entries in a typical row ofA arexx0 � 2002,
others arex � 200, and the last entry is1 � 1, so there is a variation in size of� 2002 among the
entries ofA, and hence of2004 � 2 � 109 among the entries ofAtA. This means that numerically,
AtA is extremely ill-conditioned: the solution contains an implicit least squares trade off, but it is
nothing like the trade off we would actually like for maximum stability.

A simple solution to this is to normalize the pixel coordinates from[0; 512] to [�1; 1] before
proceeding. This provides a well-balanced matrixA and much more stable and accurate results
for F . In a practical implementation, a considerable effort must also be spent on rejecting false
correspondences in the input data [27].

In summary, the procedure for estimating the epipolar geometry is:
— Extract points from the images
— Find an initial set of point correspondences (typically using correlation)
— Use the above fundamental matrix estimation algorithm
— Embed everything in a robust estimation framework resistant to outliers (e.gusing Least Median
Squares).

For a detailed discussion of alternatives to this scheme, see [12].

5.2 3D Reconstruction from Multiple Images

Suppose that a fixed scene is seen by two or more perspective cameras. We are interested in geometric
issues, so we will suppose that the correspondences between visible points in different images are
already known. However it must be pointed out that matching is a fundamental and extremely difficult
issue in vision, which can not be dismissed so lightly in practice.

So in this section, we suppose thatn 3D pointsAi are observed bym cameras with projection
matricesPj ; j = 1; : : : ; m. Neither the point positions nor the camera projections are given. Only the
projectionsaij of theith point in thejth image are known.

5.2.1 Projective Reconstruction

Simple parameter counting shows that we have2nm independent measurements and only11m+ 3n
unknowns, so with enough points and images the problem ought to be soluble. However, the solution
can never be unique as we always have the freedom to change the 3D coordinate system we use. In
fact, in homogeneous coordinates the equations become

aij � PjAi i = 1; : : :n; j = 1; : : : ; m (5.4)

So we always have the freedom to apply a nonsingular4 � 4 transformationH to both projections
Pj ! PjH

�1 and world pointsAi ! HAi. Hence, without further constraints, reconstruction is
only ever possible up to an unknown projective deformation of the 3D world. However, modulo this
fundamental ambiguity, the solutionis in general unique.

One simple way to obtain the solution is to work in a projective basis tied to the 3D points [3].
Five of the visible points (no four of them coplanar) can be selected for this purpose.
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Exercise 5.1 : Given the epipolar geometry, show how we can decide whether four points are copla-
nar or not, by just considering their images in a stereo pair. Hint: consider the intersection of a pair
of image lines, each linking two of the four points.

An alternative to this is to select the projection center of the first camera as the coordinate origin,
the projection center of the second camera as the unit point, and complete the basis with three other
visible 3D pointsA1; A2; A3 such that no four of the five points are coplanar.

Exercise 5.2 : Design an image-based test to check whether three points are coplanar with the center
of projection. Derive a test that checks that two points are not coplanar with the base line of a stereo
pair, assuming that the epipolar geometry is known. Deduce a straightforward test to check that the
above five points form a valid 3D projective basis.

Let a1; a2; a3 anda01; a
0
2; a

0
3 respectively be the projections in image 1 and image 2 of the 3D

pointsA1; A2; A3. Make a projective transformation of each image so that these three points and the
epipoles become a standard basis:
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0
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1
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Also fix the 3D coordinates ofA1; A2; A3 to be respectively

A1 =

0
BBB@

1
0
0
0

1
CCCA ; A2 =

0
BBB@

0
1
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1
CCCA ; A3 =
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1
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It follows that the two projection matrices can be written:

P =

0
B@ 1 0 0 0

0 1 0 0
0 0 1 0

1
CA P 0 =

0
B@ 1 0 0 �1

0 1 0 �1
0 0 1 �1

1
CA

Exercise 5.3 : Show that the projections have these forms. (NB: Given only the projections of
A1; A2; A3, each row ofP; P 0 could have a different scale factor since point projections are only
defined up to scale. It is the projections of the epipoles that fix these scale factors to be equal).

Since the projection matrices are now known, 3D reconstruction is relatively straightforward.
This is just a simple, tutorial example so we will not bother to work out the details. In any case, for
precise results, a least squares fit has to be obtained starting from this initial algebraic solution (e.g.
by bundle adjustment).

5.2.2 Affine Reconstruction

Section 4.1 described the advantages of recovering affine space and provided some methods of com-
puting the location of the plane at infinity�1. The easiest way to proceed is to use prior information,
for instance the knowledge that lines in the scene are parallel or that a point is the half way between
two others.

Prior constraints on the camera motion can also be used. For example, a translating camera
is equivalent to a translating scene. Observing different images of the same point gives a line in
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the direction of motion. Intersecting several of these lines gives the point at infinity in the motion
direction, and hence one constraint on the affine structure.

On the other hand, any line through two scene points translates into a line parallel to itself, and
the intersection of these two lines gives further constraints on the affine structure. Given three such
point pairs we have in all four points at infinity, and the projective reconstruction of these allows the
ideal points to be recovered — see [16] for details and experimental results.

5.2.3 Euclidean Reconstruction

We have not implemented the specific suggestions of section 4.2 for the recovery of Euclidean struc-
ture from a projective reconstruction by observing known scene angles, circles,. . . However we have
developed a more brute force approach, finding a projective transformationH in equation (5.4) that
maps the projective reconstruction to one that satisfies a set of redundant Euclidean constraints. This
simultaneously minimizes the error in the projection equations and the violation of the constraints.
The equations are highly nonlinear and a good initial guess for the structure is needed. In our experi-
ments this was obtained by assuming parallel projection, which is linear and allows easy reconstruc-
tion using SVD decomposition ([26]).

Figures 5.3 and 5.4 show an example of this process.

5.3 Self Calibration

This section is based on an unpublished paper written by Richard Hartley in 1995. It derives the
Kruppa equations which allow a camera’s internal parameters to be derived from matches between
several views taken with the same camera at different positions and orientations. From there, Eu-
clidean reconstruction of the scene up to an overall scale factor is possible without further prior
information.

First, we present the geometric link between the absolute conic and camera’s interior calibration.
Then, we motivate and derive the Kruppa equations which provide two constraints on the calibration
for each pair of views observed by the camera from different locations.

5.3.1 The Absolute Conic and the Camera Parameters

Consider two camera projectionsP andP 0 corresponding to the same camera (internal parameters)
but different poses. We saw in exercise 4.3 that the image of the absolute conic (IAC) is independent
of the camera pose. In fact, the IAC is directly related to the internal parameter matrixK of the
camera defined in equation (1.2).

Given that the absolute conic is in any case invariant under rotations and translations, we can
choose coordinates so that the first projection matrix reduces toP = K(I3�3j0) = (Kj0) (c.f.
equation 1.1). Hence, for a pointX = (~x; 0)t on the plane at infinity we have projectionu = K~x or
~x = K�1u. u is on the image of the absolute conic exactly whenX is on the conic itself,i.e. when

utK�tK�1u = ~xt~x = 0

So the image of the absolute conic is given by the matrixK�tK�1. If this matrix can be found, by
Choleski factorization we can extractK�1 and thence find the internal parameter matrixK. In fact,
as we will see, it is easier to work from the outset with the inverseKtK of the IAC matrix, called the
dual image of the absolute conic(DIAC).
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image 1 image 2

Figure 5.3: The house scene: the three images used for reconstruction together with the extracted
corners. The reference frame used for the reconstruction is defined by the five points marked with
white disks in image 3
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top view lateral view

general view

Figure 5.4: Euclidean reconstruction of an indoor scene using the known relative positions of five
points. To make the results easier to see, the reconstructed points are joined with segments.
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5.3.2 Derivation of Kruppa’s Equations

Let F be the fundamental matrix of the stereo rig. Change image coordinates so that the epipoles are
at the origins, and so that corresponding epipolar lines have identical coordinates. Hence, the last row
and column ofF vanish, and a short calculation shows that it has the form:

F 0 =

0
B@ 0 �1 0

1 0 0
0 0 0

1
CA

LetA andA0 be the3� 3 matrices associated with this coordinate transformation in respectively the
first and second image.K becomes respectivelyAK andA0K and the projection matrices become
AP andA0P 0.

Consider a plane passing through the two camera centers and tangent to the absolute conic. This
plane projects to a corresponding pair of epipolar lines in the images, which are tangent to the IAC’s
by construction. In fact there are two such tangential planes, so there are two pairs of corresponding
epipolar tangents to the IAC’s (see fig. 5.5).

Figure 5.5: The two epipolar tangent planes to the absolute conic define two pairs of corresponding
epipolar tangents to the IAC’s

Tangent lines to conics are most easily expressed in terms of dual conics ([23]). The dual conic
defines the locus of lines tangent to the original conic, expressed in terms of their dual (line 3-vector)
coordinates. In a coordinate frame, the dual of a conic is given by the inverse of the original conic
matrix. A line (u; v; w)t is tangent to a point conic defined by symmetric matrixC if and only if
(u; v; w)C�1(u; v; w)t = 0, in other words, if and only if the line vector belongs to the dual conic
C�1.

Hence, we consider the DIAC’s or duals of the images of the absolute conicD = KtAtAK
andD0 = KtA0tA0K. After our change of coordinates, corresponding epipolar lines have identical
coordinates and all pass through the origin. Letl = (�; �; 0)t be an epipolar tangent to the IAC. Then
in each image we have a tangency constraint:ltDl = 0 and ltD0l = 0. Expanding and using the
symmetry ofD andD0 gives

�2d11 + 2��d12+ �2d22 = 0

�2d011 + 2��d012+ �2d022 = 0
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Since the tangents are corresponding epipolar lines, these two quadratics must have the same solutions
for (�; �). Hence, they must be identical up to a scale factor:

d11
d0
11

=
d12
d0
12

=
d22
d0
22

(5.5)

These are the Kruppa equations.

5.3.3 Explicit Computation

To derive explicit expressions for the matricesD andD0 in terms of the fundamental matrixF , let us
reconsider the above argument. LetF = UWV t be the Singular Value Decomposition ofF . Here,
U andV are orthogonal, andW is a diagonal matrix with diagonal valuesr; s; 0. We can write this
as follows:

F = U

0
B@ r

s

1

1
CA
0
B@ 0 �1 0

1 0 0
0 0 0

1
CA
0
B@ 0 1 0
�1 0 0
0 0 1

1
CAV t

Define

A0t = U

0
B@ r

s
1

1
CA A =

0
B@ 0 1 0
�1 0 0
0 0 1

1
CAV t

Hence,F = A0tF 0A withA;A0 non-singular andF 0 having the desired canonical form. Applying the
transformationsp ! Ap; p0 ! A0p0 andF ! F 0 = A0�tFA�1, we see thatp0Fp is unchanged and
F becomes canonical, soA;A0 are the required rectifying transformations. These transformations
takeP ! AP , P 0 ! A0P 0 and henceK ! AK, K ! A0K, and hence the DIACC = KKt

becomes respectivelyD = ACAt andD0 = A0CA0t.

Now explicitly compute thedij in order to use equation (5.5). DecomposeA andA0 by rows:

A =

0
B@ a

t
1

a
t
2

a
t
3

1
CA A0 =

0
B@ a

0t
1

a
0t
2

a
0t
3

1
CA

Then,D = ACAt impliesdij = a
t
iCaj , and we have the following explicit form for the Kruppa

equations:
a
t
1Ca1

a
0t
1Ca

0
1

=
a
t
1Ca2

a
0t
1Ca

0
2

=
a
t
2Ca2

a
0t
2Ca

0
2

(5.6)

We can write these equations directly in terms of the SVD of the fundamental matrix.

A0 =

0
B@ a

0t
1

a
0t
2

a
0t
3

1
CA =

0
B@ r

s
1

1
CAU t =

0
B@ rut1

sut2
ut3

1
CA

where uti is thei-th column ofU . And

A =

0
B@ a

t
1

a
t
2

a
t
3

1
CA =

0
B@ 0 1 0
�1 0 0
0 0 1

1
CAV t =

0
B@ vt2
�vt1
vt3

1
CA

where vti is thei-th column ofV . From (5.6) we obtain

vt2Cv2
r2 � ut

2
Cu1

=
�vt2Cv1
rs � ut

1
Cu2

=
�vt1Cv1
s2 � ut

2
Cu2
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Our problem has five degrees of freedom. Each pair of images provides two independent constraints.
From three images we can form three pairs which provide three pairs of constraints. This is enough
to solve for all the variables inC. However, note that all of the equations are multivariable quadratics
in the coefficients ofC. This makes the problem quite painful to solve in practise.

The difficulty of such purely algebraic approaches explains why alternative approaches have been
explored for self calibration. [10] provides one such alternative. In any case, an algebraic solution can
only ever provide the essential first step for a more refined bundle adjustment (error minimization)
process.
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