Intel® Open Source Computer Vision
Library

What is OpenCV

OpenCV means Intel® Open Source Computer Vision Library. It is a collection of C functions and few
C++ classes that implement some popular algorithms of Image Processing and Cvisjmrter

The key features

OpenCV is cross-platform middle-to-high level API that consists of a few hundreds (>300) C functions. It
does not rely on external numerical libraries, though it can make use of some of them (see below) at
runtime, if they aravailable.

OpenCV is free for both non-commercial and commercial use (séeghsefor details).

OpenCVprovides transparent for user interface to Intel® Integrated Performance Primitives (IPP) (only
ippcv fornow). That is, it loads automatically IPP libraries optimized for specific processor at runtime, if
they are available. More information about IPP can be retrieved at
|http://www.intel.com/software/products/ipp/ippvm?20/index jhtm

There are interfaces to OpenCV for some other languages/environments (more to come):

® EiC - ANSI C interpreter written by Ed Breen. AFAIK, it is now abandoned. Hawk and CvEnv are
the interactive environments (written in MFC and TCL,respectively) that embedd EiC interpteter.

® Ch - ANSI C/C++ interpreter with some scripting capabilities, created and supported by
Softintegration® companghttp://www.softintegration.cojniWrappers for Ch are located at
opencv/interfaces/ch.

e MATLAB® - great environment for numerical and symbolic computing by Mathworks. MATLAB®
interface for some of OpenCV functions can be found at opencv/interfaces/matlab/toolbox

Who createdit
The complete list of authors can be found in theAllETHORS.

Besides, a lot of people helped with suggestions, patches, bug reports etc. The incomplete listis in
THANKS file.

http://www.intel.com/software/products/ipp/ippvm20/index.htm
http://www.softintegration.com/

What's New

The most important things arrived in beta 3 are:

Complete up-to-date HTML reference [we hope]
Source code fgstereacorresponden¢gp 12]

Robust and faffacedetectioh[p 4]
[3D ObjectTrackef[p 14]

SeeChangeLodile for full list of changes.

Where to getOpenCV

Golhttp://www.sourceforge.net/projects/opencvlibldfyit does not work, type "OpenCV"

If you have a problem with installing/running/using
OpenCV

1. ReadFAQ4[p 17]

2. Search through OpenCV archives at www.yahoogroups.com
(http://groups.yahoo.com/group/Open{V/

3. Join OpenCV mailing list at yahoo groups (see FAQs on how to do it) and mail your questions (the
mailing list will probably migrate t@penCV’s SourceForgate)

4. Look at the OpenCV sample code, read the reference manual :)

OpenCV ReferenceManual

e [Basic Structures and OperatidrRsferencdp 25|

® [Image Processing and Analysteference(1)p 143

e [Image Processing and Analysieference(2)p 183

e [Structural AnalysifReferencdp 204

e |Motion Analysis and Object Trackirigeferencdp 227

e |Object RecognitiomReferencdp 245

e [Camera Calibration and 3D ReconstructiReferencgp 256
e |[ExperimentaFunctionality[p 4]

e |GUI and Video AcquisitiorReferencdp 277

* [Bibliography(p 284

e cvcam manualRTF)

http://www.sourceforge.net/projects/opencvlibrary
http://www.google.com/
http://groups.yahoo.com/group/OpenCV/
http://www.sourceforge.net/projects/opencvlibrary

You may also look at theDFmanua) but do not trust it much - it is pretty out of date, especially, the
referencepart.

Other resources

OpenCV Applications (Windows only)

If you have questions/corrections/suggestions about these pages (not about the library ifself), mail to
Vadim.Pisarevsky@intel.com

All the trademarks referenced above belong to their respeateelrs.

Experimental Functionality Reference

The functionality resides in cvaux library. To use it in your application, place #include "cvaux.h" in your
source filesand:

® |n case of Win32 link the app against cvaux.lib that is import library for cvaux.dll
® |n case of Linux use -lcvaux compileption

® [Object Detectior-unction§[p 4]
o [CvHaar}[p 5]
O |LoadHaarClassifierCascqfie 7]
O |ReleaseHaarClassifierCascdd€e]
O |CreateHidHaarClassifierCascajges]
O |ReleaseHidHaarClassifierCascdpes]
O |HaarDetectObjedtip 9]
O |SetimagesForHaarClassifierCasdfulé1]
O |RunHaarClassifierCascdfie11]
O |GetHaarClassifierCascadeS¢hiel 2]
O |GetHaarClassifierCascadeWindow$jpel 2|
® [Stereo Correspondenk@nctionfp 12
O [FindStereoCorrespondenfel 3]
e (3D TrackingFunctionfp 14]
O [BdTrackerCalibrateCamef§gs14]
O [3dTrackerLocateObjegfp 15]

Object DetectionFunctions

The object detector described below has been initially proposed by Pa[Wadé&01] [p ?7 and

improved by Rainer Lienhdfitienhart02][p ?7 . First, a classifier (namelyaascade of boosted

classifiers working with haar-likeeature$ is trained with a few hundreds of sample views of a particular
object (i.e., a face or a car), called positive examples, that are scaled to the same size (say, 20x20), and
negative examples - arbitrary images of the ssiae

After a classifier is trained, it can be applied to a region of interest (of the same size as used during the
training) in an input image. The classifier outputs a "1" if the region is likely to show the object (i.e.,
face/car), and "0" otherwise. To search for the object in the whole image one can move the search window
across the image and check every location using the classifier. The classifier is designed so that it can be
easily "resized" in order to be able to find the objects of interest at different sizes, which is more efficient
than resizing the image itself. So, to find an object of an unknown size in the image the scan procedure
should be done several times at differscdles.

The word "cascade" in the classifier name means that the resultant classifier consists of several simpler
classifierg(stages) that are applied subsequently to a region of interest until at some stage the candidate
is rejected or all the stages are passed. The word "boosted" means that the classifiers at every stage of the
cascade are complex themselves and they are built out of basic classifiers using one of four different
boostingtechniques (weighted voting). Currently Discrete Adaboost, Real Adaboost, Gentle Adaboost and
Logitboost are supported. The basic classifiers are decision-tree classifiers with at least 2 leaves. Haar-like
features are the input to the basic classifers, and are calculated as described below. The current algorithm
uses the following Haar-likeeatures:

1. Edge features

DEOQ

(a} (by (¢} id)

2. Line features
(a) (b} [c] [d] (e} [: g} :

3. Center-surround features

[|
(a) [

The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within the region
of interest and the scale (this scale is not the same as the scale used at the detection stage, though these
two scales are multiplied). For example, in case of the third line feature (2c) the response is calculated as
the difference between the sum of image pixels under the rectangle covering the whole feature (including
the two white stripes and the black stripe in the middle) and the sum of the image pixels under the black
stripe multiplied by 3 in order to compensate for the differences in the size of areas. The sums of pixel
values over a rectangular regions are calculated rapidly using integral images (see bleldnteqd||[p

167] description).

To see the object detector at work, have a look at HaarFaceDeteot

The following reference is for the detection part only. There is a separate applicatiomaaitteaining
that can train a cascade of boosted classifiers from a set of samplepeBe@apps/haartrainintpr
details.

CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier,
CvHaarClassifierCascade

Boosted Haar classifiestructures

#define CV_HAAR_FEATURE_MAX 3

/* a haar feature consists of 2-3 rectangles with appropriate weights */
typedef struct CvHaarFeature

int tilted; /* 0 means up-right feature, 1 means 45--rotated feature */

/* 2-3 rectangles with weights of opposite signs and
with absolute values inversely proportional to the areas of the rectangles.
if rect[2].weight =0, then
the feature consists of 3 rectangles, otherwise it consists of 2 */

struct

{
CvRectr;
float weight;

} rect{CV_HAAR_FEATURE_MAX];

} CvHaarFeature;

/* a single tree classifier (stump in the simplest case) that returns the response for the feature
at the particular image location (i.e. pixel sum over subrectangles of the window) and gives out
a value depending on the responce */
typedef struct CvHaarClassifier
{ .
int count;
/* number of nodes in the decision tree */
CvHaarFeature* haarFeature;
/* these are "parallel" arrays. Every index i
corresponds to a node of the decision tree (root has 0-th index).

left[i] - index of the left child (or negated index if the left child is a leaf)
right[i] - index of the right child (or negated index if the right child is a leaf)
threshold[i] - branch threshold. if feature responce is <= threshold, left branch
is chosen, otherwise right branch is chosed.
alpha[i] - output value correponding to the leaf. */
float* threshold; /* array of decision thresholds */
int* left; /* array of left-branch indices */
int* right; /* array of right-branch indices */
float* alpha; /* array of output values */

}

CvHaarClassifier;

/* a boosted battery of classifiers(=stage classifier):
the stage classifier returns 1
if the sum of the classifiers’ responces
is greater than threshold and O otherwise */
typedef struct CvHaarStageClassifier
{
int count; /* number of classifiers in the battery */
float threshold; /* threshold for the boosted classifier */
CvHaarClassifier* classifier; /* array of classifiers */
}

CvHaarStageClassifier;

[* cascade of stage classifiers */
typedef struct CvHaarClassifierCascade

{

int count; /* number of stages */
CvSize origWindowsSize; /* original object size (the cascade is trained for) */
CvHaarStageClassifier* stageClassifier; /* array of stage classifiers */

}

CvHaarClassifierCascade;

All the structures are used for representing a cascaded of boosted Haar classifiers. The cascade has the
following hierarchicaktructure:

Cascade:

Stage 1
Classifier 11
Feature 11
Classifier 12
Feature 12

Stage 2
Classifier 21"
Feature 21

The whole hierarchy can be constructed manually or loaded from a file or an embedded base using
function[cvLoadHaarClassifierCascafie7] .

cvLoadHaarClassifierCascade

Loads a trained cascade classifier from file or the classifier database embe@ged @V

CvHaarClassifierCascade*
cvLoadHaarClassifierCascade(const char* directory="<default_face_cascade>",
CvSize origWindowSize=cvSize(24,24));

directory
Name of file containing the description of a trained cascade classifier; or name in angle brackets of a
cascade in the classifier database embedded in OpenCV (only "<default_face cascade>" is supported
now).

origWindowsSize
Original size of objects the cascade has been trained on. Note that it is not stored in the cascade and
therefore must be specifisgparately.

The functioricvLoadHaarClassifierCascaffe?7] loads a trained cascade of haar classifiers from a file or
the classifier database embedded in OpenCV. The base can be traindtaditaining application (see
opencv/apps/haartraining fdetails).

cvReleaseHaarClassifierCascade
Releases haar classifisaiscade
void cvReleaseHaarClassifierCascade(CvHaarClassifierCascade** cascade);

cascade
Double pointer to the released cascade. The pointer is clearedfopdtien.

The functiorcvReleaseHaarClassifierCasgdpé] deallocates the cascade that has been created
manually or byjcvLoadHaarClassifierCascaffe7] .

cvCreateHidHaarClassifierCascade

Converts boosted classifier cascade to intaeaiesentation

/* hidden (optimized) representation of Haar classifier cascade */
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;

CvHidHaarClassifierCascade*
cvCreateHidHaarClassifierCascade(CvHaarClassifierCascade* cascade,
const CvArr* sumlmage=0,
const CvArr* sqSumimage=0,
const CvArr* titedSumimage=0,
double scale=1);

cascade
original cascade that may be loaded from file ugwvigpadHaarClassifierCascaffe7] .

sumlmage
Integral (sum) single-channel image of 32-bit integer format. This image as well as the two
subsequent images are used for fast feature evaluation and brightness/contrast normalization. They all
can be retrieved from the input 8-bit single-channel image using fufostiotegral[p ?7 . Note that
all the images are 1 pixel wider and 1 pixel taller than the source 8-bit image.

sqSumimage
Square sum single-channel image of 64-bit floating-point format.

titedSumimage
Tilted sum single-channel image of 32-bit integer format.

scale
Initial scale (sevSetimagesForHaarClassifierCasg¢full]).

The functioricvCreateHidHaarClassifierCascHg@e3] converts pre-loaded cascade to internal faster
representation. This step must be done before the actual processing. The integral image pointers may be
NULL, in this case the images should be assigned la{fev®gtimagesForHaarClassifierCasdgul#1] .

cvReleaseHidHaarClassifierCascade

Releases hidden classifier cascattacture

void cvReleaseHidHaarClassifierCascade(CvHidHaarClassifierCascade** cascade);

cascade
Double pointer to the released cascade. The pointer is clearedfopdtien.

The functioricvReleaseHidHaarClassifierCasgddd] deallocates structure that is an internal ("hidden™)
representation of haar classifeascade.

cvHaarDetectObjects

Detects objects in thenage

typedef struct CvAvgComp
{

CvRect rect; /* bounding rectangle for the face (average rectangle of a group) */
int neighbors; /* number of neighbor rectangles in the group */

}
CvAvgComp;

CvSeq* cvHaarDetectObjects(const Iplimage* img, CvHidHaarClassifierCascade* cascade,
CvMemStorage* storage, double scale_factor=1.1,
int min_neighbors=3, int flags=0);

img
Image to detect objects in.

cascade
Haar classifier cascade in internal representation.

storage
Memory storage to store the resultant sequence of the object candidate rectangles.

scale_factor
The factor by which the search window is scaled between the subsequent scans, for example, 1.1
means increasing window by 10%.

min_neighbors
Minimum number (minus 1) of neighbor rectangles that makes up an object. All the groups of a
smaller number of rectangles tham_neighbors -1 are rejected. Ifnin_neighbors is 0, the
function does not any grouping at all and returns all the detected candidate rectangles, which may be
useful if the user wants to apply a customized grouping procedure.

flags
Mode of operation. Currently the only flag that may be specified is
CV_HAAR_DO_CANNY_PRUNINfit is set, the function uses Canny edge detector to reject some
image regions that contain too few or too much edges and thus can not contain the searched object.
The particular threshold values are tuned for face detection and in this case the pruning speeds up the
processing.

The functioricvHaarDetectObjedt® 9] finds rectangular regions in the given image that are likely to

contain objects the cascade has been trained for and returns those regions as a sequence of rectangles. Th
function scans the image several times at different scaldsSedmagesForHaarClassifierCasdule

11]). Each time it considers overlapping regions in the image and applies the classifiers to the regions
usingcvRunHaarClassifierCascafe11] . It may also apply some heuristics to reduce number of

analyzed regions, such as Canny prunning. After it has proceeded and collected the candidate rectangles
(regions that passed the classifier cascade), it groups them and returns a sequence of average rectangles fc

each large enough group. The default paraméteede_factor ~ =1.1,min_neighbors =3,
flags =0) are tuned for accurate yet slow face detection. For faster face detection on real video images the
better settings anscale_factor =1.2,min_neighbors =2,

flags =CV_HAAR_DO_CANNY_PRUNING).

Example. Using cascade of Haar classifiers to finthces.

#include "cv.h"
#include "cvaux.h"
#include "highgui.h"

CvHidHaarClassifierCascade* new_face_detector(void)

{

}

CvHaarClassifierCascade* cascade = cvLoadHaarClassifierCascade("<default_face_cascade>", cvSize(24,24));
/* images are assigned inside cvHaarDetectObject, so pass NULL pointers here */
CvHidHaarClassifierCascade* hid_cascade = cvCreateHidHaarClassifierCascade(cascade, 0, 0, 0, 1);

/* the original cascade is not needed anymore */

cvReleaseHaarClassifierCascade(&cascade);

return hid_cascade;

void detect_and_draw_faces(Ipllmage* image,

{

}

CvHidHaarClassifierCascade* cascade,
int do_pyramids)

Iplimage* small_image = image;

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* faces;

inti, scale =1;

/* if the flag is specified, down-scale the input image to get a
performance boost w/o loosing quality (perhaps) */

if(do_pyramids)

{

small_image = cvCreatelmage(cvSize(image->width/2,image->height/2), IPL_DEPTH_8U, 3);
cvPyrDown(image, small_image, CV_GAUSSIAN_5x5);
scale = 2;

}

[* use the fastest variant */
faces = cvHaarDetectObjects(small_image, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING);

/* draw all the rectangles */
for(i=0; i< faces->total; i++)

[* extract the rectanlges only */
CvRect face_rect = *(CvRect*)cvGetSeqElem(faces, i, 0);
cvRectangle(image, cvPoint(face_rect.x*scale,face_rect.y*scale),
cvPoint((face_rect.x+face_rect.width)*scale,
(face_rect.y+face_rect.height)*scale),
CV_RGB(255,0,0), 3);
}

if(small_image != image)
cvReleaselmage(&small_image);
cvReleaseMemStorage(&storage);

/* takes image filename from the command line */
int main(int argc, char** argv)

}

Iplimage* image;

if(argc==2 && (image = cvLoadlmage(argv[1l],1))!=0)

{
CvHidHaarClassifierCascade* cascade = new_face_detector();
detect_and_draw_faces(image, cascade, 1);
cvNamedWindow("test", 0);
cvShowlmage("test", image);
cvWaitKey(0);
cvReleaseHidHaarClassifierCascade(&cascade);
cvReleaselmage(&image);

}

return O;

10

cvSetimagesForHaarClassifierCascade

Assigns images to the hiddeascade

void cvSetimagesForHaarClassifierCascade(CvHidHaarClassifierCascade* cascade,
const CvArr* sumlmage, const CvArr* sqSumimage,
const CvArr* tiltedimage, double scale);

cascade
Hidden Haar classifier cascade, createg\iyreateHidHaarClassifierCascgges] .

sumimage
Integral (sum) single-channel image of 32-bit integer format. This image as well as the two
subsequent images are used for fast feature evaluation and brightness/contrast normalization. They all
can be retrieved from input 8-bit single-channel image using furjctiotegral[p ?7 . Note that all
the images are 1 pixel wider and 1 pixel taller than the source 8-bit image.

sqgSumimage
Square sum single-channel image of 64-bit floating-point format.

titedSumimage
Tilted sum single-channel image of 32-bit integer format.

scale
Window scale for the cascadestfale =1, original window size is used (objects of that size are
searched) - the same size as specifigvimadHaarClassifierCascaffe7] (24x24 in case of
"<default_face cascade>"),d9€ale =2, a two times larger window is used (48x48 in case of default
face cascade). While this will speed-up search about four times, faces smaller than 48x48 cannot be
detected.

The functioricvSetimagesForHaarClassifierCas¢fu#1] assigns images and/or window scale to the

hidden classifier cascade. If image pointers are NULL, the previously set images are used further (i.e.
NULLs mean "do not change images"). Scale parameter has no such a "protection” value, but the previous
value can be retrieved gyGetHaarClassifierCascadeS¢glel 2] function and reused again. The

function is used to prepare cascade for detecting object of the particular size in the particular image. The
function is called internally HgvHaarDetectObjedtp 9] , but it can be called by user if there is a need in
using lower-level functiogvRunHaarClassifierCascafie11] .

cvRunHaarClassifierCascade

Runs cascade of boosted classifier at given int@aggion

int cvRunHaarClassifierCascade(CvHidHaarClassifierCascade* cascade,
CvPoint pt, int startStage=0);

cascade
Hidden Haar classifier cascade.

pt
Top-left corner of the analyzed region. Size of the region is a original window size scaled by the
currenly set scale. The current window size may be retrieved using

11

[cvGetHaarClassifierCascadeWindow$jpel 2] function.

startStage
Initial zero-based index of the cascade stage to start from. The function assumes that all the previous
stages are passed. This feature is used interngdtyHigarDetectObjedte 9] for better processor
cacheutilization.

The functiorcvRunHaarHaarClassifierCascgg@e?? runs Haar classifier cascade at a single image

location. Before using this function the integral images and the appropriate scale (=> window size) should
be set usingvSetimagesForHaarClassifierCasg¢gul&1] . The function returns positive value if the

analyzed rectangle passed all the classifier stages (it is a candidate) and zero or negatitreevaise.

cvGetHaarClassifierCascadeScale
Retrieves the current scale of cascadelassifiers
double cvGetHaarClassifierCascadeScale(CvHidHaarClassifierCascadeScale* cascade);

cascade
Hidden Haar classifiatrascade.

The functioricvGetHaarHaarClassifierCascadeSdpl@7 retrieves the current scale factor for the search
window of the Haar classifier cascade. The scale can be changed by
[cvSetimagesForHaarClassifierCas¢gul@l] by passing NULL image pointers and the new scalee.

cvGetHaarClassifierCascadeWindowSize

Retrieves the current search window size of cascadessifiers

CvSize cvGetHaarClassifierCascadeWindowSize(CvHidHaarClassifierCascadeWindowSize* cascade);

cascade
Hidden Haar classifiezascade.

The functiorcvGetHaarHaarClassifierCascadeWindowjz@7 retrieves the current search window
size for the Haar classifier cascade. The window size can be changed implicitly by setting appropriate
scale.

StereoCorrespondence~unctions

12

FindStereoCorrespondence

Calculates disparity fastereo-pair

cvFindStereoCorrespondence(
const CvArr* leftimage, const CvArr* rightimage,
int mode, CvArr* depthimage,
int maxDisparity,
double paramil, double param2, double param3,
double param4, double param5);

leftimage
Left image of stereo pair, rectified grayscale 8-bit image

rightimage
Right image of stereo pair, rectified grayscale 8-bit image

mode
Algorithm used to find a disparity (now only CV_DISPARITY_BIRCHFIELD is supported)

depthlmage
Destination depth image, grayscale 8-bit image that codes the scaled disparity, so that the zero
disparity (corresponding to the points that are very far from the cameras) maps to 0, maximum
disparity maps to 255.

maxDisparity
Maximum possible disparity. The closer the objects to the cameras, the larger value should be
specified here. Too big values slow down the process significantly.

paraml, param2, param3, parampdram5
- parameters of algorithm. For example, param1 is the constant occlusion penalty, param2 is the
constant match reward, param3 defines a highly reliable region (set of contiguous pixels whose
reliability is at least param3), param4 defines a moderately reliable region, param5 defines a slightly
reliable region. If some parameter is omitted default value is used. In Birchfield’s algorithm paraml =
25, param2 =5, param3 = 12, param4 = 15, param5 = 25 (These values have been taken from "Depth
Discontinuities by Pixel-to-Pixel Stereo" Stanford University Technical Report
STAN-CS-TR-96-1573, Jul$996.)

The functiorcvFindStereoCorrespondenjgel 3] calculates disparity map for two rectified grayscale
images.

Example. Calculating disparity for pair of 8-bit colorages

I* */

Iplimage* srcLeft = cvLoadlmage(“left.jpg",1);

Iplimage* srcRight = cvLoadlmage("right.jpg",1);

Iplimage* leftimage = cvCreatelmage(cvGetSize(srcLeft), IPL_DEPTH_8U, 1);
Iplimage* rightimage = cvCreatelmage(cvGetSize(srcRight), IPL_DEPTH_8U, 1);
Iplimage* depthimage = cvCreatelmage(cvGetSize(srcRight), IPL_DEPTH_8U, 1);

cvCvtColor(srcLeft, leftimage, CV_BGR2GRAY);
cvCvtColor(srcRight, rightimage, CV_BGR2GRAY);

cvFindStereoCorrespondence(leftimage, rightimage, CV_DISPARITY_BIRCHFIELD, depthimage, 50, 15, 3, 6, 8, 15);
* */

13

And here is the example stereo pair that can be used to tesathgle

3D Tracking Functions

The section discusses functions for tracking objects in 3d space using a stereo camera. Besides C API,
there is DirectShow 3dTracker filter and the wrapper application 3dTracker. you may find a description
how to test the filter on samptiata.

3dTrackerCalibrateCameras

Simultaneously determines position and orientation of multipheeras

CvBool cv3dTrackerCalibrateCameras(int num_cameras,
const Cv3dTrackerCameralntrinsics camera_intrinsics|],
CvSize checkerboard_size,

Iplimage *samples[],
Cv3dTrackerCameralnfo camera_infol]);

num_cameras
the number of cameras to calibrate. This is the size of each of the three array parameters.
camera_intrinsics
camera intrinsics for each camera, such as determined by CalibFilter.
checkerboard_size
the width and height (in number of squares) of the checkerboard.
samples
images from each camera, with a view of the checkerboard.
camera_info
filled in with the results of the camera calibration. This is passe@ditcackerLocateObje¢{p 15]
to dotracking.

The functioricv3dTrackerCalibrateCameffs14] searches for a checkerboard of the specified size in

each of the images. For each image in which it finds the checkerboard, it fills in the corresponding slot in
camera_info with the position and orientation of the camera relative to the checkerboard and sets the
valid flag. If it finds the checkerboard in all the images, it returns true; otherwise it r&dlsgs

This function does not change the members ot#meera_info array that correspond to images in
which the checkerboard was not found. This allows you to calibrate each camera independently, instead of
simultaneously. To accomplish this, do the following:

1. clear all thevalid flags before calling this function the first time;
2. call this function with each set of images;
3. check all thevalid flags after each call. When all thalid flags are set, calibration c@mplete.

Note that this method works well only if the checkerboard is rigidly mounted; if it is handheld, all the
cameras should be calibrated simultanously to get an accurate result. To ensure that all cameras are
calibrated simultaneously, ignore thalid flags and use the return value to decide when calibration is
complete.

3dTrackerLocateObjects

Determines 3d location of trackedtjects

int cv3dTrackerLocateObjects(int num_cameras,
int num_objects,
const Cv3dTrackerCameralnfo camera_info[],
const Cv3dTracker2dTrackedObiject tracking_info[],
Cv3dTrackerTrackedObject tracked_objects[]);

15

num_cameras
the number of cameras.
num_objects
the maximum number of objects found by any camera. (Also the maximum number of objects
returned inracked_objects)
camera_info
camera position and location information for each camera, as determined by
[3dTrackerCalibrateCamerfs14] .
tracking_info
the 2d position of each object as seen by each camera. Although this is specified as a
one-dimensional array, it is actually a two-dimensional agegyst
Cv3dTracker2dTrackedObiject tracking_info[num_cameras][num_objects]
Theid field of any unused slots must be -1. Ids need not be ordered or consecutive.
tracked_objects
filled in with theresults.

The functioricv3dTrackerLocateObje¢fp 15 determines the 3d position of tracked objects based on the
2d tracking information from multiple cameras and the camera position and orientation information
computed byddTrackerCalibrateCamerfs?7 . It locates any objects with the saidethat are tracked

by more than one camera. It fills in tthacked_objects array and returns the number of objects
located. Thad fields of any unused slots iracked_objects are set tol.

16

Frequently Asked Questions /
Troubleshootings HOWTOs

General Questions

How to install OpenCV properly?

Readinstallationguide

How can | get acquainted with OpenCWast?

Try to run Hawk (under Windows), load opencvisamples\c scripts and run them.

Then you can move to higher-weight applications like facedetection, lkdemo, camshift etc.

Also, scan througlreferenceananudl[p ?7 - it contains some example code as well.

Search OpenCV archivegttp://groups.yahoo.com/group/Open@y the topic you are interesting

in.

Create new project on base of sample script and an OpenCV demo application and modify it as
needed. There are application wizards for Microsoft Developer Studio that create OpenCV-aware
projects; look for them dtttp://groups.yahoo.com/group/Open@™les section - you have to be

registered OpenCV@yahoogroups.com user) [@panCV SourceForgeagé Also readoelow [p
?7 how to create such a project fratratch

Where do | submit Bug reports for the computer visionlibrary?

Send email t@penCV@yahoogroups.cor8ubject: BUG <....youitle...>

How do | send bug reports for the Intel® Image Processingibrary?

Send email taleveloper_support@intel.com

How do | join the web group for thelibrary?

Send email t@penCV-subscribe@yahoogroups.cafier you are a member and select your logon, you
can read the web groupfftp://groups.yahoo.com/group/OpenCV

How do | modify the web group so that | don’t receive emaiéveryday?

To get the messages real time, or once a day as a daily digest, you can go to

[http://groups.yahoo.com/mygroypad choose your setting from the pull down list to the right of
OpenCV.;

17

http://groups.yahoo.com/group/OpenCV
http://groups.yahoo.com/group/OpenCV
http://www.sourceforge.net/projects/opencvlibrary
http://groups.yahoo.com/group/OpenCV
http://groups.yahoo.com/mygroups

Ok, | found the group completely useless for me. How canuinsubscribe?

Mail to OpenCV-unsubscribe @yahoogroups.oeith subjecfOpenCV] and arbitrary messagentents.

How do | get support for the Image Processing Library(IPL)?

For the Image Processing Library, all support questions should@agh:
[http://support.intel.com/support/performancetools/suppor(fanreleasdibraries)

[https:/Tpremier.intel.com/scripts-quad/welcomeplsh (&mpbetalibraries)

In beta 3 IPL and OpenCV conflict. How to resolvet?

To be completely independent from IPL, OpenCV duplicates declarations of Iplimage and few other
structures and constants if it is not told explicitly that IPL is present. Defining HAVE_IPL before
including OpenCV headers or putting "#include <ipl.h>" before OpenCV headers resoleesftive.

DoesOpenCV works on otherprocessors?

Yes, OpenCV itself is open source and it is quite portable, especially across 32-bit platforms. On the other
hand, OpenCV can run much faster on Intel processors becd@¢[pf?7 .

Windows® OS relatedQs:

When | try to build one of the apps, | get an error, streams.h nofound.
You need DirectShow SDK that is now a part of DireSDK.

1. Download DirectX SDK from msdn.microsoft.com/directx/ (It's huge, but you can download it by
parts). If it doesn’t work for you, consider HighGUI that can capture video via VFW or MIL

2. Install it TOGETHER WITH SAMPLES.

3. Open <DirectXSDKInstallFolder>\samples\Multimedia\DirectShow\BaseClasses\baseclasses.dsw. If

there is no such file, it is that you either didn't install samples or the path has changed, in the latter

case search for streams.h and open a workspace file (workspace files for Developer Studio .NET have

different extension) located in the same folder.

Build the library in both Release in Debug configurations.

5. Copy the built libraries (in DirectX 8.x they are called strmbase.lib and strmbasd.lib) to
<DirectXSDKInstallFolder>\lib.

6. In Developer Studio add the followinaths:

»

<DirectXSDKInstallFolder>\include
<DirectXSDKInstallFolder>\samples\Multimedia\DirectShow\BaseClasses

to the includes’ search path (at Tools->Options->Directories->Include files in case of Developer
Studio6.0)

18

http://support.intel.com/support/performancetools/support.htm
https://premier.intel.com/scripts-quad/welcomeplsb.asp

Add <DirectXSDKInstallFolder>\lib to the libraries’ search path (at
Tools->Options->Directories->Library files in case of Developer Studio 6.0)

NOTE: PUT THE ADDED LINES ON THE VERY TOP OF THE LISTS, OTHERWISE YOU
WILL STILL GET COMPILER OR LINKER ERRORS. This is necessary, because Developer
Studio 6.0 includes some older DirectX headers and libs that conflict with new DirectX SDK
versions.

7. Enjoy!
After installing DirectX SDK I'm still getting linker error about
undefined or redefined "TransInPlace" filter class constructorsetc.

Read the instructions from the previous answer, especially about the order oflgeatohies.

When | use try to use cvcam, it justrashes

Make sure, you registered ProxyTrans.ax pdcFilter.ax

CamShiftDemocan not berun

Make sure, you registered CamShift.ax and you have DirectShow-compatitdea

How to register *.ax (DirectShowfilter)?

Open the file (within explorer) using regsvr32.exe (under Win2000 it is done by Open with->Choose
Program...->Browse...->c:\windows\system32\regsvr32.exe (path may be different). You may remember
association to save clickster.

Filter couldn’t be registered (regsvr32 reports arerror)

The most probable reason is that the filter requires some DLLs that are not in the path. In case of OpenCV
make sure <OpenlnstallFolder>\bin is in treth

LKDemo / HMMDemo reports an error during startup and no the view

is completelyblack

To run either of these apps you will need VFW-compatible camera. At startup the programs iterate
through registered video capture devices. It might be that they could not find one. Try to select the camera

manually by pressing "tune capture parameters" (camera) toolbar button. Then, try to setup video format
(the button on the left from camera) to make the camerk.

19

cvd.lib or cvd.dll are notfound

cvd.dll means Debug version of cv.dll and cvd.lib is the import library for cvd.dIl. Open
<OpenCVIinstallFolder>_dsw\opencv.dsw, select "cv" as active project and select "Win32 Debug"
configuration. Build the library and you will get bin\cvd.dll and lib\cvd.lib files. The same is trad! fofr
OpenCV components - name of binary, ending with d means Delsign.

When compiling HighGUI | get the error message "mil.h is notfound"

mil.h is a part of Matrox Imaging Library (MIL) that is usually supplied with Matrox (or compatible)
framegrabbers, such as Meteor, Meteor Il etc.

If you have such a framegrabber and MIL installed, add mil\include and mil\lib to the search paths
within Developer Studio (submenu Tools->Options->Directories).

If you do not have MIL, just ignore the error. The file mil.h is only required to build MIL-aware
version of Highgui "Win32 MIL Debug" or "Win32 MIL Release". Select "Win32 Debug" or "Win32
Release" configuration of highgui (submenu Build->Set Active Configuration...) instead - these
versions of highgui can still be used to grab video via VFW interface, work with AVIs and still
images.

How can | debug DirectShowfilter?

Open workspace with the filter (e.g. opencv.dsw),

select the filter as active project and build it in debug configuration,

switch to explorer for a minute to register debug version of the filter (e.g. regsvr32 camshiftd.ax) (it
needs to be done only when debug/release version are switched - not every time when filter is
recompiled, because registry stores only the filter name),

get back to Developer Studio and start debugging session (F5). It will ask, what application do you
want to run to debug the module. You may choose camshiftdemo to debug camshift.ax and DirectX
SDK tool graphedit to debug arbitrary DirectShow filter.

Within graphedit build filter graph (e.g. camera->camshift->renderer)

Save the graph (you may just load it next time)

Set the breakpoint inside ::Transform method of the filter or in other location.

Run the filter and ... havien

How can | create DeveloperStudio project to start playing wittOpenCV

(note: this is a lengthy answer)

To create your own OpenCV-based project in Developer Studio from scratchfdtbaweng:

1.

Within Developer Studio create new application:
1. select from menu "File"->"New..."->"Projects"” tab. Choose "Win32 Application” or "Win32
console application” - the latter is the easier variant and the both sample projects have this type.
2. type the project name and choose location
3. you may create own workspace for the project ("Create new workspace") or include the new

20

project into the currently loaded workspace ("Add to current workspace").

4. click "next" button

5. choose "An empty project", click "Finish", "OK".
After the above steps done Developer Studio will create the project folder (by default it has the same
name as the project), <project name>.dsp file and, optionally, <project name>.dsw,.ncb ... files if you
create own workspace.

2. Add a file to the project:

® select from menu "File"->"New..."->"Files" tab.

® choose "C++ Source File", type file name and press "OK"

® add OpenCV-related #include directives:

#include "cv.h"
[* #inlcude "cvaux.h" // experimental stuff (if need) */
#include "highgui.h"

Or, you may copy some existing file (say, opencv\samples\c\morphology.c) to the project folder,
open it and add to the project (right click in editor view -> "Insert File into Project" -> <your
project name>).
3. Customize project settings:
® Activate project setting dialog by choosing menu item "Project"->"Settings...".
® Select your project in the right pane.
® Tune settings, common to both Release and Debug configurations:

O Select "Settings For:"->"All Configurations”

O Choose "C/C++" tab -> "Preprocessor" category -> "Additional Include Directories:". Add
comma-separated relative (to the .dsp file) or absolute paths to opencv\cviinclude,
opencv\otherlibs\highgui and, optionally, opencv\cvaux\include.

O Choose "Link" tab -> "Input" category -> "Additional library path:". Add the paths to all
neccessary import libraries

® Tune settings for "Debug"” configuration

O Select "Settings For:"->"Win32 Debug".

O Choose "Link" tab -> "General" category -> "Object/library modules". Add space-separated
cvd.lib, highguid.lib, cvauxd.lib (optionally)

O You may also want to change location and name of output file. For example, if you want
the output .exe file to be put into the project folder, rather than Debug/ subfolder, you may
type ./<exe-name>d.exe in "Link" tab -> "General" category -> "Output file name:".

® Tune settings for "Release" configuration

O Select "Settings For:"->"Win32 Release".
O Choose "Link" tab -> "General" category -> "Object/library modules". Add space-separated
cv.lib, highgui.lib, cvaux.lib (optionally)
O Optionally, you may change name of the .exe file: type ./<exe-name>.exe in "Link" tab ->
"General" category -> "Output file name:".
4. Add dependency projects into workspace:
® Choose from menu: "Project" -> "Insert project into workspace".
® Select opencv\cvimake\cv.dsp.
® Do the same for opencv\cvaux\make\cvaux.dsp, opencv\otherlibs\highgui\highgui.dsp.
® Set dependencies:

21

O Choose from menu: "Project” -> "Dependencies..."
O For "cvaux" choose "cv",
O for "highgui" choose "cv",
o for your project choose all: "cv", "cvaux", "highgui”.
The dependencies customization allows to automatically build debug versions of opencv
libraries and rebuild the binaries if the sources are changed somehow.
5. That's it. Now compile and run everything.

Linux RelatedQs:

TODO

Technical Questions on Library use:

How to access imageixels

(The coordinates are 0-based and counted from image origin, either top-left
(img->origin=IPL_ORIGIN_TL) or bottom-left (img->origin=IPL_ORIGIN_BL)

® Suppose, we have 8-bit 1-channel image | (Iplimage* img):
I(X,y) ~ ((uchar*)(img->imageData + img->widthStep*y))[x]
® Suppose, we have 8-bit 3-channel image | (Iplimage* img):

I(X,Y) blue ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3]
I(X,Y) green ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3+1]
I(X,y) red ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3+2]

e.g. increasing brightness of point (100,100) by 30 can be done this way:
CvPoint pt = {100,100};
((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3] += 30;
((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3+1] += 30;
((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3+2] += 30;
or more efficiently
CvPoint pt = {100,100};
uchar* temp_ptr = &((uchar*)(img->imageData + img->widthStep*pt.y))[x*3];
temp_ptr[0] += 30;
temp_ptr[1] += 30;
temp_ptr[2] += 30;

® Suppose, we have 32-bit floating point, 1-channel image | (Iplimage* img):
I(x,y) ~ ((float*)(img->imageData + img->widthStep*y))[x]

® Now, the general case: suppose, we have N-channel image of type T:

22

Ixy) ¢ ~ ((T%)(img->imageData + img->widthStep*y))[x*N + c]
or you may use macro CV_IMAGE_ELEM(image_header, elemtype, y, X_Nc)
Ix,y) ¢ ~CV_IMAGE_ELEM(img, T,y, x*N +c)

There are functions that work with arbitrary (up to 4-channel) images and matrices (cvGet2D, cvSet2D),
but they are prettglow.

How to access matrixelements?
The technique is very similar. (In the samples below i - 0-based row index, j - 0-based column index)

® Suppose, we have 32-bit floating point real matrix M (CvMat* mat):
M(i,j) ~ ((float*)(mat->data.ptr + mat->step*i))[j]
® Suppose, we have 64-bit floating point complex matrix M (CvMat* mat):

Re M(i,j) ~ ((double*)(mat->data.ptr + mat->step*i))[j*2]
Im M(i,j) ~ ((double*)(mat->data.ptr + mat->step*i))[j*2+1]

® [or single-channel matrices there is a macro CV_MAT_ELEM(matrix, elemtype, row, col), i.e. for
32-bit floating point reamatrix

M(i,j) ~ CV_MAT_ELEM(mat, float, i, j),
e.qg. filling 3x3 identitymatrix:

CV_MAT_ELEM(mat, float, 0,
CV_MAT_ELEM(mat, float, 0,
CV_MAT_ELEM(mat, float, O,
CV_MAT_ELEM(mat, float, 1,
CV_MAT_ELEM(mat, float, 1,
1,
2,
2,
2,

PIHP D

=

CV_MAT_ELEM(mat, float,
CV_MAT_ELEM(mat, float,
CV_MAT_ELEM(mat, float,
CV_MAT_ELEM(mat, float,

ooorooor

- s

l\.) [l o l\.) [l o l\.) [l O
— e
|| L1 1 A { B

.'—r

How to process my data withOpenCV

Suppose, you have 300x200 32-bit floating point array, that resides in 60000-element array.

int cols = 300, rows = 200;
float* myarr = new float[rows*cols];

/I step 1) initializing CvMat header
CvMat mat = cvMat(rows, cols,
CV_32FC1, // 32-bit floating-point, single channel type
myarr // user data pointer (no data is copied)
);
I step 2) using cv functions, e.g. calculating 12 (Frobenius) norm
double norm = cvNorm(&mat, 0, CV_L2);

delete myarr;

23

Other scenaria are described in the reference manual. See cvCreateMatHeader, cvinitMatHeader,
cvCreatelmageHeader, cvSetDate.

How to load and displayimage

/* usage: prog <image_name> */
#include "cv.h"
#include "highgui.h"

int main(int argc, char** argv)
{
Iplimage* img;
if(argc == 2 && (img = cvLoadlmage(argv[1], 1)) 1= 0)
{
cvNamedWindow("Image view", 1);
cvShowlmage("Image view", img);
cvWaitKey(0); // very important
cvDestroyWindow("Image view");
cvReleaselmage(&mg);
return O;

}

return -1;

}

How to find and processcontours

Look atsquaregsiemo

How to calibrate camera usingOpenCV

TODO

24

Basic Structures and OperationsReference

e [Helperstructuredp 30|
o [Poini[p 30
o [Point2D32f{p 31]
O [Point3D32f[p 31]
o [Sizd[p 31
O [Size2D32p 32
o [Reci[p 32
o [calallp 32
® |Array structuregp 33
o [Maf[p 33
o MalND [p 33
O [SparseMdip 34]
o [Ar[p 35
e |Arrays: Allocation/deallocation/copying/setting and retrievuagt$[p 36]
o [Alloc][p 36]
o [Freglp 36]
O [Createlmadép 36]
O |CreatelmageHeadgp 37]
O |ReleaselmageHeadlgr 37
o [Releaselmagp 38|
o [InitimageHeadéfp 38
o [ClonelmagHp 39]
o [SetimageCQjp 39
o [GetimageCQ(p 39
O [SetimageRQIp 40]
O |[ResetimageR@{p 40|
© [GetimageRQ(p 40
O [CreateMd{p 41]
O |CreateMatHeadHp 41]
o [ReleaseMalp 42
o [InitMatHeade{p 42]
o [Maf[p 43
o [CloneMa}{p 43|
O [CreateMaiN[ip 44
O |CreateMatNDHeadHp 44]
o [ReleaseMatN[ip 44
O [InitMatNDHeadé|{p 45]
o [CloneMatNDQIp 45
© [DecRefDatHp 45
O [IncRefDatyp 4]

25

[CreateDatdp 46]
[ReleaseDalp 47]
[SetDatip 47]
[GetRawDatHp 47]
[GetMat[p 48]
[GetimagHp 49]
[GetSubRe¢tp 49
[GetRow[p 50
[GetCal[p 50]
[GetDiag[p 51]
[GetSizéip 51]
[CreateSparseMdp 51]
[ReleaseSparseMpt 52
[CloneSparseMHp 52]
I
I

InitSparseMatlteratip 52]
GetNextSparseNofle 52]
GetElemTypHp 53]
[GetDim$[p 54
[P 54
[p 55]
[GetReal*Dip 55]
[nGel[p 56]
[p 56]
[SetReal"Dp 57]
[mSe}[p 58]
[p 58
[Copy[p 58]
[Sellp 59
O [SetZerdp 59
® |Arrays: Conversions, transformations, basic operafio6§]
o [Reshapép 60]
O |ReshapeMatN[p 60]
o Repedp 61
[p 62
[CviPixToPlanHp 62
[CviPlaneToPMp 63]
[ConvertScakip 63]
[ConvertScaleAh§o 64
[Add [p 64]
[p 65]
[SuB[p 65]
[Sub$ip 66]
[SubR$ip 66]

O OO0 O0OO0O0OO0OO0O0OO0OO0O0OO0OO0O0O0ODOOLOOOOOOOOOO

O O O0OO0OO0OO0OO0OO0OO0OO0

26

o [Mull[p 67]
o D [p 67]
o [And[p 68|
o [Andg|[p 68]
o [Oilp 69
[ors[p 69
[p 70
[p70]
[p 71]
[Cmd[p 72
[Cmp3(p 72
InRangé{p 73]
InRangefip 73]
[p 74]
[p79
[p79]
[p 75
[p 76]
O [AbsDiffS[p 76]
e [Array statisticHp 77]
o [CountNonZerHp 77]
o [Sunj[p 77]
o [Avd[p 77
o [AvgSdy[p 78]
© [MinMaxLod[p 79]
o [Norni[p 79
e [Matrix Operations, Linear Algebra and MathnctionHp 80]
O [Setidentity[p 80]
o [DotProdudip 81]
81
[ScaleAdip 81
[p 82]
[p 82
[p 83
[MulTransposeldp 84]
[Cracé([p 84]
[fransposép 84
[p 85]
[p 85]
[Solvé|p 86]
[p 86]
[SVBKSH[p 87]
[p 88

O O O0OO0OO0OO0OO0OO0OO0OO0OO0oOOoOOo

O O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOo

27

O |PerspectiveTransfolfip 89

O |CalcCovarMatrigp 89|

[Mahalonobip 90]

[CartToPoldip 90]

[PolarToCat{p 91]

Pow[p 91]

[p92

[p 92]

[CheckArt(p 93]

[Randinil[p 93]

[RandSetRang 94

Rand[p 94

[RandNex{p 95]

[p 97]

[MulCsgp 98

[p 98]

e |Dynamic DataStructuredp 99
o [MemStoragHp 99

o [p10Q
O |[MemStoragePofp 100

O |CreateMemStoragie 100

O |CreateChildMemStorage 101]

O |ReleaseMemStoragp 102

O |ClearMemStoragfp 102

o [MemStorageAllodp 102

O [SaveMemStorageFds 103

O |RestoreMemsStorageR§s103
e [Sequencéfp 103

o [Sedlp 104

o [SegBlockip 104
[CreateSdgp 106
[SetSeqgBlockSizfp 107]
[SegPusfip 107
[SeqPolip 109
[SeqPushFrolip 108
[SeqPopFrofip 108
[SeqPushMulk[p 109
[SeqPopMuliip 109
[Sedinsetip 117
[SeqRemovép 110
[ClearSefip 110
[GetSegEletip 111
[SeqElemidip 111

O OO O0OO0OO0OO0OO0OO0OO0OO0oOO0oOOo

o

O O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOo

O [iSeqToArrajip 112

O |MakeSegHeaderForArrHp 112
O [SeqSlicHp 113

O |SeqRemoveSli¢hp 113
O [SeginsertSlidép 114

O [Seginveiip 114

o [SeqSol{p 114

O |StartAppendToSefp 115
o [StartWriteSelip 116

o [EndWriteSe}ip 116

O [FlushSeqWritd{p 117

O [StartReadSéfp 117]

O |GetSegReaderFA¢s 118

O [SetSegReaderAfs 11§
o [Setf[p 119

o [Sellp 119

O [CreateSeip 120

o [SetAdd[p 120

o [SetRemoviép 120

o [SetNewp 121

O [SetRemoveByHtip 121]

O [GetSetEletip 121

O [ClearSd{p 122
e [Graphip 122

o [Graph[p 122

O [CreateGraglip 123

O |GraphAddVix[p 124
O |GraphRemoveVifp 124

O [GraphRemoveVixByHtip 124
o [GelGraphVikp 125

o [CraphVixId}ip 125

O [GraphAddEdgép 125

O [GraphAddEdgeByHip 126

O |GraphRemoveEdggp 126

O [GraphRemoveEdgeByPip 127]
O [FindGraphEddép 127

O [FindGraphEdgeByH{ip 12§
o [GraphEdgeldhip 129

O [GraphVixDegreép 12§

O [GraphVixDegreeByHfip 129
o [ClearGraplip 129

o [CloneGraplip 129

> [GraphScannip 130

29

o [StartScanGrapfp 130
o [NextGraphiterip 131
o [EndScanGragfp 131
o [Tree$lp 137
O [TreeNodelteratpfp 137
O [InitTreeNodelteratgfp 132
o [NextTreeNoddp 133

O [PrevTreeNod¢p 133
O [TreeToNodeSefp 134

O [InsertNodelntoTrdép 134

O |RemoveNodeFromTrde 134
e |Persistence (Writing and ReadiStructureg]p 135

O |OpenFileStoragfp 135

O |ReleaseFileStoraffe 135

o [Write] [p 136

O [StartWriteStrugfp 137]

O [EndWriteStrud{p 13§

O WriteElen}[p 13§

© [Readllp 139

O [ReadElerf{p 139

o [FleNod¢[p 140

o [GetFileNodHp 141

o [ReadFileNodép 141]

Helper structures

CvPoint

2D point with integecoordinates

typedef struct CvPoint

{
int X; /* x-coordinate, usually zero-based */
int y; /* y-coordinate, usually zero-based */

}
CvPoint;

/* the constructor function */
inline CvPoint cvPoint(int x, inty);

[* conversion from CvPoint2D32f */
inline CvPoint cvPointFrom32f(CvPoint2D32f point);

30

CvPoint2D32f

2D point with floating-pointoordinates
typedef struct CvPoint2D32f

float x; /* x-coordinate, usually zero-based */
float y; /* y-coordinate, usually zero-based */

}
CvPoint2D32f;

/* the constructor function */
inline CvPoint2D32f cvPoint2D32f(double x, double y);

[* conversion from CvPoint */
inline CvPoint2D32f cvPointTo32f(CvPoint point);

CvPoint3D32f

3D point with floating-pointoordinates
typedef struct CvPoint3D32f

float x; /* x-coordinate, usually zero-based */
float y; /* y-coordinate, usually zero-based */
float z; /* z-coordinate, usually zero-based */

}
CvPoint3D32f;

/* the constructor function */
inline CvPoint3D32f cvPoint3D32f(double x, double y, double z);

CvSize

pixel-accurate size ofr@ctangle
typedef struct CvSize

int width; /* width of the rectangle */
int height; /* height of the rectangle */

}
CvSize;

/* the constructor function */
inline CvSize cvSize(int width, int height);

31

CvSize2D32f

sub-pixel accurate size ofrectangle
typedef struct CvSize2D32f

float width; /* width of the box */
float height; /* height of the box */

}
CvSize2D32f;

/* the constructor function */
inline CvSize2D cvSize32f(double width, double height);

CvRect

offset and size of eectangle

typedef struct CvRect
{
int x; /* x-coordinate of the left-most rectangle corner[s] */
int y; /* y-coordinate of the top-most or bottom-most
rectangle corner[s] */
int width; /* width of the rectangle */
int height; /* height of the rectangle */

}
CvRect;

/* the constructor function */
inline CvRect cvRect(int X, int y, int width, int height);

CvScalar

A container for 1-,2-,3- or 4-tuples nfimbers
typedef struct CvScalar

double val[4];
}

CvScalar;

* the constructor function: initializes val[0] with valO, val[1] with vall etc. */
inline CvScalar cvScalar(double valO, double val1=0,
double val2=0, double val3=0);
* the constructor function: initializes val[0]...val[3] with val0123 */
inline CvScalar cvScalarAll(double val0123);

* the constructor function: initializes val[0] with valO, val[1]...val[3] with zeros */
inline CvScalar cvRealScalar(double val0);

32

Array structures

CvMat

Multi-channelmatrix

typedef struct CvMat

{
int type; /* CvMat signature (CV_MAT_MAGIC_VAL), element type and flags */
int step; /* full row length in bytes */

int* refcount; /* underlying data reference counter */

union
{
uchar* ptr;
short* s;
int* i;
float* fl;
double* db;
} data; /* data pointers */

#ifdef __ cplusplus
union
{
int rows;
int height;
3

union
{
int cols;
int width;
h
#else
int rows; /* number of rows */
int cols; /* number of columns */
#endif

} CvMat;

CvMatND

Multi-dimensional dense multi-chanreairay
typedef struct CvMatND

{
int type; /* CvMatND signature (CV_MATND_MAGIC_VAL), element type and flags */

int dims; /* number of array dimensions */

int* refcount; /* underlying data reference counter */

33

union
{
uchar* ptr;
short* s;
int* i;
float* fl;
double* db;
} data; /* data pointers */

/* pairs (number of elements, distance between elements in bytes) for
every dimension */

struct

{
int size;
int step;

}

dim[CV_MAX_DIM];

} CvMatND;

CvSparseMat

Multi-dimensional sparse multi-chanretray

typedef struct CvSparseMat
{
int type; /* CvSparseMat signature (CV_SPARSE_MAT_MAGIC_VAL), element type and flags */
int dims; /* number of dimensions */
int* refcount; /* reference counter - not used */
struct CvSet* heap; /* a pool of hashtable nodes */
void** hashtable; /* hashtable: each entry has a list of nodes
having the same "hashvalue modulo hashsize" */
int hashsize; /* size of hashtable */
int total; /* total number of sparse array nodes */
int valoffset; /* value offset in bytes for the array nodes */
int idxoffset; /* index offset in bytes for the array nodes */
int size[CV_MAX_DIM]; /* array of dimension sizes */

} CvSparseMat;

Iplimage
IPL imageheader

typedef struct _Iplimage

int nSize; /* sizeof(Iplimage) */

int ID; /* version (=0)*/

int nChannels; /* Most of OpenCV functions support 1,2,3 or 4 channels */

int alphaChannel; /* ignored by OpenCV */

int depth; /* pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S,
IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported */

char colorModel[4]; /* ignored by OpenCV */

char channelSeq[4]; /* ditto */

int dataOrder; /* 0 - interleaved color channels, 1 - separate color channels.
cvCreatelmage can only create interleaved images */

34

int origin; /* 0 - top-left origin,
1 - bottom-left origin (Windows bitmaps style) */

int align; /* Alignment of image rows (4 or 8).
OpenCYV ignores it and uses widthStep instead */
int width; /* image width in pixels */

int height; /* image height in pixels */
struct _IpIROI *roi;/* image ROI. when it is not NULL, this specifies image region to process */
struct _Iplimage *maskROI; /* must be NULL in OpenCV */
void *imageld; /* ditto */
struct _IplITileInfo *tileInfo; /* ditto */
int imageSize; /* image data size in bytes
(=image->height*image->widthStep
in case of interleaved data)*/
char *imageData; /* pointer to aligned image data */
int widthStep; /* size of aligned image row in bytes */
int BorderMode[4]; /* border completion mode, ignored by OpenCV */
int BorderConst[4]; /* ditto */
char *imageDataOrigin; /* pointer to a very origin of image data
(not necessarily aligned) -
it is needed for correct image deallocation */

}

Iplimage;

The structurdplimagecame fromintel Image Processingibrary where the format is native. OpenCV
supports only subset of the possible Iplimage formats:

e alphaChannel s ignored by OpenCV.

e colorModel andchannelSeq are ignored by OpenCV. The single OpenCV fundte@vtColot
[p ?79 working with color spaces takes the source and destination color spaces as a parameter.

o dataOrder must be IPL_DATA_ORDER_PIXEL (the color channels are interleaved), however
selected channels of planar images can be processed as well if COl is set.

e align isignored by OpenCV, whilidthStep is used to access to subsequent image rows.

e maskROI is not supported. The function that can work with mask take it as a separate parameter.
Also the mask in OpenCV is 8-bit, whereas in IPL it is 1-bit.

e tileinfo is not supported.

e BorderMode andBorderConst are not supported. Every OpenCV function working with a pixel
neigborhood uses a single hard-coded border mode (mostreftéoation).

Besides the above restrictions, OpenCV handles ROI differently. It requires that the sizes or ROI sizes of
all source and destination images match exactly (according to the operation [exByf@owr[p ?7

destination width(height) must be equal to source width(height) divided by 2 +1), whereas IPL processes
the intersection area - that is, the sizes or ROI sizes of all images magdepgndently.

CvArr

Arbitrary array

typedef void CvArr;

[p 27 is usedonly as a function parameter to specify that the function accepts arrays of more than
a single type, for example Iplimage* and CvMat*. The particular array type is determined in runtime from
looking at the first 4-byte field of arrdyeader.

35

Arrays: Allocation, deallocation, copying; setting and retrieving
parts

Alloc

Allocates memonpuffer
void* cvAlloc(size_t size);

size
Buffer size inbytes.

The functiorfcvAllod [p 36] allocatessizebytes and returns pointer to the allocated buffer. In case of error
the function reports an error and returns NULL pointer. By default cvAlloc calls icvAlloc which itself

calls malloc, however it is possible to assign user-defined memory allocation/deallocation functions using
[cvSetMemoryManagHp ?7 function.

Free

Deallocates memoryuffer

void cvFree(void** buffer);

buffer
Double pointer to releasdmliffer.

The functiorfcvFre¢[p 36] deallocates memory buffer allocateddwAllod [p 36] . It clears the pointer to
buffer upon exit, that is why the double pointer is used. If *buffer is already NULL, the function does

nothing

Createlmage

Creates header and allocatieda

Iplimage* cvCreatelmage(CvSize size, int depth, int channels);

size
Image width and height.

depth
Bit depth of image elements. Can be ofie
IPL_DEPTH_8U - unsigned 8-hiitegers
IPL_DEPTH_8S - signed 8-bintegers
IPL_DEPTH_16S - signed 16-hittegers

36

IPL_DEPTH_32S - signed 32-hittegers
IPL_DEPTH_32F - single precision floating-pomimbers
IPL_DEPTH_64F - double precision floating-pomtmbers
channels
Number of channels per element(pixel). Can be 1, 2, 3 or 4. The channels are interleaved, for
example the usual data layout of a color imiage
b0 g0 rOblglrl.
Although in general IPL image format can store non-interleaved images as well and some of OpenCV
can process it, this function can create interleaved in@ges

The functioricvCreatelmadép 36] creates the header and allocates data. This call is a shortened form of

header = cvCreatelmageHeader(size,depth,channels);
cvCreateData(header);

CreatelmageHeader

Allocates, initializes, and returns structiipdmage

Iplimage* cvCreatelmageHeader(CvSize size, int depth, int channels);

size

Image width and height.
depth

Image depth (see Createlmage).
channels

Number of channels (s€&&eatelmage).

The functioricvCreatelmageHeadfp 37] allocates, initializes, and returns the structptenage This
call is an analogue of

iplCreatelmageHeader(channels, 0, depth,
channels == 1 ? "GRAY" : "RGB",
channels == 1 ? "GRAY" : channels == 3 ? "BGR" :
channels == 4 ? "BGRA" : ",
IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL, 4,
size.width, size.height,
0,0,0,0);

though it does not use IPL functions by default (see@s0TURN_ON_IPL_COMPATIBILITMacro)

ReleaselmageHeader

Releasefeader

void cvReleaselmageHeader(Iplimage** image);

37

image
Double pointer to the deallocatbdader.

The functioricvReleaselmageHeaglgr37] releases the header. This call is an analogue of

if(image)
iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);
*image = 0;

}
though it does not use IPL functions by default (see@s0TURN_ON_IPL_COMPATIBILITY

Releaselmage

Releases header and imatzea

void cvReleaselmage(Iplimage** image);

image
Double pointer to the header of the deallocatese.

The functiorcvReleaselmagp 38 releases the header and the image data. This call is a shortened form
of

if(*image)

cvReleaseData(*image);
cvReleaselmageHeader(image);

}

InittmageHeader

Initializes allocated by user imayeader

void cvinitimageHeader(Ipllmage* image, CvSize size, int depth,
int channels, int origin, int align);

image

Image header to initialize.
size

Image width and height.
depth

Image depth (see Createlmage).
channels

Number of channels (see Createlmage).
origin

IPL_ORIGIN_TLor IPL_ORIGIN_BL

38

align
Alignment for image rows, typically 4 ort8/tes.

The functiorcvinitimageHead¢jp 38 initializes the image header structure without menadigcation.

Clonelmage
Makes a full copy ofimage
Iplimage* cvClonelmage(const Iplimage* image);

image
Originalimage.

The functioricvClonelmagdp 39] makes a full copy of the image including header, ROldatd

SetimageCOl

Sets channel of interest to givealue

void cvSetimageCOI(Iplimage* image, int coi);

image
Image header.
Coi
Channel ofnterest.

The functioricvSetimageCQJp 39] sets the channel of interest to a given value. Value 0 means that all
channels are selected, 1 means that the first channel is selected etc. INROL iandcoi != 0, ROl is
allocated. Note that most of OpenCV functions do not support COl, so to process separate image/matrix
channel one may copy (J@CopY[p 58] or[cvCvtPixToPlandp 62]) the channel to separate

image/matrix, process it and copy the result bacKdw@opy[p 58] orlcvCvtPlaneToPp 63]) if need.

GetlmageCOIl

Returns index of channel ofterest

int cvGetlmageCOl(const Iplimage* image);

image
Imageheader.

The functioncvGetimageCQlp 39] returns channel of interest of the image (it returns 0 if all the
channels arselected).

39

SetimageROI

Sets image ROI to givenrectangle

void cvSetimageROI(Iplimage* image, CvRect rect);

image

Image header.
rect

ROl rectangle.

The functioncvSetimageRQJp 40] sets the image ROI to a given rectangle. If RONWHL and the

value of the parameteectis not equal to the whole image, ROI is allocated. Unlike COI, most of
OpenCYV functions do support ROI and treat it in a way as it would be a separate image (for example, all
the pixel coordinates are counted from top-left or bottom-left (depending on the image origin) corner of
ROI)

ResetimageROI

Releases imageOl

void cvResetimageROI(Iplimage* image);

image
Imageheader.

The functioricvResetimageR{p 40] releases image ROI. After that the whole image is considered
selected. The similar result can be achidwed

cvSetimageROI(image, cvRect(0, 0, image->width, image->height));
cvSetimageCOl(image, 0);

But the latter variant does not deallociatage->ro..

GetlmageROI

Returns image RQloordinates

CvRect cvGetimageROI(const Iplimage* image);

image
Imageheader.

The functioricvGetimageRQ[p 40] returns image ROI coordinates. The rectajegiRec}[p 27
(0,0,image->width,image->height) is returned if there iR

40

CreateMat

Creates newnatrix

CvMat* cvCreateMat(int rows, int cols, int type);

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements. Usually it is specified in form
CV_<bit_depth>(S|U|F)C<number_of_channelser example:
CV_8UC1means an 8-bit unsigned single-channel ma@ix, 32SC2neans a 32-bit signed matrix
with two channels.

The functio {p 41] allocates header for the new matrix and underlying data, and returns a
pointer to the created matrix. It is a short fdon

CvMat* mat = cvCreateMatHeader(rows, cols, type);
cvCreateData(mat);

Matrices are stored row by row. All the rows are aligned bytds.

CreateMatHeader

Creates new matrikeader

CvMat* cvCreateMatHeader(int rows, int cols, int type);

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements (JeeCreateMafp 41]).

The functioricvCreateMatHeaddp 41] allocates new matrix header and returns pointer to it. The matrix
data can further be allocated ugowCreateDaifp 46] or set explicitly to user-allocated data via

[cvSetDatHp 47] .

41

ReleaseMat

Deallocatesnatrix

void cvReleaseMat(CvMat** mat);

mat
Double pointer to thenatrix.

The functioricvReleaseMalp 42] decrements the matrix data reference counter and releases matrix
header:

if(*mat)
cvDecRefData(*mat);
cvFree((void**)mat);

InitMatHeader

Initializes matrixheader

void cvinitMatHeader(CvMat* mat, int rows, int cols, int type,
void* data=0, int step=CV_AUTOSTEP);

mat
Pointer to the matrix header to be initialized.
rows
Number of rows in the matrix.
cols
Number of columns in the matrix.
type
Type of the matrix elements.
data
Optional data pointer assigned to the matrix header.
step
Full row width in bytes of the data assigned. By default, the minimal possible step is used, i.e., no
gaps is assumed between subsequent rows ofdhéx.

The functioricvinitMatHeaddp 42] initializes already allocatdg@vMali [p 33 structure. It can be used to
process raw data with OpenCV matrix functions.

For example, the following code computes matrix product of two matrices, stored as cadiagsy

Calculating Product of TwiMatrices

double b[] ={1, 5, 9,

42

, 6
7
8

)

A WN
R

)

double c[9];
CvMat Ma, Mb, Mc ;

cvinitMatHeader(&Ma, 3, 4, CV_64FC1, a);
cvinitMatHeader(&Mb, 4, 3, CV_64FC1, b);
cvinitMatHeader(&Mc, 3, 3, CV_64FC1, ¢);

cvMatMulAdd(&Ma, &Mb, 0, &Mc);
/I ¢ array now contains product of a(3x4) and b(4x3) matrices

Mat

Initializes matrix header (light-weighriant)

CvMat cvMat(int rows, int cols, int type, void* data =0);

rows
Number of rows in the matrix.
cols
Number of columns in the matrix.
type
Type of the matrix elements (see CreateMat).
data
Optional data pointer assigned to the mdteader.

The functioricvMal [p 43 is a fast inline substitution f@vinitMatHeadd{p 42] . Namely, it is
equivalent to:

CvMat mat;
cvInitMatHeader(&mat, rows, cols, type, data, CV_AUTOSTEP);

CloneMat

Creates matrixopy

CvMat* cvCloneMat(const CvMat* mat);

mat
Input matrix.

The functio [p 43] creates a copy of input matrix and returns the pointiér to

43

CreateMatND

Creates multi-dimensional densaay

CvMatND* cvCreateMatND(int dims, int* size, int type);

dims
Number of array dimensions. It must not exceed CV_MAX_DIM (=16 by default, though it may be
changed at build time)
size
Array of dimension sizes.
type
Type of array elements. The same aGeMai [p 33

The functioricvCreateMatNIp 44] allocates header for multi-dimensional dense array and the
underlying data, and returns pointer to the created array. It is a shofbform

CvMatND* mat = cvCreateMatNDHeader(dims, size, type);
cvCreateData(mat);

Array data is stored row by row. All the rows are aligned bytés.

CreateMatNDHeader

Creates new matrikeader

CvMatND* cvCreateMatNDHeader(int dims, int* size, int type);

dims
Number of array dimensions.
size
Array of dimension sizes.
type
Type of array elements. The same asdeMat

The functioricvCreateMatNI[jp 44] allocates header for multi-dimensional dense array. The array data
can further be allocated usipgCreateDaldp 46] or set explicitly to user-allocated data [e5etDatHp
47] .

ReleaseMatND

Deallocates multi-dimensionatray

void cvReleaseMatND(CvMatND** mat);

44

mat
Double pointer to tharray.

The functioricvReleaseMatN[Dp 44] decrements the array data reference counter and releases the array
header:

if(*mat)
cvDecRefData(*mat);
cvFree((void**)mat);

InitMatNDHeader

Initializes multi-dimensional arrayeader

void cvinitMatNDHeader(CvMatND* mat, int dims, int* size, int type, void* data=0);

mat
Pointer to the array header to be initialized.
rows
Number of rows in the matrix.
cols
Number of columns in the matrix.
type
Type of the matrix elements.
data
Optional data pointer assigned to the mdteader.

The functioricvinitMatNDHeadédp 45| initializes already allocatg@vMatND [p 33] structure.

CloneMatND

Creates full copy of multi-dimensionatray

CvMatND* cvCloneMatND(const CvMatND* mat);

mat
Inputarray.

The functioricvCloneMatNDD[p 45] creates a copy of input array and returns pointér to

DecRefData

Decrements array data referemoeinter

45

void cvDecRefData(CvArr* array);

array
arrayheader.

The functioricvDecRefDatdp 45] decrement€vMal [p 33] or[CvMatND [p 33] data reference counter if

the reference counter pointer is not NULL and deallocates the data if the counter reaches zero. In the
current implementation the reference counter is not NULL only if the data was allocated using
[cvCreateDaidp 46] function, in other cases suak:

external data was assigned to the header [csi@gtDatHp 47]

the matrix header presents a part of a larger matimage

the matrix header was converted from image or n-dimensional rhatder

the reference counter is set to NULL and thus it is not decremented. Whenever the data is deallocated or
not, the data pointer and reference counter pointers are clearedfiydien.

IncRefData
Increments array data refereramunter
int cvincRefData(CvArr* array);

array
arrayheader.

The functioricvincRefDatHp 46] incrementfCvMai [p 33] or[CvMatNDQ [p 33] data reference counter

and returns the new counter value if the reference counter pointer is not NULL, otherwise izexturns

CreateData

Allocates arraydata

void cvCreateData(CvArr* array);

array
Array header.

The functioricvCreateDaidp 46] allocates image, matrix or multi-dimensional array data. Note that in
case of matrix types OpenCV allocation functions are used and in case of Iplimage they are used too
unlessCV_TURN_ON_IPL_COMPATIBILITWas called. In the latter case IPL functions are used to
allocate thedata

46

ReleaseData

Releases arrayata

void cvReleaseData(CvArr* array);

array
Array header

The functio fp 47] releases the array data. In cag€aWal [p 33] or[CvMatND [p 33 it

simply calls cvDecRefData(), that is the function can not deallocate external data. See also the note to

[cvCreateDaidp 46] .

SetData

Assigns user data to the arttagader

void cvSetData(CvArr* array, void* data, int step);

array
Array header.

data
User data.

step
Full row length inbytes.

The functiorcvSetDatgp 47] assigns user data to the array header. Header should be initialized before
using cvCreate*Header, cvinit*HeaderfarMali [p 43 (in case of matrixjunction.

GetRawData

Retrieves low-level information about theray

void cvGetRawData(const CvArr* array, uchar** data,
int* step, CvSize* roiSize);

array
Array header.
data
Output pointer to the whole image origin or ROI origin if ROl is set.
step
Output full row length in bytes.
roiSize
Output ROIsize.

47

The functioncvGetRawDatdp 47] fills output variables with low-level information about the array data.
All output parameters are optional, so some of the pointers may beNdékt ko If the array idplimage
with ROI set, parameters of ROl asturned.

The following example shows how to get access to array elements usifumtien.

Using GetRawData to calculate absolute value of elements of a single-channel
floating-pointarray.

float* data;
int step;

CvSize size;
intx,y;

cvGetRawData(array, (uchar**)&data, &step, &size);
step /= sizeof(data[0]);

for(y = 0; y < size.height; y++, data += step)
for(x = 0; x < size.width; x++)
data[x] = (float)fabs(data[x]);

GetMat

Returns matrix header for arbitraayray

CvMat* cvGetMat(const CvArr* arr, CvMat* mat, int* coi = 0, int allowND);

arr
Input array.

mat
Pointer tqgCvMal [p 33] structure used as a temporary buffer.

COi
Optional output parameter for storing COI.

allowND
If non-zero, the function accepts multi-dimensional dense arrays (CvMatND*) and returns 2D (if
CvMatND has two dimensions) or 1D matrix (when CvMatND has 1 dimension or more than 2
dimensions). The array must bentinuous.

The functioricvGetMal[p 48] returns matrix header for the input array that can be md@uaty [p 27

, image -plimage* or multi-dimensional dense arraZvMatND* [p ?7 (latter case is allowed only if
allowND !=0) . In the case of matrix the function simply returns the input pointer. In the case of
Iplimage* or[CvMatND* [p ?7 it initializes matstructure with parameters of the current image ROI and
returns pointer to this temporary structure. Because COI is not suppoj@&diad [p 33] , it is returned
separately.

48

The function provides an easy way to handle both types of aipiynageandCvMali[p 33] -, using the
same code. Reverse transform figrMai [p 33] to Iplimagecan be done usifgyGetimagHp 49]

function.
Input array must have underlying data allocated or attached, otherwise the féailgion

If the input array i$plimagewith planar data layout and COI set, the function returns pointer to the
selected plane and COI = 0. It enables per-plane processing of multi-channel images with planar data
layout using OpenC¥Yunctions.

Getlmage

Returns image header for arbitramyay

Iplimage* cvGetlmage(const CvArr* arr, Ipllmage* image_header);

arr
Input array.
image_header
Pointer tolplimagestructure used as a temporanffer.

The functioricvGetimagHp 49 returns image header for the input array that can be m{gxkfat¥ [p

?79 , or image 4plimage®*. In the case of image the function simply returns the input pointer. In the case of
[p ?79 it initializesimage_headestructure with parameters of the input matrix. Note that if we
transformiplimageto[CvMal [p 33] and then transform CvMat back to Iplimage, we can get different
headers if the ROI is set, and thus some IPL functions that calculate image stride from its width and align
may fail on the resultammnage.

GetSubRect

Returns matrix header corresponding to the rectangular sub-array of input inmagteior

CvMat* cvGetSubRect(const CvArr* array, CvMat* subarr, CvRect rect);

array
Input array.
subarr
Pointer to the resultant subarray header.
rect
Zero-based coordinates of the rectanglmtarest.

The functioncvGetSubRe(fp 49] returns header, corresponding to a specified rectangle of the input
array. In other words, it allows the user to treat a rectangular part of input array as a stand-alone array.
ROl is taken into account by the function so the sub-array of ROI is eedithcted.

49

GetRow, GetRows

Returns array row or rogpan

CvMat* cvGetRow(const CVvArr* arr, CvMat* subarr, int row);
CvMat* cvGetRows(const CvArr* arr, CvMat* subarr, int start_row, end_row);

arr
Input array.
subarr
Pointer to the resulting sub-array header.
row
Zero-based index of the selected row.
start_row
Zero-based index of the starting row (inclusive) of the span.
end_row
Zero-based index of the ending row (exclusive) ofsien.

The functiongGetRowandGetRowsgeturn the header, corresponding to a specified row/row span of the
input array. Note thaBetRowis a shortcut fdcvGetRowgp ?7 :

cvGetRow(arr, subarr, row); // ~ cvGetRows(arr, subarr, row, row + 1);

GetCol, GetCols

Returns array column or colunspan

CvMat* cvGetCol(const CvArr* arr, CvMat* subarr, int col);
CvMat* cvGetCols(const CvArr* arr, CvMat* subarr, int start_col, end_col);

arr
Input array.
subarr
Pointer to the resulting sub-array header.
col
Zero-based index of the selected column.
start_col
Zero-based index of the starting column (inclusive) of the span.
end_col
Zero-based index of the ending column (exclusive) osgza.

The functiongGetColandGetColsreturn the header, corresponding to a specified column/column span of
the input array. Note th&etColis a shortcut fagcvGetColfp ?9 :

50

cvGetCol(arr, subarr, col); // ~ cvGetCols(arr, subarr, col, col + 1);

GetDiag

Returns one of arragiagonals

CvMat* cvGetDiag(const CvArr* arr, CvMat* subarr, int diag=0);

arr
Input array.
subarr
Pointer to the resulting sub-array header.
diag
Array diagonal. Zero corresponds to the main diagonal, -1 corresponds to the diagonal above the
main etc., 1 corresponds to the diagonal below the atain

The functioricvGetDiad[p 51] returns the header, corresponding to a specified diagonal of theaimyt

GetSize

Returns size of matrix or imagrOI

CvSize cvGetSize(const CVArr* arr);

arr
arrayheader.

The functiorcvGetSizHp 51] returns number of rows (CvSize::height) and number of columns
(CvSize::width) of the input matrix or image. In case of image the size of R&lised.

CreateSparseMat

Creates sparsaray

CvSparseMat* cvCreateSparseMat(int dims, int* size, int type);

dims
Number of array dimensions. It must not exceed CV_MAX_DIM (=16 by default, though it may be
changed at build time)
size
Array of dimension sizes.
type
Type of array elements. The same asdoMat

51

The functioricvCreateSparseM#p 51] allocates multi-dimensional sparse array. Initially the array
contain no elements, that is cvGet*D will return zero for evmagx

ReleaseSparseMat
Deallocates sparsaray
void cvReleaseSparseMat(CvSparseMat** mat);

mat
Double pointer to tharray.

The functioricvReleaseSparseMpt 52] releases the sparse array and clears the array pointeexipon

CloneSparseMat

Creates full copy of sparseray

CvSparseMat* cvCloneSparseMat(const CvSparseMat* mat);

mat
Inputarray.

The functiorcvCloneSparseMdp 52] creates a copy of the input array and returns pointer toofhe

InitSparseMatlterator

Initializes sparse array elemeiterator

CvSparseMat* cvinitSparseMatlterator(const CvSparseMat* mat, CvSparseMatlterator* matlterator);

mat

Input array.
matlterator

Initialized iterator.

The functiorcvinitSparseMatlteratffip 52] initializes iterator of sparse array elements and returns pointer
to the first element, or NULL if the arrayésnpty.

GetNextSparseNode

Initializes sparse array elemeiteyator

52

CvSparseMat* cvGetNextSparseNode(CvSparseMatlterator* matlterator);

matlterator
Sparse arraiferator.

The functioncvGetNextSparseNofe 52] moves iterator to the next sparse matrix element and returns
pointer to it. In the current version there is no any particular order of the elements, because they are stored
in hash table. The sample below demonstrates how to iterate through therserse

UsinglcvinitSparseMatlteratfip 52] andcvGetNextSparseNof]p 52] to calculate sum
of floating-point sparsarray.

double sum;

inti, dims = cvGetDims(array);

CvSparseMatlterator matlterator;

CvSparseNode* node = cvinitSparseMatlterator(array, &matlterator);

for(; node != 0; node = cvGetNextSparseNode(&matlterator))
{
int* idx = CV_NODE_IDX(array, node); /* get pointer to the element indices */
float val = (float*)CV_NODE_VAL(array, node); /* get value of the element
(assume that the type is CV_32FC1) */
printf((");
for(i=0;i<dims;i++)
printf("%4d%s", idx[i], i <dims-1"":"):");
printf("%g\n", val);

sum +=val;

}

printf("\nTotal sum = %g\n", sum);

GetElemType
Returns type of arraglements
int cvGetElemType(const CVArr* arr);

arr
Inputarray.

The functiongGetElemTypeeturns type of the array elements as it is described in cvCreateMat
discussion:

CV_8UC1 ... CV_64FC4

53

GetDims, GetDimSize

Return number of array dimensions and their sizes or the size of partiico¢arsion

int cvGetDims(const CVArr* arr, int* size=0);
int cvGetDimSize(const CvArr* arr, int index);

arr
Input array.

size
Optional output vector of the array dimension sizes. For 2d arrays the number of rows (height) goes
first, number of columns (width) next.

index
Zero-based dimension index (for matrices 0 means number of rows, 1 means number of columns; for
images 0 means height, 1 meardth).

The functioricvGetDim$[p 54 returns number of array dimensions and their sizes. In cagBrofigeor

[CvMal [p 33 it always returns 2 regardless of number of image/matrix rows. The fujeet@etDimSizE
[p ?79 returns the particular dimension size (number of elements per that dimension). For example, the

following code calculates total number of aredgments:

I/ via cvGetDims()
int size[CV_MAX_DIM];
inti, total = 1;
int dims = cvGetDims(arr, size);
for(i=0;i<dims;i++)
total *= size]i];

/ via cvGetDims() and cvGetDimSize()
inti, total = 1;
int dims = cvGetDims(arr);
for(i=0;i<dims;i++)

total *= cvGetDimsSize(arr, i);

Ptr D
Return pointer to the particular arrajgment

uchar* cvPtrlD(const CvArr* arr, int idx0, int* type=0);

uchar* cvPtr2D(const CvArr* arr, int idx0, int idx1, int* type=0);

uchar* cvPtr3D(const CvArr* arr, int idx0, int idx1, int idx2, int* type=0);
uchar* cvPtrND(const CVArr* arr, int* idx, int* type=0);

arr
Input array.
idx0
The first zero-based component of the element index
idx1
The second zero-based component of the element index

54

idx2

The third zero-based component of the element index
idx

Array of the element indices
type

Optional output parameter: type of matebements

The functiongcvPtr*D] [p 54] return pointer to the particular array element. Number of array dimension
should match to the number of indices passed to the function exdepPtatD[p ?7 function that can
be used for sequential access to 1D, 2D or nD dmmags.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and
set it tozero.

All these as well as other functions accessing array eleff@et[Real[*D[p ?7 ,[cvSet[Real*D[p ?7

) raise an error in case if the element index is ovhge.

Get*D
Return the particular arrafement

CvScalar cvGet1D(const CvArr* arr, int idx0);

CvScalar cvGet2D(const CvArr* arr, int idx0, int idx1);
CvScalar cvGet3D(const CVArr* arr, int idx0, int idx1, int idx2);
CvScalar cvGetND(const CVArr* arr, int* idx);

arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the elemenindices

The functionfcvGet*D [p 55] return the particular array element. In case of sparse array the functions
return O if the requested node does not exist (no new node is createdunctioms)

GetReal*D

Return the particular element of single-chararehy

55

double cvGetReallD(const CvArr* arr, int idx0);

double cvGetReal2D(const CvArr* arr, int idx0, int idx1);

double cvGetReal3D(const CvArr* arr, int idx0, int idx1, int idx2);
double cvGetRealND(const CvArr* arr, int* idx);

arr

Input array. Must have a single channel.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the elemenindices
The functionfcvGetReal*D[p 55 return the particular element of single-channel array. If the array has

multiple channels, runtime error is raised. Note [@v&et*0 [p 55] function can be used safely for both
single-channel and multiple-channel arrays though they areskWitr.

In case of sparse array the functions return O if the requested node does not exist (no new node is created
by thefunctions)

mGet

Return the particular element of single-channel floating-puoaitix

double cvmGet(const CvMat* mat, int row, int col);

mat

Input matrix.
row

The zero-based index of row.
col

The zero-based index oblumn.

The functiocvmGel[p 56] is a fast replacement favGetReal2l{p ?7 in case of single-channel
floating-point matrices. It is faster because it is inline, it does less checks for array type and array element
type and it checks for the row and column ranges only in deltmalg.

Set*D

Change the particular arrajement

56

void cvSet1D(CvArr* arr, int idx0, CvScalar new_value);

void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar new_value);

void cvSet3D(CvArr* arr, int idx0, int idx1, int idx2, CvScalar new_value);
void cvSetND(CvArr* arr, int* idx, CvScalar new_value);

arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices
new_value

The assignedalue

The functionfcvSet*Q [p 56] assign the new value to the particular element of array. In case of sparse
array the functions create the node if it does not ggrist

SetReal*D

Change the particular arrajement

void cvSetReallD(CvArr* arr, int idx0, double new_value);

void cvSetReal2D(CvArr* arr, int idx0, int idx1, double new_value);

void cvSetReal3D(CvArr* arr, int idx0, int idx1, int idx2, double new_value);
void cvSetRealND(CvArr* arr, int* idx, double new_value);

arr

Input array.
idx0

The first zero-based component of the element index
idx1

The second zero-based component of the element index
idx2

The third zero-based component of the element index
idx

Array of the element indices
new_value

The assignedalue

The functiongcvSetReal*P[p 57] assign the new value to the particular element of single-channel array.
If the array has multiple channels, runtime error is raised. NoteuBat*D [p 56] function can be used
safely for both single-channel and multiple-channel arrays though they ardawlgit.

57

In case of sparse array the functions create the node if it does ngeexist

mSet

Return the particular element of single-channel floating-puoatdtix

void cvmSet(CvMat* mat, int row, int col, double value);

mat
The matrix.
row
The zero-based index of row.
col
The zero-based index of column.
value
The new value of the matredement

The functiofcvmSelt[p 58] is a fast replacement fovSetReal2[lp ?7 in case of single-channel

floating-point matrices. It is faster because it is inline, it does less checks for array type and array element
type and it checks for the row and column ranges only in detmaig.

Clear*D

Clears the particular arraafement

void cvClearND(CvArr* arr, int* idx);

arr
Input array.

idx
Array of the elemenindices

The functioricvClearND[p 58] clears (sets to zero) the particular element of dense array or deletes the
element of sparse array. If the element does not exists, the functionatloeg).

Copy

Copies one array tanother

void cvCopy(const CvArr* A, CvArr* B, const CvArr* mask =0);

A
The source array.
B
The destination array.

58

mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functioricvCopy[p 58] copies selected elements from input array to owtpaly:
B(I)=A(l) if mask(1)!=0.

If any of the passed arrays islpfimagetype, then its ROI and COl fields are used. Both arrays must
have the same type, the same number of dimensions and the same size. The function can also copy sparse
arrays (mask is not supported in tbése).

Set

Sets every element of array to giveiue

void cvSet(CvArr* A, CvScalar S, const CvArr* mask=0);

A

The destination array.
S

Fill value.
mask

Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.
The functioricvSel[p 59] copies scalaBto every selected element of the destinatioay:
A(1)=S if mask(l)!=0

If array A is of Iplimagetype, then is ROl used, but COl must nosbe

SetZero

Clears tharray

void cvSetZero(CvArr* arr);
#define cvZero cvSetZero

arr
array to becleared.

The functiorncvSetZerdp 59 clears the array. In case of dense arrays (CvMat, CvMatND or Iplimage)
cvZero(array) is equivalent to cvSet(array,cvScalarAll(0),0), but the function can clear sparse arrays by
removing all the arraglements

59

Arrays: Conversions, transformations, basic operations

Reshape

Changes shape of matrix/image without copydata

CvMat* cvReshape(const CvArr* array, CvMat* header, int new_cn, int new_rows=0);

array
Input array.
header
Output header to be filled.
new_cn
New number of channelsew_cn =0 means that number of channels remains unchanged.
new_rows
New number of rowsiew_rows =0 means that number of rows remains unchanged unless it needs
to be changed accordingriew_cnvalue. destination array to lbeanged.

The functioricvReshagdgp 60] initializes CvMat header so that it points to the same data as the original
array but has different shape - different number of channels, different number of tootis.or

For example, the following code creates one image buffer and two image headers, first is for 320x240x3
image and the second is for 960x240xhage:

Iplimage* color_img = cvCreatelmage(cvSize(320,240), IPL_DEPTH_8U, 3);
CvMat gray_mat_hdr;

Iplimage gray_img_hdr, *gray_img;

cvReshape(color_img, &gray_mat_hdr, 1);

gray_img = cvGetimage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts 3x3 matrix to a singleviecior
CvMat* mat = cvCreateMat(3, 3, CV_32F);

CvMat row_header, *row;
row = cvReshape(mat, &row_header, 0, 1);

ReshapeMatND

Changes shape of multi-dimensional array w/o copgatg

CvArr* cvReshapeMatND(const CvArr* array,
int sizeof _header, CvArr* header,
int new_cn, int new_dims, int* new_sizes);

#define cvReshapeND(arr, header, new_cn, new_dims, new_sizes) \

cvReshapeMatND((arr), sizeof(*(header)), (header), \
(new_cn), (new_dims), (new_sizes))

60

array
Input array.
sizeof _header
Size of output header to distinguish between Iplimage, CvMat and CvMatND output headers.
header
Output header to be filled.
new_cn
New number of channeleew_cn =0 means that number of channels remains unchanged.
new_dims
New number of dimensionsew_dims =0 means that number of dimensions remains the same.
new_sizes
Array of new dimension sizes. Oniegw_dims-Yalues are used, because the total number of
elements must remain the same. ThuseW_dims =1, new_sizesrray is notsed

The functioricvReshapeMatN[lp 60] is an advanced version[ofReshagép 60] that can work with
multi-dimensional arrays as well (though, it can work with ordinary images and matrices) and change the
number of dimensions. Below are the two samples frofotReshagdép 60] description rewritten using
[cvReshapeMatN[p 60] :

Iplimage* color_img = cvCreatelmage(cvSize(320,240), IPL_DEPTH_8U, 3);
Iplimage gray_img_hdr, *gray_img;
gray_img = (Ipllmage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);

/* second example is modified to convert 2x2x2 array to 8x1 vector */
intsize[] ={2,2,2}

CvMatND* mat = cvCreateMatND(3, size, CV_32F);

CvMat row_header, *row;

row = cvReshapeND(mat, &row_header, 0, 1, 0);

Repeat
Fill destination array with tiled sourearay
void cvRepeat(const CvArr* A, CvArr* B);

A

Source array, image or matrix.
B

Destination array, image anatrix.

The functioricvRepedfp 61] fills the destination array with source artdgd:
B(i,j)=A(i%rows(A), j%cols(A))

where "%" means "modulo” operation. So the destination array may be as larger as well as smaller than
the sourcarray.

61

Flip
Flip a 2D array around vertical, horizontall or battises

void cvFlip(const CvArr* A, CvArr* B=0, int flip_mode=0);
#define cvMirror cvFlip

A
Source array.

B
Destination array. Ifist =NULL the flipping is done inplace.

flip_mode
Specifies how to flip tharray.
flip_mode = 0 means flipping around x-axis, flip_mode > 0 (e.g. 1) means flipping around y-axis and
flip_mode < 0 (e.g. -1) means flipping around both axises. See also the discussion below for the
formulas

The functioricvFlig [p 62] flips the array in one of different 3 ways (row and column indice§-d@sed):
B(i,j)=A(rows(A)-i-1,)) if flip_mode = 0

B(i,j)=A(i,cols(A)-j-1) if flip_mode > 0

B(i,j)=A(rows(A)-i-1,cols(A)-j-1) if flip_mode < 0

The typical scenaria of the function use are:

e vertical flipping of the image (flip_mode > 0) to switch between top-left and bottom-left image
origin, which is typical operation in video processing under Win32 systems.

e horizontal flipping of the image with subsequent horizontal shift and absolute difference calculation
to check for a vertical-axis symmetry (flip_mode > 0)

e simultaneous horizontal and vertical flipping of the image with subsequent shift and absolute
difference calculation to check for a central symmetry (flip_mode < 0)

e reversing the order of 1d point arrays(flip_mode) >

CvtPixToPlane

Divides multi-channel array into several single-channel arrays or extracts a single channel &noaythe

void cvCvtPixToPlane(const CvArr* src, CvArr* dst0, CvArr* dstl,
CVArr* dst2, CvArr* dst3);

Src
Source array.

dstO...dst3
Destinationchannels.

62

The functiorcvCvtPixToPlandp 62] divides a multi-channel array into separate single-channel arrays.

Two modes are available for the operation. If the source array has N channels then if the first N
destination channels are not NULL, all they are extracted from the source array, otherwise if only a single
destination channel of the first N is not NULL, this particular channel is extracted, otherwise an error is
raised. Rest of destination channels (beyond the first N) must always be NULL. For |pthags

58] with COI set can be also used to extract a single channel fromdige.

CvtPlaneToPix

Composes multi-channel array from several single-channel arrays or inserts a single channedrirsyp the

void cvCvtPlaneToPix(const CvArr* src0O, const CVArr* srcl,
const CvArr* src2, const CvArr* src3, CvArr* dst);

src0...src3

Input channels.
dst

Destinationarray.

The functiorcvCvtPlaneToPifp 63] is the opposite to the previous. If the destination array has N
channels then if the first N input channels are not NULL, all they are copied to the destination array,
otherwise if only a single source channel of the first N is not NULL, this particular channel is copied into
the destination array, otherwise an error is raised. Rest of source channels (beyond the first N) must
always be NULL. For IplimadevCopy[p 58] with COI set can be also used to insert a single channel into
theimage.

ConvertScale

Converts one array to another with optional lirteansformation
void cvConvertScale(const CvArr* A, CvArr* B, double scale=1, double shift=0);

#define cvCvtScale cvConvertScale
#define cvScale cvConvertScale
#define cvConvert(A, B) cvConvertScale((A), (B), 1,0)

A
Source array.
B
Destination array.
scale
Scale factor.
shift
Value added to the scaled source asigments.

63

The functioricvConvertScal¢p 63] has several different purposes and thus has several synonyms. It
copies one array to another with optional scaling, which is performed first, and/or optional type
conversion, performedfter:

B(I)=A(l)*scale + (shift,shift,...)
All the channels of multi-channel arrays are procegsdgpendently.

The type conversion is done with rounding and saturation, that is if a result of scaling + conversion can not
be represented exactly by a value of destination array element type, it is set to the nearest representable
value on the realxis.

In case okcale=1,shift=0 no prescaling is done. This is a specially optimized case and it has the
appropriatgcvConvertp 27 synonym. If source and destination array types have equal types, this is also a
special case that can be used to scale and shift a matrix or an image and tiatSisligp 27

synonym.

ConvertScaleAbs

Converts input array elements to 8-bit unsigned integer another with optionatiarediormation

void cvConvertScaleAbs(const CvArr* A, CvArr* B, double scale=1, double shift=0);
#define cvCvtScaleAbs cvConvertScaleAbs

A
Source array.
B
Destination array (should have 8u depth).
scale
ScaleAbs factor.
shift
Value added to the scaled source agignents.

The functioricvConvertScaleAbfp 64] is similar to the previous one, but it stores absolute values of the
conversiorresults:

B(l)=abs(A(l)*scale + (shift,shift,...))

The function supports only destination arrays of 8u (8-bit unsigned integers) type, for other types the

function can be emulated by combinatiofce€onvertScalgp 63] andcvAbg[p 76] functions.

Add

Computes per-element sum of tarays

64

void cvAdd(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A

The first source array.
B

The second source array.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functioricvAdd [p 64] adds one array to anothame:
C()=A()+B(l) if mask(l)!=0

All the arrays must have the same type, except the mask, and the same sizes(pe)ROI

AddS

Computes sum of array asdalar

void cvAddS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A

The source array.
S

Added scalar.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functio [p 65] adds scalaBto every element in the source arfagnd stores the result @
C()=A()+S if mask(l)!=0

All the arrays must have the same type, except the mask, and the same sizes(pe) ROI

Sub

Computes per-element difference of tamays

void cvSub(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A
The first source array.

65

B
The second source array.
C
The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functioricvSub[p 65] subtracts one array from anottogre:
C(1)=A()-B(I) if mask(l)!=0

All the arrays must have the same type, except the mask, and the same sizes{pe)ROI

SubS

Computes difference of array ascalar

void cvSubS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A

The source array.
S

Subed scalar.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functioricvSub$[p 66] subtracts a scalar from every element of the scanresy:
C()=A()+S if mask(l)!=0

All the arrays must have the same type, except the mask, and the same sizes(pe)ROI

SubRS

Computes difference of scalar amdlay

void cvSubRS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A

The first source array.
S

Scalar to subtract from.
C

The destination array.

66

mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functiorcvSubR§p 66] subtracts every element of source array frasnadar:
C()=S-A(l) if mask(l)!=0

All the arrays must have the same type, except the mask, and the same sizes{pe)ROI

Mul

Calculates per-element product of terways

void cvMul(const CvArr* A, const CvArr* B, CvArr* C, double scale=1);

A

The first source array.
B

The second source array.
C

The destination array.
scale
Optional scaldactor

The functioricvMul| [p 67] calculates per-element product of tewsays:
C(l)=scale <A(l) <B(l)

All the arrays must have the same type, and the same size (sizePI

Div
Performs per-element division of tvaorays

void cvDiv(const CvArr* A, const CvArr* B, CvArr* C, double scale=1);

A

The first source array. If the pointer is NULL, the array is assumed to be all 1's.
B

The second source array.
C

The destination array.
scale
Optional scaldactor

67

The functiorfcvDiV] [p 67] divides one array bgnother:

C()=scale <A(l)/B(l), if Al=NULL
C()=scale/B(l), if A=NULL

All the arrays must have the same type, and the same size (giZeDI

And

Calculates per-element bit-wise conjunction of awiays

void cvAnd(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A

The first source array.
B

The second source array.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functioricvAnd [p 68] calculates per-element bit-wise logical conjunction of anrays:
C(1)=A(1)&B(l) if mask(l)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must
have the same type, except the mask, and the Same

AndS

Calculates per-element bit-wise conjunction of arraysaadar

void cvAndS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A

The source array.
S

Scalar to use in the operation.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The function AndS calculates per-element bit-wise conjunction of arraycatar:

68

C(I)=A(1)&S if mask(l)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of
floating-point arrays their bit representations are used for the operation. All the arrays must have the same
type, except the mask, and the saize

The following sample demonstrates how to calculate absolute value of floating-point array elements by
clearing the most-significait:

floata[] ={-1, 2,-3,4,-5,6,-7,8,-9};
CvMat A = cvMat(3, 3, CV_32F, &a);
inti, abs_mask = Ox7fffffff;
cvAndS(&A, cvRealScalar(*(float*)&abs_mask), &A, 0);
for(i=0;i<9;i++)
printf("%.1f ", ali]);

The code shoulgrint:

1.02.03.04.05.06.07.08.09.0

Or

Calculates per-element bit-wise disjunction of tvays

void cvOr(const CVvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A

The first source array.
B

The second source array.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functioricvOll [p 69 calculates per-element bit-wise disjunction of avaays:
C(H=AMIB(1)

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must
have the same type, except the mask, and the siame

orS

Calculates per-element bit-wise disjunction of array soadar

69

void cvOrS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A

The source array.
S

Scalar to use in the operation.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The function OrS calculates per-element bit-wise disjunction of arragcahal:
C(I)=A(1)|S if mask(1)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of
floating-point arrays their bit representations are used for the operation. All the arrays must have the same
type, except the mask, and the same

Xor

Performs per-element bit-wise "exclusive or" operation onaways

void cvXor(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A

The first source array.
B

The second source array.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The functiorfcvXor [p 70] calculates per-element bit-wise logical conjunction of anays:
C(y=A(1)"B(1) if mask(l)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must
have the same type, except the mask, and the Same

XorS

Performs per-element bit-wise "exclusive or" operation on arrageader

70

void cvXorS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A

The source array.
S

Scalar to use in the operation.
C

The destination array.
mask
Operation mask, 8-bit single channel array; specifies elements of destination arrahaodped.

The function XorS calculates per-element bit-wise conjunction of arragcatai:
C(I)=A()"S if mask(1)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of
floating-point arrays their bit representations are used for the operation. All the arrays must have the same
type, except the mask, and the same

The following sample demonstrates how to conjugate complex vector by switching the most-significant bit
of imagingpart:

floata[]={1,0,0,1,-1,0,0,-1%} /*1,j,-1, -j*
CvMat A = cvMat(4, 1, CV_32FC2, &a);
inti, neg_mask = 0x80000000;
cvXorS(&A, cvScalar(0, *(float*)&neg_mask, 0, 0), &A, 0);
for(i=0;i<4;i++)
printf("(%.1f, %.1f) ", a[i*2], a[i*2+1]);

The code shoulgrint:

(1.0,0.0) (0.0,-1.0) (-1.0,0.0) (0.0,1.0)

Not

Performs per-element bit-wise inversion of areégments

void cvNot(const CvArr* A, CvArr* C);

A
The source array.
C
The destinatiomrray.

The function Not inverses every bit of every areégment:

C()=~A(l)

71

Cmp
Performs per-element comparison of taroays

void cvCmp(const CvArr* A, const CvArr* B, CvArr* C, int cmp_op);

A

The first source array.
B

The second source array. Both source array must have a single channel.
C

The destination array, must have 8u or 8s type.
cmp_op
The flag specifying the relation between the elements tihéeked:
CV_CMP_EQ - A(l) "equal toB(I)
CV_CMP_GT - A(l) "greater tharB(l)
CV_CMP_GE - A(l) "greater or equaB(l)
CV_CMP_LT - A(l) "less thanB(l)
CV_CMP_GE - A(l) "less or equaB(l)
CV_CMP_NE - A(l) "not equal toB(l)

The functiofcvCmpg[p 72] compares the corresponding elements of two arrays and fills the destination
maskarray:

C(I)=A(1) op B(l),
whereopis '=', '>’, '>=",’<’, '<="or ’'I="

C(I) is set to Oxff (all '1’-bits) if the particular relation between the elements is true and 0 otherwise. All
the arrays must have the same type, except the destination, and the same sizsiga) ROI

CmpS
Performs per-element comparison of array scalar

void cvCmpS(const CvArr* A, double S, CvArr* C, int cmp_op);

A
The source array, must have a single channel.
C
The destination array, must have 8u or 8s type.
cmp_op
The flag specifying the relation between the elements théeked:
CV_CMP_EQ - A(l) "equal to'S
CV_CMP_GT - A(l) "greater thanS
CV_CMP_GE - A(l) "greater or equaB
CV_CMP_LT - A(l) "less than's

72

CV_CMP_GE - A(l) "less or equals
CV_CMP_NE - A(l) "not equal's

The functioricvCmp$[p 72 compares the corresponding elements of array and scalar and fills the
destination mashrray:

C(h)=A() op S,
whereopis '=, >", '>=', '<’, '<="or ’I=,

C(I) is set to Oxff (all '1’-bits) if the particular relation between the elements is true and 0 otherwise. All
the arrays must have the same size (or §t£)

InRange

Checks that array elements lie between elements of twoanttaens

void cvinRange(const CvArr* A, const CvArr* L, const CvArr* U, CvArr* C);

A

The first source array.
L

The inclusive lower boundary array.
U

The exclusive upper boundary array.
C

The destination array, must have 8u otyg§e.
The functioricvinRangHp 73] does the range check for every element of the iapa:
Cl=L() o <=A() o <UQl) o
for single-channehrrays,

C=L(1) o <=A(l) o <U(l) o &&
L(1) 1 <=A() 1 <U) g

for two-channel arraystc.

C(l) is set to Oxff (all '1’-bits) if A(l) is within the range and 0 otherwise. All the arrays must have the
same type, except the destination, and the same size (@ZpI

InNRangeS

Checks that array elements lie between saalars

73

void cvinRangeS(const CvArr* A, CvScalar SL, CvScalar SU, CvArr* D);

A
The first source array.
SL
The inclusive lower boundary.
SuU
The exclusive upper boundary.
C
The destination array, must have 8u ohyg.

The functioricvinRangeHp 73] does the range check for every element of the iapay:
C)=SL o <=A() o <SU

for a single-channerray,

C()=SL ¢ <=A(l) o <SU , &&
SL 1 <= A(l) 1 <SuU 1

for a two-channel arragtc.

C(I) is set to Oxff (all '1-bits) if A(l) is within the range and 0 otherwise. All the arrays must have the
same size (or RGdize)

Max

Finds per-element maximum of tvaorays

void cvMax(const CvArr* A, const CvArr* B, CvArr* C);

A

The first source array.
B

The second source array.
C

The destinatiomrray.

The functioricvMa [p 74] calculates per-element maximum of tewvays:
C(ly=max(A(l), B(1))

All the arrays must have a single channel, the same data type and the same sizsi@a)ROI

74

MaxS

Finds per-element maximum of array asudlar

void cvMaxS(const CvArr* A, const CvArr* B, CvArr* C);

A

The first source array.
B

The second source array.
C

The destinatiomrray.
The functiorcvMax$§[p 75 calculates per-element maximum of array acalar:
C(h)=max(A(l), S)

All the arrays must have a single channel, the same data type and the same sizesi@a)ROI

Min
Finds per-element minimum of tvasrays

void cvMin(const CvArr* A, const CvArr* B, CvArr* C);

A

The first source array.
B

The second source array.
C

The destinatiomrray.
The functiorfcvMin| [p 75] calculates per-element minimum of taoays:
C(y=min(A(1),B(1))

All the arrays must have a single channel, the same data type and the same sizesi@)ROI

MinS
Finds per-element minimum of array aswhlar

void cvMinS(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source array.

75

B

The second source array.
C

The destinatiomrray.

The functioricvMing [p 75] calculates minimum of array asdalar:
C()=min(A(l), S)

All the arrays must have a single channel, the same data type and the same sizesi@a)ROI

AbsDiff

Calculates absolute difference between anays

void cvAbsDiff(const CvArr* A, const CvArr* B, CvArr* C);

A

The first source array.
B

The second source array.
C

The destinatiomrray.
The functio [p 76] calculates absolute difference between anrays.
C) ¢ =abs(A() ¢ -B() ¢).

All the arrays must have the same data type and the same size &ez&OI

AbsDiffS

Calculates absolute difference between arraysaatar

void cvAbsDIffS(const CvArr* A, CvArr* C, CvScalar S);
#define cvAbs(A, C) cvAbsDIffS(A, C, cvScalarAll(0))

A

The source array.
C

The destination array.
S

Thescalar.

The functioncvAbsDiff§[p 76] calculates absolute difference between arraysaathr.

76

C() . =abs(A() c S ¢)

All the arrays must have the same data type and the same size &ez&OI

Array statistics

CountNonZero

Counts non-zero arraglements

int cvCountNonZero(const CvArr* A);

A
The array, must be single-channel array or multi-channel image witls&tOl

The functiorcvCountNonZerdp 77] returns the number of non-zero elementA:in

result = sum 1 AD!=0

In case ofplimageboth ROI and COI arsupported.

Sum
Summarizes arraglements
CvScalar cvSum(const CvArr* A);

A
Thearray.

The functioricvSuni[p 77] calculates surs of array elements, independently for eabannel:
Sc =sum | A(l)

If the array idplimageand COl is set, the function processes the selected channel only and stores the sum
to the first scalar componefg&).

Avg
Calculates average (mean) of aredgments

CvScalar cvAvg(const CvArr* A, const CvArr* mask=0);

77

A
The array.
mask
The optional operatiomask.

The functioricvAvg [p 77] calculates the average valMeof array elements, independently for each
channel:

N =sum ;| mask(l)!=0
Mg =2/N esum | A(l)

If the array idplimageand COl is set, the function processes the selected channel only and stores the
average to the first scalar compongsy).

AvgSdv

Calculates average (mean) of aredgments

void cvAvgSdv(const CvArr* A, CvScalar* _M, CvScalar* _S, const CvArr* mask=0);

A
The array.
M
Pointer to the mean value, may be NULL if it is not needed.
S
Pointer to the standard deviation.
mask

The optional operatiomask.

The functio [p 78] calculates the average valMe*_M and standard deviatidd=*_S of
array elements, independently for eablannel:

N =sum ; mask(l)!=0
Mg =2/N esum | A()
S¢ =sqrt(1/N esum | (A() ¢ -M ¢)2)

If the array idplimageand COl is set, the function processes the selected channel only and stores the
average and standard deviation to the first compoenents of output fdajaandSy).

78

MinMaxLoc

Finds global minimum and maximum in arraysoibarray

void cvMinMaxLoc(const CvArr* A, double* minVal, double* maxVal,
CvPoint* minLoc, CvPoint* maxLoc, const CvArr* mask=0);

A

The source array, single-channel or multi-channel with COI set.
minVal

Pointer to returned minimum value.
maxVal

Pointer to returned maximum value.
minLoc

Pointer to returned minimum location.
maxLoc

Pointer to returned maximum location.
mask

The optional mask that is used to selestibarray.

The functionMinMaxLocfinds minimum and maximum element values and their positions. The
extremums are searched over the whole array, selR@é&(n case ofplimagg or, if maskis notNULL,
in the specified array region. If the array has more than one channel, it nipisiagewith COl set. In
case if multi-dimensional arraysinLoc->xandmaxLoc->xwill contain raw (linear) positions of the
extremums.

Norm

Calculates absolute array norm, absolute difference norm or relative diffei@nce

double cvNorm(const CvArr* A, const CvArr* B, int normType, const CvArr* mask=0);

A
The first source image.
B
The second source image. If it is NULL, the absolute norfisfcalculated, otherwise absolute or
relative norm ofA-B is calculated.
normType
Type of norm, see the discussion.
mask

The optional operatiomask.

The functioricvNorn] [p 79 calculates the absolute normAff B is NULL:

79

norm = ||A]| c =max | abs(A(l), if nor mlype = CV_C
norm = ||A]| L1 =sum | abs(A(l)), if nor nfype = CV_L1
norm = ||A]| L2 =sqrt(sum LA 2), if nor mlype = CV_L2

And the function calculates absolute or relative difference noBisiinotNULL:

norm = ||A-B|| c =max | abs(A(l)-B(l)), if nor nType = CV_C

norm = ||A-B|| L1 =sum | abs(A()-B(l)), if nor nType = CV_L1

norm = ||A-B|| L2 = sqgrt(sum 1 (A(D-B(D)) 2, if nor nfype = CV_L2
or

norm = ||A-B|| c/|IBl| c, if nor nMType = CV_RELATIVE_C

norm = ||A-B|| L1 /lIBII L, if nor nType = CV_RELATIVE_L1

norm = ||A-B|| L2 /lIBI| L2, if nor miype = CV_RELATIVE_L2

ThefunctionNormreturns the calculated norm. The multiple-channel array are treated as single-channel,
that is results for all channels a@mbined.

Matrix Operations, Linear Algebra and Math Functions

Setldentity

Initializes scaled identitynatrix

void cvSetldenity(CvArr* A, CvScalar S);

A

The matrix to initialize (not necesserily square).
S

The value to assign to the diagoelments.

The functio p 80] initializes scaled identitynatrix:

A(i,)=S if i5j,
0 otherwise

80

DotProduct

Calculates dot product of two arrays in Euclidiaetrics

double cvDotProduct (const CvArr* A, const CvArr* B);

A

The first source array.
B

The second sourceray.

The functioricvDotProdud{p 81] calculates and returns the Euclidean dot product obivnays.
AsB =sum | (A()*B(l))

In case of multiple channel arrays the results for all channels are accumulated. In particular, it gives a
correct result for complex matrices. The function can process multi-dimensional arraysrow by

CrossProduct

Calculates cross product of two ¥Bctors

void cvCrossProduct(const CvArr* A, const CvArr* B, CVvArr* C);

A

The first source vector.
B

The second source vector.
C

The destinatiowector.

The functioncvCrossProdufip 81] calculates the cross product of two @&xtors:

C=AxB,(C 1 =A ,B3-A 3B, ,C »,=A 3B;1-A 1B3,C 3=A 1B, -A ,B;).

ScaleAdd

Calculates sum of scaled array and ancainexy

void cvScaleAdd(const CvArr* A, CvScalar S, const CvArr* B, CvArr* C);
#define cvMulAddS cvScaleAdd

A
The first source array.
S
Scale factor for the first array.

81

B

The second source array.
C

The destinatiomrray

The functioncvScaleAd{p 81] calculates sum of scaled array and ancinexy:
C(I)=A(l)*S + B(l)

All array parameters should be of the same size and thesszene

MatMulAdd

Calculates shifted matrproduct

void cvMatMulAdd(const CvArr* A, const CvArr* B, const CvArr* C, CvArr* D);
#define cvMatMul(A, B, D) cvMatMulAdd(A, B, 0, D)

A
The first source array.
B
The second source array.
C
The third source array (shift). Can be NULL, if there is no shift.
D

The destinatiomrray.

The functiorcvMatMulAdd [p 82] calculates matrix product of two matrices and adds the third matrix to
the product:

D=A*B+C or D(ij)=sum v (AGK)*B(K,]) + CGi,))

All the matrices should be of the same type and the coordinated sizes. Only real or complex floating-point
matrices arsupported

GEMM

Performs generalized matnmultiplication

void cvGEMM(const CvArr* A, const CvArr* B, double alpha,
const CVvArr* C, double beta, CvArr* D, int tABC=0);
#define cvMatMulAddEx cvGEMM

A
The first source array.
B
The second source array.

82

C
The third source array (shift). Can be NULL, if there is no shift.
D
The destination array.
tABC
The operation flags that can be 0 or combination ofah@wing:
CV_GEMM_A T - transpos@é
CV_GEMM_B T - transposB
CV_GEMM_C T - transposB
for example, CV_GEMM_A T+CV_GEMM_C_T corresponds to

alpha*A T*B +beta*C T
The functioncvGEMM [p 82] performs generalized matnmultiplication:
D = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X T

All the matrices should be of the same type and the coordinated sizes. Only real or complex floating-point
matrices arsupported

MatMulAddS

Performs matrix transform on every elemenawhy

void cvMatMulAddS(const CvArr* A, CvArr* C, const CvArr* M, const CvArr* V=0);

A

The first source array.
C

The destination array.
M

Transformation matrix.
Y,

Optionalshift.

The functioncvMatMulAdd$[p 83] performs matrix transform on every element of akand stores the
result inC:

C(i)=M*AGi,j) +V or C(i,j)(k)=sum | (MK)*AGL) (1) + V(K)

That is every element d&f-channel array is considered as-element vector, which is transformed using
matrix NxN matrix M and shift vectoW. There is an option to codéinto A. In this casé\ should be
NxN+1 matrix and the right-most column is used as the gaftor.

Both source and destination arrays should be of the same size or selected ROI size and of the 8&me type.
andV should be real floating-point matrices. The function can be used for geometrical transforms of point
sets and linear coldransformations.

83

MulTransposed

Calculates product of array and transpoasedy

void cvMulTransposed(const CvArr* A, CvArr* C, int order);

A

The source matrix.
C

The destination matrix.
order

Order ofmultipliers.

The functiorcvMulTransposgdp 84] calculates the product of A and itansposition.

The functionevaluates
C=A*AT

if order=0, and

C=AT *A

otherwise

Trace
Returns trace ahatrix
CvScalar cvTrace(const CVvArr* A);

A
The sourcenatrix.

The functiorfcvTracé[p 84] returns sum of diagonal elements of the marix

tr(A)=sum ; A(i,i)

Transpose

Transposematrix

void cvTranspose(const CVArr* A, CvArr* B);
#define cvT cvTranspose

84

A
The source matrix.
B
The destinatiomatrix.

The functiorcvTranspodégp 84] transposes matrii:
B(i.)=A(.)

Note that no complex conjugation is done in case of complex matrix. Conjugation should be done
separately: look at the sample codwXorg[p 70] for example

Det

Returns determinant ofiatrix

CvScalar cvDet(const CVArTr* A);

A
The sourcenatrix.

The functioricvDet [p 85] returns determinant of the square ma&ixThe direct method is used for small
matrices and Gaussian elimination is used for lamgdrices

Invert

Finds inverse or pseudo-inversenadtrix

double cvinvert(const CvArr* A, CvArr* B, int method);
#define cvinv cvinvert

A
The source matrix.
B
The destination matrix.
method
Inversionmethod:
CV_LU - Gaussian elimination with optimal pivot element chose CV_SVD - Singular decomposition
method

The functioricvinvert [p 85] inverts matrixA and stores the result B

In case oLU method the function retursdeterminant (A must be square). If it is O, the matrix is not
inverted and is filled with zeros.

85

In case ofSVDmethod the function returns the inversed condition numb&nadtio of the smallest
singular value to the largest singular value) andisf all zeros. This method calculates a pseudo-inverse
matrix if A is singular

Solve

Solves linear system or least-squgresblem

int cvSolve(const CvArr* A, const CvArr* B, CvArr* X, int method);
#define cvinv cvSolve

A
The source matrix.
B
The right-hand part of the linear system.
method
The solution (matrix inversiompethod:
CV_LU - Gaussian elimination with optimal pivot element chose CV_SVD - Singular decomposition
method

The functioricvSolvé[p 86] solves linear system or least-squaresblem:
X" =argmin x |[|A*X-B|]|

If CV_LUmethod is used, the function returns A is non-singular and 0 otherwise, in the latter case
notvalid

SVvD

Performs singular value decomposition of real floating-pmiaitrix

void cvSVD(CvArr* A, CvArr* W, CvArr* U=0, CvArr* V=0, int flags=0);

A
SourceMxN matrix.
W
Resulting singular value matr{}xN or NxN) or vector(Nx1).
U
Optional left orthogonal matri@gvxM or MxN). If CV_SVD_U_T is specified, the number of rows
and columns in the sentence above should be swapped.
\%

Optional right orthogonal matriNxN)
flags
Operation flags; can be 0 or combination of the following:
e CV_SVD_ MODIFY_Anables madification of matri during the operation. It speeds up the
processing.

86

e CV_SVD U _Tmeans that the tranposed matdixs returned. Specifying the flag speeds up the
processing.

e CV_SVD_V_Tneans that the tranposed malriis returned. Specifying the flag speeds up the
processing.

The functioricvSVD [p 86] decomposes matri into a product of a diagonal matrix and two orthogonal
matrices:

A=U*W*yT

WhereW is diagonal matrix of singular values that can be coded as a 1D vector of singular valdes and
andV. All the singular values are non-negative and sorted (togethebvetid and/ columns) in
descentingrder.

SVD algorithm is numerically robust and its typical applications include:

® accurate eigenvalue problem solution when ma&tiix square, symmetric and positively defined
matrix, for example, when it is a covariation matkiin this case will be a vector of eigen values,
andU=V is matrix of eigen vectors (thus, only ondlbbr V needs to be calculated if the eigen
vectors are required)

® accurate solution of poor-conditioned linear systems

e |east-squares solution of overdetermined linear systems. This and previous is [deSelg[p 86]
function withCV_SVDmethod

® accurate calculation of different matrix characteristics such as rank (number of non-zero singular
values), condition number (ratio of the largest singular value to the smallest one), determinant
(absolute value of determinant is equal to the product of singular values). All the things listed in this
item do not require calculation bf andV matrices.

SVBKSDb

Performs singular value baskbstitution

void cvSVBKSb(const CvArr* W, const CvArr* U, const CVArr* V,
const CVvArr* B, CvArr* X, int flags);

w

Matrix or vector of singular values.
U

Left orthogonal matrix (tranposed, perhaps)
Y,

Right orthogonal matrix (tranposed, perhaps)
B

The matrix to multiply the pseudo-inverse of the original ma&rby. This is the optional parameter.
If it is omitted then it is assumed to be an identity matrix of an appropriate sixewiidoe the
reconstructed pseudo-inverse)f

87

X
The destination matrix: result of back substitution.
flags
Operation flags, should match exactly to flags passed tpvSVDO [p 86] .

The functiorlcvSVBKSB[p 87] calculates back substitution for decomposed mat(sedcvSVD [p 86]

description) and matriis:
X=V*W-1 *U T+
Where

WL (i,))=1/W(i,j) if W(i,j) > epsilon,
0 otherwise

And epsilonis a small number=10% or=10-1> depending on the matrices elemypie.

This function together wibvSVD [p 86] is used insidfevinvert[p 85] andcvSolvé[p 86] , and the

possible reason to use these (svd & bksb) "low-level" function is to avoid temporary matrices allocation
inside the high-level counterparts (invs&lve).

EigenVV

Computes eigenvalues and eigenvectors of symnmagitx

void cvEigenVV(CvArr* A, CvArr* evects, CvArr* evals, double eps);

A
The source symmetric square matrix. It is modified during the processing.
evects
The output matrix of eigenvectors, stored as a subsequent rows.
evals
The output vector of eigenvalues, stored in the descenting order (order of eigenvalues and
eigenvectors is syncronized, of course).
eps
Accuracy of diagonalization (typicalf@BL_EPSILON=10"1° is enough).

The functioricvEigenV\ [p 88] computes the eigenvalues and eigenvectors of the ndatrix
A*evects(i,:)’ = evals(i)*evects(i,:)’ (in MATLAB notation)
The contents of matriA is destroyed by thieinction.

Currently the function is slower thErSVD [p 86] yet less accurate, soAfis known to be
positively-defined (for example, it is a covariation matrix), it is recommended [p 86] to find
eigenvalues and eigenvectorsfofespecially if eigenvectors are metjuired.

88

PerspectiveTransform

Performs perspective matrix transform on 3D veatoay

void cvPerspectiveTransform(const CvArr* A, CvArr* B, const CVArr M);

A

The source three-channel floating-point array.
B

The destination three-channel floating-point array.
M

4 x 4 transformatiomatrix.

The functioricvPerspectiveTransfoffp 89] transforms every element Afconsidering it a 3D vect@s:

x,y, 2) -> (XIw, y'lw, Z'/w),

where
x,y,z,w)=M*xy, z 1)

and w = 1/w' if w'l=0,
1 otherwise

CalcCovarMatrix

Calculates covariation matrix out of the seaofays

void cvCalcCovarMatrix(CvArr* Vs, CvArr* M, CVvArr* A);

Vs
The set of input arrays. All the arrays must have the same type and the same size.

M
The output covariation matrix that should be floating-point and square. Number of arrays is implicitly
assumed to be equal to number of the matrix rows/columns.

A

The output array that is set to the average of the bupays.

The functioricvCalcCovarMatridp 89] calculates the covariation matrix and average array out of the set
of inputarrays:

A(=sum Vs ® (1)
M@ij)=(vs @ -A) «(vs O -A)

Where the upper index in parentheses means the particular array from the"sénagmhs dot product.
The covariation matrix may be used then (after inversigoyhahalonobigp 90] function to measure a
distance between vectors, to find eigen objectgw&/0 [p 86] etc.

89

Mahalonobis

Calculates Mahalonobis distance betweectors

double cvMahalonobis(const CvArr* A, const CvArr* B, CVArr* T));

A

The first 1D source vector.
B

The second 1D source vector.
T

The inverse covariatiomatrix.
The functioricvMahalonobigp 90] calculates the weighted distance between two vectors and rigturns
d(AB)=sart(sum ; {T(.)*(A®)-B(@®))*(AG)-B1)})

The covariation matrix may be calculated ugngalcCovarMatrifp 89] function and further inverted
usingcvinver}[p 85] function (CV_SVD method is the preffered one, because the matrix might be
singular).

CartToPolar

Calculates magnitude and/or angle ofvedtors

void cvCartToPolar(const CvArr* X, const CvArr* Y, CvArr* M, CVvArr* A,
int angle_in_degrees=0);

X
The array of x-coordinates
Y
The array of y-coordinates
M
The destination array of magnitudes, may be set to NULL if it is not needed
A

The destination array of angles, may be set to NULL if it is not needed. The angles are measured in
radiang(0..2r) or in degrees (0..360°).

angle_in_degrees
The flag indicating whether the angles are measured in radians, which is default modegoeés.

The functioncvCartToPolgfp 90] calculates either magnitude, angle, or both of every vés(or, Y (1)):

M(l)=sqrt(X(1) Z+y() 2),
A(l)=atan(Y(1)/X(l))

90

The angles are calculated with.1° accuracy. For (0,0) point the angle is sétto

PolarToCart

Calculates cartesian coordinates of 2d vectors represented iriqoolar

void cvPolarToCart(const CvArr* M, const CvArr* A, CvArr* X, CVArr* Y,
int angle_in_degrees=0);

M
The array of magnitudes. If it is NULL, the magnitudes are assumed all 1's.
A
The array of angles, whether in radians or degrees.
X
The destination array of x-coordinates, may be set to NULL if it is not needed.
Y

The destination array of y-coordinates, mau be set to NULL if it is not needed.
angle_in_degrees
The flag indicating whether the angles are measured in radians, which is default modegoeés.

The functioricvPolarToCa[fp 91] calculates either x-coodinate, y-coordinate or both of every vector
M(1)*exp(A(1)*)):

X(=M(l)*cos(A(l)),
Y()=M()*sin(A(l))

Pow

Raises every array elementgower

void cvPow(const CvArr* X, CvArr* Y, double p);

X

The source array.
Y

The destination array, should be the same type as the source.
p

The exponent gbower.

The functiorfcvPow[p 91] raises every element of input arraypto

Y (H=X(1) P if p is integer
Y (=abs(X(l)) P | otherwise

That is, for non-integer power exponent the absolute values of input array elements are used. However, it
is possible to get true values for negative values using some extra operations, as the following sample,
computing cube root of array elemersispws:

91

CvSize size = cvGetSize(src);

CvMat* mask = cvCreateMat(size.height, size.width, CV_8UC1);

cvCmpS(src, 0, mask, CV_CMP_LT); /* find negative elements */

cvPow(src, dst, 1./3);

cvSubRS(dst, cvScalarAll(0), dst, mask); /* negate the results of negative inputs */
cvReleaseMat(&mask);

For some values gfower, such as integer values, 0.5 and -0.5, an optimized algorithseds

Exp
Calculates exponent of every arelgment
void cvExp(const CvArr* X, CVArr* Y);

X
The source array.
Y
The destination array, it should hadeubletype or the same type as tmurce.

The functiorficvExgd [p 92] calculates exponent of every element of irgruay:
Y()=exp(X(1)

Maximum relative error is7e-6. Currently, the function converts denormalized values to zemstut.

Log
Calculates natural logarithm of every array element absodlte

void cvLog(const CvArr* X, CVArr* Y);

X
The source array.
Y
The destination array, it should hadeubletype or the same type as swurce.

The functioricvLod [p 92] calculates natural logarithm of absolute value of every element ofanayt

Y(1)=log(abs(X(1))), X(1)!=0
Y(1)=C, X(1)=0

WhereC is large negative numbée-700 in the currenimplementation)

92

CheckArr

Checks every element of input array for invaledues

int cvCheckArr(const CvArr* X, int flags=0,
double minVal=0, double maxVal=0);
#define cvCheckArray cvCheckArr

X
The array to check.
flags
The operation flags, 0 or combinatioh
CV_CHECK_RANGE - if set, the function checks that every value of array is within
[minVal,maxVal) range, otherwise it just checks that every element is neigther Naib.nor
CV_CHECK_QUIET - if set, the function does not raises an error if an element is invalid or out of
range
minVal
The inclusive lower boundary of valid values range. It is used ofly ifCHECK RANGES set.
maxVal
The exclusive upper boundary of valid values range. It is used ddly ICHECK_RANGES set.

The functiorficvCheckArf[p 93] checks that every array element is neither NaNtoorf
CV_CHECK_RANGES set, it also checks that every element is greater than or equiaMal and less
thanmaxVal The function returns nonzero if the check succeeded, i.e. all elements are valid and within
the range, and zero otherwise. In the latter caS¥ ifCHECK_QUIETag is not set, the function raiser
runtimeerror.

RandInit

Initializes random number generastate

void cvRandInit(CvRandState* state, double param1, double param2, int seed,
int distType=CV_RAND_UNI);

state
Pointer to the initialized random number generator state structure.
paraml
The first distribution parameter. In case of uniform distribution it is the inclusive lower boundary of
random numbers range. In case of normal distribution it is the standard deviation of random numbers.
param?2
The second distribution parameter. In case of uniform distribution it is the exclusive upper boundary
of random numbers range. In case of normal distribution it is the mean value of random numbers.
seed
Initial 32-bit value to start a random sequence.
distType
Distributiontype:
CV_RAND_UNI - uniformdistribution

93

CV_RAND_NORMAL - normal or Gaussiatistribution

The functioricvRandInik[p 93] initializes thestatestructure that is used for generating uniformly

distributed numbers in the rangmaram1,param2)or normally distributed humbers wiglaramlmean
andparam2standard deviation. The parameters are set for all the dimensions simultaneously - resemble
that RNG has separate parameters for each of 4 dimensions. A multiply-with-carry genessadr is

RandSetRange

Changes the range of generated random numbers without touchingtREG

void cvRandSetRange(CvRandState* state, double param1, double param2, int index=-1);

state
State of random number generator (RNG).
paraml
New lower boundary/deviation of generated numbers.
param?2
New upper boundary/mean value of generated numbers.
index
The 0-based index of dimension/channel for which the parameter are changed, -1 means changing the
parameters for alimensions.

The functioricvRandSetRangi@ 94] changes the range of generated random numbers without
reinitializing RNG state. It is useful if a few arrays of different types need to initialized with random
numbers within a loop. Alternatively, you may have a separate generator for each array, but then you
should provide several uncorrelated initialization seeds - one pegeaetator.

Rand

Fills array with random numbers and updates the Ri&@

void cvRand(CvRandState* state, CvArr* arr);

state

RNG state initialized bjRandInitand, optionally, customized IiRandSetRange
arr

The destinatiomrray.

The functioricvRandi[p 94 fills the destination array with uniformly or normally distributed random
numbers within the pre-set range and updates RNG state. In the sample below this and two functions
above are used to put a few normally distributed floating-point numbers to random locations within a 2d
array

94

/* let’s noisy_screen be the floating-point 2d array that is to be "crapped" */
CvRandState rng_state;

int i, pointCount = 1000;

/* allocate the array of coordinates of points */

CvMat* locations = cvCreateMat(pointCount, 1, CV_32SC2);

[* array of random point values */

CvMat* values = cvCreateMat(pointCount, 1, CV_32FC1);

CvSize size = cvGetSize(noisy_screen);

cvRandInit(&rng_state,
0, 1, /* use dummy parameters now and adjust them further */
Oxffffffff /* just use a fixed seed here */,
CV_RAND_UNI /* specify uniform type */);

/* customize the RNG to use it for initialiazing locations:
the 0-th dimension is used for x's and the 1st - for y's */

cvRandSetRange(&rng_state, 0, size.width, 0);

cvRandSetRange(&rng_state, 0, size.height, 1);

/* initialize the locations */
cvRand(&rng_state, locations);

/* modify RNG to make it produce normally distributed values */
rng_state.disttype = CV_RAND_NORMAL;
cvRandSetRange(&rng_state,
30 /* deviation */,
100 /* average point brightness */,
-1 /* initialize all the dimensions */);
/* generate values */
cvRand(&rng_state, values);

/* set the points */

for(i=0; i< pointCount; i++)

{
CvPaint pt = *(CvPoint*)cvPtr1D(locations, i, 0);
float value = *(float*)cvPtrlD(values, i, 0);
cvSetReal2D(noisy_screen, pt.y, pt.x, value);

}

/* not to forget to release the temporary arrays */
cvReleaseMat(&locations);
cvReleaseMat(&values);

/* cvRandlnit does not allocate any memory, so there is no need
(and no function) to deinitialize it */

RandNext

Returns 32-bit unsigned integer and upd&iN&

unsigned cvRandNext(CvRandState* state);

95

state
RNG state initialized bjRandInitand, optionally, customized BBandSetRangghough, the latter
function does not affect on the discussed funatisttcome).

The functioricvRandNex{p 95] returns uniformly-distributed (regardless of the RNG distribution type
settings) "plain” integer random number and updates RNG state. It is similar to rand() function from C
runtime library, but it always generates 32-bit number whereas rand() returns a number in between 0 and
RAND_MAXwhich is 2**16 or 2**32, depending on thdatform.

The function is useful for generating scalar random numbers, such as points, patch sizes, table indices etc,
where integer numbers of a certain range can be generated using modulo operation and floating-point
numbers can be generated by scaling to 0..1 of any other specific range. Here is the example from the

previous function discussion rewritten ufmd@RandNej{p 95] :

[* the input and the task is the same as in the previous sample. */
CvRandState rng_state;

inti, pointCount = 1000;

/* ... - no arrays are allocated here */

CvSize size = cvGetSize(noisy_screen);

/* make a buffer for normally distributed numbers to reduce call overhead */
#define bufferSize 16

float normalValueBuffer[bufferSize];

CvMat normalValueMat = cvMat(bufferSize, 1, CV_32F, normalValueBuffer);
int valuesLeft = 0;

/* initialize RNG to produce normally distributed values.
Coordinates will be uniformly distributed within 0..2**32
anyway as they are generated using cvRandNext */

cvRandInit(&rng_state,

100,

30,

Oxffffffff /* just use a fixed seed here */,
CV_RAND_NORMAL /* specify uniform type */);

for(i=0;i< pointCount; i++)
{
CvPoint pt;
/* generate random point */
pt.x = cvRandNext(&rng_state) % size.width;
pt.y = cvRandNext(&rng_state) % size.height;

if(valuesLeft<=0)

[* fulfill the buffer with normally distributed numbers if the buffer is empty */
cvRand(&rng_state, &normalValueMat);
valuesLeft = bufferSize;

cvSetReal2D(noisy_screen, pt.y, pt.x, normalValueBuffer[--valuesLeft]);

}

/* there is no need to deallocate normalValueMat because we have
both the matrix header and the data on stack. It is a common and efficient
practice of working with small, fixed-size matrices */

96

DFT

Performs forward or inverse Discrete Fourier transform of 1D or 2D floating-gway

#define CV_DXT_INVERSE 1

#define CV_DXT_SCALE 2

#define CV_DXT_INV_SCALE (CV_DXT_SCALE|CV_DXT_INVERSE)
#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE

void cvDFT(const CvArr* src, CvArr* dst, int flags);

src
Source array, real or complex.
dst
Destination array of the same size and same type as the source.
flags
Transformation flags, O or a combination of the followfiags:
CV_DXT_INVERSE - perform inverse transform (wgost-scaling>
CV_DXT_SCALE - divide the result by the number of areégments
For convenience, the constant CV_DXT_FORWARD may be used instead ofQiteral

The functiorfcvDFT] [p 97] performs forward or inverse transform of 1D or 2D floating-point array:

Forward Fourier transform of 1D vector of N elements:
y=F ex,whereF j =exp(- <Pie*i*k/N), j=sqrt(-1)

Inverse Fourier transform of 1D vector of N elements:
x=F Tey=F Tey

Forward Fourier transform of 2D vector of MxN elements:
Y=F eXsF"

Inverse Fourier transform of 2D vector of MxN elements:
X=F " oYeF

In case of real (single-channel) data, the packed format, borrowed from IPL, is used to to represent a result
of forward Fourier transform or input for inverse Fourier transform:

ReY 00 ReY 01 ImY 01 ReY o2 ImY 02 - ReY oN2-1 ImY oNp2-1 ReY onp2
ReY 10 ReY 11 ImY 11 ReY 12 ImY 1,2 .. ReY 1N2-1 ImY inNp1 ReY 1npe2
ImY 20 ReY 21 ImY 27 ReY 22 ImY 22 .. ReY 2N/2-1 ImY oNp1 ImY 2 N2

ReY m2-10 ReY m31 ImY m31 ReY mM32 ImY m32 ... ReY M-3N/2-1 ImY m3nNe-1 ReY m3nNe
ImY mp2-10 ReY m21 ImY wm21 ReY m22 ImY m22 ... ReY M-2,N/2-1 MY ma2nNe-1 ImY m2NR2
ReY mpo0 ReY mi11 ImY Mma1 ReY Mma2 ImY ma2 ...ReY M-LN2-1 ImY manNez1r ImY manNe

Note: the last column is preseniNis even, the last row is presenMifs even.

In case of 1D real transform the result looks like the first row of the abhatmx

97

MulCss

Performs per-element multiplication of two Fourier spectrums of twaareays

void cvMulCss(const CvArr* srcA, const CvArr* srcB, CvArr* dst);

SrcA
The first source array.
srcB
The second source array.
dst
The destination array of the same type and the same sizesuiutoes.

The functioncvMulCss[p 98] performs per-element multiplication of the two packed matrices that are
produced by forward real Fourier transform (120By).

Calculating DFT’s of two real arrays, then multiplying result€byulCssand performing inverse DFT
on the product is equivalent yet faster way to find cyclic convolution of the two oragiagis.

DCT

Performs forward or inverse Discrete Cosine transform of 1D or 2D floatingquoayt

#define CV_DXT_INVERSE 1
#define CV_DXT_SCALE 2

#define CV_DXT_INV_SCALE (CV_DXT_SCALE|CV_DXT_INVERSE)
#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE

void cvDCT(const CVArr* src, CvArr* dst, int flags);

src
Source array, real 1D or 2D array.
dst
Destination array of the same size and same type as the source.
flags
Transformation flags, O or a combination of the followfiags:
CV_DXT_INVERSE - perform inversgansform
CV_DXT_SCALE - divide the result by the number of areégments
For convenience, the constant CV_DXT_FORWARD may be used instead ofQiteral

The functiorfcvDCT] [p 98] performs forward or inverse transform of 1D or 2D floating-point array:

98

Forward Cosine transform of 1D vector of N elements:
y=C ex,where C j =sqrt((i==0?1:2)/N) ecos(Pi ¢(2i+1) <k/N), j=sqrt(-1)

Inverse Cosine transform of 1D vector of N elements:
x=C 1 y=C T.y

Forward Cosine transform of 2D vector of MxN elements:
Y =C «XCT

Inverse Fourier transform of 2D vector of MxN elements:
X=C TeYeC

Dynamic Data Structures

CvMemStorage

Growing memorystorage

typedef struct CvMemStorage
{

struct CvMemBlock* bottom;/* first allocated block */

struct CvMemBlock* top; /* the current memory block - top of the stack */

struct CvMemStorage* parent; /* borrows new blocks from */

int block_size; /* block size */

int free_space; /* free space in the t op block (in bytes) */
} CvMemStorage;

Memory storage is a low-level structure used to store dynamically growing data structures such as
sequences, contours, graphs, subdivisions etc. It is organized as a list of memory blocks of equal size -
bottomfield is the beginning of the list ®ocksandtop is the currently used block, but not necessarily

the last block of the list. All blocks betwebattomandtop, not including the latter, are considered fully
ocupied; and all blocks betwetp and the last block, not includingp, are considered free atmp block

itself is partly ocupied free_spaceontains the number of free bytes left in the enimaf

New memory buffer that may be allocated explicitlydviviemStorageAllodp 102 function or implicitly

by higher-level functions, such[agSeqPudlfip 107 ,[cvGraphAddEddép 125 etc.,alwaysstarts in the

end of the current block if it fits there. After allocatiivee_spaces decremented by the size of the

allocated buffer plus some padding to keep the proper alignment. When the allocated buffer does not fit
into the available part @bp, the next storage block from the list is taketogsandfree_spaces reset to

the whole block size prior to ttalocation.

If there is no more free blocks, a new block is allocated (or borrowed from parent, see
[cvCreateChildMemStoragde 101]) and added to the end of list. Thus, the storage behaves as a stack with
bottomindicating bottom of the stack and the g#dp, free_spacgindicating top of the stack. The stack

top may be saved avSaveMemStorageA@s 103 , restored vigvRestoreMemStorageRps103 or

reset vigcvClearStoradép 719 .

99

CvMemBIlock

Memory storagélock

typedef struct CvMemBlock
{

struct CvMemBlock* prev;
struct CvMemBIlock* next;
} CvMemBIlock;

The structurfCvMemBlock[p 100 represents a single block of memory storage. Actual data of the
memory blocks follows the header, that is, ittte byte of the memory block can be retrieved with the
expressior{(char*)(mem_block_ptr+1))[i] However, normally there is no need to access the storage
structure fieldslirectly.

CvMemStoragePos

Memory storaggosition

typedef struct CvMemStoragePos

{
CvMemBlock* top;

int free_space;
} CvMemStoragePos;

The structure described below stores the position of the stack top that can be saved via
[cvSaveMemsStorageR@s 103 and restored viavRestoreMemStorageRfs103 .

CreateMemStorage

Creates memorgtorage

CvMemStorage* cvCreateMemStorage(int blockSize=0);

blockSize
Size of the storage blocks in bytes. If it is 0, the block size is set to default value - currently it is
=64K.

The functioricvCreateMemStoraff@ 100 creates a memory storage and returns pointer to it. Initially the
storage is empty. All fields of the header, excepbibek sizeare set t®.

100

CreateChildMemStorage

Creates child memaorstorage

CvMemsStorage* cvCreateChildMemStorage(CvMemStorage* parent);

parent
Parent memorgtorage.

The functiorcvCreateChildMemStorafje 101] creates a child memory storage that is similar to simple
memory storage except for the differences in the memory allocation/deallocation mechanism. When a
child storage needs a new block to add to the block list, it tries to get this block from the parent. The first
unoccupied parent block available is taken and excluded from the parent block list. If no blocks are
available, the parent either allocates a block or borrows one from its own parent, if any. In other words, the
chain, or a more complex structure, of memory storages where every storage is a child/parent of another is
possible. When a child storage is released or even cleared, it returns all blocks to the parent. In other
aspects, the child storage is the same as the satupége.

The children storages are useful in the following situation. Imagine that user needs to process dynamical
data resided in some storage and put the result back to the same storage. With the simplest approach, whel
temporary data is resided in the same storage as the input and output data, the storage will look as
following afterprocessing:

Dynamic data processing without using chitdrage

It Thatpnt. Jeoma e

Begnat [Doctpied) Data

It Catpt. Jeomaige

k.

v
Temgpar sry Diita Grarbage) [hatprat Trata

That is, garbage appears in the middle of the storage. However, if one creates a child memory storage in
the beginning of the processing, writes temporary data there and releases the child storage in the end, no
garbage will appear in the source/destinasimmage:

Dynamic data processing using a clatdrage

101

(g Charpent Forage

v

Willte retumae dtp o arent

ReleaseMemStorage

Releases memomtorage

void cvReleaseMemStorage(CvMemStorage** storage);

storage
Pointer to the releaseiorage.

The functioricvReleaseMemStorade 102 deallocates all storage memory blocks or returns them to the
parent, if any. Then it deallocates the storage header and clears the pointer to the storage. All children of
the storage must be released before the paresiessed.

ClearMemStorage
Clears memorgtorage
void cvClearMemStorage(CvMemStorage* storage);

storage
Memorystorage.

The functioricvClearMemStoragfp 102 resets the top (free space boundary) of the storage to the very
beginning. This function does not deallocate any memory. If the storage has a parent, the function returns
all blocks to theparent.

MemStorageAlloc

Allocates memory buffer in thetorage

void* cvMemStorageAlloc(CvMemStorage* storage, int size);

102

storage

Memory storage.
size

Buffer size.

The functioncvMemStorageAllgdp 1027 allocates memory buffer in the storage. The buffer size must
not exceed the storage block size, otherwise runtime error is raised. The buffer address is aligned by
CV_STRUCT_ALIGKEsizeof(doublejor the momentpytes.

SaveMemStoragePos

Saves memory storagesition

void cvSaveMemStoragePos(const CvMemStorage* storage, CvMemStoragePos* pos);

storage
Memory storage.
pos
The output position of the storatym.

The functiorcvSaveMemStorageRs 103 saves the current position of the storage top to the parameter
pos The functioficvRestoreMemStorageRs103 can further retrieve thigosition.

RestoreMemStoragePos

Restores memory storagesition

void cvRestoreMemStoragePos(CvMemStorage* storage, CvMemStoragePos* pos);

storage
Memory storage.
pos
New storage toposition.

The functioricvRestoreMemStorageRfs103 restores the position of the storage top from the parameter
pos This function and the functiggvClearMemStoragfp 102 are the only methods to release memory
occupied in memory blocks. Note again that there is no way to free memory in the middle of the occupied
part of thestorage.

Sequences

103

CvSeq

Growable sequence efements

#define CV_SEQUENCE_FIELDS() \
int flags; /* micsellaneous flags */\
int header_size; /* size of sequence header */ \
struct CvSeq* h_prev; /* previous sequence */\
struct CvSeq* h_next; /* next sequence */\
struct CvSeq* v_prev; /* 2nd previous sequence */\
struct CvSeq* v_next; /* 2nd next sequence */\
int total; /* total number of elements */\
int elem_size;/* size of sequence element in bytes */\
char* block_max;/* maximal bound of the last block */ \
char* ptr; /* current write pointer */ \
int delta_elems; /* how many elements allocated when the sequence grows (sequence granularity) */ \
CvMemStorage* storage; /* where the seq is stored */\
CvSeqBlock* free_blocks; /* free blocks list */ \
CvSeqBlock* first; /* pointer to the first sequence block */

typedef struct CvSeq

CV_SEQUENCE_FIELDS()
} CvSeq;

The structurfCvSedp 104 is a base for all of OpenCV dynamic datauctures.

Such an unusual definition via a helper macro simplifies the extension of the s{@xBedip 104 with
additional parameters. To extd@dSed[p 104 the user may define a new structure and put user-defined
fields after al[CvSedp 104 fields that are included via the macy_SEQUENCE_FIELDS()

There are two types of sequences - dense and sparse. Base type for dense seQuSsagp 04 and

such sequences are used to represent growable 1d arrays - vectors, stacks, queues, deques. They have no
gaps in the middle - if an element is removed from the middle or inserted into the middle of the sequence
the elements from the closer end are shifted. Sparse sequend@vBalfpe 119 base class and they are
discussed later in more details. They are sequences of nodes each of those may be either occupied or free
as indicated by the node flag. Such sequences are used for unordered data structures such as sets of
elements, graphs, hash tabés.

The fieldheader_sizeontains the actual size of the sequence header and should be greater or equal to
sizeof(CvSeq)

The fieldsh_prev, h_next, v_prev, nextcan be used to create hierarchical structures from separate
sequences. The fieldts prevandh_nextpoint to the previous and the next sequences on the same
hierarchical level while the fields prevandv_nextpoint to the previous and the next sequence in the

vertical direction, that is, parent and its first child. But these are just names and the pointers can be used in
a differentway.

The fieldfirst points to the first sequence block, whose structure is desdtribed.

The fieldtotal contains the actual number of dense sequence elements and number of allocated nodes in
sparsesequence.

104

The fieldflagscontain the particular dynamic type signat(€® SEQ_ MAGIC_VAlor dense sequences
andCV_SET_MAGIC_VAfor sparse sequences) in the highest 16 bits and miscellaneous information
about the sequence. The lowes SEQ_ELTYPE_BITSts contain the ID of the element type. Most of
sequence processing functions do not use element type but element size stieradsizelf sequence
contains the numeric data of ond@fMai [p 33] type then the element type matches to the corresponding
[CvMal [p 33] element type, e.g. CV_32SC2 may be used for sequence of 2D points, CV_32FC1 for
sequences of floating-point values €&/ SEQ_ELTYPE(seq_header_piracro retrieves the type of
sequence elements. Processing function that work with numerical sequences cladekthgzés equal

to the calculated from the type element size. Befliddai [p 33] compatible types, there are few extra
element types defined [gvtypes.hp ?7 header:

Standard Types of SequerElements

#define CV_SEQ_ELTYPE_GRAPH_EDGE CV_SEQ_ELTYPE_GENERIC /* &next_o, &next_d, &vtx_o, &vtx_d */
#define CV_SEQ_ELTYPE_GRAPH_VERTEX CV_SEQ_ELTYPE_GENERIC /*first_edge, &(X.y) */
#define CV_SEQ_ELTYPE_TRIAN_ATR CV_SEQ_ELTYPE_GENERIC /* vertex of the binary tree */

#define CV_SEQ_ELTYPE_CONNECTED_COMP CV_SEQ_ELTYPE_GENERIC /* connected component */
#define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /* (x,y,z) */

#define CV_SEQ_ELTYPE_POINT CV_32SC2 /*(x,y) */

#define CV_SEQ_ELTYPE_CODE CV_8UC1 /*freeman code: 0..7 */

#define CV_SEQ_ELTYPE_GENERIC 0 /* unspecified type of sequence elements */

#define CV_SEQ_ELTYPE_PTR CV_USRTYPEL /* =6 */

#define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /* &elem: pointer to element of other sequence */
#define CV_SEQ_ELTYPE_INDEX CV_32SC1 /* #elem: index of element of some other sequence */

The nextCV_SEQ_KIND_BITS®its specify the kind of theequence:

Standard Kinds afequences

[* generic (unspecified) kind of sequence */
#define CV_SEQ_KIND_GENERIC (0 << CV_SEQ_ELTYPE_BITS)

[* dense sequence suntypes */
#define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS)

[* sparse sequence (or set) subtypes */
#define CV_SEQ_KIND_GRAPH (3<<CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_SUBDIV2D (4 << CV_SEQ_ELTYPE_BITS)

The remaining bits are used to identify different features specific to certain sequence kinds and element
types. For example, curves made of poir@¥/(SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PO)NT

together with the flagV_SEQ_FLAG_CLOSEDBelong to the typ€V_SEQ_ POLYGOWMLI, if other flags

are used, to its subtype. Many contour processing functions check the type of the input sequence and
report an error if they do not support this type. Thddifypes.hp ?7 stores the complete list of all
supported predefined sequence types and helper macros designed to get the sequence type of other
properties. Below follows the definition of the building blocksefjuences.

105

CvSeqBlock

Continuous sequendsock

typedef struct CvSeqBlock
{

struct CvSeqBlock* prev; /* previous sequence block */
struct CvSeqgBlock* next; /* next sequence block */
int start_index; /* index of the first element in the block +
sequence->first->start_index */
int count; /* number of elements in the block */
char* data; /* pointer to the first element of the block */

} CvSeqBlock;

Sequence blocks make up a circular double-linked list, so the pganéerandnextare neveNULL and

point to the previous and the next sequence blocks within the sequence. It meaastttidhe last block

is the first block angbrev of the first block is the last block. The fielsisrt_indexandcounthelp to track

the block location within the sequence. For example, if the sequence consists of 10 elements and splits into
three blocks of 3, 5, and 2 elements, and the first block has the paratagtendex =2, then pairs
(start_indexcount)for the sequence blocks d&3), (5,5), and(10, 2) correspondingly. The parameter
start_indexof the first block is usuall® unless some elements have been inserted at the beginning of the
sequence.

CreateSeq

Createsequence

CvSeq* cvCreateSeq(int segFlags, int headerSize,
int elemSize, CvMemStorage* storage);

segFlags
Flags of the created sequence. If the sequence is not passed to any function working with a specific
type of sequences, the sequence value may be set to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize
Size of the sequence header; must be greater or eqizdétd(CvSeq)f a specific type or its
extension is indicated, this type must fit the base type header.

elemSize
Size of the sequence elements in bytes. The size must be consistent with the sequence type. For
example, for a sequence of points to be created, the eleme@\y$EQ ELTYPE_ POINShould
be specified and the parametégmSizaenust be equal tsizeof(CvPoint)

storage
Sequencéocation.

The functioricvCreateSddp 106 creates a sequence and returns the pointer to it. The function allocates
the sequence header in the storage block as one continuous chunk and fills the pelem@itzsflags
headerSizeandstoragewith passed values, saislta_elemso the default value (that may be reassigned
usingcvSetSeqBlockSizpp 107 function), and clears other fields, including the space behind

106

sizeof(CvSeq)

SetSeqBlockSize

Sets up sequence bloske

void cvSetSeqBlockSize(CvSeq* seq, int blockSize);

seq

Sequence.
blockSize

Desirable bloclsize.

The functioricvSetSeqBlockSizpp 107 affects the memory allocation granularity. When the free space

in the sequence buffers has run out, the function allob&iekSizebytes in the storage. If this block
immediately follows the one previously allocated, the two blocks are concatenated, otherwise, a new
sequence block is created. Therefore, the bigger the parameter is, the lower the possible sequence
fragmentation, but the more space in the storage is wasted. When the sequence is created, the parameter
blockSizas set to the default valselK. The function can be called any time after the sequence is created
and affects future allocations. The final block size can be different from the one desired, e.g., if it is larger
than the storage block size, or smaller than the sequence block header size plus the sequensi&lement

SeqPush

Adds element to sequenerd

char* cvSeqPush(CvSeq* seq, void* element=0);

seq
Sequence.
element
Addedelement.

The functioricvSegPudffip 107] adds an element to the end of sequence and retuns pointer to the allocated
element. If the inpuglementis NULL, the function simply allocates a space for one ratement.

The following code demonstrates how to create a new sequence usingdhon:

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* seq = cvCreateSeq(CV_32SC1, /* sequence of integer elements */
sizeof(CvSeq), /* header size - no extra fields */
sizeof(int), /* element size */
storage /* the container storage */);

inti;

for(i=0;i<100; i++)

int* added = (int*)cvSeqPush(seq, &i);
printf("%d is added\n", *added);

107

}

/* release memory storage in the end */
cvReleaseMemStorage(&storage);

The functioricvSeqPudifip 107] has O(1) complexity, but there is a faster method for writing large
sequences (sf@StartWriteSegp 116 and relatedunctions).

SeqPop
Removes element from sequercal

void cvSegPop(CvSeqg* seq, void* element=0);

seq
Sequence.

element
Optional parameter. If the pointer is not zero, the function copies the removed element to this
location.

The functioricvSeqPojip 108 removes an element from the sequence. The function reports an error if the
sequence is already empty. The function has O(1) complexity.

SeqPushFront

Adds element to sequenbeginning

char* cvSegPushFront(CvSeqg* seq, void* element=0);

seq
Sequence.
element
Addedelement.

The functiorfcvSegPushFrofip 109 is similar tdcvSeqPudlfip 107 but it adds the new element to the
beginning of the sequence. The function has Ggi)plexity.

SegPopFront

Removes element from sequemegyinning

void cvSegPopFront(CvSeq* seq, void* element=0);

108

seq
Sequence.

element
Optional parameter. If the pointer is not zero, the function copies the removed element to this
location.

The functio ip 108 removes an element from the beginning of the sequence. The
function reports an error if the sequence is already empty. The function has O(1) complexity.

SegPushMulti

Pushes several elements to the either eseéaidence

void cvSegPushMulti(CvSeq* seq, void* elements, int count, int in_front=0);

seq
Sequence.

elements
Added elements.

count
Number of elements to push.

in_front
The flags specifying the modified sequerce:
CV_BACK (=0) - the elements are added to the enskglience
CV_FRONT(!=0) - the elements are added to the beginnisgaience

The functiorcvSeqPushMultjp 109 adds several elements to either end of the sequence. The elements
are added to the sequence in the same order as they are arranged in the input array but they can fall into
different sequenchlocks.

SeqPopMulti

Removes several elements from the either ersggfience

void cvSeqgPopMulti(CvSeq* seq, void* elements, int count, int in_front=0);

seq
Sequence.

elements
Removed elements.

count
Number of elements to pop.

in_front
The flags specifying the modified sequeroel:
CV_BACK (=0) - the elements are removed from the ergegiience
CV_FRONT(!=0) - the elements are removed from the beginnisgaience

109

The functioncvSegqPopMuli{p 109 removes several elements from either end of the sequence. If the
number of the elements to be removed exceeds the total number of elements in the sequence, the function
removes as many elementspassible.

Seglnsert

Inserts element in sequenméddle

char* cvSeqlnsert(CvSeq* seq, int beforelndex, void* element=0);

seq
Sequence.

beforelndex
Index before which the element is inserted. Inserting before 0 (the minimal allowed value of the
parameter) is equal [ivSeqPushFrofip 108 and inserting beforseq->total(the maximal allowed
value of the parameter) is equakidgSeqgPudffip 107 .

element
Insertedelement.

The functioricvSeqinselfp 110 shifts the sequence elements from the inserted position to the nearest end
of the sequence and copies diementontent there if the pointer is not NULL. The function returns
pointer to the inserteelement.

SegRemove

Removes element from sequemcieldle

void cvSegRemove(CvSeq* seq, int index);

seq
Sequence.

index
Index of removealement.

The functioricvSegRemoVép 110 removes elements with the given index. If the index is out of range the
function reports an error. An attempt to remove an element from an empty sequence is a partitial case of
this situation. The function removes an element by shifting the sequence elements between the nearest end
of the sequence and thelexth position, not counting thatter.

ClearSeq

Clearssequence

110

void cvClearSeq(CvSeg* seq);

seq
Sequence.

The functioricvClearSelp 110 removes all elements from the sequence. The function does not return the
memory to the storage, but this memory is reused later when new elements are added to the sequence. Thit
function time complexity i©(1).

GetSegElem

Returns pointer to sequence element bindex

char* cvGetSeqElem(CvSeqg* seq, int index, CvSeqBlock** block=0);
#define CV_GET_SEQ_ELEM(TYPE, seq, index) (TYPE*)cvGetSeqElem((CvSeq*)(seq), (index), 0)

seq
Sequence.
index
Index of element.
block
Optional output parameter. If it is ndtJLL, the pointer to the sequence block containing the
requested element is stored in tloisation.

The functioricvGetSeqgElehfip 111] finds the element with the given index in the sequence and returns the
pointer to it. In addition, the function can return the pointer to the sequence block that contains the
element. If the element is not found, the function returns 0. The function supports negative indices, where
-1 stands for the last sequence element, -2 stands for the one before last, etc. If the sequence is most likely
to consist of a single sequence block or the desired element is likely to be located in the first block, then
the macrdCV_GET_SEQ_ELEM(elemType, seq, indexould be used, where the parametemTypas

the type of sequence elemenGuPoin}[p 30] for example), the parametsegis a sequence, and the
parametemdexis the index of the desired element. The macro checks first whether the desired element
belongs to the first block of the sequence and, if so, returns the element, otherwise the macro calls the
main functionGetSeqElemNegative indices always cause [dw&etSeqElehfp 111] call. The function

has O(1) time complexity assuming that number of blocks is much smaller than the nuelbereoits.

SeqElemldx
Returns index of concrete sequeertament
int cvSegElemldx(CvSeq* seq, void* element, CvSeqgBlock** block=0);

seq
Sequence.
element
Pointer to the element within the sequence.

111

block
Optional argument. If the pointer is MBULL, the address of the sequence block that contains the
element is stored in thiscation.

The functioncvSegElemid¥p 111] returns the index of a sequence element or a negative number if the
element is notound.

CvtSeqToArray

Copies sequence to one continuous bloakemory

void* cvCvtSeqToArray(CvSeq* seq, void* array, CvSlice slice=CV_WHOLE_SEQ);

seq
Sequence.
array
Pointer to the destination array that must fit all the sequence elements.
slice
The sequence part to copy to Hreay.

The functioncvCvtSeqToArrapp ?7 copies the entire sequence or subsequence to the specified buffer
and returns the pointer to theffer.

MakeSeqHeaderForArray

Constructs sequence framay

void cvMakeSeqHeaderForArray(int seqType, int headerSize, int elemSize,
void* array, int total,
CvSeq* sequence, CvSeqBlock* block);

seqType
Type of the created sequence.
headerSize
Size of the header of the sequence. Parameter sequence must point to the structure of that size or
greater size.
elemSize
Size of the sequence element.
array
Pointer to the array that makes up the sequence.
total
Total number of elements in the sequence. The number of array elements must be equal to the value
of this parameter.
sequence
Pointer to the local variable that is used as the sequence header.

112

block
Pointer to the local variable that is the header of the single sedplenke

The functiorcvMakeSeqHeaderForArrdp 117 initializes sequence header for array. The sequence

header as well as the sequence block are allocated by the user (for example, on stack). No data is copied
by the function. The resultant sequence will consists of a single block and have NULL storage pointer,
thus, it is possible to read its elements, but the attempts to add elements to the sequence will raise an error
in mostcases.

SeqgSlice
Makes separate header for the sequstice

CvSeq* cvSeqSlice(CvSeqg* seq, CvSlice slice=CV_WHOLE_SEQ,
CvMemStorage* storage=0, int copyData=0);

cvCloneSeq(seq],storage]) ~ cvSeqSlice(seq,CV_WHOLE_SEQ,storage,1)

seq
Sequence.

slice
The part of the sequence to extract.

storage
The destination storage to keep the new sequence header and the copied data if any. If it is NULL, the
function uses the storage containing the input sequence.

copyData
The flag that indicates whether to copy the elements of the extracteftsfig®atd=0) or not
(copyData=0)

The functioricvSeqSIlicHp 113 creates another sequence and either makes it share the elements of the
specified slice with the original sequence or creates another copy of the slice. So if one needs to process a
part of sequence but the processing function does not have a slice parameter, the required sequence slice
may be represented as a separate sequence using this function. Another purpose of the function is to make

a copy of entire sequence that is donfgw@loneSeljp ?7 inline shortcut t@cvSeqSlicHp 113

SeqRemoveSlice
Removes sequenstice
void cvSegRemoveSlice(CvSeq* seq, CvSlice slice);

seq
Sequence.

slice
The part of the sequenceremove.

113

The functiorcvSeqRemoveSlIi¢h 113 removes slice from thgequence.

SeqlnsertSlice

Inserts array in the middle séquence

void cvSeqlInsertSlice(CvSeq* seq, int beforelndex, const CvArr* fromArr);

seq
Sequence.

slice
The part of the sequenceremove.

The functioricvSeqlnsertSlidgp 114 inserts alfromArr array elements at the specified position of the
sequence. The array may be matrix or anaibguence.

Seqglnvert
Reverses the order of sequeertaments
void cvSeqlnvert(CvSeq* seq);

seq
Sequence.

The functioricvSeqinvel{p 114 reverses the sequence in-place - makes the first element go last, the last
element go firsetc.

SegSort

Sorts sequence element using the specified compdrtisotion

Fa<b?-1:a>b?1:0%
typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

void cvSeqSort(CvSeq* seq, CvCmpFunc func, void* userdata);

seq
The sequence to sort

func
The comparison function that returns negative, zero or positive value depending on the elements
relation (see the above declaration and the example below) - similar function is esedtbym C
runline except that in the latteserdatais not used

userdata
The user parameter passed to the compasion function; helps to avoid global variablecasesme

114

The functioricvSeqSolfp 114 sorts the sequence in-place using the specified criteria. Below is the
example of the functionse:

/* Sort 2d points in top-to-bottom left-to-right order */
static int cmp_func(const void* _a, const void* _b, void* userdata)
{

CvPoint* a = (CvPoint*)_a;

CvPoint* b = (CvPoint*)_b;

inty_diff = a->y - b->y;

int x_diff = a->x - b->x;

return y_diff ? y_diff : x_diff;

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage);
inti;

for(i=0;i<10;i++)
{
CvPoint pt;
pt.x = rand() % 1000;
pt.y = rand() % 1000;
cvSeqPush(seq, &pt);
}

cvSeqSort(seq, cmp_func, 0 /* userdata is not used here */);

/* print out the sorted sequence */

for(i=0; i< seg->total; i++)

{
CvPoint* pt = (CvPoint*)cvSeqElem(seq, i);
printf("(%d,%d)\n", pt->x, pt->y);

}

cvReleaseMemStorage(&storage);

StartAppendToSeq

Initializes process of writing teequence

void cvStartAppendToSeq(CvSeq* seq, CvSegWriter* writer);

seq
Pointer to the sequence.

writer
Writer state; initialized by thiunction.

The functioricvStartAppendToSefp 115 initializes the writer to write to the sequence. Written elements

are added to the end of the sequencEWYWRITE_SEQ_ELEM(written_elem, wri}anacro. Note that

during the writing process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see descriptiorjoeFlushSeqWrit¢fp 117 that helps to avoid some of thdifficulties).

115

StartWriteSeq

Creates new sequence and initializes writeitfor

void cvStartWriteSeq(int seqFlags, int headerSize, int elemSize,
CvMemsStorage* storage, CvSeqWriter* writer);

seqgFlags
Flags of the created sequence. If the sequence is not passed to any function working with a specific
type of sequences, the sequence value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.
headerSize
Size of the sequence header. The parameter value may not be leszabi{GvSeq)f a certain type
or extension is specified, it must fit the base type header.
elemSize
Size of the sequence elements in bytes; must be consistent with the sequence type. For example, if the
sequence of points is created (element §Pe SEQ_ELTYPE_POINT then the parameter
elemSize must be equalgizeof(CvPoint)
storage
Sequence location.
writer
Writer state; initialized by th&nction.

The functiorfcvStartWriteSeldp 116 is a composition dévCreateSd¢p 106 andcvStartAppendToSéq
[p 115 . The pointer to the created sequence is storeditar->segand is also returned by

cvEndWriteSefjp 116 function that should be called in tead.

EndWriteSeq

Finishes process of writingequence

CvSeq* cvEndWriteSeq(CvSeqWriter* writer);

writer
Writer state

The functioncvEndWriteSe(dp 116 finishes the writing process and returns the pointer to the written
sequence. The function also truncates the last incomplete sequence block to return the remaining part of
the block to the memory storage. After that the sequence can be read and reafiified

116

FlushSeqWriter

Updates sequence headers from the wsiizte

void cvFlushSeqWriter(CvSeqWriter* writer);

writer
Writer state

The functiorcvFlushSeqWritgfp 117] is intended to enable the user to read sequence elements,

whenever required, during the writing process, e.g., in order to check specific conditions. The function
updates the sequence headers to make reading from the sequence possible. The writer is not closed,
however, so that the writing process can be continued any time. In some algorithm requires often flush’es,

consider usinfgvSegPudffip 107] instead.

StartReadSeq

Initializes process of sequential reading freequence

void cvStartReadSeq(CvSeq* seq, CvSeqReader* reader, int reverse=0);

seq
Sequence.

reader
Reader state; initialized by the function.

reverse
Determines the direction of the sequence traversadvéfrseis 0, the reader is positioned at the first
sequence element, otherwise it is positioned at thelstent.

The functiorcvStartReadSefp 117] initializes the reader state. After that all the sequence elements from
the first down to the last one can be read by subsequent calls of theGWa&k&AD_SEQ_ELEM(
read_elem, readérin case of forward reading and by usy REV_READ_SEQ_ELEM(read_elem,
reader) in case of reversed reading. Both macros put the sequence eleneawt ®lenand move the

reading pointer toward the next element. A circular structure of sequence blocks is used for the reading
process, that is, after the last element has been read by theGvadgR&AD_SEQ_ELEMhe first

element is read when the macro is called again. The same apflésREV READ_SEQ_ELEMhere

is no function to finish the reading process, since it neither changes the sequence nor creates any
temporary buffers. The reader figdtt points to the current element of the sequence that is to be read next.
The code below demonstrates how to use sequence writezaet.

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* seq = cvCreateSeq(CV_32SCl1, sizeof(CvSeq), sizeof(int), storage);
CvSeqWriter writer;

CvSeqReader reader;

inti;

cvStartAppendToSeq(seq, &writer);

for(i=0;i<10;i++)

{

117

int val = rand()%100;
CV_WRITE_SEQ_ELEM(val, writer);
printf("%d is written\n", val);

}

cvEndWriteSeq(&writer);

cvStartReadSeq(seq, &reader, 0);
for(i=0; i< seqg->total; i++)

{
int val;

CV_READ_SEQ_ELEM(val, reader);
printf("%d is read\n”, val);
}

cvReleaseStorage(&storage);

GetSeqReaderPos
Returns the current readaosition
int cvGetSegReaderPos(CvSeqReader* reader);

reader
Readestate.

The functiorcvGetSeqReaderHfs 11§ returns the current reader position (within O ...
reader->seq->total 1).

SetSeqReaderPos

Moves the reader to specifipdsition

void cvSetSeqReaderPos(CvSeqReader* reader, int index, int is_relative=0);

reader
Reader state.
index
The destination position. If the positioning mode is used (see the next parameter) the actual position
will be indexmodreader->seqg->total
is_relative
If it is not zero, thetndexis a relative to the currepbsition.

The functioncvSetSeqReaderR{s 118 moves the read position to the absolute position or relative to the
currentposition.

118

Sets

CvSet

Collection ofnodes

typedef struct CvSetElem
{

int flags; /* it is negative if the node is free and zero or positive otherwise */
struct CvSetElem* next_free; /* if the node is free, the field is a
pointer to next free node */

}
CvSetElem;

#define CV_SET_FIELDS() \
CV_SEQUENCE_FIELDS() /* inherits from [CvSeq*/\
struct CvSetElem* free_elems; /* list of free nodes */

typedef struct CvSet

CV_SET_FIELDS()
} CvSet;

The structurfCvSel[p 119 is a base for OpenCV sparse dstraictures.

As follows from the above declarati@vSe}[p 119 inherits fron[CvSedp 104 and it adddree_elems

field it to, which is a list of free nodes. Every set node, whether free or not, is the element of the
underlying sequence. While there is no restrictions on elements of dense sequences, the set (and derived
structures) elements must start with integer field and be able to fit CvSetElem structure, because these two
fields (integer followed by the pointer) are required for organization of node set with the list of free nodes.
If a node is freeflagsfield is negative (the most-significant bit, or MSB, of the field is set)naxtl free

points to the next free node (the first free node is referencir@doyelemdield of[CvSel[p 119). And if

a node is occupiedlagsfield is positive and contains the node index that may be retrieved using
(set_elem->flags & CV_SET_ELEM_IDX_ MASK) expression, the rest of the node content is determined
by the user. In particular, the occupied nodes are not linked as the free nodes are, so the second field can
be used for such a link as well as for some different purpose. The macro

CV_IS _SET _ELEM(set _elem_ptgn be used to determined whether the specified node is occupied or

not.

Initially the set and the list are empty. When a new node is requiested from the set, it is taken from the list
of free nodes, which is updated then. If the list appears to be empty, a new sequence block is allocated and
all the nodes within the block are joined in the list of free nodes. Tdtasfield of the set is the total

number of nodes both occupied and free. When an occupied node is released, it is added to the list of free
nodes. The node released last will be occufiied

In OpenCMCvSel[p 119 is used for representing grap{@Graph[p 127), sparse multi-dimensional
arrays(CvSparseMalp 34]), planar subdivisionfCvSubdiv2D[p ?7) etc.

119

CreateSet

Creates emptget

CvSet* cvCreateSet(int setFlags, int headerSize,
int elemSize, CvMemStorage* storage);

setFlags

Type of the created set.
headerSize

Set header size; may not be less thiaaof(CvSet)
elemSize

Set element size; may not be less {BaetElerf{p ?7 .
storage

Container for theset.

The functiorcvCreateSélp 120 creates an empty set with a specified header size and element size, and

returns the pointer to the set. The function is just a thin layer on fCo€ateSdfp 106 .
SetAdd

Occupies a node in treet

int cvSetAdd(CvSet* set, void* elem, void** insertedElem=0);

set
Set.
elem
Optional input argument, inserted element. If not NULL, the function copies the data to the allocated
node (The MSB of the first integer field is cleared after copying).
insertedElem
Optional output argument; the pointer to the allocatdd

The functiorcvSetAdd[p 12Q allocates a new node, optionally copies input element data to it, and
returns the pointer and the index to the node. The index value is taken from the loweildutsfield of
the node. The function has O(1) complexity, however there exists a faster function for allocating set nodes

(sedcvSetNewfp 121]).

SetRemove

Removes element froset

void cvSetRemove(CvSet* set, int index);

120

set
Set.
index
Index of the removedlement.

The functioricvSetRemovégp 120 removes an element with a specified index from the set. If the node at
the specified location is not occupied the function does nothing. The function has O(1) complexity,
howeverlcvSetRemoveByHR{ip 121] provides yet faster way to remove a set element if it is located
already.

SetNew

Adds element to set (fagariant)

CvSetElem* cvSetNew(CvSet* set);

set
Set.

The functioricvSetNeWp 121] is inline light-weight variant dévSetAddi[p 12Q . It occupies a new node

and returns pointer to it rather thiaxaex.

SetRemoveByPtr

Removes set element givenisinter

void cvSetRemoveByPtr(CvSet* set, void* elem);

set
Set.

elem
Removecelement.

The functioricvSetRemoveByH{ip 12]] is inline light-weight variant atvSetRemoVé¢p 12Q that takes
element pointer. The function does not check whether the node is occupied or not - the user should take
care ofit.

GetSetElem

Finds set element by itlsdex

CvSetElem* cvGetSetElem(CvSet* set, int index);

121

set
Set.
index
Index of the set element withinsequence.

The functioncvGetSetEleip 127] finds a set element by index. The function returns the pointer to it or 0
if the index is invalid or the corresponding node is free. The function supports negative indices as it uses

cvGetSeqgElepfp 117] to locate thanode.

ClearSet

Clearsset

void cvClearSet(CvSet* set);

set
Clearedset.

The functio fp 122 removes all elements from set. It has O(1) toomplexity.

Graphs

CvGraph

Oriented or unoriented weigtegaph

#define CV_GRAPH_VERTEX_FIELDS() \
int flags; /* vertex flags */ \
struct CvGraphEdge* first; /* the first incident edge */

typedef struct CvGraphVtx

{
CV_GRAPH_VERTEX_FIELDS()

}
CvGraphVix;

#define CV_GRAPH_EDGE_FIELDS() \
int flags; /* edge flags */ \
float weight; /* edge weight */ \
struct CvGraphEdge* next[2]; /* the next edges in the incidence lists for staring (0) */\
/* and ending (1) vertices */ \
struct CvGraphVix* vtx[2]; /* the starting (0) and ending (1) vertices */
typedef struct CvGraphEdge
CV_GRAPH_EDGE_FIELDS()
}
CvGraphEdge;

#define CV_GRAPH_FIELDS() \
CV_SET_FIELDS() /* set of vertices */ \

122

CvSet* edges; /* set of edges */

typedef struct CvGraph

{
CV_GRAPH_FIELDS()

}
CvGraph;

The structurfCvGraph[p 127 is a base for graphs useddpenCV.

Graph structure inherits frof@vSel[p 119 - this part describes common graph properties and the graph
vertices, and contains another set as a member - this part describes theigesph

The vertex, edge and the graph header structures are declared using the same technique as other extendibl
OpenCYV structures - via macros, that simplifies extension and customization of the structures. While the
vertex and edge structures do not inherit flowsetElerf{p ?7 explicitly, they satisfy both conditions on

the set elements - have an integer field in the beginning and fit CvSetElem structdtegJtelds are

used as for indicating occupied vertices and edges as well as for other purposes, for example, for graph
traversal (seevStartScanGrapfp 130 et al.), so it is better not to use thdirectly.

The graph is represented as a set of edges each of whose has the list of incident edges. The incidence lists
for different vertices are interleaved to avoid information duplication as mymbsasible.

The graph may be oriented or unoriented. In the latter case there is no distiction between edge connecting
vertex A with vertex B and the edge connecting vertex B with vertex A - only one of them can exist in the
graph at the same moment and it represents both <A, B> and <&jgks..

CreateGraph

Creates emptgraph

CvGraph* cvCreateGraph(int graphFlags, int headerSize, int vertexSize,
int edgeSize, CvStorage* storage);

graphFlags
Type of the created graph. Usually, it is eitt& SEQ_ KIND_GRAPIHbr generic unoriented
graphs an€CV_SEQ_KIND_GRAPHQV_GRAPH_FLAG_ORIENTEfr generic oriented graphs.
headerSize
Graph header size; may not be less giaaof(CvGraph).
vertexSize
Graph vertex size; the custom vertex structure must starfOni@raphVik[p 27 (use
CV_GRAPH_VERTEX_FIELD$()
edgeSize
Graph edge size; the custom edge structure must stalEw@haphEddép ?7 (use
CV_GRAPH_EDGE_FIELDY()
storage
The graptcontainer.

123

The functioricvCreateGrapfp 123 creates an empty graph and returns pointér to

GraphAddVix

Adds vertex taggraph

int cvGraphAddVix(CvGraph* graph, CvGraphVix* vitx,
CvGraphVix** insertedVix=0);

graph
Graph.
Vix
Optional input argument used to initialize the added vertex (only user-defined fields beyond
sizeof(CvGraphVixare copied).
insertedVtx
Optional output argument. If nBIULL, the address of the new vertex is writtkare.

The functioncvGraphAddVix[p 124 adds a vertex to the graph and returns the vartix.

GraphRemoveVix

Removes vertex frorgraph

void cvGraphRemoveVix(CvGraph* graph, int vtxldx);

graph
Graph.
vixldx
Index of the removedertex.

The functioncvGraphRemoveAddVip ?7 removes a vertex from the graph together with all the edges
incident to it. The function reports an error, if the input vertex does not belonggmfite

GraphRemoveVitxByPtr
Removes vertex frorgraph
void cvGraphRemoveVixByPtr(CvGraph* graph, CvGraphVix* vix);
graph
Graph.

vitx
Pointer to the remove¢krtex.

124

The functiorcvGraphRemoveVixByH{ip 124 removes a vertex from the graph together with all the
edges incident to it. The function reports an error, if the vertex does not belongtaphe

GetGraphVix

Finds graph vertex biyndex

CvGraphVix* cvGetGraphVix(CvGraph* graph, int vtxldx);

graph
Graph.
vixldx
Index of thevertex.

The functioncvGetGraphViNp 125 finds the graph vertex by index and returns the pointer to it or NULL
if the vertex does not belong to tbeaph.

GraphVixldx

Returns index of grapbertex

int cvGraphVixldx(CvGraph* graph, CvGraphVtx* vitx);

graph
Graph.
Vitx
Pointer to the grapvertex.

The functiorcvGraphVixldx[p 129 returns index of the graplertex.

GraphAddEdge
Adds edge tgraph

int cvGraphAddEdge(CvGraph* graph, int startldx, int endldx,
CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

graph
Graph.
startldx
Index of the starting vertex of the edge.
endldx
Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

125

edge

Optional input parameter, initialization data for the edge.
insertedEdge

Optional output parameter to contain the address of the inssiged

The functioncvGraphAddEddép 125 connects two specified vertices. The function returns 1 if the edge

has been added successfully, 0 if the edge connecting the two vertices exists already and -1 if either of the
vertices was not found, the starting and the ending vertex are the same or there is some other critical
situation. In the latter case (i.e. when the result is negative) the function also reports andafaulhy

GraphAddEdgeByPtr

Adds edge tgraph

int cvGraphAddEdgeByPtr(CvGraph* graph, CvGraphVix* startVtx, CvGraphVix* endVix,
CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

graph
Graph.
startVtx
Pointer to the starting vertex of the edge.
endVix
Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.
edge
Optional input parameter, initialization data for the edge.
insertedEdge
Optional output parameter to contain the address of the inserted edge within teetedge

The functioncvGraphAddEddép 125 connects two specified vertices. The function returns 1 if the edge

has been added successfully, 0 if the edge connecting the two vertices exists already and -1 if either of the
vertices was not found, the starting and the ending vertex are the same or there is some other critical
situation. In the latter case (i.e. when the result is negative) the function also reports andafaulhy

GraphRemoveEdge
Removes edge frograph
void cvGraphRemoveEdge(CvGraph* graph, int startidx, int endldx);
graph
Graph.

startldx
Index of the starting vertex of the edge.

126

endldx
Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
notmatter.

The functiorcvGraphRemoveEd{e 126 removes the edge connecting two specified vertices. If the
vertices are not connected [in that order], the function do#sng.

GraphRemoveEdgeByPtr

Removes edge fromraph

void cvGraphRemoveEdgeByPtr(CvGraph* graph, CvGraphVix* startVtx, CvGraphVix* endVix);

graph
Graph.
startVix
Pointer to the starting vertex of the edge.
endVix
Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
notmatter.

The functioncvGraphRemoveEdgeByHpw 127 removes the edge connecting two specified vertices. If
the vertices are not connected [in that order], the functionrdmbgg.

FindGraphEdge
Finds edge igraph

CvGraphEdge* cvFindGraphEdge(CvGraph* graph, int startldx, int endldx);
#define cvGraphFindEdge cvFindGraphEdge

graph
Graph.
startldx
Index of the starting vertex of the edge.
endldx
Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
notmatter.

The functioncvFindGraphEddép 127] finds the graph edge connecting two specified vertices and returns
pointer to it or NULL if the edge does natists.

127

FindGraphEdgeByPtr
Finds edge igraph

CvGraphEdge* cvFindGraphEdgeByPtr(CvGraph* graph, CvGraphVix* startVtx, CvGraphVix* endVix);
#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr

graph
Graph.
startVtx
Pointer to the starting vertex of the edge.
endVix
Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

The functiorcvFindGraphEddép 127] finds the graph edge connecting two specified vertices and returns
pointer to it or NULL if the edge does ratists.

GraphEdgeldx

Returns index of grapédge

int cvGraphEdgeldx(CvGraph* graph, CvGraphEdge* edge);

graph
Graph.
edge
Pointer to the grapbdge.

The functioricvGraphEdgeldXp 12§ returns index of the grapgdge.

GraphVixDegree

Counts edges indicent to thiertex

int cvGraphVitxDegree(CvGraph* graph, int vtxldx);

graph
Graph.
Vix
Index of the graphertex.

The functiorcvGraphVixDegrgdp 128 returns the number of edges incident to the specified vertex, both
incoming and outcoming. To count the edges, the following coawed:

128

CvGraphEdge* edge = vertex->first; int count = 0;
while(edge)
{
edge = CV_NEXT_GRAPH_EDGE(edge, vertex);
count++;

}

The macraCV_NEXT_GRAPH_EDGE(edge, verjarturns the edge incidentyertexthat follows after
edge

GraphVixDegreeByPtr
Finds edge igraph
int cvGraphVitxDegreeByPtr(CvGraph* graph, CvGraphVix* vtx);

graph
Graph.
Vix
Pointer to the graphertex.

The functioncvGraphVixDegrggp 128 returns the number of edges incident to the specified vertex, both
incoming andbutcoming.

ClearGraph
Clearsgraph
void cvClearGraph(CvGraph* graph);

graph
Graph.

The functio p 129 removes all vertices and edges from the graph. The function has O(1)
time complexity.

CloneGraph
Clonegraph
CvGraph* cvCloneGraph(const CvGraph* graph, CvMemStorage* storage);
graph
The graph to copy.

storage
Container for theopy.

129

The functio p 129 creates full copy of the graph. If the graph vertices or edges have
pointers to some external data, it still be shared between the copies. The vertex and edge indices in the

new graph may be different from the original, because the function defragments the vertex aatsedge

CvGraphScanner

Graph traversadtate

typedef struct CvGraphScanner

{
CvGraphVix* vix; [* current graph vertex (or current edge origin) */
CvGraphVix* dst; [* current graph edge destination vertex */
CvGraphEdge* edge; /* current edge */

CvGraph* graph; /* the graph */

CvSeq* stack; /* the graph vertex stack */

int index; /* the lower bound of certainly visited vertices */
int mask; /* event mask */

}

CvGraphScanner;

The structurgCvGraphScannfp 130 is used for depth-first graph traversal. See discussion of the
functionsbelow.

StartScanGraph

Initializes graph traversetate

void cvStartScanGraph(CvGraph* graph, CvGraphScanner* scanner,
CvGraphVix* vtx=0, int mask=CV_GRAPH_ALL_ITEMS);

graph
Graph.
scanner
Graph traversal state. It is initialized by the function.
Vitx
Initial vertex to start from.
mask
Event mask indicating which events are interesting to the user (N ldextGraphltenjp 131]
function returns control to the user) It can@¢ GRAPH_ALL_ITEMSll events are interesting) or
combination of the followindlags:
® CV_GRAPH_VERTEX - stop at the graph vertices visited for the tfirsd
e CV_GRAPH_TREE_EDGE - stop at tree ed@ese edgeis the edge connecting the last visited
vertex and the vertex to be visitedxt)
e CV_GRAPH_BACK_EDGE - stop at back edgbackedgeis the edge connecting the last
visited vertex and the vertex that was visibedore)
® CV_GRAPH_FORWARD_EDGE - stop at forward ed¢sward edgeis the edge connecting
the vertex not visited yet and the last visited vertex (in that orderfoflvard edgesare

130

possible only during oriented graphversal)

® CV_GRAPH_CROSS EDGE - stop at cross edgesssedgeis similar tobackedgebut the
ending vertex belongs to another traversal tree).cftwsedgesare also possible only during
oriented grapht#raversal)

® CV_GRAPH_ANY_EDGE - stop and any ed@eee, back, forward and crogsige}

e CV_GRAPH_NEW_TREE - stop in the beginning of every new traversal tree. When the
traversal procedure visits all vertices and edges reachible from the initial vertex (the visited vertices
together with tree edges make up a tree), it search for some unvisited vertices in the graph and resumes the
traversal process from the vertex. Before starting the new tree (including the initial call of the traversal
procedure) it generat€v_GRAPH_NEW_TRE&vent.

For unoriented graphs traversal tree corresponds to a connected componegtagtthe

e CV_GRAPH_BACKTRACKING - stop at every already visited vertex during backtracking -

returning to visited already visited vertexes of the travérsal

The functiorcvStartScanGrapfp 130 initializes graph traverser state. The initialized structure is used in
[cvNextGraphlterip 131] function - the incremental travergabcedure.

NextGraphltem
Makes one or more steps of the graph travenssledure
int cvNextGraphltem(CvGraphScanner* scanner);

scanner
Graph traversal state. It is updated byftirection.

The functioricvNextGraphlterrip 131] traverses through the graph until an event interesting to the user
(that is, an event, marked in thmaskin|cvStartScanGrapfp 130 call) is met or the traversal is over. In

the first case it returns one of the events, listed in the descriptroasiparameter above and with the

next call with the same state it resumes the traversal. In the latter case it returns CV_GRAPH_OVER (-1).
When the event i€V_GRAPH_VERTEXrCV_GRAPH_BACKTRACKINGr

CV_GRAPH_NEW_TREHhe currently observed vertex is store@éanner->vix And if the event is
edge-related, the edge itself is storedcanner->edgethe previously visited vertex - stanner->vtxand

the other ending vertex of the edge sednner->dst

EndScanGraph

Finishes graph traversptocedure

void cvEndScanGraph(CvGraphScanner* scanner);

scanner
Graph traversadtate.

131

The functioricvEndScanGrapfp 131] finishes graph traversal procedure. It must be called after
CV_GRAPH_OVER event is received or if the traversal is interrupted somewhere before, because the
traverser state contains dynamically allocated structures that neecktedsed

Trees

CV_TREE_NODE_FIELDS

Helper macro for a tree node tygeclaration

#define CV_TREE_NODE_FIELDS(node_type) \
int flags; /* micsellaneous flags */ \
int header_size; /* size of sequence header */ \
struct node_type* h_prev; /* previous sequence */ \
struct node_type* h_next; /* next sequence */ \
struct node_type* v_prev; /* 2nd previous sequence */ \
struct node_type* v_next; /* 2nd next sequence */

The macraCV_TREE_NODE_FIELDS{$ used to declare structures that can be organized into
hierarchical strucutures (trees). Although, it is not shown, the macro is used to 104 -

the basic type for all dynamical structures [@wFileNod¢[p 140 - XML node type used in
reading/writing functions (sdeersistencesection below). The trees made of nodes declared using this
macro can be processed using the functions described belowsedtian.

CvTreeNodelterator

Opens existing or creates new Hl@rage

typedef struct CvTreeNodelterator
{

const void* node;

int level;

int maxLevel;

}

CvTreeNodelterator;

The structur¢CvTreeNodelteratpip 132 is used to traverse trees. The tree node declaration should start
with CV_TREE_NODE_FIELDS(..macro.

InitTreeNodelterator

Initializes tree nodéerator

132

void cvinitTreeNodelterator(CvTreeNodelterator* treelterator,
const void* first, int maxLevel);

treelterator
Tree iterator initialized by the function.

first
The initial node to start traversing from.

maxLevel
The maximal level of the trgirst node assumed to be at the first level) to traverse up to. For
example, 1 means that only nodes at the same lefiettashould be visited, 2 means that the nodes
on the same level disst and their direct children should be visitd.

The functiorcvinitTreeNodelteratdfp 137 initializes tree iterator. The tree is traversed in depth-first
order.

NextTreeNode
Returns the currently observed node and moves iterator toward theodext
void* cvNextTreeNode(CvTreeNodelterator* treelterator);

treelterator
Tree iterator initialized by thiinction.

The functioricvNextTreeNodgp 133 returns the currently observed node and then updates the iterator -
moves it toward the next node. In other words, the function behavior is similar to *p++ expression on
usual C pointer or C++ collection iterator. The function returns NULL if there is nomodes.

PrevTreeNode
Returns the currently observed node and moves iterator toward the prresieus
void* cvPrevTreeNode(CvTreeNodelterator* treelterator);

treelterator
Tree iterator initialized by thieinction.

The functioricvPrevTreeNodép 133 returns the currently observed node and then updates the iterator -
moves it toward the previous node. In other words, the function behavior is similar to *p-- expression on
usual C pointer or C++ collection iterator. The function returns NULL if there is nomodes.

133

TreeToNodeSeq

Gathers all node pointers to the singgguence

CvSeq* cvTreeToNodeSeq(const void* first, int header_size, CvMemStorage* storage);

first

The initial tree node.
header_size

Header size of the created sequence (sizeof(CvSeq) is the most used value).
storage

Container for thesequence.

The functiorcvTreeToNodeS¢fp 134 puts pointers of all nodes reacheable ffast to the single
sequence. The pointers are written subsequently in the deptbrdiest

InsertNodelntoTree

Adds new node to theee

void cvinsertNodelntoTree(void* node, void* parent, void* frame);

node
The inserted node.
parent
The parent node that is already in the tree.
frame
The top level node. fparentandframeare the same/,_prevfield of nodeis set to NULL rather than
parent

The functiorcvinsertNodelntoTrefp 134 adds another node into tree. The function does not allocate any
memory, it can only modify links of the treedes.

RemoveNodeFromTree

Removes node frortnee

void cvRemoveNodeFromTree(void* node, void* frame);

node
The removed node.

frame
The top level node. Kiode->v_prev ENULL andnode->h_previs NULL (i.e. if nodeis the first
child of framé), frame->v_nexis set tonode->h_nex{i.e. the first child or frame ishanged).

134

The functiorcvRemoveNodeFromTrde 134 removes node from tree. The function does not deallocate
any memory, it can only maodify links of the tneedes.

PersistencgWriting and Reading Structures)

OpenFileStorage

Opens existing or creates new fi@rage

CvFileStorage* cvOpenFileStorage(const char* filename, CvMemStorage* memstorage, int flags);

filename
The storage file name.

memstorage
Memory storage used for storing temporary data and read dynamic structures. If it is NULL, the
temporary memory storage is created and used.

flags
Can be one of thillowing:
CV_STORAGE_READ - the storage is open ifeading
CV_STORAGE_WRITE_TEXT - the storage is open for writing data inftexbat
CV_STORAGE_WRITE_BINARY - the storage is open for writing data in XDR and
base64-encoded binafyrmat

The functiorcvOpenFileStoragpp 135 open existing file storage or creates a new storage. The file has
XML format and it allows user to store as standard OpenCV arrays and dynamic structures as well as
custom data structures. The function returns poinf€vtaleStoraglp ?7 structure, which declaration is
hidden, though not needed to acadissctly.

ReleaseFileStorage
Releases filstorage
void cvReleaseFileStorage(CvFileStorage** storage);

storage
Double pointer to the released fiorage.

The functioricvReleaseFileStoraldp 135 closes the file on disk that has been written or read and
releases all temporary structures. It must be called after all I/O operations with the stofiaighace

135

Write

Writes array or dynamic structure to the terage

void cvWrite(CvFileStorage* storage, const char* name,
const void* structPtr,
CvAttrList attributes=cvAttrList(),
int flags=0);

storage
File storage.

name
Name, or ID, of the written structure. It is used to index the written information and then access it
using these ID’s. If it is NULL or empty ("), no ID is written. If it has special value "<auto>", the
address of the written structure in heximal notation will be used as the name.

structPtr
The written structure - CvMat*, Iplimage*, CvSeq*, CvGraph* etc.

attributes
The list of attributes that can be formed from NULL-terminated arraattf_nameattr_value>
pairs usinggvAttrList [p ?7 () function (see the example below). Most often it is just empty. The
passed attributes override standard attributes with the same name, e.g. user mayeguifylor
dt attributes to write dynamic structures with custom headers and element types.

flags
The operation flags passed into the specific loading/storing function for the particular data type.
Usually it is not used and may be set to 0. In case of contour trees (for defevBisd€ontoungp
176 function inStructuralAnalysischapter of the reference) it may be set to CV_WRITE_TREE to
force the whole contour tree to xgitten.

The functiorfcvWritd [p 136] writes a passed structure to OpenCYV file storage. The sample below
demonstrates how to write different types of datstéoage.

/~k~k*~k*~k~k*~k*~k~k*~k*~k~k* ertlng Data /
#include <cv.h>

int main(int argc, char** argv)
{
CvMemStorage* memstorage = cvCreateMemStorage(0);
CvFileStorage* storage = cvOpenFileStorage("sample.xml", 0, CV_STORAGE_WRITE_TEXT);
CvMat* mat = cvCreateMat(3, 3, CV_32FC1);
CvSeq* seq = cvCreateSeq(CV_32SC1, sizeof(CvSeq), sizeof(int), memstorage);
char* seq_attr[] =

"created_by", argv[0],
"the_sequence_creation_date", "1 Sep 2002",
"comment”, “just a comment",

0

b
CvTermCriteria criteria = { CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.1 };
const char* stringl = "test";

inti;

cvSetldentity(mat);
cvWrite(storage, "The identity matrix", mat, cvAttrList(), 0);

for(i=0;i<10;i++)

136

cvSeqPush(seq, &i);

cvWrite(storage, "SmallSequence”, seq, cvAttrList(seq_attr,0), 0);
cvWriteElem(storage, "SampleStructure”, "iid", &criteria); /* writing C structure, see below */
cvWriteElem(storage, "SampleString”, "a", stringl); /* writing C string, see below */

cvReleaseFileStorage(&storage);
cvReleaseMemStorage(&memstorage);
return O;

After compiling and runnning the sample the S&mple.xmivill contain something likéhis:

<?xml version="1.0"?>
<opencv_storage>
<struct id="The identity matrix" type="CvMat" dt="f" size="3 3" format="text">
1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000
</struct>
<struct id="SmallSequence" type="CvSeq" flags="42990003" dt="i" format="text"
created_by="D:\OpenCV\bin\test.exe" the_sequence_creation_date="1 Sep 2002"
comment="just a comment">
o 1 2 3 4 5 6 7 8 9
</struct>
<elem id="SampleStructure" dt="iid" value=" 3 10 1.000000000000000e-001"/>
<elem id="SampleString" dt="a" value="test"/>
</opencv_storage>

StartWriteStruct

Writes the opening tag of a compouwstdicture

void cvStartWriteStruct(CvFileStorage* storage, const char* name,
const char* typeName=0, const void* structPtr=0,
CvAttrList attributes=cvAttrList());

storage
File storage.

name
Name, or ID, of the written structure. It is used to index the written information and then access it
using these ID’s. If it is NULL or empty ("), no ID is written. If it has special value "<auto>", the
address of the written structure in heximal notation will be used as the name.

structPtr
The written structure pointer. It is not used uniesse ="<auto>".

attributes
The list of attributes (the same as in the prevfauastion)

The functiorcvStartWriteStru¢fp 137] writes the opening tag of a compound structure. It is used by
[p 136 function and can be used explicitly to group some structures or write an writer for some
custom datatructure.

137

EndWriteStruct

Closes the last opental

void cvEndWriteStruct(CvFileStorage* storage);

storage

File storage.

The functioncvEndWriteStrugfp 13§ closes the most recent opertag.

WriteElem

Writes a scalavariable

void cvWriteElem(CvFileStorage* storage, const char* name,

storage

const char* elem_spec, const void* data_ptr);

File storage

name

Name, or ID, of the written scalar. As usual, "<auto>" means that the data pointer will be used as a
name.

elem_spec
A sequence of character each of whose specifies a type of particualar field of thestvtitteme:

data_ptr

'a’ - NULL-terminated C string. It must be the only character of specification string.

'u’ - 8-bit unsigned number

'c’ - 8-bit signed number

's’ - 16-bit signed number

'i" - 32-bit signed number

'f" - single precision floating-point number

'd’ - double precision floating-point number

'p’ - pointer, it is not stored, but it takes some space in the input structure, so it must be specified
in order to write the subsequent fields correctly.

'r' - the same as pointer, but the integer number, but the lowest 32 bit of the pointer are written
as an integer. This is useful for storing dynamic structures where different nodes reference each
other. In this case the pointers are replaced with some indices, the structure is written and, the
pointers are restored back.

Pointer to the written data. The written data can be a single value of one of basic numerical types
(unsigned char, char, short, irftpat or doublg, C structure containing one or more numerical fields
or a character string. In case of C structures an ideal alignment must beslhisgd must be aligned
by 2 bytesjntegers andfloat's by 4 bytes andoublés by 8 bytes. Usually such an alignment is
used by C/C++ compiler by default, however some structureBlIE&APFILEHEADERWIN32
structure break this rule. If you want to store such a structure, you may use sprintf(elem_spec,

138

"%du", sizeof(my_struct)) to form an element spec that allows to store arbitrary structure, though the
representation will neither be readable portable.

The functioncvWriteElenm([p 13§ writes a single numberical value, a structure of numerical values or a
character string. Here are some exampleddg@é&itd [p 136 function discussion for complesample):

CvScalar scalar={1., 2., 3.14, 4. };
cvWriteElem(filestorage, "scalarl", "4d", &scalar);

CvPoint pt ={ 100, 50 }
cvWriteElem(filestorage, "feature_point", "2i", &pt };

struct
{
charc;
uchar u;
short s;
inti;
float f;
double d;
}
big_twos = { 20, 200, 20000, 2000000, 2e10, 2e100 };
cvWriteElem(filestorage, "big_twos", "cusifd", &big_twos);

cvWriteElem(filestorage, "stringl”, "a", "Hello, world!" };

Read

Reads array or dynamic structure from thedtlarage

void* cvRead(CvFileStorage* storage, const char* name, CvAttrList** list=0);

storage
File storage.
name
Name of the structure to read.
list
Optional output parameter that is filled with the node attribliges

The functioricvRead[p 139 reads a structure with the specified name from OpenCV file storage. The
structure is stored inside the file storage so it is be deallocated when the file storage is released, except the
case when it is dynamic strucutre and non-NULL memory storage was pdss€pémFileStoragpp

134 function. If you want to keep the sturcture, jgs€lonet[p 27 .

ReadElem

Reads a scalamariable

139

void cvReadElem(CvFileStorage* storage, const char* name, void* data_ptr);

storage
File storage
name
Name of the variable to read.
data_ptr
Pointer to the destination structure. In case of stri@ts, ptrshould bechar** - pointer to the
string pointer that is filled by thieinction.

The functioricvReadElenrjp 139 reads a single numberical value, a structure of numerical values or a
character string. The order the variables are read in may be different from the order they are written. Here

are examples - counterparts for examples celvriteElen[p 13§ discussion:

CvScalar scalar;
cvWriteElem(filestorage, "scalarl", &scalar);

CvPoint pt;
cvWriteElem(filestorage, "feature_point", &pt };

struct

{
charc;
uchar u;
short s;
inti;
float f;
double d;

}
big_twos;

cvReadElem(filestorage, "big_twos", &big_twos);

const char* stringl = 0;
cvReadElem(filestorage, "stringl”, (void*)&stringl };

CvFileNode

XML noderepresentation

typedef struct CvFileNode
{
int flags; /* micsellaneous flags */
int header_size; /* size of node header */
struct node_type* h_prev; /* previous node having the same parent */
struct node_type* h_next; /* next node having the same parent */
struct node_type* v_prev; /* the parent node */
struct node_type* v_next; /* the first child node */
const char* tagname; /* INTERNAL: XML tag name */
const char* name; /* the node name */
CvAttrList* attr; /* list of attributes */
struct CvFileNode* hash_next; /* INTERNAL: next entry in hash table */
unsigned hash_val; /* INTERNAL: hash value */
int elem_size; /* size of a structure elements */

140

struct CvTypelnfo* typeinfo; /* INTERNAL: type information */

const char* body; /* INTERNAL: pointer to the structure or scalar content within XML file,
filled by XML parser */

const void* content; /* the read structure, NULL if it is read yet */

}
CvFileNode;

The structurfCvFileNodé[p 14Q represents an XML node - building block of OpenCYV file storage. The
nodes are organized into tree that has a root node correponding to <opencv_storage> tag. When a file
storage is written, the tree is constructe@oWwritd [p 134 ,[cvStartWriteStrudfp 137 ,
[cvEndWriteStrudfp 138 andcvWriteElen[p 13§ functions, and it does not to be accessed directly in
most of cases. When the file storage is read, the whole tree is reconstructed by XML parser in
[cvOpenFileStoragfp 135 function, but none of nodes are decoded. Instead, a particular node can be
decoded vigvReadFileNodé¢p 141 function, after its pointer is retrived by the node name using
cvGetFileNodHp 141] function or the node is reached from the root node. The functions
[cvinitTreeNodelteratpfp 137 ,|cvNextTreeNodgp 133 andcvPrevTreeNodé 133 can be used to
traverse the XML tree. When the node is decodedientfield becomes valid and the same pointer will
be returned by sebsequent callgu®eadFileNodgp 141] orfcvReat[p 139 for thisnode.

GetFileNode

Finds XML node byhame

CvFileNode* cvGetFileNode(CvFileStorage* storage, const char* name);

storage
File storage.
name
The searched node name. If it is NULL, the root of the XML treetigned.

The functiorcvGetFileNodHp 141] locates XML node by name and returns pointer to the node or NULL
if the node is notound.

ReadFileNode

Decodes XML nodeontent

void* cvReadFileNode(CvFileStorage* storage, CvFileNode* node, CvAttrList** list=0);

storage
File storage.
node
The node to decode.
list
Optional output parameter that is filled with the node attribliges

141

The functioricvReadFileNodép 141] decodes the file node contentcéfntentfield of the node is not
NULL, no decoding is done and the pointer is sinrplyrned.

142

Image Processing and Analysi®keference

e |DrawingFunction§[p 145
o [Lind [p 145
o [LineAA][p 146
Rectangldp 146
[p 147
[Eipsd[p 147
[p 148
[p 149
[FiiConvexPoly[p 149
[PolyLind[p 150
[p 150
[p 151
PutText(p 151
O [GetTexiSizHp 152
e |Gradients, Edges ar@brner§[p 152
o [Sobd[p 152
O [Caplacé(p 154
o [Canny[p 154
O |PreCornerDetefdp 155
O |CornerEigenValsAndVegp 155
O |CornerMinEigenValp 156
O [FindCornerSubP|fp 156
O |GoodFeaturesToTraldb 15§
® [Sampling, Interpolation and Geometridaansformgp 158
o [InitLinefterato}[p 158
o [SampleLingp 159
O [GetRectSubPl#p 160
O |GetQuadrangeSubPjr 160
O [Resizéip 162
e [MorphologicalOperationp 163
O [CreateStructuringElementfg 163
O |ReleaseStructuringEleméjipt 163
o [Erodé[p 164
o [p 164
O [MorphologyEX(p 165
e [Filters and ColoConversiof{p 166
o [Smooth[p 166
O [integra)[p 167
o [CviColof[p 167]
o [Thresholip 169

O O O0OO0OO0OO0OO0OO0OO0OOo

143

O |AdaptiveThresholdp 172
o [[UT[p173

e |Pyramids and thApplicationg[p 173
o [PyrDown[p 173
o [PyrUglp 173
O |PyrSegmentatigfp 174

e |Connectedcomponent$p 175
O |ConnectedComifp 175
O [FloodFill[p 175
o [FindContourkp 176
O [StartFindContouffp 177]
O [FindNextContoyifp 17§
O [SubstituteContoliip 17§
O |[EndFindContour$p 179
O [DrawContourp 179

e [Image and contounomentyp 180
© [Moment${p 180
O |GetSpatialMomenfip 181]
O |GetCentralMomenfp 181]
O |GetNormalizedCentralMomeffy 181]
O |GetHuMomentgp 187

e [Special Imagdransformgp ?9
© [HoughLineHp ?7
o [DistTransformip 27

e [HistogramFunction§[p ?79
o [Histogramip 779
O [CreateHig{p 27
O [SetHistBinRangefp ?79
o [ReleaseHi$ip 77
o [ClearHis}{p 27
O |MakeHistHeaderForArrafp ?7
O |QueryHistValue 10p ?79
O |GetHistValue 1[p ?9
O |GetMinMaxHistValug[p ?9
© [NormalizeHisf[p ?7
o [ThreshHigtp 27
© [CompareHig{p 27
O [CopyHis}ip 27
o [CalcHist(p 7
O |CalcBackProje¢ip ?9
O |CalcBackProjectPatdip ?7
O |CalcProbDensityp ?9

O |CalcEMD2[p ?9

144

e |Utility Function§[p ?79
O |[MatchTemplatdp 779

Note:

The chapter describes functions for image processing and analysis. Most of the functions work with 2d
arrays of pixels. We refer the arrays as "images" however they do not neccesserily have to be Iplimage’s,
they may be CvMat’s or CvMatND’s agell.

Drawing Functions

Drawing functions work with arbitrary 8-bit images or single-channel images with larger depth: 16s, 32s,
32f, 64f All the functions include parameter color that means rgb value (that may be constructed with
CV_RGBmnacro) for color images and brightness for graysoadges.

If a drawn figure is partially or completely outside the image,dtijged.

CV_RGB

Constructs a coloralue

#define CV_RGB(r, g, b) (int)((uchar)(b) + ((uchar)(g) << 8) + ((uchar)(r) << 16))

Line
Draws simple or thick lineegment

void cvLine(CvArr* img, CvPoint ptl, CvPoint pt2, double color, int thickness=1, int connectivity=8);

img
The image.
ptl
First point of the line segment.
pt2
Second point of the line segment.
color
Line color (RGB) or brightness (grayscale image).
thickness
Line thickness.
connectivity
Line connectivity, 8 (by default) or 4. It is possible to pass 0 inste8@d of

The functioricvLing [p 145 draws the line segment betwgath andpt2 points in the image. The line is
clipped by the image or ROI rectangle. The 8-connected or 4-connected Bresenham algorithm is used for
simple line segments. Thick lines are drawn with rounding endings. To specify the line color, the user may
use the macr@€V_RGB(r, g, b).

145

LineAA

Draws antialiased linsegment

void cvLineAA(CvArr* img, CvPoint ptl, CvPoint pt2, double color, int scale=0);

img
Image.
ptl
First point of the line segment.
pt2
Second point of the line segment.
color
Line color (RGB) or brightness (grayscale image).
scale
Number of fractional bits in the end pocdordinates.

The functioricvLineAA] [p 146 draws the 8-connected line segment betwe&nandpt2 points in the

image. The line is clipped by the image or ROI rectangle. The algorithm includes some sort of Gaussian
filtering to get a smooth picture. To specify the line color, the user may use the@vadR&B(r, g,

b).

Rectangle

Draws simple, thick or filledectangle

void cvRectangle(CvArr* img, CvPoint ptl, CvPoint pt2, double color, int thickness=1);

img
Image.
ptl
One of the rectangle vertices.
pt2
Opposite rectangle vertex.
color
Line color (RGB) or brightness (grayscale image).
thickness
Thickness of lines that make up the rectangle. Negative values, e.g. CV_FILLED, make the function
to draw a filledrectangle.

The functioricvRectangldp 146 draws a rectangle with two opposite corngrfs andpt2 .

146

Circle

Draws simple, thick or filledircle

void cvCircle(CvArr* img, CvPoint center, int radius, double color, int thickness=1);

img
Image where the line is drawn.
center
Center of the circle.
radius
Radius of the circle.
color
Circle color (RGB) or brightness (grayscale image).
thickness
Thickness of the circle outline if positive, otherwise indicates that a filled circle hasltavioe.

The functioricvCircld [p 147 draws a simple or filled circle with given center and radius. The circle is
clipped by ROI rectangle. The Bresenham algorithm is used both for simple and filled circles. To specify
the circle color, the user may use the m&yo RGB (r, g, b).

Ellipse

Draws simple or thick elliptic arc or fills ellipsector

void cvEllipse(CvArr* img, CvPoint center, CvSize axes, double angle,
double startAngle, double endAngle, double color, int thickness=1);

img

Image.
center

Center of the ellipse.
axes

Length of the ellipse axes.
angle

Rotation angle.
startAngle

Starting angle of the elliptic arc.
endAngle

Ending angle of the elliptic arc.
color

Ellipse color (RGB) or brightness (grayscale image).
thickness

Thickness of the ellipsarc.

147

The functiorfcvETlipsé[p 147] draws a simple or thick elliptic arc or fills an ellipse sector. The arc is
clipped by ROI rectangle. The generalized Bresenham algorithm for conic section is used for simple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and thick arcs. All the
angles are given in degrees. The picture below explains the meaningafdaheeters.

Parameters of Elliptié\rc

EllipseAA

Draws antialiased elliptiarc

void cvEllipseAA(CvArr* img, CvPoint center, CvSize axes, double angle,
double startAngle, double endAngle, double color, int scale=0);

img

Image.
center

Center of the ellipse.
axes

Length of the ellipse axes.
angle

Rotation angle.
startAngle

Starting angle of the elliptic arc.
endAngle

Ending angle of the elliptic arc.
color

Ellipse color (RGB) or brightness (grayscale image).

148

scale
Specifies the number of fractional bits in the center coordinates andizaes

The functioncvEllipseAA [p 148 draws an antialiased elliptic arc. The arc is clipped by ROI rectangle.
The generalized Bresenham algorithm for conic section is used for simple elliptic arcs here, and
piecewise-linear approximation is used for antialiased arcs and thick arcs. All the angles are in degrees.

FillPoly

Fills polygonsinterior

void cvFillPoly(CvArr* img, CvPoint** pts, int* npts, int contours, double color);

img
Image.
pts
Array of pointers to polygons.
npts
Array of polygon vertex counters.
contours
Number of contours that bind the filled region.
color
Polygon color (RGB) or brightness (graysdat@ge).

The functioncvFillPoly [p 149 fills an area bounded by several polygonal contours. The function fills
complex areas, for example, areas with holes, contour self-intersettion,

FillConvexPoly

Fills convexpolygon

void cvFillConvexPoly(CvArr* img, CvPoint* pts, int npts, double color);

img
Image.
pts
Array of pointers to a single polygon.
npts
Polygon vertex counter.
color
Polygon color (RGB) or brightness (grayscatage).

The functiorcvFillConvexPoly[p 149 fills convex polygon interior. This function is much faster than the
functionjcvFillPoly [p 149 and fills not only the convex polygon but any monotonic polygon, that is, a
polygon whose contour intersects every horizontal line (scan line) twicerab#ie

149

PolyLine
Draws simple or thiclpolygons

void cvPolyLine(CvArr* img, CvPoint** pts, int* npts, int contours, int isClosed,
double color, int thickness=1, int connectivity=8);

img
Image.
pts
Array of pointers to polylines.
npts
Array of polyline vertex counters.
contours
Number of polyline contours.
isClosed
Indicates whether the polylines must be drawn closed. If closed, the function draws the line from the
last vertex of every contour to the first vertex.
color
Polygon color (RGB) or brightness (grayscale image).
thickness
Thickness of the polyline edges.
connectivity
The connectivity of polyline segments, 8 (by default}i.or

The functio [p 150 draws a set of simple or thigolylines.

PolyLineAA

Draws antialiasegolygons

void cvPolyLineAA(CvArr* img, CvPoint** pts, int* npts, int contours,
int isClosed, int color, int scale =0);

img
Image.
pts
Array of pointers to polylines.
npts
Array of polyline vertex counters.
contours
Number of polyline contours.
isClosed
Indicates whether the polylines must be drawn closed. If closed, the function draws the line from the
last vertex of every contour to the first vertex.

150

color
Polygon color (RGB) or brightness (grayscale image).
scale
Specifies number of fractional bits in the coordinates of polylartces.

The functio [p 150 draws a set of antialias@dlylines.

InitFont

Initializes fontstructure

void cvinitFont(CvFont* font, CvFontFace fontFace, float hscale,
float vscale, float italicScale, int thickness);

font
Pointer to the font structure initialized by the function.

fontFace
Font name identifier. Only the fo@V_FONT_VECTORRS currently supported.

hscale
Horizontal scale. If equal tb.0Of , the characters have the original width depending on the font type.
If equal t00.5f , the characters are of half the original width.

vscale
Vertical scale. If equal td.0f , the characters have the original height depending on the font type. If
equal t00.5f , the characters are of half the original height.

italicScale
Approximate tangent of the character slope relative to the vertical line. Zero value means a non-italic
font, 1.0f means=45° slope, etc. thickness Thickness of lines composing letters outlines. The
functionlcvLing [p 145 is used for drawinggtters.

The functio [p 157 initializes the font structure that can be passed further into text drawing
functions. Although only one font is supported, it is possible to get different font flavors by varying the
scale parameters, slope, dahitkness.

PutText

Draws textstring

void cvPutText(CvArr* img, const char* text, CvPoint org, CvFont* font, int color);

img
Input image.
text
String to print.
org
Coordinates of the bottom-left corner of the first letter.

151

font
Pointer to the font structure.
color
Text color (RGB) or brightness (grayscateage).

The functiorficvPutTextp 151] renders the text in the image with the specified font and color. The printed
text is clipped by ROI rectangle. Symbols that do not belong to the specified font are replaced with the
rectanglesymbol.

GetTextSize

Retrieves width and height of testring

void cvGetTextSize(CvFont* font, const char* textString, CvSize* textSize, int* ymin);

font
Pointer to the font structure.

textString
Input string.

textSize
Resultant size of the text string. Height of the text does not include the height of character parts that
are below the baseline.

ymin
Lowest y coordinate of the text relative to the baseline. Negative, if the text includes such characters
asg,j, p,q,Y, etc., and zestherwise.

The functiorcvGetTextSizdp 152 calculates the binding rectangle for the given text string when a
specified font isised.

Gradients, Edges andCorners

Sobel

Calculates first, second, third or mixed image derivatives using extendedofelstor

void cvSobel(const CvArr* |, CvArr* J, int dx, int dy, int apertureSize=3);

I
Source image.

Destination image.

(0)'4
Order of the derivative x .

152

oy
Order of the derivative y .

apertureSize
Size of the extended Sobel kernel, must be 1, 3, 5 or 7. In all cases except 1, apertureSize x
apertureSize separable kernel will be used to calculate the derivatiapdfareSize =1 3x1 or
1x3 kernel is used (Gaussian smoothing is not done). There is also speci@lWag@HARR=-1)
that corresponds to 3x3 Scharr filter that may give more accurate results than 3x3 Sobel. Scharr
aperture is:

|-30 3|
-10 0 10]
|-30 3|

for x-derivative or transposed fgrderivative.

The functioricvSobdl[p 157 calculates the image derivative by convolving the image with the
appropriatkernel:

Jx,y) =d XY Jfdx X edy ¥ | (xy)

The Sobel operators combine Gaussian smoothing and differentiation so the result is more or less robust to
the noise. Most often, the function is called with (ox=1, oy=0, apertureSize=3) or (ox=0, oy=1,
apertureSize=3) to calculate first x- or y- image derivative. The first case corresponds

kernel, depending on the image ori¢imigin ~ field of Iplilmage structure). No scaling is done, so the
destination image usually has larger by absolute value numbers than the source image. To avoid overflow,
the function requires 16-bit destination image if the source image is 8-bit. The result can be converted
back to 8-bit usinfgvConvertScalép ?7 orlcvConvertScaleAlbfp 64] functions. Besides 8-bit images

the function can process 32-bit floating-point images. Both source and destination must be single-channel
images of equal size or R@ike.

153

Laplace

Calculates Laplacian of thmage

void cvLaplace(const CVvArr* |, CvArr* J, int apertureSize=3);

I
Source image.
J
Destination image.
apertureSize
Aperture parameter for Sobel operator ([se8obdi[p 157).

The functioricvLaplac§p 154 calculates Laplacian of the source image by summing second x- and y-
derivatives calcualted using Sologlerator:

Jxy)=d 2ldx 2 +d Z2ldy 2

SpecifyingapertureSize =1 gives the fastest variant that is equal to convolving the image with the
following kernel:

010
11-4 1
010

As well as irfcvSobdl[p 157 function, no scaling is done and the same combinations of input and output
formats aresupported.

Canny

Implements Canny algorithm for eddetection

void cvCanny(const CvArr* img, CvArr* edges, double threshold1,
double threshold2, int apertureSize=3);

img
Input image.
edges
Image to store the edges found by the function.
threshold1
The first threshold.
threshold2
The second threshold.
apertureSize
Aperture parameter for Sobel operator {segobdl[p 157).

154

The functioricvCanny[p 154 finds the edges on the input imagey and marks them in the output image
edges using the Canny algorithm. The smallesttobsholdl andthreshold2 is used for edge
linking, the largest - to find initial segments of strauges.

PreCornerDetect

Calculates two constraint images for cordetection

void cvPreCornerDetect(const CvArr* img, CvArr* corners, int apertureSize=3);

img
Input image.
corners
Image to store the corner candidates.
apertureSize
Aperture parameter for Sobel operator ([segobdi[p 157).

The functioricvPreCornerDetedp 155 finds the corners on the input imaigey and stores them in the
corners image in accordance witlethod 1 for corner detection desctibed in tipade.

CornerEigenValsAndVecs

Calculates eigenvalues and eigenvectors of image blocks for cleteetion

void cvCornerEigenValsAndVecs(const CvArr* |, CvArr* eigenvyv,
int blockSize, int apertureSize=3);

I
Input image.
eigenvv
Image to store the results. It must be 6 times wider than the input image.
blockSize
Neighborhood size (see discussion).
apertureSize
Aperture parameter for Sobel operator ([se8obdi[p 157).

For every pixel the functioavCornerEigenValsAndVecs considerdlockSize x blockSize
neigborhood S(p). It calcualtes covariation matrix of derivatives over the neigbh@siood

| sum s (dl/dx) 2 sum s (dli/dx «di/dy)|
M= I
| sum sp) (di/dx edl/dy) sum s (di/dy) 2

After that it finds eigenvectors and eigenvalues of the resultant matrix and stores them into destination
image in formA 1, A5, X1,Y1, X2,Y>2), where

A1, A, - eigenvalues dff notsorted

155

(x1,Y1) - eigenvector correspondingXq
(X2, Y2) - eigenvector corresponding xe

CornerMinEigenVal

Calculates minimal eigenvalue of image blocks for code¢ection

void cvCornerMinEigenVal(const CvArr* img, CvArr* eigenvv, int blockSize, int apertureSize=3);

img
Input image.
eigenvv
Image to store the minimal eigen values. Should have the same &iEg as
blockSize
Neighborhood size (see discussiofte€ornerEigenValsAndVeflp 155).
apertureSize
Aperture parameter for Sobel operator [se8obdi[p 152). format. In the case of floating-point
input format this parameter is the number of the fixed float filter usedifferencing.

The functiorcvCornerMinEigenVa[p 156 is similar tdcvCornerEigenValsAndVefp 155 but it
calculates and stores only the minimal eigen value of derivative covariation matrix for every pixel, i.e.
min(A 1, A») in terms of the previousinction.

FindCornerSubPix

Refines cornelocations

void cvFindCornerSubPix(Iplimage* I, CvPoint2D32f* corners,
int count, CvSize win, CvSize zeroZone,
CvTermCriteria criteria);

Input image.

corners
Initial coordinates of the input corners and refined coordinates on output.

count
Number of corners.

win
Half sizes of the search window. For examplevyiif =(5,5) then 5*2+1 x 5*2+1 = 11 x 11 search
window is used.

zeroZone
Half size of the dead region in the middle of the search zone over which the summation in formulae
below is not done. It is used sometimes to avoid possible singularities of the autocorrelation matrix.
The value of (-1,-1) indicates that there is no such size.

156

criteria
Criteria for termination of the iterative process of corner refinement. That is, the process of corner
position refinement stops either after certain number of iteration or when a required accuracy is
achieved. Theriteria may specify either of or both the maximum number of iteration and the
requiredaccuracy.

The functioricvFindCornerSubPjjp 15€ iterates to find the sub-pixel accurate location of a corner, or
"radial saddle point", as shown in on the pictoetow.

. _gn R - .
red) gradient dir=ction

Sub-pixel accurate corner (radial saddle point) locator is based on the observation that any vegtor from
to p is orthogonal to the imaggadient.

The core idea of this algorithm is based on the observation that every vector from thg teat@oinp
located within a neighborhood qfis orthogonal to the image gradienpatubject to image and
measurement noiséhus:

g =Dl 5, Te(@p i)

whereDI . is the image gradient at the one of the pgintsin a neighborhood af . The value ofj is
to be found such that; is minimized. A system of equations may be set up syithset tozero:

sum; (DI p, DIy, T)eg-sum ; (DI p, *DIy, Tep;)=0

where the gradients are summed within a neighborhood ("search winday'Cafling the first gradient
termGand the second gradient tebngives:
q:G'l ob

The algorithm sets the center of the neighborhood window at this new geanidrthen iterates until the
center keeps within a settreshold.

157

GoodFeaturesToTrack

Determines strong corners onage

void cvGoodFeaturesToTrack(Iplimage* image, Iplimage* eigimage, Iplimage* templimage,
CvPoint2D32f* corners, int* cornerCount,
double qualityLevel, double minDistance);

image

The source 8-bit or floating-point 32-bit, single-channel image.
eiglmage

Temporary floating-point 32-bit image of the same sizenage .
templmage

Another temporary image of the same size and same forre@lasmge .
corners

Output parameter. Detected corners.
cornerCount

Output parameter. Number of detected corners.
qualityLevel

Multiplier for the maxmin eigenvalue; specifies minimal accepted quality of image corners.
minDistance
Limit, specifying minimum possible distance between returned corners; Euclidian distased.is

The functiorcvGoodFeaturesToTradk 158 finds corners with big eigenvalues in the image. The

function first calculates the minimal eigenvalue for every source image pixelaognerMinEigenVal

[p 1564 function and stores them @iglmage . Then it performs non-maxima suppression (only local
maxima in 3x3 neighborhood remain). The next step is rejecting the corners with the minimal eigenvalue
less thamqualityLevel emax(igimage (x,y)). Finally, the function ensures that all the corners found
are distanced enough from one another by considering the corners (the most strongest corners are
considered first) and checking that the distance between the newly considered feature and the features
considered earlier is larger thamnDistance . So, the function removes the features than are too close
to the strongefeatures.

Sampling, Interpolation and Geometrical Transforms

InitLinelterator

Initializes lineiterator

int cvinitLinelterator(const CvArr* img, CvPoint ptl, CvPoint pt2,
CvLinelterator* linelterator, int connectivity=8);

img
Image.

158

ptl
Starting the line point.
pt2
Ending the line point.
linelterator
Pointer to the line iterator state structure.
connectivity
The scanned line connectivity, 4&r

The functiorcvinitLinelteratof[p 15§ initializes the line iterator and returns the number of pixels

between two end points. Both points must be inside the image. After the iterator has been initialized, all
the points on the raster line that connects the two ending points may be retrieved by successive calls of
CV_NEXT_LINE_POINTpoint. The points on the line are calculated one by one using 4-connected or
8-connected Bresenhaaigorithm.

Example. Using line iterator to calculate pixel values along the coldme

CvScalar sum_line_pixels(Ipllmage* img, CvPoint ptl, CvPoint pt2)

{

CvLinelterator iterator;

int blue_sum =0, green_sum =0, red_sum = 0;

int count = cvinitLinelterator(img, ptl, pt2, &iterator, 8);

for(inti=0; i< count; i++){
blue_sum += iterator.ptr[O];
green_sum += iterator.ptr[1];
red_sum += iterator.ptr[2];
CV_NEXT_LINE_POINT (iterator);
* print the pixel coordinates: demonstrates how to calculate the coordinates */
{
int offset, X, y;
/* assume that ROI is not set, otherwise need to take it into account. */
offset = iterator.ptr - (uchar*)(img->imageData);
y = offset/img->widthStep;
x = (offset - y*img->widthStep)/(3*sizeof(uchar) /* size of pixel */);
printf("(%d,%d)\n", X, y);
}

return cvScalar(blue_sum, green_sum, red_sum);

}
SampleLine

Reads raster line touffer

int cvSampleLine(const CvArr* img, CvPoint ptl, CvPoint pt2,
void* buffer, int connectivity=8);

img
Image.

159

ptl
Starting the line point.
pt2
Ending the line point.
buffer
Buffer to store the line points; must have enough size to store|pt2ax(-ptl.x |+1,
[pt2.y -ptl.y |+1) points in case of 8-connected line doi@.x -ptl.x |[+pt2.y -ptly |[+1in
case of 4-connected line.
connectivity
The line connectivity, 4 d8.

The functiorcvSampleLingp 159 implements a particular case of application of line iterators. The
function reads all the image points lying on the line betw&nandpt2 , including the ending points,
and stores them into thoeiffer.

GetRectSubPix

Retrieves pixel rectangle from image with sub-paaturacy

void cvGetRectSubPix(const CvArr* |, CvArr* J, CvPoint2D32f center);

I
Source image.

Extracted rectangle.

center
Floating point coordinates of the extracted rectangle center within the source image. The center must
be inside themage.

The functiorcvGetRectSubPjjp 160 extracts pixels fronh :

J(x+width(J)/2, y+height(J)/2)=I(x+center.x, y+center.y)

where the values of pixels at non-integer coordinates (x+center.x, y+center.y) are retrieved using bilinear
interpolation. Every channel of multiple-channel images is processed independently. Whereas the
rectangle center must be inside the image, the whole rectangle may be partially occluded. In this case, the
replication border mode is used to get pixel values beyond the imoagearies.

GetQuadrangeSubPix

Retrieves pixel quadrangle from image with sub-paeduracy

void cvGetQuadrangeSubPix(const CvArr* I, CvArr* J, const CVArr* M,
int fillOutliers=0, CvScalar fillValue=cvScalarAll(0));

160

Source image.

J
Extracted quadrangle.
M
The transformation 3 x 2 matrjA|b] (see the discussion).
fillOutliers
The flag indicating whether to interpolate values of pixel taken from outside of the source image
using replication mod€illOutliers =0) or set them a fixed val(éllOutliers =1).
fillvalue
The fixed value to set the outlier pixels tdiliOutliers =1.

The functiorcvGetQuadrangleSubRjr ?7 extracts pixels fronh at sub-pixel accuracy and stores them
to J asfollows:

J(x+width(J)/2, y+height(J)/2)= I(A 11 XA ytbh 1, A o1 X+A 5 y+b 5),

where Aand b are taken from M
| A 11 A b g

M= I
[A 21 Az b 2|

where the values of pixels at non-integer coordinawgs,y) T +b are retrieved using bilinear
interpolation. Every channel of multiple-channel images is proc@sdedendently.

Example. Using cvGetQuadrangeSubPix for imageotation.

#include "cv.h"
#include "highgui.h"
#include "math.h"

int main(int argc, char** argv)

{
Iplimage* src;
[* the first command line parameter must be image file name */
if(argc==2 && (src = cvLoadlmage(argv[1], -1))!=0)

Iplimage* dst = cvClonelmage(src);
int delta = 1;
int angle = 0O;

cvNamedWindow("src", 1);
cvShowlmage("src", src);

for(;:)
{
float m[6];
double factor = (cos(angle*CV_P1/180.) + 1.1)*3;
CvMat M = cvMat(2, 3, CV_32F, m);
int w = src->width;
int h = src->height;

m[0] = (float)(factor*cos(-angle*2*CV_P1/180.));

161

m[1] = (float)(factor*sin(-angle*2*CV_P1/180.));

m[2] = w*0.5f;
m[3] = -m[1];
m[4] = m[Q];
m[5] = h*0.5f;

cvGetQuadrangleSubPix(src, dst, &M, 1, cvScalarAll(0));

cvNamedWindow("dst", 1);
cvShowlmage("dst", dst);

if(cvWaitKey(5) == 27)
break;
angle = (angle + delta) % 360;
}
}
return O;

}

Resize

Resizesmage
void cvResize(const CvArr* |, CvArr* J, int interpolation=CV_INTER_LINEAR);

I
Source image.

Destination image.
interpolation
Interpolationmethod:
® CV_INTER_NN - nearest-neigbor interpolation,
® CV_INTER_LINEAR - bilinear interpolation (used by default)

The functioricvResizHp 167 resizes imagé so that it fits exactly td. If ROl is set, the function
consideres the ROI as supported as usual. the source image using the specified structuring element B that
determines the shape of a pixel neighborhood over which the minintakeis

C=erode(A,B): C(l)=min King) AK)
The function supports the in-place mode when the source and destination pointers are the same. Erosion

can be applied several timigsrations parameter. Erosion on a color image means independent
transformation of all thehannels.

162

Morphological Operations

CreateStructuringElementEx

Creates structuringlement

IplConvKernel* cvCreateStructuringElementEx(int nCols, int nRows, int anchorX, int anchorY,
CvElementShape shape, int* values);

nCols
Number of columns in the structuring element.
nRows
Number of rows in the structuring element.
anchorX
Relative horizontal offset of the anchor point.
anchorY
Relative vertical offset of the anchor point.
shape
Shape of the structuring element; may have the following values:
e CV_SHAPE_RECTa rectangular element;
® CV_SHAPE_CROS3 cross-shaped element;
e CV_SHAPE_ELLIPSE, an elliptic element;
® CV_SHAPE_CUSTOM user-defined element. In this case the paravaiiees specifies the
mask, that is, which neighbors of the pixel musttesidered.
values
Pointer to the structuring element data, a plane array, representing row-by-row scanning of the
element matrix. Non-zero values indicate points that belong to the element. If the pditdet.is
then all values are considered non-zero, that is, the element is of a rectangular shape. This parameter
is considered only if the shapeGY¥Y _SHAPE_CUSTOM

The functiorcv CreateStructuringElementg ?7 allocates and fills the structui@ConvKernel ,
which can be used as a structuring element in the morphologierdtions.

ReleaseStructuringElement

Deletes structuringlement

void cvReleaseStructuringElement(IplConvKernel** ppElement);

ppElement
Pointer to the deleted structurietgment.

The functiorcv ReleaseStructuringElemélut 27 releases the structui@ConvKernel that is no
longer needed. fppElement is NULL, the function has no effect. The function returns created
structuringelement.

163

Erode

Erodes image by using arbitrary structuraglgment

void cvErode(const CvArr* A, CvArr* C, IplConvKernel* B=0, int iterations=1);

A

Source image.
C

Destination image.
B

Structuring element used for erosion. If iINBILL, a 3x3 rectangular structuring element is used.
iterations
Number of times erosion &pplied.

The functioricvErodé¢[p 164 erodes the source image using the specified structuring element B that
determines the shape of a pixel neighborhood over which the minintakers

C=erode(A,B): C(x,y)=min (X.y)inB wy) AX,Y)

The function supports the in-place mode when the source and destination pointers are the same. Erosion
can be applied several timésrations parameter. Erosion on a color image means independent
transformation of all thehannels.

Dilate

Dilates image by using arbitrary structurieigment

void cvDilate(const CvArr* A, CvArr* C, IpIConvKernel* B=0, int iterations=1);

A

Source image.
C

Destination image.
B

Structuring element used for erosion. If iINBILL, a 3x3 rectangular structuring element is used.
iterations
Number of times erosion &pplied.

The functioricvDilatd [p 164 dilates the source image using the specified structuring element B that
determines the shape of a pixel neighborhood over which the maximakems

C=dilate(A,B): C(x,y)=max ((xy)inB oy) AX,Y)

164

The function supports the in-place mode when the source and destination pointers are the same. Dilation
can be applied several timigsrations parameter. Dilation on a color image means independent
transformation of all thehannels.

MorphologyEx

Performs advanced morphologitansformations

void cvMorphologyEx(const CvArr* A, CvArr* C, CVArr* temp,
IpIConvKernel* B, CvMorphOp op, int iterations);

A
Source image.
C
Destination image.
temp
Temporary image, required in some cases.
B
Structuring element.
op
Type of morphological operation (see the discussion).
iterations
Number of times erosion and dilation aeplied.

The functioricvMorphologyEX[p 165 performs advanced morphological transformations using on
erosion and dilation as basiperations.

Opening:
C=open(A,B)=dilate(erode(A,B),B), if op=CV_MOP_OPEN

Closing:
C=close(A,B)=erode(dilate(A,B),B), if op=CV_MOP_CLOSE

Morphological gradient:
C=morph_grad(A,B)=dilate(A,B)-erode(A,B), if op=CV_MOP_GRADIENT

"Top hat":
C=tophat(A,B)=A-erode(A,B), if op=CV_MOP_TOPHAT

"Black hat":
C=blackhat(A,B)=dilate(A,B)-A, if op=CV_MOP_BLACKHAT

The temporary imagemp is required ifop=CV_MOP_GRADIEN®r if A=C (inplace operation) and
op=CV_MOP_TOPHAGr op=CV_MOP_BLACKHAT

165

Filters and Color Conversion

Smooth

Smooths the image in one of sevevalys

void cvSmooth(const CvArr* src, CvArr* dst,
int smoothtype=CV_GAUSSIAN,
int param1=3, int param2=0);

src
The source image.

dst
The destination image.

smoothtype
Type of thesmoothing:

® CV_BLUR_NO_SCALE (simple blur with no scaling) - summation over a pixel
paraml xparam2 neighborhood. If the neighborhood size is not fixed, one mdgwistegrd
[p 167 function.

® CV_BLUR (simple blur) - summation over a piypgraml xparam2 neighborhood with
subsequent scaling ly(paraml «param?2).

® CV_GAUSSIAN (gaussian blur) - convolving image withram1 xparam2 Gaussian.

e CV_MEDIAN (median blur) - finding median gfaram1 xparaml neighborhood (i.e. the
neighborhood is square).

e CV _BILATERAL (bilateral filter) - applying bilateral 3x3 filtering with colesigmasparaml
and spacsigmazparam?2 . Information about bilateral filtering can be found at
[http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/MANDUCHI1/Bilateral Filtering.fitml

paraml
The first parameter of smoothing operation.

param?2
The second parameter of smoothing operation. In case of simple scaled/non-scaled and Gaussian blur
if param2 is zero, it is set tparaml.

The functioricvSmooth[p 166] smooths image using one of several methods. Every of the methods has
some features and restrictions lisbedow

Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit

format (similar tqcvSobdl[p 152 andcvLaplact{p 154) and 32-bit floating point to 32-bit

floating-pointformat.

Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two
methods can process imagesplace.

Median and bilateral filters work with 1- or 3-channel 8-bit images and can not processiimglges.

166

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

Integral
Calculates integramages
void cvintegral(const CvArr* |, CvArr* S, CvArr* Sq=0, CvArr* T=0);

I
The source imageyxh, single-channel, 8-bit, or floating-point (32f or 64f).

S

The sum imagey+1xh+1, single-channel, 32-bit integer or double precision floating-point (64f).
Sq

The square sum imag&;#+1xh+1, single-channel, double precision floating-point (64f).
T

The tilted sum image (sum of rotated by 45° imagg)1xh+1, single-channel, the same data type as
sum.

The functioricvintegrd[p 167] calculates one or more integral images for the source imdgtoaging:
S(X,Y)=sum yexy<y 1(Xy)

SA(X,Y)=sum yoxyey I(xy) 2

TXY)=sUm yey apsix-xy<y 1(XY)

After that the images are calculated, they can be used to calculate sums of pixels over an arbitrary
rectangles, foexample:

SUM y1<=xex2,yi<zy<y2 1(X,¥)=S(X2,y2)-S(x1,y2)-S(x2,y1)+S(x1,x1)

It makes possible to do a fast blurring or fast block correlation with variable windoetsize

CvtColor

Converts image from one color spacatmther

void cvCvtColor(const CvArr* src, CvArr* dst, int code);

src
The source 8-bit image.
dst
The destination 8-bit image.
code
Color conversion operation that can be specifed using CV_<src_color_space>2<dst_color_space>
constants (seleelow).

167

The functioricvCvtColo}[p 167 converts input image from one color space to another. The function
ignorescolorModel andchannelSeq fields oflplilmage header, so the source image color space
should be specified correctly (including order of the channels in case of RGB space, e.g. BGR means
24-bit format withBg Gg Rg B1 G1 R ... layout, whereas RGB means 24-format WMthGy By R

G; B, ... layout). The function can do the followitrgnsformations:
e Transformations within RGB space like adding/removing alpha channel, reversing the channel order,
conversion to/from 16-bit (Rx5:Gx6:Rx5) color, as well as conversion to/from grayscale using:

RGBI[A]->Gray: Y=0.212671*R + 0.715160*G + 0.072169*B + 0*A
Gray->RGB[A]: R=Y G=Y B=Y A=0

All the possible combinations of input and output format (except equal) are allowed here.

® RGB<=>XYZ (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB):

IX|]0.412411 0.357585 0.180454| |R|
Y| =10.212649 0.715169 0.072182[*|G|
|Z| 10.019332 0.119195 0.950390] |B|

IR| |3.240479 -1.53715 -0.498535] |X|

|G| = |-0.969256 1.875991 0.041556[*|Y|
IB| |0.055648 -0.204043 1.057311| |Z|

® RGB<=>YCrCb (CV_BGR2YCrCb, CV_RGB2YCrCbh, CV_YCrCh2BGR, CV_YCrCb2RGB)
Y=0.299*R + 0.587*G + 0.114*B
Cr=(R-Y)*0.713 + 128
Cb=(B-Y)*0.564 + 128
R=Y + 1.403*(Cr - 128)

G=Y - 0.344*(Cr - 128) - 0.714*(Cb - 128)
B=Y + 1.773*(Cb - 128)

® RGB=>HSV (CV_BGR2HSV,CV_RGB2HSV)

V=max(R,G,B)
S=(V-min(R,G,B))*255/V if V!=0, 0 otherwise

(G - B)*60/S, if V=R
H= 180+(B - R)*60/S, if V=G
240+(R - G)*60/S, if V=B
if H<O0 then H=H+360

The hue values calcualted using the above formulae vary from 0° to 360° so they are divided by 2 to
fit into 8-bit destinatiorformat.

e RGB=>Lab (CV_BGR2Lab, CV_RGB2Lab)

168

IX| |0.433910 0.376220 0.189860| |R/255]|
Y| =]0.212649 0.715169 0.072182[*|G/255]|
|Z| 10.017756 0.109478 0.872915| |B/255]

L=116*y 13 for Y>0.008856
L =903.3*Y for Y<=0.008856

a = 500%(f(X)-f(Y))

b = 200*(f(Y)-f(2))

where f(t)=t s for t>0.008856
f(t)=7.787*t+16/116 for t<=0.008856

The above formulae have been taken from
|http://www.cica.indiana.edu/cica/fag/color spaces/color.spacep.html

® Bayer=>RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR,BayerGR2BGR,
CV_BayerBG2RGB, CV_BayerRG2BGR, CV_BayerGB2R@R/_BayerGR2BGR,
CV_BayerRG2RGB, CV_BayerBG2BGR, CV_BayerGR2RGB, CV_BayerGB2BGR)

Bayer pattern is widely used in CCD and CMOS cameras. It allows to get color picture out of a single
plane where R,G and B pixels (sensors of a particular component) are interleattad:like

R G R G R

B G B G
R G R G R
G B G B G
R G R G R
G B G B G

The output RGB components of a pixel are interpolated from 1, 2 or 4 neighbors of the pixel having
the same color. There are several modifications of the above pattern that can be achieved by shifting
the pattern one pixel left and/or one pixel up. The two le@grandC, in the conversion constants
CV_BayerG C,2{BGR|RGB} indicate the particular pattern type - these are components from the
second row, second and third columns, respectively. For example, the above pattern has very popular
"BG" type.

Threshold

Applies fixed-level threshold to arr&@fements

169

http://www.cica.indiana.edu/cica/faq/color_spaces/color.spaces.html

void cvThreshold(const CvArr* src, CvArr* dst, double threshold,
double maxValue, int thresholdType);

src
Source array (single-channel, 8-bit of 32-bit floating point).
dst
Destination array; must be either the same tymg@sor 8-bit.
threshold
Threshold value.
maxValue
Maximum value to use wittV_THRESH_BINARYCV_THRESH_BINARY_INYand
CV_THRESH_TRUN@resholding types.
thresholdType
Thresholding type (see tligscussion)

The functiorcvThresholtp 169 applies fixed-level thresholding to single-channel array. The function is
typically used to get bi-level (binary) image out of grayscale image or for removing a noise, i.e. filtering
out pixels with too small or too large values. There are several types of thresholding the function supports
that are determined liiresholdType

thresholdType= CV_THRESH_BINARY
dst(x,y) = maxValue, if src(x,y)>threshold
0, otherwise

thresholdType= CV_THRESH_BINARY_INV
dst(x,y) = 0, if src(x,y)>threshold
maxValue, otherwise

thresholdType= CV_THRESH_TRUNC
dst(x,y) = threshold, if src(x,y)>threshold
src(x,y), otherwise

thresholdType= CV_THRESH_TOZERO
dst(x,y) = src(x,y), if (x,y)>threshold

0, otherwise
thresholdType= CV_THRESH_TOZERO_INV

dst(x,y) = 0, if src(x,y)>threshold
src(x,y), otherwise

And this is the visual description of thresholdigges:

170

e Vialue and Threshold Level

Threzhold Binary

Tlwresheld Bmary, Inverted

\\ Truncate

; \ Threshald ta Zera, Inverted

N

Threshald to Zero

L I L & "
| sy (I W Wiy p—— p——— ————

171

AdaptiveThreshold

Applies adaptive threshold tray

void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double maxValue,
int adaptiveMethod, int thresholdType,
int blockSize, double paraml);

src
Source image.
dst
Destination image.
maxValue
Maximum value that is used wittV_THRESH_BINARYNdCV_THRESH_ BINARY _INV
adaptiveMethod
Adaptive thresholding algorithm to useY_ADAPTIVE_THRESH_MEAN dt
CV_ADAPTIVE_THRESH_GAUSSIAN_(Gee the discussion).
thresholdType
Thresholding type; must be one of
e CV_THRESH_BINARY,
® CV_THRESH_BINARY_INV,
blockSize
The size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, ...
paraml
The method-dependent parameter. For the me@YdSADAPTIVE_THRESH_ MEAN &bd
CV_ADAPTIVE_THRESH_GAUSSIAN iCis a constant subtracted from mean or weighted mean
(see the discussion), though it maynegative.

The functioricvAdaptiveThresholdip 172 transforms grayscale image to binary image according to the
formulae:

thresholdType= CV_THRESH_BINARY
dst(x,y) = maxValue, if src(x,y)>T(x,y)
0, otherwise

thresholdType= CV_THRESH_BINARY_INV

dst(x,y) = 0, if src(x,y)>T(X,y)
maxValue, otherwise

whereT) is a threshold calculated individually for eaiikel.

For the metho€€V_ADAPTIVE_THRESH_MEAN ids a mean oblockSize x blockSize pixel
neighborhood, subtracted pgram1 .

For the methoV_ADAPTIVE_THRESH_GAUSSIAN iCis a weighted sum (gaussian) of
blockSize x blockSize pixel neighborhood, subtracted pgram1l .

172

LUT

Performs look-up table transformationiamage

CvMat* cvLUT(const CvArr* A, CvArr* B, const CvArr* lut);

A

Source array of 8-bit elements.
B

Destination array of arbitrary depth and of the same number of channels as the source array.
lut

Look-up table of 256 elements; should be of the same depth as the destirratjon

The functio [p 173 fills the destination array with values of look-up table entries. Indices of the
entries are taken from the source array. That is, the function processes eachfpitoelsis

B(x,y)=Iut[A(x,y)+ A]

whereA is 0 for 8-bitunsigned source image type and 128 for 84igned source imagéype.

Pyramids and the Applications

PyrDown

Downsamplegmage

void cvPyrDown(const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5);

src
The source image.
dst
The destination image, should have 2x smaller width and height than the source.
filter
Type of the filter used for convolution; onBV_GAUSSIAN_5x5is currentlysupported.

The functioricvPyrDown[p 173 performs downsampling step of Gaussian pyramid decomposition. First
it convolves source image with the specified filter and then downsamples the image by rejecting even
rows andcolumns.

PyrUp

Upsamplesmage

173

void cvPyrUp(const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5);

src

The source image.
dst

The destination image, should have 2x smaller width and height than the source.
filter

Type of the filter used for convolution; onBV_GAUSSIAN_5x5is currentlysupported.

The functioricvPyrUg[p 173 performs up-sampling step of Gaussian pyramid decomposition. First it
upsamples the source image by injecting even zero rows and columns and then convolves result with the
specified filter multiplied by 4 for interpolation. So the destination image is four times larger than the
sourcemage.

PyrSegmentation

Implements image segmentationgyyramids

void cvPyrSegmentation(Iplimage* src, Iplimage* dst,
CvMemStorage* storage, CvSeq** comp,
int level, double threshold1, double threshold2);

src

The source image.
dst

The destination image.
storage

Storage; stores the resulting sequence of connected components.
comp

Pointer to the output sequence of the segmented components.
level

Maximum level of the pyramid for the segmentation.
threshold1

Error threshold for establishing the links.
threshold2

Error threshold for the segmemsistering.

The functioricvPyrSegmentatiofp 174 implements image segmentation by pyramids. The pyramid
builds up to the levdevel . The links between any pixalon leveli and its candidate father pixglon
the adjacent level are established if

p(c(a),c(b))<thresholdl . After the connected components are defined, they are joined into
several clusters. Any two segments A and B belong to the same cluster, if

p(c(A),c(B))<threshold2 . The input image has only one channel, then

p(ct,c3)=|ct-c? . If the input image has three channels (red, green and blue), then
p(ct,c?)=0,3-(ct r -C2 .)+0,59-(ct g -C* ¢)+0,11-(c* b -C2) . There may be more
than one connected component per a cluster.

The imagesrc anddst should be 8-bit single-channel or 3-channel images or sl

174

Connectedcomponents

CvConnectedComp

Connectecomponent

typedef struct CvConnectedComp

{
double area; /* area of the segmented component */
float value; /* gray scale value of the segmented component */
CvRect rect; /* ROI of the segmented component */

} CvConnectedComp;

FloodFill

Fills a connected component with giveslor

void cvFloodFill(CvArr* img, CvPoint seed, double newVal,
double lo=0, double up=0, CvConnectedComp* comp=0,
int flags=4, CvArr* mask=0);

#define CV_FLOODFILL_FIXED_RANGE (1 << 16)

#define CV_FLOODFILL_MASK_ONLY (1 << 17)

img
Input image, either 1-,3-channel 8-bit, or single-channel floating-point image. It is modified by the
function unless CV_FLOODFILL_MASK_ONLY flag is set (see below).

seed
Coordinates of the seed point inside the image ROI.

newVal
New value of repainted domain pixels. For 8-bit color images it is a packed color (e.gCUSiRGB
macro).

Maximal lower brightness/color difference between the currently observed pixel and one of its
neighbor belong to the component or seed pixel to add the pixel to component. In case of 8-bit color
images it is packed value.

up
Maximal upper brightness/color difference between the currently observed pixel and one of its
neighbor belong to the component or seed pixel to add the pixel to component. In case of 8-bit color
images it is packed value.

comp
Pointer to structure the function fills with the information about the repainted domain.

flags
The operation flags. Lower bits contain connectivity value, 4 (by default) or 8, used within the
function. Connectivity determines which neighbors of a pixel are considered. Upper bits can be 0 or
combination of the followindlags:

® CV_FLOODFILL_FIXED_RANGE - if set the difference between the current pixel and seed

175

pixel is considered, otherwise difference between neighbor pixels is considered (the range is
floating).
e CV_FLOODFILL _MASK_ONLY - if set, the function does not fill the imagewVal is
ignored), but the fills mask (that must be non-NULL in ttase).
mask
Operation mask, should be singe-channel 8-bit image, 2 pixels wider and 2 pixels taliliergthén
not NULL, the function uses and updates the mask, so user takes responsibility of initiatizkg
content. Floodfilling can’t go across non-zero pixels in the mask, for example, an edge detector
output can be used as a mask to stop filling at edges. Or it is possible to use the same mask in
multiple calls to the function to make sure the filled area doweatap.

The functiorfcvFloodFil] [p 175 fills a connected component starting from the seed pixel where all pixels
within the component have close to each other values (prior to filling). The pixel is considered to belong to
the repainted domain if its vallgx,y) meets the following conditions (the particular cases are specifed
aftercommas):

I(x",y")-lo<=I(x,y)<=I(x",y")+up, grayscale image + floating range
I(seed.x,seed.y)-lo<=I(x,y)<=I(seed.x,seed.y)+up, grayscale image + floating range

1(X',y") r o <=l(xy) r <=I(X",y") ¢ +up , and

1(x,y") glo g<=lxy) ¢<=I(X.y) g Tup 4 and

1x.y") p-lo p<=l(xy) p<=I(X.y) p +Up p, , color image + floating range

I(seed.x,seed.y) ¢ -lo | <=I(xy) <=l(seed.x,seed.y) ¢ tup , and

I(seed.x,seed.y) g0 g<=lxy) g<=l(seed.x,seed.y) g tup ¢ and

I(seed.x,seed.y) p-lo p<=lxy) p<=l(seed.x,seed.y) b tUp p , color image + fixed range

wherel(x’,y’) is value of one of pixel neighbors (to be added to the connected component in case of

floating range, a pixel should have at least one neigbor with sipnitdrtness)

FindContours

Finds contours in binarmage

int cvFindContours(CvArr* img, CvMemStorage* storage, CvSeqg** firstContour,
int headerSize=sizeof(CvContour), CvContourRetrievalMode mode=CV_RETR_LIST,
CvChainApproxMethod method=CV_CHAIN_APPROX_SIMPLE);

image
The source 8-bit single channel image. Non-zero pixels are treated as 1's, zero pixels remain 0’s -
that is image treated &gary . To get such a binary image from grayscale, one may use
[cvThresholHp 169 ,[cvAdaptiveThresholdip 172 orfcvCanny[p 154 . The function modifies the
source image content.

storage
Container of the retrieved contours.

firstContour
Output parameter, will contain the pointer to the first outer contour.

176

headerSize
Size of the sequence headersizeoflCvChaii[p ?7) if method =CV_CHAIN_CODE, and
>=sizeof(CvContour) otherwise.
mode
Retrieval mode.
e CV_RETR_EXTERNAEtrives only the extreme outer contours
® CV_RETR_LISTretrieves all the contours and puts them in the list
® CV_RETR_CCOMélrieves all the contours and organizes them into two-level hierarchy: top
level are external boundaries of the components, second level are bounda boundaries of the
holes
e CV_RETR_TREEetrieves all the contours and reconstructs the full hierarchy of nestéalrs
method
Approximation method.
e CV_CHAIN_CODautputs contours in the Freeman chain code. All other methods output
polygons (sequences of vertices).
e CV_CHAIN_APPROX_ NOMBEnNslates all the points from the chain code into points;
e CV_CHAIN_APPROX_SIMPLEbmpresses horizontal, vertical, and diagonal segments, that is,
the function leaves only their ending points;
e CV_CHAIN_APPROX _TC89 L1,
CV_CHAIN_APPROX_TC89_KCOspplies one of the flavors of Teh-Chin chain
approximation algorithm.
® CV_LINK_RUNSuses completely different (from the previous methods) algorithm - linking of
horizontal segments of 1's. OnGV_RETR_LIST retrieval mode is allowed by tmeethod.

The functioricvFindContounrgp 176 retrieves contours from the binary image and returns the number of

retrieved contours. The pointirstContour is filled by the function. It will contain pointer to the
first most outer contour or NULL if no contours is detected (if the image is completely black). Other
contours may be reached frdimstContour usingh_next andv_next links. The sample in

[cvDrawContoungp 179 discussion shows how to use contours for connected component detection.
Contours can be also used for shape analysis and object recognitiGguaes sample in CVPR
2001 tutorial course located at SourceFmige

StartFindContours

Initializes contour scanningrocess

CvContourScanner cvStartFindContours(Iplimage* img, CvMemStorage* storage,
int headerSize, CvContourRetrievalMode mode,
CvChainApproxMethod method);

image

The source 8-bit single channel binary image.
storage

Container of the retrieved contours.

177

headerSize
Size of the sequence headersizeoflCvChaii[p ?7) if method =CV_CHAIN_CODE, and
>=sizeof(CvContour) otherwise.

mode
Retrieval mode, has the same meaning gskmndContourgp 176 .

method
Approximation method, the same agukindContoungp 176 except that CV_LINK_RUNS can
not be usethere.

The functiorcvStartFindContoulfp 177] initializes and returns pointer to the contour scanner. The
scanner is used furtherfawFindNextContodfp 17§ to retrieve the rest afontours.

FindNextContour
Finds next contour in thienage
CvSeq* cvFindNextContour(CvContourScanner scanner);

scanner
Contour scanner initialized by the functjovStartFindContoulfp 177 .

The functioricvFindNextContoufp 178 locates and retrieves the next contour in the image and returns
pointer to it. The function returns NULL, if there is no moomtours.

SubstituteContour

Replaces retrievecontour

void cvSubstituteContour(CvContourScanner scanner, CvSeqg* newContour);

scanner
Contour scanner initialized by the function cvStartFindContours .
newContour
Substitutingcontour.

The functioricvSubstituteContolfp 178 replaces the retrieved contour, that was returned from the
preceding call of the functigevFindNextContoufp 178 and stored inside the contour scanner state, with
the user-specified contour. The contour is inserted into the resulting structure, list, two-level hierarchy, or
tree, depending on the retrieval mode. If the paramet@Contour =NULL, the retrieved contour is not
included into the resulting structure, nor all of its children that might be added to this stiateture

178

EndFindContours

Finishes scanningrocess

CvSeq* cvEndFindContours(CvContourScanner* scanner);

scanner
Pointer to the contowstcanner.

The functioncvEndFindContouffp 179 finishes the scanning process and returns the pointer to the first
contour on the highegtvel.

DrawContours

Draws contour outlines or interiors in timage

void cvDrawContours(CvArr *image, CvSeq* contour,
double external_color, double hole_color,
int max_level, int thickness=1,
int connectivity=8);

image
Image where the contours are to be drawn. Like in any other drawing function, the contours are
clipped with the ROI.

contour
Pointer to the first contour.

externalColor
Color to draw external contours with.

holeColor
Color to draw holes with.

maxLevel
Maximal level for drawn contours. If O, ontpntour is drawn. If 1, the contour and all contours
after it on the same level are drawn. If 2, all contours after and all contours one level below the
contours are drawn, etc. If the value is negative, the function does not draw the contours following
aftercontour but draws child contours ebntour up toabs(axLevel)-1 level.

thickness
Thickness of lines the contours are drawn with. If it is negative (e.g. =CV_FILLED), the contour
interiors are drawn.

connectivity
Connectivity of line segments of the contouwitlines.

The functioricvDrawContourgp 179 draws contour outlines in the imagetifckness >=0 or fills
area bounded by the contourghiickness <O0.

179

Example. Connected component detection via contodunctions

#include "cv.h"
#include "highgui.h"

int main(int argc, char** argv)

Iplimage* src;

/I the first command line parameter must be file name of binary (black-n-white) image
if(argc == 2 && (src=cvLoadlmage(argv[1], 0))!= 0)

{

Iplimage* dst = cvCreatelmage(cvGetSize(src), 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contour = 0;

cvThreshold(src, src, 1, 255, CV_THRESH_BINARY);
cvNamedWindow("Source", 1);
cvShowlmage("Source", src);

cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
cvZero(dst);

for(; contour != 0; contour = contour->h_next)

int color = CV_RGB(rand(), rand(), rand());
/* replace CV_FILLED with 1 to see the outlines */
cvDrawContours(dst, contour, color, color, -1, CV_FILLED, 8);

}

cvNamedWindow("Components"”, 1);
cvShowlmage("Components", dst);
cvWaitKey(0);
}
}

Replace CV_FILLED with 1 in the sample below to see the comiatlines

Image and contour moments

Moments

Calculates all moments up to third order of a polygon or rastestzauke

void cvMoments(const CvArr* arr, CvMoments* moments, int isBinary=0);

arr
Image (1-channel or 3-channel with COI set) or polygon (CvSeq of points of a vector of points).
moments
Pointer to returned moment state structure.
isBinary
(For images only) If the flag is non-zero, all the zero pixel values are treated as zeroes, all the others
are treated asnes.

The functiorcvMomentHp 180 calculates spatial and central moments up to the third order and writes
them tomoments. The moments may be used then to calculate gravity center of the shape, its area, main
axises and various shape characeteristics includingivdtiants.

180

GetSpatialMoment

Retrieves spatial moment from moment stdtacture

double cvGetSpatialMoment(CvMoments* moments, int j, int i);

moments

The moment state, calculated@Momenth[p 180 .
x-order of the retrieved moment, j >= 0.

y-order of the retrieved moment,i>=0and i+ j=

The functioncvGetSpatialMomefp 18] retrieves the spatial moment, which in case of image moments
is definedas:

M =sumyy (I(xy) xJ ey')

wherel(x,y) is the intensity of the pixgk, vy) .

GetCentralMoment

Retrieves central moment from moment ssitacture

double cvGetCentralMoment(CvMoments* moments, int j, int i);

moments
Pointer to the moment state structure.

x-order of the retrieved moment, j >= 0.

y-order of the retrieved moment,i>=0and i+ %=

ThefunctioncvGetCentralMomenfp 181] retrieves the central moment, which in case of image moments
is definedas:

Hij =sumyy (I(cy) o(xex) T elyy ¢) ')

where x =M1 /M g9,y ¢ =Mg1 /M oo - coordinates of the gravity center

GetNormalizedCentralMoment

Retrieves normalized central moment from moment stateture

181

double cvGetNormalizedCentralMoment(CvMoments* moments, int x_order, inty_order);

moments
Pointer to the moment state structure.

x-order of the retrieved moment, j >= 0.

y-order of the retrieved moment,i>=0and i+ j%=

The functiorcvGetNormalizedCentralMomefp 181] retrieves the normalized central moment, which in
case of image moments is defirasd

Nij = Hj Mgy /2+D)

GetHuMoments

Calculates seven Havariants

void cvGetHuMoments(CvMoments* moments, CvHuMoments* HuMoments);

moments

Pointer to the moment state structure.
HuMoments

Pointer to Hu momentstructure.

The functioncvGetHuMoment{$p 187 calculates seven Hu invariants that are defined as:

h 1=n2 o2

h 2=(nN2-No02)*4 N112

h 3=(n3-3n12)%* @ N21-No3)?
h 4=(n30+N12)**(N21+No3)?

h 5=(n3-3n12)(N30 +N12)[(N30 +N12)>3(N2t *No03)+B N21-No3)(N21 *No03)B(N30 +N12)*(N21 +No3)

[$2]

>
(o2}

=(n20-No2)I(N3o+N12)>(N21+N03)I*+4 N1 (N30 +N12)(N21+No3)

g
~

=Bn21-No3)(N21+N03)B(N3o*N12)>(N21+No3)4(Naz0-3n12)(N21 +No3)B(N30 +N12)>(N2t +No3)3

These values are proved to be invariants to the image scale, rotation, and reflection except the seventh one
whose sign is changed bgflection.

182

Image Processing and Analysi®keference

e [DrawingFunctionfp ?7
o [ind [p 27
o [CineAA][p ?7
[RectangHp 27
[p 27
[p 27
[p 29
[p?7
[EliConvexPoly[p 27
[PolyLing [p 27
P27
[p 27
PutText[p 77
o [CetTextSizkp 77
e [Gradients, Edges ar@brnerfp ?79
O [Sobd[p 27
o [Caplacé(p 779
o [Canny[p 27
O |PreCornerDetefdp ?79
O |CornerEigenValsAndVegp ?79
o [CornerMinEigenVa[p ?7
O [FindCornerSubPJfp 77
O |GoodFeaturesToTraldb ?79
e [Sampling, Interpolation and Geometridaansformgp ?9
o [nilLinelteratot(p 73
o [SampleLintp 27
O [GetRectSubPl¥p 27
O [GetQuadrangeSubPjr ?7
o [Resizélp 77
e [MorphologicalOperationgp ?7
O |CreateStructuringElementfg ?7
O |ReleaseStructuringEleméjipt 27
o [Erodé(p 79
o [Dilatd [p ?7
O [MorphologyEX[p 7
e [Filters and ColoConversiofip ?9
o [Smoothip 27
o [Integral[p ?7
o [CviColof[p 27
o [Thresholip 27

O O O0OO0OO0OO0OO0OO0OO0OOo

183

O |AdaptiveThresholdp ?7
o [LUT][p 7]
e |Pyramids and thA&pplication$[p ?79
o [PyrDowrp ?7
o [PyrUd[p 27
O |PyrSegmentatigfp ?79
® |Connectedomponent$p ?79
O |ConnectedComifp ?7
O [FloodFill [p 779
o [FindContourkp 779
O |[StartFindContouffp 79
O [FindNextContodifp ?79
O |[SubstituteContotiip ?79
O |[EndFindContoui$p ?7
O [DrawContourkp ?7
e [Image and contounomentgp ?79
o [Moment§[p 29
O |GetSpatialMomenfp ?7
O |GetCentralMomenip ?7
O |GetNormalizedCentralMomeify ?7
O |GetHuMomentgp ?7
® [Special Imagdransformygp 185
© [HoughLineHp 185
o [DistTransforrip 189
e |HistogramFunctiong[p 19]]
O [Histogramip 191
O [CreateHig{p 192
O [SetHistBinRangéefp 192
o [ReleaseHilp 193
o [ClearHisi[p 193
O |MakeHistHeaderForArrafp 193
O |QueryHistValue 10p 194
O |GetHistValue 1[p 194
O |GetMinMaxHistValug[p 195
© [NormalizeHisf{p 195
o [ThreshHigfp 196
© [CompareHig{p 196
O [CopyHis}[p 197
O [CalcHist[p 197
O |CalcBackProje¢kp 198
O |CalcBackProjectPatgp 199
O |CalcProbDensityp 200

O [CalcEMD2[p 201]

184

e |Utility Function§[p 202
O [MatchTemplatdp 207

Note:

The chapter describes functions for image processing and analysis. Most of the functions work with 2d
arrays of pixels. We refer the arrays as "images" however they do not neccesserily have to be Iplimage’s,
they may be CvMat’s or CvMatND’s agell.

Speciallmage Transforms

HoughLines

Finds lines in binary image using Hougansform

CvSeq* cvHoughLines2(CvArr* image, void* lineStorage, int method,
double dRho, double dTheta, int threshold,
double param1=0, double param?2);

image
Source 8-bit single-channel (binary) image. It may be modified by the function.
lineStorage
The storage for the lines detected. It can be a memory storage (in this case a sequence of lines is
created in the storage and returned by the function) or single row/single column matrix (CvMat*) of a
particular type (see below) where the lines’ parameters are written. The matrix header is modified by
the function so itgols /rows contains a number of lines detected (that is a matrix is truncated to fit
exactly the detected lines, though no data is deallocated - only the header is modified). In the latter
case if the actual number of lines exceeds the matrix size, the maximum possible number of lines is
returned (the lines are not sorted by length, confidence or whatever criteria).
method
The Hough transform variant, oné
® CV_HOUGH_STANDARDIassical or standard Hough transform. Every line is represented by
two floating-point numberép, 8), wherep is a distance between (0,0) point and the line Gand
is the angle between x-axis and the normal to the line. Thus, the matrix must be (the created
sequence will be) of CV_32FC2 type.
e CV_HOUGH_PROBABILISTIG probabilistic Hough transform (more efficient in case if
picture contains a few long linear segments). It returns line segments rather than the whole lines.
Every segment is represented by starting and ending points, and the matrix must be (the created
sequence will be) of CV_32SC4 type.
® CV_HOUGH_MULTI_SCALEmulti-scale variant of classical Hough transform. The lines are
encoded the same way as in CV_HOUGH_CLASSICAL.
dRho
Distance resolution in pixel-related units.
dTheta
Angle resolution measured in radians.

185

threshold
Threshold parameter. A line is returned by the function if the corresponding accumulator value is
greater thathreshold
paraml
The first method-dependeparameter:
® [or classical Hough transform it is not used (0).
® For probabilistic Hough transform it is the minimum line length.
® For multi-scale Hough transform it is divisor for distance resoluwi®ho. (The coarse distance
resolution will bedRho and the accurate resolution will @Rho / paraml)).
param?2
The second method-dependpatameter:
® For classical Hough transform it is not used (0).
® [or probabilistic Hough transform it is the maximum gap between line segments lieing on the
same line to treat them as the single line segment (i.e. to join them).
e [or multi-scale Hough transform it is divisor for angle resolutidheta . (The coarse angle
resolution will bedTheta and the accurate resolution will (rheta /param?2)).

The functioricvHoughLinesHp ?7 implements a few variants of Hough transform for lLike¢ection.

Example. Detecting lines with Houghtransform.

/* This is a standalone program. Pass an image name as a first parameter of the program.
Switch between standard and probabilistic Hough transform by changing "#if 1" to "#if 0" and back */
#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv)

Iplimage* src;
if(argc == 2 && (src=cvLoadlmage(argv[1], 0))!= 0)

Iplimage* dst = cvCreatelmage(cvGetSize(src), 8, 1);
Iplimage* color_dst = cvCreatelmage(cvGetSize(src), 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* lines = 0;
inti;
cvCanny(src, dst, 50, 200, 3);
cvCvtColor(dst, color_dst, CV_GRAY2BGR);
#if 1
lines = cvHoughLines2(dst, storage, CV_HOUGH_CLASSICAL, 1, CV_PI/180, 150, 0, 0);

for(i=0;i < lines->total; i++)
{
float* line = (float*)cvGetSeqElem(lines,i);
float rho = line[0];
float theta = line[1];
CvPoint ptl, pt2;
double a = cos(theta), b = sin(theta);
if(fabs(a) < 0.001)

ptl.x = pt2.x = cvRound(rho);

ptly =0;

pt2.y = color_dst->height;
else if(fabs(b) < 0.001)

ptl.y = pt2.y = cvRound(rho);

186

ptl.x =0;
pt2.x = color_dst->width;
}
else
{
ptl.x =0;
ptl.y = cvRound(rho/b);
pt2.x = cvRound(rho/a);
pt2.y = 0;

cvLine(color_dst, ptl, pt2, CV_RGB(255,0,0), 3, 8);
}

#else
lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI/180, 80, 30, 10);
for(i=0;i < lines->total; i++)

CvPoint* line = (CvPoint*)cvGetSegElem(lines,i);
cvLine(color_dst, line[0], line[1], CV_RGB(255,0,0), 3, 8);

}
#endif

cvNamedWindow("Source”, 1);
cvShowlmage("Source", src);

cvNamedWindow("Hough", 1);
cvShowlmage("Hough", color_dst);

cvWaitKey(0);

}
}

This is the sample picture the function parameters have beenftuned

187

And this is the output of the above program in case of probabilistic Hough transform ¢&#e)"

188

DistTransform

Calculates distance to closest zero pixel for all non-zero pixels of Smage

void cvDistTransform(const CvArr* src, CvArr* dst, CvDisType disType=CV_DIST_L2,
int maskSize=3, float* mask=0);

src
Source 8-bit single-channel (binary) image.
dst
Output image with calculated distances (32-bit floating-point, single-channel).
disType
Type of distance; can i&v_DIST_L1, CV_DIST_L2, CV_DIST_CorCV_DIST_USER
maskSize
Size of distance transform mask; can be 3 or 5. In c&¢ iDIST_L1 orCV_DIST_Cthe
parameter is forced to 3, because 5x5 mask gives the same result as 3x3 in this case yet it is slower.
mask
User-defined mask in case of user-defined distance, it consists of 2 numbers (horizontal/vertical shift
cost, diagonal shift cost) in case of 3x3 mask and 3 numbers (horizontal/vertical shift cost, diagonal
shift cost, knight's move cost) in case of Gnask.

189

The functiorcvDistTransforrip 189 calculates the approximated distance from every binary image pixel

to the nearest zero pixel. For zero pixels the function sets the zero distance, for others it finds the shortest
path consisting of basic shifts: horizontal, vertical, diagonal or knight's move (the latest is available for
5x5 mask). The overal distance is calculated as a sum of these basic distances. Because the distance
function should be symmetric, all the horizontal and vertical shifts must have the same cost (that is
denoted ag), all the diagonal shifts must have the same cost (debdtead all knight's moves’ must

have the same cost (denoted ForCV_DIST_CandCV_DIST_L1 types the distance is calculated

precisely, whereas f@V_DIST_ L2 (Euclidian distance) the distance can be calculated only with some
relative error (5x5 mask gives more accurate results), OpenCV uses the values sugf

[p197:

CV_DIST_C (3x3):
a=1, b=1

TSe3((5

CV_DIST_L1 (3x3):
a=1, b=2

CV_DIST_L2 (3x3):
a=0.955, b=1.3693

CV_DIST_L2 (5%5):
a=1, b=1.4, c=2.1969

And below are samples of distance field (black (0) pixel is in the middle of white square) in case of
user-definedlistance:

User-defined3x3 mask (a=1p=1.5)

454 [35/3]35/4 |45

4 |3 |25/2]25|3 |4

35/25|15/1|15|25|35

3 |2 |1 |(0/1 (2 |3

35/25|15/1|15|25|35

4 |3 [|25/2]25|3 |4

454 [35/3]35/4 |45

User-defined5x5 mask (a=1, b=1.5;=2)

190

45/35/3 |33 |35[45

35/3 |2 |2]2 |3 |35

3 |2 |15|1/15|2 |3

4 |35|3 |[3|3 |35]/4

Typically, for fast coarse distance estimation CV_DIST_L2, 3x3 mask is used, and for more accurate
distance estimation CV_DIST_L2, 5x5 maskised.

[Borgefors86] Gunilla Borgefors, "Distance Transformations in Digital Images". Computer Vision,
Graphics and Image Processing 34, 344-371986).

Histogram Functions

CvHistogram

Muti-dimensionahistogram

typedef struct CvHistogram
{
int header_size; /* header’s size */
CvHistType type; /* type of histogram */
int flags; /* histogram’s flags */
int c_dims; /* histogram’s dimension */
int dims[CV_HIST_MAX_DIM]; /* every dimension size */
int mdims[CV_HIST_MAX_DIM]; /* coefficients for fast access to element */
/* &m[a,b,c] = m + a*mdims[0] + b*mdims[1] + c*mdims[2] */
float* thresh[CV_HIST_MAX_DIM]; /* bin boundaries arrays for every dimension */
float* array; /* all the histogram data, expanded into the single row */
struct CvNode* root; /* root of balanced tree storing histogram bins */
CvSet* set; /* pointer to memory storage (for the balanced tree) */
int* chdims[CV_HIST_MAX_DIM]; /* cache data for fast calculating */
} CvHistogram;

191

CreateHist

Createdhistogram

CvHistogram* cvCreateHist(int cDims, int* dims, int type,
float** ranges=0, int uniform=1);

cDims
Number of histogram dimensions.

dims
Array of histogram dimension sizes.

type
Histogram representation form&V_HIST_ARRAYmeans that histogram data is represented as an
multi-dimensional dense arrfgvMatND [p ?7 ; CV_HIST_TREEmeans that histogram data is
represented as a multi-dimensional sparse @vgparseMafp ?7 .

ranges
Array of ranges for histogram bins. Its meaning depends aimif@m parameter value. The
ranges are used for when histogram is calculated or backprojected to determine, which histogram bin
corresponds to which value/tuple of values from the input image[s].

uniform
Uniformity flag; if not O, the histogram has evenly spaced bins and for 8weiiyxcDims
rangesi] is array of two numbers: lower and upper boundaries for the i-th histogram dimension.
The whole range [lower,upper] is split then idims[i] equal parts to determim¢h input tuple
value ranges for every histogram bin. Andriform=0 , theni-th element ofanges array
containdims[i]+1 elementslower o, upper o, lower ;, upper ; == lower »,
upper gimsfj-1 - Wherelower ; andupper ; are lower and upper boundaries-tf

input tuple value foj-th bin, respectively. In either case, the input values that are beyond the

specified range for a histogram bin, are not countda/BalcHisk[p 197 and filled with 0 by
[cvCalcBackProjefip 199 .

The functioricvCreateHigfp 197 creates a histogram of the specified size and returns the pointer to the
created histogram. If the arregnges is 0, the histogram bin ranges must be specified later via the

functionlcvSetHistBinRangé¢fp 192 , thoug [p 197 andcvCalcBackProjegfp 198 may
process 8-bit images without setting bin ranges, they assume equally spaced inil®s.255

SetHistBinRanges
Sets bounds of histograomns

void cvSetHistBinRanges(CvHistogram* hist, float** ranges, int uniform=1);

hist
Histogram.
ranges

Array of bin ranges arrays, deeCreateHig{p 192 .

192

uniform

Uniformity flag, seqcvCreateHigfp 197 .

The functioricvSetHistBinRangé¢fp 192 is a stand-alone function for setting bin ranges in the histogram.
For more detailed description of the parametanges anduniform sedcvCalcHisk[p 197 function,

that can initialize the ranges as well. Ranges for histogram bins must be set before the histogram is
calculated or backproject of the histogranasculated.

ReleaseHist

Releasegistogram

void cvReleaseHist(CvHistogram** hist);

hist
Double pointer to the releashistogram.

The functioricvReleaseHigip 193 releases the histogram (header and the data). The pointer to histogram
is cleared by the function. thist pointer is alreadWULL, the function doesothing.

ClearHist

Clearshistogram

void cvClearHist(CvHistogram* hist);

hist
Histogram.

The functio [p 193 sets all histogram bins to 0 in case of dense histogram and removes all
histogram bins in case of spaeseay.

MakeHistHeaderForArray

Makes a histogram out afray

void cvMakeHistHeaderForArray(int cDims, int* dims, CvHistogram* hist,
float* data, float** ranges=0, int uniform=1);

cDims
Number of histogram dimensions.
dims
Array of histogram dimension sizes.
hist
The histogram header initialized by the function.

193

data
Array that will be used to store histogram bins.

ranges
Histogram bin ranges, seeCreateHisfp 197 .
uniform

Uniformity flag, seqcvCreateHigfp 197 .

The functiorcvMakeHistHeaderForArrafp 193 initializes the histogram, which header and bins are
allocated by user. NovReleaseHigip 193 need to be called afterwards. The histogram will be dense,
sparse histogram can not be initialized thiésy.

QueryHistValue 1D

Queries value of histograhin

#define cvQueryHistValue_1D(hist, idx0) \
cvGetReallD((hist)->bins, (idx0))

#define cvQueryHistValue_2D(hist, idx0, idx1)\
cvGetReal2D((hist)->bins, (idx0), (idx1))

#define cvQueryHistValue_3D(hist, idx0, idx1, idx2) \
cvGetReal3D((hist)->bins, (idx0), (idx1), (idx2))

#define cvQueryHistValue_nD(hist, idx) \
cvGetRealND((hist)->bins, (idx))

hist
Histogram.
idx0, idx1, idx2,idx3
Indices of the bin.
idx
Array ofindices

The macrofgvQueryHistValue *Ip ?7 return the value of the specified bin of 1D, 2D, 3D or nD
histogram. In case of sparse histogram the function returns 0, if the bin is not present in the histogram, and
no new bin icreated.

GetHistValue 1D

Returns pointer to histograbin

#define cvGetHistValue_1D(hist, idx0) \
((float*)(cvPtriD((hist)->bins, (idx0), 0))

#define cvGetHistValue_2D(hist, idx0, idx1)\
((float*)(cvPtr2D((hist)->bins, (idx0), (idx1), 0))

#define cvGetHistValue_3D(hist, idx0, idx1, idx2) \
((float*)(cvPtr3D((hist)->bins, (idx0), (idx1), (idx2), 0))

#define cvGetHistValue_nD(hist, idx) \
((float*)(cvPtrND((hist)->bins, (idx), 0))

194

hist
Histogram.
idx0, idx1, idx2,idx3
Indices of the bin.
idx
Array ofindices

The macrofgvGetHistValue *ID[p ?7 return pointer to the specified bin of 1D, 2D, 3D or nD histogram.
In case of sparse histogram the function creates a new bins and fills it with O, if it degisisot

GetMinMaxHistValue

Finds minimum and maximum histogrdims

void cvGetMinMaxHistValue(const CvHistogram* hist,
float* minVal, float* maxVal,
int* minldx =0, int* maxldx =0);

hist
Histogram.
minVal
Pointer to the minimum value of the histogram; can be NULL.
maxVal
Pointer to the maximum value of the histogram; can be NULL.
minldx
Pointer to the array of coordinates for minimum. If not NULL, must teéste>c_dims elements
to store the coordinates.
max|dx
Pointer to the array of coordinates for maximum. If not NULL, must hate>c_dims elements
to store thecoordinates.

The functiorcvGetMinMaxHistValugp 195 finds the minimum and maximum histogram bins and their
positions. In case of several maximums or minimums the earliest in lexicographical order extrema
locations areeturned.

NormalizeHist

Normalizeshistogram

void cvNormalizeHist(CvHistogram* hist, double factor);

hist

Pointer to the histogram.
factor

Normalizationfactor.

195

The functioricvNormalizeHidp 195 normalizes the histogram bins by scaling them, such that the sum of
the bins becomes equalfaxtor

ThreshHist

Thresholdsistogram

void cvThreshHist(CvHistogram* hist, double thresh);

hist

Pointer to the histogram.
thresh

Thresholdevel.

The functiorcvThreshHig{p 196 clears histogram bins that are below the speciéed.

CompareHist

Compares two dendgstograms

double cvCompareHist(const CvHistogram* H1, const CvHistogram* H2,
CvCompareMethod method);

H1
The first dense histogram.
H2
The second dense histogram.
method
Comparison method, one of:
e CV_COMP_CORREL;
e CV_COMP_CHISQR;
e CV_COMP_INTERSECT.

The functioricvCompareHi$fp 196 compares two histograms using specified method and returns the
comparison result. It processedalfowing:

Correlation (method=CV_COMP_CORREL):

d(H 1 ,H 2)=sum | (H" 1 () <H 2 (I))/sqrt(sum P H 1) 2]esum; H () 2]
where

H ¢ (D=H « ()-1/N esumj Hy (J) (N=number of histogram bins)

Chi-Square (method=CV_COMP_CHISQR):
dH 1 Hz)=sum | [(H 1 (D-H O)YH 1 O+H 2)]

Intersection (method=CV_COMP_INTERSECT):
d(H 1 ,H 2)=sum | max(H 1 (),H 2 (1)

196

Note, that the function can operate on dense histogram only. To compare sparse histogram or more general
sparse configurations of weighted points, congid€alcEMD[p ?7 function.

CopyHist
Copieshistogram
void cvCopyHist(CvHistogram* src, CvHistogram** dst);

src
Source histogram.

dst
Pointer to destinatiohistogram.

The functiorfcvCopyHisf[p 197] makes a copy of the histogram. If the second histogram poister is

NULL, a new histogram of the same sizeses is created. Otherwise, both histograms must have equal
types and sizes. Then the function copies the source histogram bins values to destination histogram and
sets the same asc ’'s valueranges.

CalcHist

Calculates histogram @fhage(s)

void cvCalcHist(Ipllmage** img, CvHistogram* hist,
int doNotClear=0, const CvArr* mask=0);

img
Source images (though, you may pass CvMat** as well).
hist
Pointer to the histogram.
doNotClear
Clear flag, if it is non-zero, the histogram is not cleared before calculation. It may be useful for
iterative histogram update.
mask
The operation mask, determines what pixels of the source imagesuated.

The functio [p 197 calculates the histogram of one or more single-channel images. The
elements of a tuple that is used to increment a histogram bin are taken at the same location from the
corresponding inpumages.

Sample.Calculating and displaying 2D Hue-Saturation histogram of a coloimage

#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
Iplimage* src;

if(argc == 2 && (src=cvLoadlmage(argv[1], 1))!= 0)
{

197

Iplimage* h_plane = cvCreatelmage(cvGetSize(src), 8, 1)

Iplimage* s_plane = cvCreatelmage(cvGetSize(src), 8, 1);

Iplimage* v_plane = cvCreatelmage(cvGetSize(src), 8, 1)

Iplimage* planes[] = { h_plane, s_plane };

Iplimage* hsv = cvCreatelmage(cvGetSize(src), 8, 3);

int h_bins = 30, s_bins = 32;

int hist_size[] = {h_bins, s_bins};

float h_ranges[] = { 0, 180 }; /* hue varies from 0 (~0°red) to 180 (~360°red again) */
float s_ranges[] = {0, 255 }; /* saturation varies from 0 (black-gray-white) to 255 (pure spectrum color) */
float* ranges[] = { h_ranges, s_ranges };

int scale = 10;

Iplimage* hist_img = cvCreatelmage(cvSize(h_bins*scale,s_bins*scale), 8, 3);
CvHistogram* hist;

float max_value = 0;

inth,s;

cvCvtColor(src, hsv, CV_BGR2HSV);

cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0);

hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes, hist, 0, 0);

cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);

cvZero(hist_img);

for(h =0; h <h_bins; h++)
for(s =0; s <s_hins; s++)

float bin_val = cvQueryHistValue_2D(hist, h, s);
int intensity = cvRound(bin_val*255/max_value);
cvRectangle(hist_img, cvPoint(h*scale, s*scale),
cvPoint((h+1)*scale - 1, (s+1)*scale - 1),
CV_RGB(intensity,intensity,intensity), /* graw a grayscale histogram.
if you have idea how to do it
nicer let us know */
CV_FILLED);
}
}

cvNamedWindow("Source", 1);
cvShowlmage("Source", src);

cvNamedWindow("H-S Histogram", 1);
cvShowlmage("H-S Histogram”, hist_img);

cvWaitKey(0);

CalcBackProject

Calculates backrojection

void cvCalcBackProject(Ipllmage** img, CvArr* backProject, const CvHistogram* hist);

img

Source images (though you may pass CvMat** as well).
backProject

Destination back projection image of the same type as the source images.
hist

Histogram.

The functioricvCalcBackProjetip 19§ calculates the back project of the histogram. For each tuple of
pixels at the same position of all input single-channel images the function puts the value of the histogram
bin, corresponding to the tuple, to the destination image. In terms of statistics, the value of each output
image pixel is probability of the observed tuple given the distribution (histogram). For example, to find a

198

red object in the picture, one may do the following:

1. Calculate a hue histogram for the red object assuming the image contains only this object. The
histogram is likely to have a strong maximum, corresponding to red color.

2. Calculate back projection of a hue plane of input image where the object is searched, using the
histogram. Threshold the image.

3. Find connected components in the resulting picture and choose the right component using some
additional criteria, for example, the largest connectatdponent.

That is the approximate algorithm of Camshift color object tracker, except for the last step, where
CAMSHIFT algorithm is used to locate the object on the back projection given the previous object
position.

CalcBackProjectPatch

Locates a template within image by histogremmparison

void cvCalcBackProjectPatch(Iplilmage** img, CvArr* dst,
CvSize patchSize, CvHistogram* hist,
int method, float normFactor);

img
Source images (though, you may pass CvMat** as well)
dst
Destination image.
patchSize
Size of patch slid though the source image.
hist
Histogram
method
Compasion method, passedct@CompareHi$fp 196 (see description of that function).
normFactor
Normalization factor for histograms, will affect normalization scale of destination image, pass 1. if
unsure.

The functioricvCalcBackProjectPatfp 199 calculates back projection by comparing histograms of the
source image patches with the given histogram. Taking measurement results from some image at each
location over ROI creates an ariayg . These results might be one or more of lkuderivative,y

derivative, Laplacian filter, oriented Gabor filter, etc. Each measurement output is collected into its own
separate image. Thng image array is a collection of these measurement images. A multi-dimensional
histogramhist is constructed by sampling from timeg image array. The final histogram is normalized.
Thehist histogram has as many dimensions as the number of elements array.

Each new image is measured and then converted intogammage array over a chosen ROI. Histograms
are taken from thisng image in an area covered by a "patch" with anchor at center as shown in the
picture below. The histogram is normalized using the parametar_factor so that it may be
compared witthist . The calculated histogram is compared to the model histodpiain; uses the

199

functioncvCompareHi$fp 196 with the comparisomethod-method). The resulting output is placed at
the location corresponding to the patch anchor in the probability idegeThis process is repeated as
the patch is slid over the ROI. Iterative histogram update by subtracting trailing pixels covered by the

patch and adding newly covered pixels to the histogram can save a lot of operations, though it is not
implementedyet.

Back Project Calculation by Patches

Patch IMagCcs

ﬂ.—_‘_b :ﬁ

RO

CalcProbDensity

Divides one histogram bgnother

void cvCalcProbDensity(const CvHistogram* histl, const CvHistogram* hist2,
CvHistogram* histDens, double scale=255);

histl

first histogram (divisor).
hist2

second histogram.

200

histDens
destinatiorhistogram.

The functioricvCalcProbDensityp 200 calculates the object probability density from the two histograms
as:

histDens(1)=0 if hist1(l)==0
scale if hist1(1)!=0 && hist2(l)>hist1(l)
hist2(l)*scale/hist1(l) if hist1(1)!=0 && hist2(l)<=hist1(l)

So the destination histogram bins are wifldijscale).

CalcEMD2

Computes "minimal work" distance between two weighted mainfigurations

float cvCalcEMD2(const CvArr* signaturel, const CvArr* signature2, CvDisType distType,
float (*distFunc)(const float* f1, const float* f2, void* userParam),
const CvArr* costMatrix, CvArr* flow,
float* lowerBound, void* userParam);

signaturel
First signaturesizel xdims+1 floating-point matrix. Each row stores the point weight followed by
the point coordinates. The matrix is allowed to have a single column (weights only) if the
user-defined cost matrix is used.

signature2
Second signature of the same formasigaaturel , though the number of rows may be different.
The total weights may be different, in this case an extra "dummy"” point is added to either
signaturel orsignature2

distType
Metrics usedCV_DIST L1, CV_DIST L2, andCV_DIST_C stand for one of the standard
metrics;CV_DIST_USERmeans that a user-defined functaistFunc or pre-calculated
costMatrix is used.

distFunc
The user-defined distance function. It takes coordinates of two points and returns the distance
between the points.

costMatrix
The user-definedizel xsize2 cost matrix. At least one gbstMatrix anddistFunc must
be NULL. Also, if a cost matrix is used, lower boundary (see below) can not be calculated, because it
needs a metric function.

flow
The resultansizel xsize2 flow matrix:flow j is a flow from i-th point okignaturel to

j-th point ofsignature2

lowerBound
Optional output parameter: lower boundary of distance between the two signatures that is a distance
between mass centers. The lower boundary may not be calculated if the user-defined cost matrix is
used, the total weights of point configurations are not equal, or there is the signatures consist of
weights only (i.e. the matrices have a single column).

201

userParam
Pointer to optional data that is passed into the user-defined diftization.

The functioricvCalcEMD2[p 201] computes earth mover distance and/or a lower boundary of the

distance between the two weighted point configurations. One of the application desctibed in
[RubnerSept98]p 207 is multi-dimensional histogram comparison for image retrieval. EMD is a
transportation problem that is solved using some modification of simplex algorithm, thus the complexity is
exponential in the worst case, though, it is much faster in average. In case of real metric the lower
boundary can be calculated even faster (using linear-time algorithm) and it can be used to determine
roughly whether the two signatures are far enough so that they cannot relate to tbbjeaime

[RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a Metric for
Image Retrieval. Technical Report STAN-CS-TN-98-86, Department of Computer Science, Stanford
University, September1998.

Utility Functions

MatchTemplate

Compares template against overlapped intaga®ns

void cvMatchTemplate(const CvArr* |, const CVAr* T,
CVATrr* result, int method);

Image where the search is running. It should be single-chanel, 8-bit or 32-bit floating-point.
Searched template; must be not greater than the source image and the same data type as the image.

Image of comparison results; single-channel 32-bit floating-poihtidfA«H andT is wxh thenR
must beW-w+1xH-h+1 .

method
Specifies the way the template must be compared with image regiohel®e®

The functiorcvMatchTemplatgp 202 is similiar tocvCalcBackProjectPatdip 199 . It slids througH ,
comparesvxh patches againdt using the specified method and stores the comparison restgditb

Here are the formular for the different comparison methods one may use (the summation is done over
template and/or the image patgh=0..w-1, y'=0..h-1):

method=CV_TM_SQDIFF:

Ry)=sum .y [T(XY)-10c+X,y+y)] 2

method=CV_TM_SQDIFF_NORMED:

ROGy)=sum ey [TOCY)X y+y)] Zisrifsum ey T(XY) Zesumyey 1KY+ 2]

method=CV_TM_CCORR:
Ry)zsum oy [TCY) e l(x+Xy+y)]

202

method=CV_TM_CCORR_NORMED:
RXy)=sum \ [T(X.y) o l(x+x",y+y")]/sqgrt[sum xy T(X.Y) 2-summ,’ I(x+x",y+y’) 2]

method=CV_TM_CCOEFF:

Rxy)=sum xy [T'(XY) P (x+xy+y),

where T'(X,y")=T(X,y’) - 1/(w *h) esumy-» T(x"y") (mean template brightness=>0)
I"(X+X,y+y)=l(x+x,y+y") - 1/(w *h) esumy o 1(x+X",y+y") (mean patch brightness=>0)

method=CV_TM_CCOEFF_NORMED:
R(x,y)=sum Xy [T(X,y) o I'(x+X",y+y"))/sqrt[sum Xy’ TXY) 2-sumX,,y I'(x+x",y+y’) 2]

After the function finishes comparison, the best matches can be found as global minimums
(CV_TM_SQDIFF*) or maximums (CV_TM_CCORR* and CV_TM_CCOEFF*) ugivdylinMaxLod
[p 79] function.

203

Structural AnalysisReference

e |Contour Processingunction§[p 205
o [ApDroxChainKp 205
O [StartReadChainPoinfp 205
O |[ReadChainPoifiip 206
o [ApproxPaly[p 206
© [BoundingRed{p 206
o [ContourAreHp 207
o [ArcLength[p 208
o [MatchShapéfp 209
O |[CreateContourTrepp 209
O |ContourFromContourTré 210
O |MatchContourTre¢fp 210
® (Geometnyunctionfp 211]
O [MaxReck[p 211]
© Box2O[p 217
O [BoxPoint${p 211]
o [FitEMipsd [p 212
o [FtLine20 [p 212
O [ConvexHull3[p 213
O |CheckContourConvexitjp 215
O |ConvexityDefed{p 216
O |ConvexityDefect$p 216
O [MinAreaRect?[p 217
O |MinEnclosingCirclé[p 220
O [CalcPGHip 218
o [KMeand[p 21§
O |MinEnclosingCirclg[p 22Q
e [PlanarSubdivisiondp 220
O [Subdiv2D[p 220
© [QuadEdge2[ip 221
O [Subdiv2DPoir{p 222
O [Subdiv2DGetEddép 223
O [Subdiv2DRotateEdg 223
O |Subdiv2DEdgeOldp 224
o [Subdiv2DEdgeDHip 224
O |CreateSubdivDelaunay?[p 224
O |SubdivDelaunay2DInsgfp 225
O |[Subdiv2DLocatdp 225
O [FindNearestPoint2[p 226
O |CalcSubdivVoronoi2[p 226

204

O [ClearSubdivVoronoi2[jp 226

Contour Processingrunctions

ApproxChains

Approximates Freeman chain(s) with polygooaive

CvSeq* cvApproxChains(CvSeqg* srcSeq, CvMemStorage* storage,
CvChainApproxMethod method=CV_CHAIN_APPROX_SIMPLE,
double parameter=0, int minimalPerimeter=0, int recursive=0);

srcSeq
Pointer to the chain that can refer to other chains.
storage
Storage location for the resulting polylines.
method
Approximation method (see the description of the fungixdfindContoundgp 179).
parameter
Method parameter (not used now).
minimalPerimeter
Approximates only those contours whose perimeters are not lessithiamalPerimeterOther
chains are removed from the resulting structure.
recursive
If not O, the function approximates all chains that access can be obtained ssd&agoy h_nextor
v_nextinks. If 0, the single chain iapproximated.

This is a stand-alone approximation routine. The funghakpproxChaingp 205 works exactly in the
same way gsvFindContourgp 176 with the corresponding approximation flag. The function returns
pointer to the first resultant contour. Other approximated contours, if any, can be accegspexia
h_nextfields of the returnedtructure.

StartReadChainPoints

Initializes chairreader

void cvStartReadChainPoints(CvChain* chain, CvChainPtReader* reader);

chain Pointer to chain. reader Chain readate.

The functioricvStartReadChainPoinffs 209 initializes a special reader (§9gnamic DateStructuredp
99] for more information on sets asdquences).

205

ReadChainPoint

Gets next chaipoint

CvPoint cvReadChainPoint(CvChainPtReader* reader);

reader
Chain readestate.

The functiorcvReadChainPoiffp 206 returns the current chain point and updates the reedéion.

ApproxPoly

Approximates polygonal curve(s) with desifa@cision

CvSeq* cvApproxPoly(const void* srcSeq, int headerSize, CvMemStorage* storage,
int method, double parameter,
int parameter2=0);

srcSeq
Sequence of array of points.
headerSize
Header size of approximated curve[s].
storage
Container for approximated contours. If it is NULL, the input sequences’ storage is used.
method
Approximation method; onlZV_POLY_APPROX_DR supported, that corresponds to
Douglas-Peucker algorithm.
parameter
Method-specific parameter; in case@f_POLY_APPROX_DPRis a desired approximation
accuracy.
parameter2
If case ifsrcSeqds sequence it means whether the single sequence should be approximated or all
sequences on the same level or bedovBeqseqevFindContoundgp 176 for description of
hierarchical contour structures). AnasitSegs array(CvMai [p ?7 *) of points, the parameter
specifies whether the curve is clogpdrameter2=0) or not(parameterz0).

The functio [p 206] approximates one or more curves and returns the approximation
result[s]. In case of multiple curves approximation the resultant tree will have the same structure as the
input one (1:Xcorrespondence).

BoundingRect

Calculates up-right bounding rectangle of pciet

206

CvRect cvBoundingRect(CvArr* contour, int update);

contour
Sequence or array of points.
update
The update flag. Here is list of possible combination of the flag values and typetofir.
e update=0, contour ~ CvContour*: the bounding rectangle is not calculated, but it is taken from
rectfield of the contour header.
e update=1, contour ~ CvContour*: the bounding rectangle is calculated and writtenfteld
of the contour header.
e update=0, contour ~ CvSeqg* or CvMat*: the bounding rectangle is calculated and returned.
® update=1, contour ~ CvSeq* or CvMat*: runtime errarised.

The functioricvBoundingRe¢fp 206 returns the up-right bounding rectangle for 2d pseit

ContourArea

Calculates area of the whole contour or consaation

double cvContourArea(const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ);

contour
Contour (sequence or array of vertices).

slice
Starting and ending points of the contour section of interest, by default area of the whole contour is
calculated.

The functioricvContourArefp 207 calculates area of the whole contour or contour section. In the latter
case the total area bounded by the contour arc and the chord connecting the 2 selected points is calculated
as shown on the pictutelow:

207

NOTE: Orientation of the contour affects the area sign, thus the function maymegativeresult. Use
fabs()function from C runtime to get the absolute valuarefa.

ArcLength

Calculates contour perimeter or cuigagth

double cvArcLength(const void* curve, CvSlice slice=CV_WHOLE_SEQ, int isClosed=-1);

curve
Sequence or array of the curve points.
slice
Starting and ending points of the curve, by default the whole curve length is calculated.
isClosed
Indicates whether the curve is closed or not. There aasés:
® isClosed=0 - the curve is assumed to be unclosed.
® isClosed>0 - the curve is assumed to be closed.
® isClosed<0 - if curve is sequence, the flag CV_SEQ_FLAG_CLOSED of
((Cvseg*)curve)->flags is checked to determine if the curve is closed or not, otherwise (curve is
represented by array (CvMat*) of points) it is assumed taniokosed.

The functio [p 208 calculates length or curve as sum of lengths of segments between
subsequerpoints

208

MatchShapes

Compares twshapes

double cvMatchShapes(const void* A, const void* B,
int method, double parameter=0);

A
First contour or grayscale image
B
Second contour or grayscale image
method
Comparison method, one of CV_CONTOUR_MATCH_I1, CV_CONTOURS_MATCH_I2 or
CV_CONTOURS_MATCH_I3.
parameter
Method-specific parameter (is not useuiv).

The functiorcvMatchShapgfp 209 compares two shapes. The 3 implemented methods all use Hu
moments (sgevGetHuMomeni$p 182):

method=CV_CONTOUR_MATCH_I1:
| 1 (AB)=sum -1 7 abs(l/m A; -1/m B;)

method=CV_CONTOUR_MATCH_I2:
| , (AB)=sum =1 7 abs(m?; -m B ;)

method=CV_CONTOUR_MATCH_[3:
I 3(AB)=sum =17 abs(m”; -m B,)abs(m A ;)

where

m* ; =sign(h A)elogh *),

mB ; =sign(h B)elogth B;),

hA; ,h B, -Humoments of A and B, respectively.

CreateContourTree

Creates hierarchical representatiorcomtour

CvContourTree* cvCreateContourTree(cont CvSeq* contour, CvMemStorage* storage, double threshold);

contour
Input contour.
storage
Container for output tree.
threshold
Approximationaccuracy.

209

The functioricvCreateContour Tréfe 209 creates binary tree representation for the igpatourand

returns the pointer to its root. If the paraméiteesholdis less than or equal to 0, the function creates full
binary tree representation. If the threshold is greater than 0, the function creates representation with the
precisionthreshold if the vertices with the interceptive area of its base line are lesshifeshold the tree
should not be built any further. The function returns the craeted

ContourFromContourTree

Restores contour frofnee

CvSeq* cvContourFromContourTree(const CvContourTree* tree, CvMemStorage* storage,
CvTermCriteria criteria);

tree

Contour tree.
storage

Container for the reconstructed contour.
criteria

Criteria, where to stopeconstruction.

The functioricvContourFromContourTrie 210 restores the contour from its binary tree representation.
The parametetriteria determines the accuracy and/or the number of tree levels used for reconstruction,
so it is possible to build approximated contour. The function returns reconsicaotedr.

MatchContourTrees

Compares two contours using their trepresentations

double cvMatchContourTrees(const CvContourTree* treel, const CvContourTree* tree2,
CvTreeMatchMethod method, double threshold);

treel
First contour tree.
tree2
Second contour tree.
method
Similarity measure, onlgV_CONTOUR_TREES_MATCH _itlsupported.
threshold
Similarity threshold.

The functiorcvMatchContourTre¢p 210 calculates the value of the matching measure for two contour
trees. The similarity measure is calculated level by level from the binary tree roots. If at the certain level
difference between contours becomes lessttim@shold the reconstruction process is interrupted and the
current difference iseturned.

210

Geometry Functions

MaxRect

Finds bounding rectangle for two givesttangles

CvRect cvMaxRect(const CvRect* rectl, const CvRect* rect2);

rectl
First rectangle
rect2
Secondectangle

The functioricvMaxRedtp 211] finds minimum area rectangle that contains both input rectainglete:

Fect2
==]
.. di
Fe ctange

CvBox2D
Rotated 20box
typedef struct CvBox2D
{

CvPoint2D32f center; /* center of the box */
CvSize2D32f size; [* box width and length */
float angle; /* angle between the horizontal axis
and the first side (i.e. length) in radians */
}

CvBox2D;

BoxPoints

Finds boxvertices

211

void cvBoxPoints(CvBox2D box, CvPoint2D32f pt[4]);

box
Box

pt
Array of vertices

The functioricvBoxPoint§p 211] calculates vertices of the input 2d box. Here is the funciale:

void cvBoxPoints(CvBox2D box, CvPoint2D32f pt[4])
{

float a = (float)cos(box.angle)*0.5f;

float b = (float)sin(box.angle)*0.5f;

pt[0
pt[0
pt[1
pt[1
pt[2
pt[2
pt[3
pt[3

X = box.center.x - a*box.size.height - b*box.size.width;
.y = box.center.y + b*box.size.height - a*box.size.width;
X = box.center.x + a*box.size.height - b*box.size.width;
.y = box.center.y - b*box.size.height - a*box.size.width;
X = 2*box.center.x - pt[0].x;
.y = 2*box.center.y - pt[0].y;
X = 2*box.center.x - pt[1].x;
.y = 2*box.center.y - pt[1].y;

e e e e e e

FitEllipse

Fits ellipse to set of 2points

CvBox2D cvFitEllipse2(const CvArr* points);

points
Sequence or array pbints.

The functiorncvFitEllipse[p 212 calculates ellipse that fits best (in least-squares sense) to a set of 2D
points. The meaning of the returned structure fields is similar to thigs&lipsé[p 147] except thasize
stores the full lengths of the ellipse axises,rat-lengths

FitLine
Fits line to 2D or 3D poinget

void cvFitLine(const CvArr* points, CvDisType disType, double C,
double reps, double aeps, float* line);

points

Sequence or array of 2D or 3D points with 32-bit integer or floating-point coordinates.
disType

The distance used for fitting (see the discussion).

212

C
Numerical parameter for some types of distances, if 0 then some optimal value is chosen.
reps,aeps
Sufficient accuracy for radius (distance between the coordinate origin and the line) and angle,
respectively, 0.01 would be a good defaults for both. is used.
line
The output line parameters. In case of 2d fitting it is array of 4 fleatvy, x0y0) where(vx, vy)is
a normalized vector collinear to the line gr@, y0) is some point on the line. In case of 3D fitting it
is array of 6 floatgvx, vy, vz, X0, y&0)where(vx, vy,vz)is a normalized vector collinear to the line
and(x0, y0,z0)is some point on thigne.

The functio [p ?7 fits line to 2D or 3D point set by minimizireum p(r;), wherer; is distance
between i-th point and the line apft) is a distance function, ord;

disType=CV_DIST_L2 (L 5):

p(N=r 2 /2 (the simplest and the fastest least-squares method)

disType=CV_DIST_L1(L 1):

p(r)=r

disType=CV_DIST L12(L 1-L »):
p(N=2 e[sqrt(l+r 2/2)-1]

disType=CV_DIST_FAIR (Fair):
p(N=C 2 «[r/C - log(1 + r/C)], C=1.3998

disType=CV_DIST_WELSCH (Welsch):
p(=C 2 /2 *[1 - exp(-(t/C) 2)], C=2.9846

disType=CV_DIST_HUBER (Huber):
p(N=r 272, ifr<C
C *(r-C/2), otherwise; C=1.345

ConvexHull2

Finds convex hull of pointset

CvSeq* cvConvexHull2(const void* points, void* hullStorage=0,
int orientation=CV_CLOCKWISE, int returnPoints=0);

points
Sequence or array of 2D points with 32-bit integer or floating-point coordinates.

hullStorage
The destination array (CvMat*) or memory storage (CvMemStorage*) that will store the convex hull.
If it is array, it should be 1d and have the same number of elements as the input array/sequence. On
output the header is modified so to truncate the array downto the hull size.

orientation
Desired orientation of convex huV_CLOCKWISErCV_COUNTER_CLOCKWISE

213

returnPoints
If non-zero, the points themselves will be stored in the hull instead of indineééSforageis array,
or pointers ithullStorageis memorystorage.

The functioncvConvexHull2[p 213 finds convex hull of 2D point set using Sklansky’s algorithm. If
hullStorageis memory storage, the function creates a sequence containing the hull points or pointers to
them, depending areturnPointsvalue and returns the sequenceoatput.

Example. Building convex hull for a sequence or array opoints
#include "cv.h"

#include "highgui.h"

#include <stdlib.h>

#define ARRAY 0 /* switch between array/sequence method by replacing 0<=>1 */

void main(int argc, char** argv)

{
Iplimage* img = cvCreatelmage(cvSize(500, 500), 8, 3);
cvNamedWindow("hull", 1);
#if IARRAY
CvMemStorage* storage = cvCreateMemStorage();
#endif
for(;;)
{
int i, count = rand()%2100 + 1, hullcount;
CvPoint ptO;
#if IARRAY

CvSeq* ptseq = cvCreateSeq(CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour),
sizeof(CvPoint), storage);
CvSeqg* hull;

for(i=0;i< count; i++)
{
pt0.x = rand() % (img->width/2) + img->width/4;
pt0.y = rand() % (img->height/2) + img->height/4;
cvSeqPush(ptseq, &pt0);
}
hull = cvConvexHull2(ptseq, 0, CV_CLOCKWISE, 0);
hullcount = hull->total;
#else
CvPoint* points = (CvPoint*)malloc(count * sizeof(points[0]));
int* hull = (int*)malloc(count * sizeof(hull[0]));
CvMat pointMat = cvMat(1, count, CV_32SC2, points);
CvMat hullMat = cvMat(1, count, CV_32SC1, hull);

for(i=0;i< count; i++)

{
pt0.x = rand() % (img->width/2) + img->width/4;
pt0.y = rand() % (img->height/2) + img->height/4;
points[i] = ptO;

cvConvexHull2(&pointMat, &hullMat, CV_CLOCKWISE, 0);

214

hullcount = hullMat.cols;
#endif
cvZero(img);
for(i=0;i< count; i++)
{
#if ARRAY
pt0 = *CV_GET_SEQ_ELEM(CvPoint, ptseq, i);
#else
ptO = pointsi];
#endif

}

#if IARRAY

pt0 = *CV_GET_SEQ_ELEM(CvPoint*, hull, hullcount - 1);
#else

pt0 = points[hull[hullcount-1]];
#endif

cvCircle(img, pt0, 2, CV_RGB(255, 0,0), CV_FILLED);

for(i=0; i< hullcount; i++)
{
#if ARRAY
CvPoint pt = *CV_GET_SEQ_ELEM(CvPoint*, hull, i);
#else
CvPaint pt = points[hull[i]];
#endif
cvLine(img, pt0, pt, CV_RGB(0, 255, 0));
pt0 = pt;
}

cvShowlmage("hull", img);

int key = cvWaitKey(0);
if(key == 27) //'ESC’
break;

#if IARRAY
cvClearMemStorage(storage);
#else
free(points);
free(hull);
#endif
}
}

CheckContourConvexity

Tests contouconvex

int cvCheckContourConvexity(const void* contour);

contour
Tested contour (sequence or arrapaoints).

215

The functiorcvCheckContourConvexitjp 215 tests whether the input contour is convex or not. The
contour must be simple, i.e. withaslf-intersections.

CvConvexityDefect

Structure describing a single contour convesligyect

typedef struct CvConvexityDefect
{
CvPoint* start; /* point of the contour where the defect begins */
CvPoint* end; /* point of the contour where the defect ends */
CvPoint* depth_point; /* the farthest from the convex hull point within the defect */
float depth; /* distance between the farthest point and the convex hull */
} CvConvexityDefect;

Picture. Convexity defects for handcontour.

ConvexityDefects

Finds convexity defects abntour

CvSeq* cvConvexityDefects(const void* contour, const void* convexhull,
CvMemsStorage* storage=0);

216

contour
Input contour.

convexhull
Convex hull obtained usiffigyConvexHull2[p 213 that should contain pointers or indices to the
contour points, not the hull points themselves retrnPointsparameter iftvConvexHull2[p 213
should be 0.

storage
Container for output sequence of convexity defects. If it is NULL, contour or hull (in that order)
storage isused.

The functiorcvConvexityDefecl$p 216 finds all convexity defects of the input contour and returns a
sequence of tHevConvexityDefed{p 216 structures.

MinAreaRect2

Finds circumscribed rectangle of minimal area for given 2D psaint

CvBox2D cvMinAreaRect2(const void* points, CvMemStorage* storage=0);

points

Sequence or array of points.
storage

Optional temporary memoistorage.

The functioricvMinAreaRectlp 217] finds a circumscribed rectangle of the minimal area for 2D point
set by building convex hull for the set and applying rotating calipers techniquehtolithe

Picture. Minimal-area bounding rectangle for contour

vt

lI'IlZ:"'II!Ir

MinEnclosingCircle

Finds circumscribed circle of minimal area for given 2D pséit

void cvMinEnclosingCircle(const void* points, CvPoint2D32f* center, float* radius);

217

points

Sequence or array of 2D points.
center

Output parameter. The center of the enclosing circle.
radius

Output parameter. The radius of the enclosinge.

The functiorcvMinEnclosingCirclgp 217] finds the minimal circumscribed circle for 2D point set using
iterativealgorithm.

CalcPGH

Calculates pair-wise geometrical histogramdontour

void cvCalcPGH(const CvSeq* contour, CvHistogram* hist);

contour

Input contour. Currently, only integer point coordinates are allowed.
hist

Calculated histogram; must bgo-dimensional.

The functioricvCalcPGHip 218 calculates 2D pair-wise geometrical histogram (PGH), described in
livarinen97][p ?7 , for the contour. The algorithm considers every pair of the contour edges. The angle
between the edges and the minimum/maximum distances are determined for every pair. To do this each of
the edges in turn is taken as the base, while the function loops through all the other edges. When the base
edge and any other edge are considered, the minimum and maximum distances from the points on the
non-base edge and line of the base edge are selected. The angle between the edges defines the row of the
histogram in which all the bins that correspond to the distance between the calculated minimum and
maximum distances are incremented (that is, the histogram is transposed relatively to [livarninen97]
definition). The histogram can be used for contoatching.

[livarinen97] Jukka livarinen, Markus Peura, Jaakko Srel, and Ari Visa. Comparison of Combined
Shape Descriptors for Irregular Objects, 8th British Machine Vision ConferenceBMVC'97. You
may find online version dtttp://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97}htmi

KMeans

Splits set of vectors by given numberchisters

void cvKMeans2(const CvArr* samples, int numClusters,
CvVArr* clusterldx, CvTermCriteria termcrit);

samples
Floating-point matrix of input samples, one row per sample.

218

http://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97.html

numClusters
Number of clusters to split the set by.
clusterldx
Output integer vector storing cluster indices for every sample.
termcrit
Specifies maximum number of iterations and/or accuracy (distance the centers move by between the

subsequeriterations).

The functioricvKMeans[p ?7 implements k-means algorithm that finds centensushClusterslusters
and groups the input samples around the clusters. On aliptéridx(i)contains a cluster index for
sample stored in i-th rows emples

Example. Clustering random samples of multi-gaussian distribution withk-means

#include "cv.h"
#include "highgui.h"

void main(int argc, char** argv)
{
#define MAX_CLUSTERS 5
static const int color_tab[MAX_CLUSTERS] =

CV_RGB(255,0,0), CV_RGB(0,255,0), CV_RGB(100,100,255),
CV_RGB(255,0,255), CV_RGB(255,255,0)
h
Iplimage* img = cvCreatelmage(cvSize(500, 500), 8, 3);
CvRandState rng;
cvRandlnit(&ng, 0, 1, -1, CV_RAND_NORMAL);

cvNamedWindow("clusters", 1);

for(;;)

{
int k, cluster_count = cvRandNext(&rng)%MAX_CLUSTERS + 1,
int i, sample_count = cvRandNext(&rng)%1000 + 1;
CvMat* points = cvCreateMat(sample_count, 1, CV_32FC2);
CvMat* clusters = cvCreateMat(sample_count, 1, CV_32SC1);

/* generate random sample from multigaussian distribution */
for(k = 0; k < cluster_count; k++)
{
CvPoint center;
CvMat point_chunk;
center.x = cvRandNext(&rng)%img->width;
center.y = cvRandNext(&rng)%img->height;
cvRandSetRange(&rng, center.x, img->width/6, 0);
cvRandSetRange(&rng, center.y, img->height/6, 1);
cvGetRows(points, &point_chunk, k*sample_count/cluster_count,
k == cluster_count - 1 ? sample_count : (k+1)*sample_count/cluster_count);

cvRand(&rng, &point_chunk);
}

[* shuffle samples */
for(i=0; i< sample_count/2; i++)

CvPoint2D32f* ptl = (CvPoint2D32f*)points->data.fl + cvRandNext(&rng)%sample_count;
CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl + cvRandNext(&rng)%sample_count;
CvPoint2D32f temp;

CV_SWAP(*ptl, *pt2, temp);

219

}

cvKMeans2(points, cluster_count, clusters,
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0));

cvZero(img);
for(i=0; i< sample_count; i++)
CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];

int cluster_idx = clusters->data.i[i];
cvCircle(img, cvPointFrom32f(pt), 2, color_tabl[cluster_idx], CV_FILLED);

}

cvReleaseMat(&points);
cvReleaseMat(&clusters);

cvShowlmage("clusters"”, img);
int key = cvWaitKey(0);

if(key == 27) /I 'ESC’
break;

MinEnclosingCircle

Finds circumscribed circle of minimal area for given 2D peit

void cvMinEnclosingCircle(const void* points, CvPoint2D32f* center, float* radius);

points

Sequence or array of 2D points.
center

Output parameter. The center of the enclosing circle.
radius

Output parameter. The radius of the enclosinge.

The functiorcvMinEnclosingCirclgp 220 finds the minimal circumscribed circle for 2D point set using
iterativealgorithm.

Planar Subdivisions

CvSubdiv2D

Planarsubdivision

#define CV_SUBDIV2D_FIELDS() \
CV_GRAPH_FIELDS() \
int quad_edges; \
int is_geometry valid; \
CvSubdiv2DEdge recent_edge; \

220

CvPoint2D32f topleft; \
CvPoint2D32f bottomright;

typedef struct CvSubdiv2D

{
CV_SUBDIV2D_FIELDS()

}
CvSubdiv2D;

Planar subdivision is a subdivision of a plane into a set of non-overlapped regions (facets) that cover the
whole plane. The above structure describes a subdivision built on 2d point set, where the points are linked
together and form a planar graph, which, together with a few edges connecting exterior subdivision points
(namely, convex hull points) with infinity, subdivides a plane into facets legdgss.

For every subdivision there exists dual subdivision there facets and points (subdivision vertices) swap
their roles, that is, a facet is treated as a vertex (called virtual point below) of dual subdivision and the
original subdivision vertices become facets. On the picture below original subdivision is marked with solid
lines and dual subdivision with dlittes

OpenCV subdivides plane into triangles using Delaunay’s algorithm. Subdivision is built iteratively
starting from a dummy triangle that includes all the subdivision points for sure. In this case the dual
subdivision is Voronoi diagram of input 2d point set. The subdivisions can be used for 3d piece-wise
transformation of a plane, morphing, fast location of points on the plane, building special graphs (such as
NNG,RNG)etc.

CvQuadEdge2D

Quad-edge of planaubdivision

/* one of edges within quad-edge, lower 2 bits is index (0..3)
and upper bits are quad-edge pointer */

typedef long CvSubdiv2DEdge;

/* quad-edge structure fields */

221

#define CV_QUADEDGE2D_FIELDS() \
int flags; \
struct CvSubdiv2DPoint* pt[4]; \
CvSubdiv2DEdge next[4];

typedef struct CvQuadEdge2D

{
CV_QUADEDGE2D_FIELDS()

}
CvQuadEdge2D;

Quad-edge is a basic element of subdivision, it contains four edges (e, eRot and revezBad)e &

f

) |

el.next

CvSubdiv2DPoint

Point of original or duasubdivision
#define CV_SUBDIV2D_POINT_FIELDS()\
int flags; \
CvSubdiv2DEdge first; \
CvPoint2D32f pt;
#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)

typedef struct CvSubdiv2DPoint

222

{
CV_SUBDIV2D_POINT_FIELDS()

}
CvSubdiv2DPoint;

Subdiv2DGetEdge

Returns one of edges relatedytaen

CvSubdiv2DEdge cvSubdiv2DGetEdge(CvSubdiv2DEdge edge, CvNextEdgeType type);
#define cvSubdiv2DNextEdge(edge) cvSubdiv2DGetEdge(edge, CV_NEXT_AROUND_ORG)

edge

Subdivision edge (not a quad-edge)
type

Specifies, which of related edges to return, one

® CV_NEXT_AROUND_ORG - next around the edge origg®nexton the picture above &is

the input edge)
CV_NEXT_AROUND_DST - next around the edge vergeRnexj
CV_PREV_AROUND_ORG - previous around the edge origin (reverBeeXx
CV_PREV_AROUND_DST - previous around the edge destination (reveksex}
CV_NEXT_AROUND_LEFT - next around the left fadeLL.nex}
CV_NEXT_AROUND_RIGHT - next around the right fageRnexX
CV_PREV_AROUND_LEFT - previous around the left facet (revees@dex}
CV_PREV_AROUND_RIGHT - previous around the right facet (reveefgkex}

The functiorcvSubdiv2DGetEdgép 223 returns one the edges related to the irgolgte.

Subdiv2DRotateEdge

Returns another edge of the saiad-edge

CvSubdiv2DEdge cvSubdiv2DRotateEdge(CvSubdiv2DEdge edge, int rotate);

edge
Subdivision edge (not a quad-edge)
type
Specifies, which of edges of the same quad-edge as the input one to retoifn, one
e 0 - the input edgée on the picture above #fis the input edge)
® 1 - the rotated edgeRo})
® 2 -the reversed edge (reversih green))
® 3 -the reversed rotated edge (reversRdt(in green))

The functioncvSubdiv2DRotateEdgig 223 returns one the edges of the same quad-edge as the input
edge.

223

Subdiv2DEdgeOrg

Returns edgerigin

CvSubdiv2DPoint* cvSubdiv2DEdgeOrg(CvSubdiv2DEdge edge);

edge
Subdivision edge (notguad-edge)

The functioncvSubdiv2DEdgeOrdp 224 returns the edge origin. The returned pointer may be NULL if
the edge is from dual subdivision and the virtual point coordinates are not calculated yet. The virtual
points can be calculated using funcieyCalcSubdivVVoronoi2[bp 226 .

Subdiv2DEdgeDst

Returns edgdestination

CvSubdiv2DPoint* cvSubdiv2DEdgeDst(CvSubdiv2DEdge edge);

edge
Subdivision edge (notguad-edge)

The functioncvSubdiv2DEdgeDHip 224 returns the edge destination. The returned pointer may be
NULL if the edge is from dual subdivision and the virtual point coordinates are not calculated yet. The
virtual points can be calculated using funcjom@€alcSubdivVoronoi2[jp 226 .

CreateSubdivDelaunay2D

Creates empty Delaundéiyangulation

CvSubdiv2D* cvCreateSubdivDelaunay2D(CvRect rect, CvMemStorage* storage);

rect

Rectangle that includes all the 2d points that are to be added to subdivision.
storage

Container forsubdivision.

The functiorcvCreateSubdivDelaunayPp 224 creates an empty Delaunay subdivision, where 2d points
can be added further using functiorSubdivDelaunay2Dinséfp 225 . All the points to be added must
be within the specified rectangle, otherwise a runtime error withised.

224

SubdivDelaunay2DInsert

Inserts a single point to Delaunaiangulation

CvSubdiv2DPoint* cvSubdivDelaunay2DInsert(CvSubdiv2D* subdiv, CvPoint2D32f pt);

subdiv
Delaunay subdivision created by functiorCreateSubdivDelaunay?p 224 .

pt
Insertedpoint.

The functiorcvSubdivDelaunay2DInsgfp 225 inserts a single point to subdivision and modifies the
subdivision topology appropriately. If a points with same coordinates exists already, no new points is
added. The function returns pointer to the allocated point. No virtual points coordinates is calculated at
this stage.

Subdiv2DLocate

Inserts a single point to Delaunaiangulation

CvSubdiv2DPointLocation cvSubdiv2DLocate(CvSubdiv2D* subdiv, CvPoint2D32f pt,
CvSubdiv2DEdge *edge,
CvSubdiv2DPoint** vertex=0);

subdiv
Delaunay or another subdivision.
pt
The point to locate.
edge
The output edge the point falls onto or right to.
vertex
Optional output vertex double pointer the input point coinsidds

The functioricvSubdiv2DLocatgp 225 locates input point within subdivision. There areases:

e point falls into some facet. The function returns CV_PTLOC_INSIDE*addewill contain one of
edges of the facet.

e point falls onto the edge. The function returns CV_PTLOC_ON_EDGEeadgkwill contain this
edge.

® point coinsides with one of subdivision vertices. The function returns CV_PTLOC_VERTEX and
*vertexwill contain pointer to the vertex.

® point is outside the subdivsion reference rectangle. The function returns
CV_PTLOC_OUTSIDE_RECT and no pointers is filled.

e one of input arguments is invalid. Runtime error is raised or, if silent or "parent" error processing
mode is selected, CV_PTLOC_ERROReasurnd.

225

FindNearestPoint2D

Finds the closest subdivision vertex to giypeint

CvSubdiv2DPoint* cvFindNearestPoint2D(CvSubdiv2D* subdiv, CvPoint2D32f pt);

subdiv

Delaunay or another subdivision.
pt

Input point.

The functioricvFindNearestPointAp 226 is another function that locates input point within subdivision.
It finds subdivision vertex that is the closest to the input point. It is not necessarily one of vertices of the
facet containing the input point, though the facet (located jgsi8gbdiv2DLocatdp 225) is used as a
starting point. The function returns pointer to the found subdivigotex

CalcSubdivVoronoi2D

Calculates coordinates of Voronoi diagraetls

void cvCalcSubdivVoronoi2D(CvSubdiv2D* subdiv);

subdiv
Delaunay subdivision, where all the points are addezhdy.

The functiorcvCalcSubdivVoronoi2[Jp 226 calculates coordinates of virtual points. All virtual points
corresponding to some vertex of original subdivision form (when connected together) a boundary of
Voronoi cell of thapoint.

ClearSubdivVoronoi2D

Removes all virtugboints

void cvClearSubdivVoronoi2D(CvSubdiv2D* subdiv);

subdiv
Delaunaysubdivision.

The functiorcvClearSubdivVoronoi2[Pp 226 removes all virtual points. It is called internally in
[cvCalcSubdivVoronoi2[p 226 if the subdivision was modified after previous call tofilnection.

There are a few other lower-level functions that work with planar subdivisions, see cv.h and the sources.
Demo script delaunay.c that builds Delaunay triangulation and Voronoi diagram of random 2d point set
can be found atpencv/samples/c.

226

Motion Analysis and Object TrackingReference

e [Accumulation of Backgroun8tatisticip 227]
o [Acd[p 227
O [SquareAcp 22§
O MultiplyAcc] [p 228
© [RunningAvg[p 229
e [Motion Templatedp 229
O |UpdateMotionHistorpfp 229
O |CalcMotionGradienfp 230
O |CalcGlobalOrientatidiip 230
O [SegmentMotiofip 231]
® |ObjectTracking[p 232
o [MeanShift[p 232
o [CamShifi[p 232
O [Snakelmadép 233
® [OpticalFlow [p 234
O |CalcOpticalFlowHHp 234
O |CalcOpticalFlowLK[p 235
O |CalcOpticalFlowBM[p 235
O |CalcOpticalFlowPyrLK[p 236
e [Estimatorlip 237
o [Kalmar[p 237
O [CreateKalmalip 239
o [ReleaseKalmafp 239
o [KalmanPredi¢{p 239
o [KalmanCorredfp 240
O |CreateConDensatiffp 243
O |ReleaseConDensati¢p 243
O |ConDenslnitSampleS@b 243
O |ConDensUpdateByTimgp 244

Accumulation of Background Statistics

Acc

Adds frame taaccumulator

void cvAcc(const CVArr* I, CvArr* S, const CvArr* mask=0);

227

Input image, 1- or 3-channel, 8-bit or 32-bit floating point. (each channel of multi-channel image is
processed independently).
S
Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.
mask
Optional operatiomask.

The functioricvAcd [p 227] adds the whole imagdeor its selected region to accumulagor

S(X,Y)=S(x,y)+I(x,y) if mask(x,y)!=0

SquareAcc

Adds the square of source imageatcumulator

void cvSquareAcc(const CvArr* img, CvArr* sqSum, const CvArr* mask=0);

I
Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is
processed independently).
Sq
Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.
mask
Optional operatiomask.

The functioricvSquareAddp 228 adds the square of input imalger its selected region to accumulator
Sq

Sq(x,y)=Sq(x,y)+(x,y) 2 if mask(x,y)!=0

MultiplyAcc

Adds product of two input images ascumulator

void cvMultiplyAcc(const CvArr* |, const CvArr* J, CvArr* Sp, const CvArr* mask=0);

I
First input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image
is processed independently).
J
Second input image, the same formatk.as
Sp
Accumulator of the same number of channels as input images, 32-bit or 64-bit floating-point.
mask
Optional operatiomask.

228

The functioncvMultiplyAcc| [p 228 adds product of the whole imageandJ or their selected regions to
accumulatoSp

Sp(x.y)=Sp(x.y)+l(x.y) *J(x.y) if mask(x,y)!=0

RunningAvg
Updates runningverage

void cvRunningAvg(const CvArr* |, CvArr* R, double alpha, const CvArr* mask=0);

I
Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is
processed independently).
R
Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.
alpha
Weight of input image.
mask
Optional operatiomask.

The functioricvRunningAvd[p 229 calculates weighted sum of input imagand accumulatdR so that
R becomes a running average of fraseguence:

R(x,y)=(1-) *R(x,y)+ asl(x,y) if mask(x,y)!=0

whered (alpha) regulates update speed (how fast accumulator forgets about pievies.

Motion Templates

UpdateMotionHistory

Updates motion history image by movisithouette

void cvUpdateMotionHistory(const CvArr* S, CvArr* MHI,
double timestamp, double duration);

S
Silhouette mask that has non-zero pixels where the motion occurs.
MHI
Motion history image, that is updated by the function (single-channel, 32-bit floating-point)
timestamp
Current time in milliseconds or other units.
duration
Maximal duration of motion track in the same unitsimestamp

229

The functioricvUpdateMotionHistonfp 229 updates the motion history imagefabowing:

MHI(x,y)=timestamp if S(x,y)!=0
0 if S(x,y)=0 and MHI(x,y)<timestamp-duration
MHI(x,y) otherwise

That is, MHI pixels where motion occurs are set to the current timestamp, while the pixels where motion
happened far ago acteared.

CalcMotionGradient

Calculates gradient orientation of motion histonage

void cvCalcMotionGradient(const CvArr* MHI, CvArr* mask, CvArr* orientation,
double deltal, double delta2, int apertureSize=3);

MHI
Motion history image.
mask
Mask image; marks pixels where motion gradient data is correct. Output parameter.
orientation
Motion gradient orientation image; contains angles from 0 to ~360°.
deltal,delta2
The function finds minimum (m(x,y)) and maximum (M(x,y)) MHI values over each pixel (x,y)
neihborhood and assumes the gradient is valid only if

min(deltal,delta2) <= M(x,y)-m(x,y) <= max(deltal,delta2).

apertureSize
Aperture size of derivative operators used by the function: CV_SCHARR, 1, 3,50

157).

The functioricvCalcMotionGradienfp 230 calculates the derivativd3x andDy of MHI and then
calculates gradient orientatias:

orientation(x,y)=arctan(Dy(x,y)/Dx(x,y))

where botDx(x,y) and Dy(x,y]) signs are taken into account (aguCartToPolgfp 90] function). After
thatmaskis filled to indicate where the orientation is valid (de#talanddelta2description).

CalcGlobalOrientation

Calculates global motion orientation of some selectgtbn

double cvCalcGlobalOrientation(const CvArr* orientation, const CvArr* mask, const CvArr* MHI,
double currTimestamp, double mhiDuration);

230

orientation
Motion gradient orientation image; calculated by the fundti@alcMotionGradieffp 230 .

mask
Mask image. It may be a conjunction of valid gradient mask, obtainefEv@&lcMotionGradiehfp
230 and mask of the region, whose direction needs to be calculated.

MHI
Motion history image.

timestamp
Current time in milliseconds or other units, it is better to store time pagsedpdateMotionHistony
[p 229 before and reuse it here, because runowdpdateMotionHistonfp 229 and
[cvCalcMotionGradienfp 230 on large images may take some time.

duration
Maximal duration of motion track in milliseconds, the same gsUpdateMotionHistonp 229 .

The functioricvCalcGlobalOrientatidifp 230 calculates the general motion direction in the selected

region and returns the angle between 0° and 360°. At first the function builds the orientation histogram
and finds the basic orientation as a coordinate of the histogram maximum. After that the function
calculates the shift relative to the basic orientation as a weighted sum of all orientation vectors: the more
recent is the motion, the greater is the weight. The resultant angle is a circular sum of the basic orientation
and the shift.

SegmentMotion

Segments whole motion into separate moyiags

CvSeq* cvSegmentMotion(const CvArr* MHI, CvArr* segMask, CvMemStorage* storage,
double timestamp, double segthresh);

mhi
Motion history image.
segMask
Image where the mask found should be stored, single-channel, 32-bit floating-point.
storage
Memory storage that will contain a sequence of motion connected components.
timestamp
Current time in milliseconds or other units.
segthresh
Segmentation threshold; recommended to be equal to the interval between motion history "steps" or
greater.

The functioricvSegmentMotigrip 237] finds all the motion segments and marks thesegMaskvith
individual values each (1,2,...). It also returns a sequerfice®@dnnectedConfp 175 structures, one per
each motion components. After than the motion direction for every component can be calculated with
[cvCalcGlobalOrientatidip 230 using extracted mask of the particular component ({si@mg[p 72])

231

Object Tracking

MeanShift

Finds object center on bapkojection

int cvMeanShift(const CvArr* imgProb, CvRect windowln,
CvTermCiriteria criteria, CvConnectedComp* comp);

imgProb
Back projection of object histogram ($@eCalcBackProje¢ip 199).
windowIn
Initial search window.
criteria
Criteria applied to determine when the window search should be finished.
comp
Resultant structure that contains converged search window coordtatgs >rectfield) and sum
of all pixels inside the windoicomp->areafield).

The functioricvMeanShift[p 237 iterates to find the object center given its back projection and initial
position of search window. The iterations are made until the search window center moves by less than the
given value and/or until the function has done the maximum number of iterations. The function returns the
number of iterationsade.

CamsShift

Finds object center, size, aodentation

int cvCamsShift(const CvArr* imgProb, CvRect windowln, CvTermCiriteria criteria,
CvConnectedComp* comp, CvBox2D* box=0);

imgProb
Back projection of object histogram ($@eCalcBackProje¢ip 199).
windowlIn
Initial search window.
criteria
Criteria applied to determine when the window search should be finished.
comp
Resultant structure that contains converged search window coordr@tgs>rectfield) and sum
of all pixels inside the windofjcomp->areafield).

box
Circumscribed box for the object. If ndtJLL, contains object size amdientation.

232

The functio [p 232 implements CAMSHIFT object tracking algrorith{il8radski98][p 237
). First, it finds an object center us [p 232 and, after that, calculates the object size and

orientation. The function returns number of iterations made vjgifeanShiit{p 237 .

[CvCamsShiftTrackefp ?7 class declared in cv.hpp implements color object tracker that usemttien.

[Bradski98] G.R. Bradski. Computer vision face tracking as a component of a perceptual user
interface. In Workshop on Applications of Computer Vision, pages 214219, Princeton, NJ, Oct.
1998.

Updated version can be viewed onlingatip://www.intel.com/technology/it//q21998/articles/art_2.htm
Also, it is included into OpenCYV distributidgnamshift. pdyf

Snakelmage

Changes contour position to minimizeétsergy

void cvSnakelmage(const Iplimage* image, CvPoint* points, int length,
float* alpha, float* beta, float* gamma, int coeffUsage,
CvSize win, CvTermCriteria criteria, int calcGradient=1);

image

The source image or external energy field.
points

Contour points (snake).
length

Number of points in the contour.
alpha

Weight([s] of continuity energy, single float or arraylefigthfloats, one per each contour point.
beta

Weight([s] of curvature energy, similar afpha
gamma

Weight[s] of image energy, similar &dpha
coeffUsage

Variant of usage of the previous three parameters:

e CV_VALUEindicates that each afpha, betagammais a pointer to a single value to be used
for all points;

e CV_ARRAYnNdicates that each afpha, betagammais a pointer to an array of coefficients
different for all the points of the snake. All the arrays must have the size equal to the contour
size.

win
Size of neighborhood of every point used to search the minimumwirothidthandwin.heightmust
be odd.

criteria
Termination criteria.

calcGradient
Gradient flag. If not 0, the function calculates gradient magnitude for every image pixel and
consideres it as the energy field, otherwise the input image itselhssdered.

233

http://www.intel.com/technology/itj/q21998/articles/art_2.htm

The functioricvSnakelmadép 233 updates snake in order to minimize its total energy that is a sum of
internal energy that depends on contour shape (the smoother contour is, the smaller internal energy is) and
external energy that depends on the energy field and reaches minimum at the local energy extremums that
correspond to the image edges in case of imaadient.

The parameterriteria.epsilonis used to define the minimal number of points that must be moved during
any iteration to keep the iteration process running.

If at some iteration the number of moved points is lessc¢hteria.epsilonor the function performed
criteria.maxlteriterations, the functioterminates.

Optical Flow

CalcOpticalFlowHS

Calculates optical flow for twamages

void cvCalcOpticalFlowHS(const CvArr* imgA, const CvArr* imgB, int usePrevious,
CVArr* velx, CvArr* vely, double lambda,
CvTermCriteria criteria);

imgA

First image, 8-bit, single-channel.
imgB

Second image, 8-bit, single-channel.
usePrevious

Uses previous (input) velocity field.
velx

Horizontal component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

vely
Vertical component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

lambda
Lagrangian multiplier.

criteria
Criteria of termination of velocitgomputing.

The functiorcvCalcOpticalFlowHEp 234 computes flow for every pixel of the first input image using

Horn & Schunck algorithfiHorn8I][p ?7 .

[Horn81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Artificial
Intelligence, 17, pp. 185-2031981.

234

CalcOpticalFlowLK

Calculates optical flow for twamages

void cvCalcOpticalFlowLK(const CvArr* imgA, const CvArr* imgB, CvSize winSize,
CvArr* velx, CvArr* vely);

imgA
First image, 8-bit, single-channel.
imgB
Second image, 8-bit, single-channel.
winSize
Size of the averaging window used for grouping pixels.
velx

Horizontal component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

vely
Vertical component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

The functiorcvCalcOpticalFlowLK[p 235 computes flow for every pixel of the first input image using

Lucas & Kanade algorithfiLucas81f[p 235 .

[Lucas81] Lucas, B., and Kanade, T. An lterative Image Registration Technique with an
Application to Stereo Vision, Proc. of 7th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 674-679.

CalcOpticalFlowBM

Calculates optical flow for two images by block matchimgthod

void cvCalcOpticalFlowBM(const CvArr* imgA, const CvArr* imgB, CvSize blockSize,
CvSize shiftSize, CvSize maxRange, int usePrevious,
CVArr* velx, CvArr* vely);

imgA
First image, 8-bit, single-channel.
imgB
Second image, 8-bit, single-channel.
blockSize
Size of basic blocks that are compared.
shiftSize
Block coordinate increments.
maxRange
Size of the scanned neighborhood in pixels around block.

235

usePrevious
Uses previous (input) velocity field.
velx
Horizontal component of the optical flovf
floor((imgA->width - blockSize.width)/shiftSize.width) x floor((imgA->height -
blockSize.height)/shiftSize.height) size, 32-bit floating-point, single-channel.
vely
Vertical component of the optical flow of the same sigky, 32-bit floating-pointsingle-channel.

The functioricvCalcOpticalFlowBNl[p 235 calculates optical flow for overlapped blocks
blockSize.widthxblockSize.heighikels each, thus the velocity fields are smaller than the original images.
For every block inmgAthe functions tries to find a similar blockimgBin some neighborhood of the
original block or shifted by (velx(x0,y0),vely(x0,y0)) block as has been calculated by previous function
call (if usePrevious=}1

CalcOpticalFlowPyrLK

Calculates optical flow for a sparse feature set using iterative Lucas-Kanade metjadriids

void cvCalcOpticalFlowPyrLK(const CvArr* imgA, const CvArr* imgB, CvArr* pyrA, CvArr* pyrB,
CvPoint2D32f* featuresA, CvPoint2D32f* featuresB,
int count, CvSize winSize, int level, char* status,
float* error, CvTermCriteria criteria , int flags);

imgA
First frame, at timeé.

imgB
Second frame, at tintet+ dt .

pyrA
Buffer for the pyramid for the first frame. If the pointer is NILL , the buffer must have a
sufficient size to store the pyramid from letdb level#level; the total size of imgSize.width +8)*
imgSize.height3 bytes is sufficient.

pyrB
Similar topyrA, applies to the second frame.
featuresA
Array of points for which the flow needs to be found.
featuresB
Array of 2D points containing calculated new positions of input
features
in the second image.
count
Number of feature points.
winSize
Size of the search window of each pyramid level.
level
Maximal pyramid level number. @, pyramids are not used (single level} iftwo levels are used,
etc.

236

status
Array. Every element of the array is setltid the flow for the corresponding feature has been found,
0 otherwise.
error
Array of double numbers containing difference between patches around the original and moved
points. Optional parameter; canReLL .
criteria
Specifies when the iteration process of finding the flow for each point on each pyramid level should
be stopped.
flags
Miscellaneous flags:
e CV_LKFLOW_PYR_A READYyramid for the first frame is precalculated before the call;
e CV_LKFLOW_PYR_B_READYwyramid for the second frame is precalculated before the call;
e CV_LKFLOW_INITIAL_GUESSESarray B contains initial coordinates of features before the
functioncall.

The functiorcvCalcOpticalFlowPyrLKp 236 implements sparse iterative version of Lucas-Kanade
optical flow in pyramidg[BouguetOQ][p ?7). Calculates the optical flow between two images for the
given set of points. The function finds the flow with sub-pixel accuracy.

Both parameterpyrA andpyrB comply with the following rules: if the image pointer is 0 , the function
allocates the buffer internally, calculates the pyramid, and releases the buffer after processing. Otherwise,
the function calculates the pyramid and stores it in the buffer unless the flag
CV_LKFLOW_PYR_A[B]_READ:is set. The image should be large enough to fit the Gaussian pyramid
data. After the function call both pyramids are calculated and the ready flag for the corresponding image
can be set in the negall.

[Bouguet00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Featufeacker.
The paper is included into OpenCV distribut{afgo_tracking.pdf

Estimators

CvKalman

Kalman filterstate

typedef struct CvKalman

{
int MP; /* number of measurement vector dimensions */
int DP; /* number of state vector dimensions */
int CP; /* number of control vector dimensions */

[* backward compatibility fields */

#if 1
float* PosterState; [* =state_pre->data.fl */
float* PriorState; [* =state_post->data.fl */

float* DynamMatr; [* =transition_matrix->data.fl */

237

float* MeasurementMatr; /* =measurement_matrix->data.fl */

float* MNCovariance; /* =measurement_noise_cov->data.fl */
float* PNCovariance; [* =process_noise_cov->data.fl */
float* KalmGainMatr; [* =gain->data.fl */

float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
float* PosterErrorCovariance;/* =error_cov_post->data.fl */

float* Templ; [* templ->data.fl */
float* Temp2; [* temp2->data.fl */
#endif
CvMat* state_pre; [* predicted state (x'(k)):
x(K)=A*x(k-1)+B*u(k) */
CvMat* state_post; [* corrected state (x(k)):

x(K)=x'(k)+K(k)*(z(k)-H*x'(k)) */

CvMat* transition_matrix; /* state transition matrix (A) */

CvMat* control_matrix; /* control matrix (B)
(it is not used if there is no control)*/

CvMat* measurement_matrix; /* measurement matrix (H) */

CvMat* process_noise_cov; [* process noise covariance matrix (Q) */

CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */

CvMat* error_cov_pre; [* priori error estimate covariance matrix (P’(k)):
P'(k)=A*P(k-1)*At + Q)*/

CvMat* gain; /* Kalman gain matrix (K(k)):
K(k)=P'(k)*Ht*inv(H*P’(k)*Ht+R)*/

CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
P(K)=(I-K(K)*H)*P’(k) */

CvMat* temp1; [* temporary matrices */

CvMat* temp2;

CvMat* temp3;

CvMat* temp4;

CvMat* tempb;

}

CvKalman;

The structurfCvKalmar[p 237 is used to keep Kalman filter state. It is createfddgreateKalmdiip
239 function, updated HgvKalmanPredi¢fp 239 andcvKalmanCorre¢fp 240 functions and released
bylcvReleaseKalmafp 239 functions. Normally, the structure is used for standard Kalman filter
(notation and formulae are borrowed from excellent Kalman tu[dMelch95] [p ?7):

X g =A*X .1 +Beu | +wy
Z i =Hex | +V i,

where:

Xk (X ka1)- state of the system at the moment k (k-1)
Z ¢ - measurement of the system state at the moment k
u - external control applied at the moment k

w, andv are normally-distributed process and measurement noise, respectively:

p(w) ~ N(0,Q)
p(v) ~ N(O,R),
that is,

Q - process noise covariance matrix, constant or variable,
R - measurement noise covariance matrix, constant or variable

238

In case of standard Kalman filter, all the matrices: A, B, H, Q and R are initialized on{@vfemar)

[p 237 structure is allocated vigvCreateKalmafip 239 . However, the same structure and the same
functions may be used to simulate extended Kalman filter by linearizing extended Kalman filter equation

in the current system state neighborhood, in this case A, B, H (and, probably, Q and R) should be updated
on everystep.

[Welch95] Greg Welch, Gary Bishop. An Introduction To the Kalman Filter. Technical Report
TR95-041, University of North Carolina at Chapel Hill, 1995.0Online version is available at
|http://Iwww.cs.unc.edu/~welch/kalman/kalman filter/kalman.html

CreateKalman

Allocates Kalman filtestructure

CvKalman* cvCreateKalman(int dynamParams, int measureParams, int controParams=0);

dynamParams

dimensionality of the state vector
measureParams

dimensionality of the measurement vector
controlParams

dimensionality of the contralector

The functioricvCreateKalmdifip 239 allocategCvKalmarh[p 237] and all its matrices and initializes them
somehow.

ReleaseKalman
Deallocates Kalman filtestructure
void cvReleaseKalman(CvKalman** kalman);

kalman
double pointer to the Kalman filtstructure.

The functioricvReleaseKalmafp 239 releases the struct [p 237 and all underlying
matrices.

KalmanPredict

Estimates subsequent modtdte

const CvMat* cvKalmanPredict(CvKalman* kalman, const CvMat* control=NULL);
#define cvKalmanUpdateByTime cvKalmanPredict

239

http://www.cs.unc.edu/~welch/kalman/kalman_filter/kalman.html

kalman
Kalman filter state.
control
Control vector(uy), should be NULL iff there is no external contfobntrolParams0).

The functioricvKalmanPredi¢fp 239 estimates the subsequent stochastic model state by its current state
and stores it dtalman->state_pre

X k =A*X i +Beu g
P’ k=APry AT +Q,
where
X'k Iis predicted state (kalman->state_pre),
X k-1 is corrected state on the previous step (kalman->state_post)

(should be initialized somehow in the beginning, zero vector by default),
Uk Is external control (control parameter),

P’ « is priori error covariance matrix (kalman->error_cov_pre)
P .1 is posteriori error covariance matrix on the previous step (kalman->error_cov_post)
(should be initialized somehow in the beginning, identity matrix by default),

The function returns the estimatstte.

KalmanCorrect

Adjusts modektate

void cvKalmanCorrect(CvKalman* kalman, const CvMat* measurement=NULL);
#define cvKalmanUpdateByMeasurement cvKalmanCorrect

kalman
Pointer to the structure to be updated.
measurement
Pointer to the structure CvMat containing the measurevesnor.

The functioricvKalmanCorre¢fp 24(adjusts stochastic model state on the basis of the given
measurement of the modsthte:

Kk =P’ (*HT ¢(H+P’ | sHT+R) 1

X=X k+Kg*(z g -Hex §)

Pk =(|-K K ’H)’P’ k

where

Z ¢ - given measurement (nmesur enent parameter)

K - Kalman "gain" matrix.

The function stores adjusted stat&atman->state_posind returns it ooutput.

240

Example. Using Kalman filter to track a rotating point

#include "cv.h"
#include "highgui.h"
#include <math.h>

int main(int argc, char** argv)
{
/* A matrix data */
const float A[]={1,1,0,1}

Iplimage* img = cvCreatelmage(cvSize(500,500), 8, 3);
CvKalman* kalman = cvCreateKalman(2, 1, 0);

/* state is (phi, delta_phi) - angle and angle increment */
CvMat* state = cvCreateMat(2, 1, CV_32FC1);

CvMat* process_noise = cvCreateMat(2, 1, CV_32FC1);
/* only phi (angle) is measured */

CvMat* measurement = cvCreateMat(1, 1, CV_32FC1);
CvRandState rng;

int code = -1;

cvRandInit(&rng, 0, 1, -1, CV_RAND_UNI);

cvZero(measurement);
cvNamedWindow("Kalman", 1);

for(;;)

{
cvRandSetRange(&rng, 0, 0.1, 0);
rng.disttype = CV_RAND_NORMAL;

cvRand(&rng, state);

memcpy(kalman->transition_matrix->data.fl, A, sizeof(A));
cvSetldentity(kalman->measurement_matrix, cvRealScalar(1));
cvSetldentity(kalman->process_noise_cov, cvRealScalar(le-5));
cvSetldentity(kalman->measurement_noise_cov, cvRealScalar(le-1));
cvSetldentity(kalman->error_cov_post, cvRealScalar(1));

[* choose random initial state */

cvRand(&rng, kalman->state_post);

rng.disttype = CV_RAND_NORMAL;

for(;;)
{
#define calc_point(angle) \
cvPoint(cvRound(img->width/2 + img->width/3*cos(angle)), \
cvRound(img->height/2 - img->width/3*sin(angle)))

float state_angle = state->data.fl[0];
CvPoint state_pt = calc_point(state_angle);

/* predict point position */

const CvMat* prediction = cvKalmanPredict(kalman, 0);
float predict_angle = prediction->data.fl[0];

CvPoint predict_pt = calc_point(predict_angle);

float measurement_angle;

CvPoint measurement_pt;

241

}

cvRandSetRange(&rng, 0, sgrt(kalman->measurement_noise_cov->data.fl[0]), 0);
cvRand(&rng, measurement);

/* generate measurement */
cvMatMulAdd(kalman->measurement_matrix, state, measurement, measurement);

measurement_angle = measurement->data.fl[0];
measurement_pt = calc_point(measurement_angle);

/* plot points */

#define draw_cross(center, color, d) \
cvLine(img, cvPoint(center.x - d, center.y - d), \
cvPoint(center.x + d, center.y + d), color, 1, 0);\
cvLine(img, cvPoint(center.x + d, center.y - d), \

cvPoint(center.x - d, center.y +d), color, 1,0)

cvZero(img);

draw_cross(state_pt, CV_RGB(255,255,255), 3);
draw_cross(measurement_pt, CV_RGB(255,0,0), 3);
draw_cross(predict_pt, CV_RGB(0,255,0), 3);

cvLine(img, state_pt, predict_pt, CV_RGB(255,255,0), 3, 0);

/* adjust Kalman filter state */
cvKalmanCorrect(kalman, measurement);

cvRandSetRange(&rng, 0, sqgrt(kalman->process_noise_cov->data.fl[0]), 0);
cvRand(&rng, process_noise);
cvMatMulAdd(kalman->transition_matrix, state, process_noise, state);

cvShowlmage("Kalman", img);
code = cvWaitKey(100);

if(code > 0) /* break current simulation by pressing a key */
break;
}
if(code == 27) /* exit by ESCAPE */
break;

return O;

}

CvConDensation

ConDenstatiorstate

typedef struct CvConDensation

{

int MP; //IDimension of measurement vector

int DP; // Dimension of state vector

float* DynamMatr; /I Matrix of the linear Dynamics system
float* State; /I Vector of State

int SamplesNum; / Number of the Samples

float** flSamples; // array of the Sample Vectors

float** fINewSamples; // temporary array of the Sample Vectors

242

float* fliConfidence; // Confidence for each Sample

float* fiCumulative; // Cumulative confidence

float* Temp; /I Temporary vector

float* RandomSample; // RandomVector to update sample set

CvRandState* RandS; // Array of structures to generate random vectors
} CvConDensation;

The structur¢gCvConDensatidifip ?7 stores CONditional DENSity propagATION tracker state. The
information about the algorithm can be found at
|http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/ISARD1/condensationfhtml

CreateConDensation

Allocates ConDensation filtestructure

CvConDensation* cvCreateConDensation(int DynamParams, int MeasureParams, int SamplesNum);

DynamParams

Dimension of the state vector.
MeasureParams

Dimension of the measurement vector.
SamplesNum

Number ofsamples.

The functioricvCreateConDensatidp 243 creategCvConDensatidifip ?7 structure and returns pointer
to thestructure.

ReleaseConDensation

Deallocates ConDensation filtstructure

void cvReleaseConDensation(CvConDensation** ConDens);

ConDens
Pointer to the pointer to the structure taréleased.

The functioricvReleaseConDensat|fim 243 releases the structy@yConDensatidifip ?7 (see
[cvConDensatidifip 77) and frees all memory previously allocated forgtrecture.

ConDenslInitSampleSet

Initializes sample set for condensatadgorithm

void cvConDensInitSampleSet(CvConDensation* ConDens, CvMat* lowerBound, CvMat* upperBound);

243

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html

ConDens

Pointer to a structure to be initialized.
lowerBound

Vector of the lower boundary for each dimension.
upperBound

Vector of the upper boundary for eadimension.

The functioricvConDensInitSampleSgt 243 fills the samples arrays in the struct@eConDensatidifip
?79 with values within specifiedanges.

ConDensUpdateByTime
Estimates subsequent modtdte
void cvConDensUpdateByTime(CvConDensation* ConDens);

ConDens
Pointer to the structure to l@dated.

The functiorcvConDensUpdateByTimip 244 estimates the subsequent stochastic model state from its
currentstate.

244

Object RecognitionReference

e [Eigen Objects (PCAFunction§p 245
O |CalcCovarMatrixENMp 245
O |CalcEigenObjectfp 246
O |CalcDecompCoeffp 247
O |EigenDecomposiifp 247
O |EigenProjectiofip 24§
e [Embedded Hidden Markov Moddisinctionfp 249
o [HMM][p 249
o [ImgObsInfg[p 250
O [Create2DHMMIp 250
O |Release2DHMMp 257]
O [CreateObsinidp 251
O |ReleaseObsInffp 251]
O [ImgToObs DCT[p 257
O |UniformimgSegrip 252
o [mitMixSegn] [p 253
O [EstimateHMMStateParaip 253
O |EstimateTransProfp 254
O |EstimateObsProfp 254
o [EViterbi [p 254
o [MixSegmL2[p 255

Eigen Objects (PCA)Functions

The functions described in this section do PCA analysis and compression for a set of 8-bit images that
may not fit into memory all together. If your data fits into memory and the vectors are not 8-bit (or you

want a simpler interface), usgCalcCovarMatrifp 89] ,[cvSVO [p 86] andcvGEMM [p 82] to doPCA

CalcCovarMatrixEx

Calculates covariance matrix for group of inpbjects
void cvCalcCovarMatrixEx(int nObjects, void* input, int ioFlags,

int ioBufSize, uchar* buffer, void* userData,
Iplimage* avg, float* covarMatrix);

nObjects
Number of source objects.

245

input
Pointer either to the array tdlimageinput objects or to the read callback function according to the
value of the paramet@Flags
ioFlags
Input/output flags.
ioBufSize
Input/output buffer size.
buffer
Pointer to the input/output buffer.
userData
Pointer to the structure that contains all necessary data for the
callback
functions.
avg
Averaged object.
covarMatrix
Covariance matrix. An output parameter; must be allocated befocalthe

The functioricvCalcCovarMatrixEXp 245 calculates a covariance matrix of the input objects group
using previously calculated averaged object. DependingFiags parameter it may be used either in
direct access or callback modeidFlagsis notCV_EIGOBJ_NO_CALLBACHKuffer must be allocated
before calling the function.

CalcEigenObjects

Calculates orthonormal eigen basis and averaged object for group obljgets

void cvCalcEigenObjects(int nObjects, void* input, void* output, int ioFlags,
int ioBufSize, void* userData, CvTermCriteria* calcLimit,
Iplimage* avg, float* eigVals);

nObjects
Number of source objects.
input
Pointer either to the array tglimageinput objects or to the read callback function according to the
value of the paramet@Flags
output
Pointer either to the array of eigen objects or to the write callback function according to the value of
the parameter ioFlags .
ioFlags
Input/output flags.
ioBufSize
Input/output buffer size in bytes. The size is zero, if unknown.
userData
Pointer to the structure that contains all necessary data for the callback functions.

246

calcLimit

Criteria that determine when to stop calculation of eigen objects.
avg

Averaged object.
eigVals

Pointer to the eigenvalues array in the descending order; nidilde.

The functioricvCalcEigenObjectfp 246 calculates orthonormal eigen basis and the averaged object for a
group of the input objects. DependingioRlags parameter it may be used either in direct access or
callback mode. Depending on the parametdecLimit, calculations are finished either after first
calcLimit.maxItersdlominating eigen objects are retrieved or if the ratio of the current eigenvalue to the
largest eigenvalue comes dowrcaicLimit.epsilonthreshold. The valuealcLimit -> typemust be
CV_TERMCRIT_NUMBZV_TERMCRIT_ER®rCV_TERMCRIT_NUMBCV_TERMCRIT_EPSThe
function returns the real valuealcLimit -> maxlIterandcalcLimit -> epsilon.

The function also calculates the averaged object, which must be created previously. Calculated eigen
objects are arranged according to the corresponding eigenvalues in the desureteding

The parametegigValsmay be equal tBlULL, if eigenvalues are not needed.

The functioricvCalcEigenObjectfp 246 uses the functigavCalcCovarMatrixENp 245 .

CalcDecompCoeftf

Calculates decomposition coefficient of inplject

double cvCalcDecompCoeff(Iplimage* obj, Iplimage* eigObj, Iplimage* avg);

obj

Input object.
eigObj

Eigen object.
avg

Averagedobject.

The functiorcvCalcDecompCodfip 247] calculates one decomposition coefficient of the input object
using the previously calculated eigen object and the averdgject.

EigenDecomposite

Calculates all decomposition coefficients for inpbject

void cvEigenDecomposite(Iplimage* obj, int nEigObjs, void* eiglnput,
int ioFlags, void* userData, Iplimage* avg, float* coeffs);

247

obj
Input object.
nEigObjs
Number of eigen objects.
eiglnput
Pointer either to the array tdlimageinput objects or to the read callback function according to the
value of the paramet@Flags
ioFlags
Input/output flags.
userData
Pointer to the structure that contains all necessary data for the callback functions.
avg
Averaged object.
coeffs
Calculated coefficients; an outppdrameter.

The functioricvEigenDecompositfp 247] calculates all decomposition coefficients for the input object
using the previously calculated eigen objects basis and the averaged object. Depeiodilag®n
parameter it may be used either in direct access or calthad&.

EigenProjection

Calculates object projection to the eigei-space

void cvEigenProjection(int nEigObjs, void* eiglnput, int ioFlags,
void* userData, float* coeffs,
Iplimage* avg, Iplimage* proj);

nEigObjs
Number of eigen objects.
eiglnput
Pointer either to the array tglimageinput objects or to the read callback function according to the
value of the paramet@Flags
ioFlags
Input/output flags.
userData
Pointer to the structure that contains all necessary data for the callback functions.
coeffs
Previously calculated decomposition coefficients.
avg
Averaged object.
proj
Decomposed object projection to the eigabh-space.

248

The functioricvEigenProjectiorip 24§ calculates an object projection to the eigen sub-space or, in other
words, restores an object using previously calculated eigen objects basis, averaged object, and
decomposition coefficients of the restored object. Dependinigrdags parameter it may be used either

in direct access or callbackode.

The functions of the eigen objects group have been developed to be used for any number of objects, even
if their total size exceeds free RAM size. So the functions may be used in twmotes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input and eigen objects
allocation. This mode is set if the paramévéiiagsis equal tacCV_EIGOBJ_NO_CALLBACKIn this
caseinput andoutputparameters are pointers to arrays of input/output objetpdlimiage* type. The
parameter®BufSizeanduserDataare notused.

EmbeddedHidden Markov Models Functions

In order to support embedded models the user must define structures to represent 1D HMM and 2D
embedded HMMnodel.

CvHMM

Embedded HMMStructure

typedef struct _CvEHMM
{

int level;

int num_states;
float* transP;
float** obsProb;
union

{
CvEHMMState* state;
struct _CvEHMM* ehmm;

by
} CVEHMM;

level
Level of embedded HMM. lievel==0, HMM is most external. In 2D HMM there are two types of
HMM: 1 external and several embedded. External HMMléneesl==1, embedded HMMs havevel

num_states

Number of states in 1D HMM.
transP

State-to-state transition probability, square mgtmixm_statexnum_stade
obsProb

Observation probability matrix.

249

state
Array of HMM states. For the last-level HMM, that is, an HMM without embedded HMMs, HMM
states are real.

ehmm
Array of embedded HMMs. If HMM is not last-level, then HMM states are not real and they are
HMMs.

For representation of observations the following structudefimed:

CvimgObsinfo

Image ObservatioBtructure

typedef struct CvimgObsinfo
{

int obs_x;
int obs_y;
int obs_size;
float** obs;
int* state;
int* mix;

} CvimgObsinfo;

obs_x
Number of observations in the horizontal direction.
obs_y
Number of observations in the vertical direction.
obs_size
Length of every observation vector.
obs
Pointer to observation vectors stored consequently. Number of veabis isFobs_y
state
Array of indices of states, assigned to every observation vector.
mix
Index of mixture component, corresponding to the observation vector within an astageed

Create2DHMM
Creates 2D embeddétvM
CvEHMM* cvCreate2DHMM(int* stateNumber, int* numMix, int obsSize);

stateNumber
Array, the first element of the which specifies the number of superstates in the HMM. All subsequent
elements specify the number of states in every embedded HMM, corresponding to each superstate.
So, the length of the arrayssateNumbef0]+1 .

250

nummMix
Array with numbers of Gaussian mixture components per each internal state. The number of elements
in the array is equal to number of internal states in the HMM, that is, superstates are not counted here.
obsSize
Size of observation vectors to be used with creditdil.

The functioricvCreate2DHMNI[p 250 returns the created structure of the [p 27 with
specified parameters.

Release2DHMM

Releases 2D embeddEdiM

void cvRelease2DHMM(CVEHMM** hmm);

hmm
Address of pointer to HMM to beeleased.

The functioricvRelease2DHMMp 257] frees all the memory used by HMM and clears the pointer to
HMM.

CreateObslinfo

Creates structure to store image observatemtors

CvimgObsinfo* cvCreateObsinfo(CvSize numObs, int obsSize);

numObs
Numbers of observations in the horizontal and vertical directions. For the given image and scheme of
extracting observations the parameter can be computed via the@ad@®UNT_OBS(roi, dctSize,
delta, numOb3, whereroi, dctSize, deltapumObsare the pointers to structures of the {@uSize]p
?79 . The pointeroi means size abi of image observesiumObss the output parameter of the
macro.

obsSize
Size of observation vectors to be stored instiacture.

The functioricvCreateObsIni@p 251] creates new structures to store image observation vectors. For
definitions of the parametersi, dctSize anddeltasee the specification of the function
[cvimgToObs DCIl[p 257 .

ReleaseObslinfo

Releases observation vectstricture

251

void cvReleaseObslInfo(CvimgObsinfo** obsinfo);

obsinfo

Address of the pointer to the structi@elmgObsInfd[p 257 .

The functiorcvReleaseObsInffp 251 frees all memory used by observations and clears pointer to the
structurgCvimgObsInig[p 25Q .

ImgToObs_DCT

Extracts observation vectors framage

void cvimgToObs_DCT(Iplimage* image, float* obs, CvSize dctSize,
CvSize obsSize, CvSize delta);

image
Input image.
obs
Pointer to consequently stored observation vectors.
dctSize
Size of image blocks for which DCT (Discrete Cosine Transform) coefficients are to be computed.
obsSize
Number of the lowest DCT coefficients in the horizontal and vertical directions to be put into the
observation vector.
delta
Shift in pixels between two consecutive image blocks in the horizontal and veditgzions.

The functiorcvimgToObs DCll[p 257 extracts observation vectors, that is, DCT coefficients, from the
image. The user must pasissinfo.obsas the parametebsto use this function with other HMM
functions and use the structuresinfoof theCvimgObsIinf[p 250 type.

Calculating Observations fdiMM

CvimgObsinfo* obs_info;

cvimgToObs_DCT(image,obs_info->obs, //!!!

dctSize, obsSize, delta);

UniformimgSegm

Performs uniform segmentation of image observations by Hitéitks

252

void cvUniformimgSegm(CvimgObsinfo* obsinfo, CvEHMM* hmm);

obslinfo

Observations structure.
hmm

HMM structure.

The functioricvUniformimgSegrip 252 segments image observations by HMM states uniformly (see
Initial Segmentatiotior 2D Embedded HMM for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

Initial Segmentation for 2D Embedded HMM

T

k-

InitMixSegm

Segments all observations within every internal state of HMM by state modargonents

void cvinitMixSegm(CvimgObsinfo** obsinfoArray, int numimg, CvEHMM* hmm);

obsinfoArray

Array of pointers to the observation structures.
numimg

Length of above array.
hmm

HMM.

The functionecvinitMixSegm|[p 253 takes a group of observations from several training images already
segmented by states and splits a set of observation vectors within every internal HMM state into as many
clusters as the number of mixture components in the state.

EstimateHMMStateParams

Estimates all parameters of every HMithte

void cvEstimateHMMStateParams(CvimgObsinfo** obsInfoArray, int numimg, CvEHMM* hmm);

obsiInfoArray

Array of pointers to the observation structures.
numimg

Length of the array.

253

hmm
HMM.

The functioricvEstimateHMMStateParafpfis 253 computes all inner parameters of every HMM state,
including Gaussian means, variances, etc.

EstimateTransProb

Computes transition probability matrices for embeddbtiv

void cvEstimateTransProb(CvimgObsinfo** obsinfoArray, int numimg, CvEHMM* hmm);

obsinfoArray

Array of pointers to the observation structures.
numimg

Length of the above array.
hmm

HMM.

The functioricvEstimateTransProlp 254 uses current segmentation of image observations to compute
transition probability matrices for all embedded and external HMMs.

EstimateObsProb

Computes probability of every observation of sevienalges

void cvEstimateObsProb(CvimgObslinfo* obsinfo, CvEHMM* hmm);

obsinfo

Observation structure.
hmm

HMM structure.

The functioricvEstimateObsProfp 254 computes Gaussian probabilities of each observation to occur in
each of the internal HMM states.

EViterbi

Executes Viterbi algorithm for embeddetiM

float cvEViterbi(CvimgObsinfo* obsinfo, CvEHMM* hmm);

obslinfo
Observation structure.

254

hmm
HMM structure.

The functioricvEViterb] [p 254 executes Viterbi algorithm for embedded HMM. Viterbi algorithm

evaluates the likelihood of the best match between the given image observations and the given HMM and
performs segmentation of image observations by HMM states. The segmentation is done on the basis of
the match found.

MixSegmL2

Segments observations from all training images by mixture components of newly astigesd

void cvMixSegmL2(CvimgObsinfo** obsInfoArray, int numimg, CvEHMM* hmm);

obsinfoArray

Array of pointers to the observation structures.
numimg

Length of the array.
hmm

HMM.

The functioncvMixSegmL2[p 2559 segments observations from all training images by mixture
components of newly Viterbi algorithm-assigned states. The function uses Euclidean distance to group
vectors around the existing mixturesnters.

255

Camera Calibration and 3D ReconstructionReference

e [Camera Calibratiofunctionf{p 256
O |CalibrateCameffp 256
O |CalibrateCamera 6#@ 257
o [RodrigueHp 258
o [UnDistortOncHp 25§
o [UnDistortinii [p 259
O [UnDistor}[p 259
O [FindChessBoardCornerGueg§e260Q
® |[PoseEstimatiof[p 261]
O [FindExtrinsicCameraParapfs 261]
O |FindExtrinsicCameraParams_ 6261
o [CreatePOSITObjddp 262
o [POSTT[p 263
O |ReleasePOSITODbjgfp 263
O |CalclmageHomographip 263
e |View MorphingFunction§{p 264
o [MakeScanlindép 264
o [PreWarpimadép 265
o [EindRunbp 265
O |DynamicCorrespondMulfip 266
O |MakeAlphaScanlingfp 266
O [MorphEpilinesMultj[p 267]
O |PostWarpimadép 26§
o [DeleteMoirg[p 26§
e [Epipolar Geometr{runctionfp ?9
O |[FindFundamentalMgp 269
O |ComputeCorrespondEpilings 271]

Camera Calibration Functions

CalibrateCamera

Calibrates camera with singbeecision

void cvCalibrateCamera(int numimages, int* numPoints, CvSize imageSize,
CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f,
CvVect32f distortion32f, CvMatr32f cameraMatrix32f,
CvVect32f transVects32f, CvMatr32f rotMatrs32f,
int uselntrinsicGuess);

256

numimages
Number of the images.
numPoints
Array of the number of points in each image.
imageSize
Size of the image.
imagePoints32f
Pointer to the images.
objectPoints32f
Pointer to the pattern.
distortion32f
Array of four distortion coefficients found.
cameraMatrix32f
Camera matrix found.
transVects32f
Array of translate vectors for each pattern position in the image.
rotMatrs32f
Array of the rotation matrix for each pattern position in the image.
uselntrinsicGuess
Intrinsic guess. If equal to 1, intrinsic guesadeded.

The functioricvCalibrateCamelfp 256 calculates the camera parameters using information points on the
pattern object and pattern object images.

CalibrateCamera_64d

Calibrates camera with doulpeecision

void cvCalibrateCamera_64d(int numimages, int* numPoints, CvSize imageSize,
CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints,
CvVect64d distortion, CvMatr64d cameraMatrix,
CvVect64d transVects, CvMatr64d rotMatrs,
int uselntrinsicGuess);

numimages

Number of the images.
numPoints

Array of the number of points in each image.
imageSize

Size of the image.
imagePoints

Pointer to the images.
objectPoints

Pointer to the pattern.
distortion

Distortion coefficients found.

257

cameraMatrix

Camera matrix found.
transVects

Array of the translate vectors for each pattern position on the image.
rotMatrs

Array of the rotation matrix for each pattern position on the image.
uselntrinsicGuess

Intrinsic guess. If equal to 1, intrinsic guesadeded.

The functioricvCalibrateCamera 6@ 257] is basically the same as the funciauCalibrateCameffp
25¢ , but uses doublgrecision.

Rodrigues

Converts rotation matrix to rotation vector and vice versa with sprglasion

void cvRodrigues(CvMat* rotMatrix, CvMat* rotVector,
CvMat* jacobian, int convType);

rotMatrix
Rotation matrix (3x3), 32-bit or 64-bit floating point.
rotVector
Rotation vector (3x1 or 1x3) of the same typedaibliatrix.
jacobian
Jacobian matrix 3 x 9.
convType
Type of conversion; must K&V _RODRIGUES_M2Y6r converting the matrix to the vector or
CV_RODRIGUES_V2Nbr converting the vector to thmatrix.

The functioricvRodrigueldp 258 converts the rotation matrix to the rotation vector or vieesa.

UnDistortOnce

Corrects camera lemstortion

void cvUnDistortOnce(const CvArr* srcimage, CvArr* dstimage,
const float* intrMatrix,
const float* distCoeffs,
int interpolate=1);

srclmage
Source (distorted) image.
dstimage
Destination (corrected) image.
intrMatrix
Matrix of the camera intrinsic parameters (3x3).

258

distCoeffs
Vector of the four distortion coefficienks , ko, p; andp,.

interpolate
Bilinear interpolatiorflag.

The functioricvUnDistortOncHp 258 corrects camera lens distortion in case of a single image. Matrix of
the camera intrinsic parameters and distortion coefficlentk, , p; , andp, must be preliminarily

calculated by the functigevCalibrateCamelfp 256 .

UnDistortinit

Calculates arrays of distorted points indices and interpolatiefficients

void cvUnDistortlnit(const CvArr* srcimage, CvArr* undistMap,
const float* intrMatrix,
const float* distCoeffs,
int interpolate=1);

srclmage
Artibtrary source (distorted) image, the image size and number of channels do matter.
undistMap
32-bit integer image of the same size as the source imdgee(pgolate=0 or 3 times wider than the
source image (iinterpolate=1).
intrMatrix
Matrix of the camera intrinsic parameters.
distCoeffs
Vector of the 4 distortion coefficienks , k,, p; andps.

interpolate
Bilinear interpolatiorflag.

The functiorcvUnDistortInif[p 259 calculates arrays of distorted points indices and interpolation
coefficients using known matrix of the camera intrinsic parameters and distortion coefficients. It calculates

undistortion map fdevUnDistorf[p 259 .

Matrix of the camera intrinsic parameters and the distortion coefficients may be calculated by
[cvCalibrateCamelfp 256 .

UnDistort

Corrects camera lemfstortion

void cvUnDistort(const void* srcimage, void* dstimage,
const void* undistMap, int interpolate=1);

259

srclmage
Source (distorted) image.

dstimage

Destination (corrected) image.
undistMap

Undistortion map, pre-calculated pyUnDistortInit[p 259 .
interpolate

Bilinear interpolation flag, the same agciJnDistortInif[p 259 .

The functio [p 259 corrects camera lens distortion using previously calculated undistortion
map. It is faster thdavUnDistortOncHp 25§ .

FindChessBoardCornerGuesses

Finds approximate positions of internal corners ofctiessboard

int cvFindChessBoardCornerGuesses(Iplimage* img, Ipllmage* thresh, CvSize etalonSize,
CvPoint2D32f* corners, int* cornerCount);

img
Source chessboard view; must have the deptiAlofDEPTH_8U

thresh
Temporary image of the same size and format as the source image.

etalonSize
Number of inner corners per chessboard row and column. The width (the number of columns) must
be less or equal to the height (the number of rows).

corners
Pointer to the corner array found.

cornerCount
Signed value whose absolute value is the number of corners found. A positive number means that a
whole chessboard has been found and a negative number means that not all the corners have been
found.

The functioricvFindChessBoardCornerGuesfe260Q attempts to determine whether the input image is a

view of the chessboard pattern and locate internal chessboard corners. The function returns non-zero value
if all the corners have been found and they have been placed in a certain order (row by row, left to right in
every row), otherwise, if the function fails to find all the corners or reorder them, the function returns 0.

For example, a simple chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points, where the
squares are tangent. The word "approximate" in the above description means that the corner coordinates
found may differ from the actual coordinates by a couple of pixels. To get more precise coordinates, the
user may use the functigwFindCornerSubPjjp ?7 .

260

PoseEstimation

FindExtrinsicCameraParams

Finds extrinsic camera parametersgattern

void cvFindExtrinsicCameraParams(int numPoints, CvSize imageSize,
CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f,
CvVect32f focalLength32f, CvPoint2D32f principalPoint32f,
CvVect32f distortion32f, CvVect32f rotVect32f,
CwvVect32f transVect32f);

numPoints

Number of the points.
ImageSize

Size of the image.
imagePoints32f

Pointer to the image.
objectPoints32f

Pointer to the pattern.
focalLength32f

Focal length.
principalPoint32f

Principal point.
distortion32f

Distortion.
rotVect32f

Rotation vector.
transVect32f

Translatevector.

The functioricvFindExtrinsicCameraParalfs261] finds the extrinsic parameters for thattern.

FindExtrinsicCameraParams_64d

Finds extrinsic camera parameters for pattern with dquielgision

void cvFindExtrinsicCameraParams_64d(int numPoints, CvSize imageSize,
CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints,
CvVect64d focalLength, CvPoint2D64d principalPoint,
CvVect64d distortion, CvVect64d rotVect,
CvVect64d transVect);

numPoints
Number of the points.

261

ImageSize

Size of the image.
imagePoints

Pointer to the image.
objectPoints

Pointer to the pattern.
focalLength

Focal length.
principalPoint

Principal point.
distortion

Distortion.
rotVect

Rotation vector.
transVect

Translatevector.

The functioricvFindExtrinsicCameraParams_§4pd261] finds the extrinsic parameters for the pattern
with doubleprecision.

CreatePOSITObject

Initializes structure containing objdoformation

CvPOSITODbject* cvCreatePOSITODbject(CvPoint3D32f* points, int numPoints);

points

Pointer to the points of the 3D object model.
numPoints

Number of objecpoints.

The functioricvCreatePOSITObjg¢p 267 allocates memory for the object structure and computes the
object inverse matrix.

The preprocessed object data is stored in the strfCuR®SITODbjed¢{p ?7 , internal for OpenCV,
which means that the user cannot directly access the structure data. The user may only create this structure
and pass its pointer to tffienction.

Object is defined as a set of points given in a coordinate system. The fiov®08IT[p 263 computes
a vector that begins at a camera-related coordinate system center and enpisirtis{oéof theobject.

Once the work with a given object is finished, the fundtoReleasePOSITODj¢ft 263 must be called
to free memory.

262

POSIT

Implements POSI&lgorithm

void cvPOSIT(CvPoint2D32f* imagePoints, CvPOSITODbject* pObject,
double focalLength, CvTermCriteria criteria,
CvMatrix3* rotation, CvPoint3D32f* translation);

imagePoints

Pointer to the object points projections on the 2D image plane.
pObject

Pointer to the object structure.
focalLength

Focal length of the camera used.
criteria

Termination criteria of the iterative POSIT algorithm.
rotation

Matrix of rotations.
translation

Translationvector.

The functioncvPOSIT[p 263 implements POSIT algorithm. Image coordinates are given in a
camera-related coordinate system. The focal length may be retrieved using camera calibration functions.
At every iteration of the algorithm new perspective projection of estimated pose is computed.

Difference norm between two projections is the maximal distance between corresponding points. The
parametecriteria.epsilonserves to stop the algorithm if the differencensall.

ReleasePOSITObject
Deallocates 3D objestructure
void cvReleasePOSITObject(CvPOSITObject** ppObject);

ppObject
Address of the pointer to the objettucture.

The functioricvReleasePOSITODjéfi 263 releases memory previously allocated by the function
[cvCreatePOSITODbjd¢p 267 .

CalclmageHomography

Calculates homography matrix for oblong planar object &rg)

263

void cvCalclmageHomography(float* line, CvPoint3D32f* center,
float* intrinsic, float homography[3][3]);

line

the main object axis direction (vector (dx,dy,dz)).
center

object center ((cx,cy,cz)).
intrinsic

intrinsic camera parameters (3x3 matrix).
homography

output homography matrig8x3).

The functioricvCalcimageHomographp 263 calculates the homography matrix for the initial image
transformation from image plane to the plane, defined by 3D oblong object linEi¢gbee6-10in
OpenCV Guide 3D Reconstructi@hapter).

View Morphing Functions

MakeScanlines

Calculates scanlines coordinates for two cameras by fundammeattat

void cvMakeScanlines(CvMatrix3* matrix, CvSize imgSize, int* scanlinesl,
int* scanlines2, int* lensl, int* lens2, int* numlines);

matrix
Fundamental matrix.
imgSize
Size of the image.
scanlines1
Pointer to the array of calculated scanlines of the first image.
scanlines2
Pointer to the array of calculated scanlines of the second image.
lensl
Pointer to the array of calculated lengths (in pixels) of the first image scanlines.
lens2
Pointer to the array of calculated lengths (in pixels) of the second image scanlines.
numlines
Pointer to the variable that stores the numbescahlines.

The functiorcvMakeScanlingfp 264 finds coordinates of scanlines for two images.

This function returns the number of scanlines. The function does nothing except calculating the number of
scanlines if the pointescanlineslor scanlineszare equal taero.

264

PreWarplmage

Rectifiesimage

void cvPreWarplmage(int numLines, Iplimage* img, uchar* dst,
int* dstNums, int* scanlines);

numLines

Number of scanlines for the image.
img

Image to prewarp.
dst

Data to store for the prewarp image.
dstNums

Pointer to the array of lengths of scanlines.
scanlines

Pointer to the array of coordinatessgainlines.

The functioricvPreWarplmagdép 265 rectifies the image so that the scanlines in the rectified image are
horizontal. The output buffer of sireax(width,height)*numscanlinestBust be allocated before calling
the function.

FindRuns

Retrieves scanlines from rectified image and breaks them dowruirgo

void cvFindRuns(int numLines, uchar* prewarp_1, uchar* prewarp_2,
int* lineLens_1, int* lineLens_2,
int* runs_1, int* runs_2,
int* numRuns_1, int* numRuns_2);

numLines

Number of the scanlines.
prewarp_1

Prewarp data of the first image.
prewarp_2

Prewarp data of the second image.
lineLens_1

Array of lengths of scanlines in the first image.
lineLens_2

Array of lengths of scanlines in the second image.
runs_1

Array of runs in each scanline in the first image.
runs_2

Array of runs in each scanline in the second image.

265

numRuns_1

Array of numbers of runs in each scanline in the first image.
numRuns_2

Array of numbers of runs in each scanline in the segoade.

The functioricvFindRungp 265 retrieves scanlines from the rectified image and breaks each scanline
down into several runs, that is, series of pixels of almost the same brightness.

DynamicCorrespondMulti

Finds correspondence between two sets of runs of two warngees

void cvDynamicCorrespondMulti(int lines, int* first, int* firstRuns,
int* second, int* secondRuns,
int* firstCorr, int* secondCorr);

lines
Number of scanlines.
first
Array of runs of the first image.
firstRuns
Array of numbers of runs in each scanline of the first image.
second
Array of runs of the second image.
secondRuns
Array of numbers of runs in each scanline of the second image.
firstCorr
Pointer to the array of correspondence information found for the first runs.
secondCorr
Pointer to the array of correspondence information found for the secosd

The functiorcvDynamicCorrespondMulfip 266 finds correspondence between two sets of runs of two
images. Memory must be allocated before calling this function. Memory size for one array of
correspondence information is

max(width,height)* numscanlines*3*sizeof ()Jnt

MakeAlphaScanlines

Calculates coordinates of scanlines of image from vidaaiera
void cvMakeAlphaScanlines(int* scanlines_1, int* scanlines_2,

int* scanlinesA, int* lens,
int numlines, float alpha);

266

scanlines_1

Pointer to the array of the first scanlines.
scanlines_2

Pointer to the array of the second scanlines.
scanlinesA

Pointer to the array of the scanlines found in the virtual image.
lens

Pointer to the array of lengths of the scanlines found in the virtual image.
numlines

Number of scanlines.
alpha

Position of virtual camerg.0 -1.0).

The functioricvMakeAlphaScanlingfp 266 finds coordinates of scanlines for the virtual camera with the
given camera position.

Memory must be allocated before calling this function. Memory size for the array of correspondence runs
is numscanlines*2*4*sizeof(int)Memory size for the array of the scanline lengths is
numscanlines*2*4*sizeof(int)

MorphEpilinesMulti

Morphs two pre-warped images using information about ste@espondence

void cvMorphEpilinesMulti(int lines, uchar* firstPix, int* firstNum,
uchar* secondPix, int* secondNum,
uchar* dstPix, int* dstNum,
float alpha, int* first, int* firstRuns,
int* second, int* secondRuns,
int* firstCorr, int* secondCorr);

lines
Number of scanlines in the prewarp image.
firstPix
Pointer to the first prewarp image.
firstNum
Pointer to the array of numbers of points in each scanline in the first image.
secondPix
Pointer to the second prewarp image.
secondNum
Pointer to the array of numbers of points in each scanline in the second image.
dstPix
Pointer to the resulting morphed warped image.
dstNum
Pointer to the array of numbers of points in each line.

267

alpha

Virtual camera positio0.0 -1.0).
first

First sequence of runs.
firstRuns

Pointer to the number of runs in each scanline in the first image.
second

Second sequence of runs.
secondRuns

Pointer to the number of runs in each scanline in the second image.
firstCorr

Pointer to the array of correspondence information found for the first runs.
secondCorr

Pointer to the array of correspondence information found for the seaosd

The functioricvMorphEpilinesMulii[p 267 morphs two pre-warped images using information about
correspondence between the scanlines of two images.

PostWarplmage

Warps rectified morphed imadpack

void cvPostWarplmage(int numLines, uchar* src, int* srcNums,
Iplimage* img, int* scanlines);

numLines
Number of the scanlines.
src
Pointer to the prewarp image virtual image.
srcNums
Number of the scanlines in the image.
img
Resulting unwarp image.
scanlines
Pointer to the array of scanlindata.

The functioricvPostWarplmagfp 268 warps the resultant image from the virtual camera by storing its
rows across the scanlines whose coordinates are calculateibige AlphaScanlingfp 266 .

DeleteMoire

Deletes moire in giveimage

void cvDeleteMoire(Iplimage* img);

268

img
Image.

The functioricvDeleteMoirg{p 268 deletes moire from the given image. The post-warped image may
have black (un-covered) points because of possible holes between neighboring scanlines. The function
deletes moire (black pixels) from the image by substituting neighboring pixels for black pixels. If all the
scanlines are horizontal, the function mayhbdgtted.

StereoCorrespondence and Epipolar Geometryrunctions

FindFundamentalMat

Calculates fundamental matrix from corresponding points inrvages

int cvFindFundamentalMat(CvMat* points1,
CvMat* points2,
CvMat* fundMatr,
int method,
double parami,
double param2,
CvMat* status=0);

pointsl
Array of the first image points of 2xN/Nx2 or 3xN/Nx3 size (N is number of points). The point
coordinates should be floating-point (single or double precision)
points2
Array of the second image points of the same size and formairasl
fundMatr
The output fundamental matrix or matrices. Size 3x3 or 9x3 (7-point method can returns up to 3
matrices).
method
Method for computing fundamental matrix
CV_FM_7POINT - for 7-point algorithm. Number of points == 7
CV_FM_8POINT - for 8-point algorithm. Number of points >= 8
CV_FM_RANSAC - for RANSAC algorithm. Number of points >= 8
CV_FM_LMEDS - for LMedS algorithm. Number of points >= 8
paraml
The parameter is used for RANSAC or LMedS methods only. It is the maximum distance from point
to epipolar line, beyound which the point is considered bad and is not considered in further
calculations. Usually it is set to 0.5 or 1.0.
param?2
The parameter is used for RANSAC or LMedS methods only. It denotes the desirable level of
confidense the matrix is the correct (up to some precision). It can be set to 0.99 for example.
status
Array of N elements, every element of which is set to 1 if the point was not rejected during the
computation, 0 otherwise. The array is computed only in RANSAC and LMedS methods. For other

269

methods it is set to all 1’s. This is the optiopatameter.
The epipolar geometry is described by the following equation:
p2 T*F*p 1 =0,
whereF is fundamental matriyp, andp, are corresponding points on the tinmages.

The functionFindFundamentalMatalculates fundamental matrix using one of four methods listed above
and returns the number of fundamental matrix found: O if the matrix could not be found, 1 or 3 if the
matrix or matrices have been fousutccessfully.

The calculated fundamental matrix may be passed furti@ormputeCorrespondEpilindsnction that
computes coordinates of corresponding epilines orirvages.

For 7-point method uses exactly 7 points. It can find 1 or 3 fundamental matrices. It returns number of the
matrices found and if there is a room in the destination array to keep all the detected matrices, stores all of
them there, otherwise it stores only one ofriarices.

All other methods use 8 or more points and return a single fundanreaiti.

Example. Fundamental matrix calculation

int numPoints = 100;
CvMat* points1;
CvMat* points2;
CvMat* status;
CvMat* fundMatr;

pointsl = cvCreateMat(2,numPoints,CV_32F);
points2 = cvCreateMat(2,numPoints,CV_32F);
status = cvCreateMat(1,numPoints,CV_32F);
/* Fill the points here ... */

fundMatr = cvCreateMat(3,3,CV_32F);
int num = cvFindFundamentalMat(points1,points2,fundMatr,CV_FM_RANSAC,1.0,0.99,status);

ifthum==1)

printf("Fundamental matrix was found\n");
}
else

printf("Fundamental matrix was not found\n");

[*====== Example of code for three matrixes ======*/
CvMat* points1;

CvMat* points2;

CvMat* fundMatr;

pointsl = cvCreateMat(2,7,CV_32F);
points2 = cvCreateMat(2,7,CV_32F);

270

* Fill the points here... */

fundMatr = cvCreateMat(9,3,CV_32F);
int num = cvFindFundamentalMat(points1,points2,fundMatr,CV_FM_7POINT,0,0,0);
printf("Found %d matrixes\n",num);

ComputeCorrespondEpilines

For every input point on one of image computes the corresponding epiline on thenathesr

void cvComputeCorrespondEpilines(const CvMat* points,
int pointimagelD,
CvMat* fundMatr,
CvMat* corrLines);

points
The input points: 2xN or 3xN array (N number of points)
pointimagelD
Image ID there are points are located, 1 or 2
fundMatr
Fundamental matrix
corrLines
Computed epilines, 3xN array

The functionComputeCorrespondEpilinemmputes the corresponding epiline for every input point using
the basic equation of epipolar ligeometry:

If points located on first image (ImagelD=1), corresponding epipolar line can be computed as:
I 2 =Fp 1
whereF is fundamental matrixy, point on first imagel,, corresponding epipolar line on seconthge.

If points located on second image (ImagelD=2):

| 1=FT*p ,
whereF is fundamental matrixp, point on second imagk, corresponding epipolar line on fiigtage

Each epipolar line is present by coefficients a,b,c of line equation:

a*x+b*y+c=0

Also computed line normalized af+b2=1. It's useful if distance from point to line must be computed
later.

271

GUI and Video Acquisition Reference

e (Window functions|[p 273
© [NamedWindo[p 273
O |DestroyWindow{p 273
O [ResizeWindoWp 273
O |GetWindowHandldp 274
O |GetWindowNamgp 274
O [CreateTrackbip 274
O |GetTrackbarPofp 275
O [SetTrackbarPdkp 275
O [SetMouseCallbag¢fp 275
e [Image handlindunctiong[p 276
o [CoadimagHp 276
o [Savelmagép 277
O [ShowimagHp 277
o [Convertimagkp 277]
e |Video I/Ofunctions[p 27§
O [CvCapturHp 27§
O |CaptureFromA\l[p 278
O |CaptureFromCAMp 27§
o [ReleaseCapture 279
© [GrabFramkp 279
o [RetrieveFraniép 279
O [QueryFramip 280
O |GetCapturePropeity 280
O [SetCapturePropeify 281]
O |CreateAVIWritef[p 281]
O |ReleaseAVIWritgp 287
O WriteToAVI] [p 282
® [Support/systerfunctions$[p 287
o [mitSysterh[p 282
o Waitkey[p 283
o [AddSearchPalfp 283

HighGUI overview

TODO

272

Window functions

cvNamedwWindow

Creates a window (imag#aceholder)

int cvNamedWindow(const char* name, unsigned long flags);

name
Name of the window which is used as window identifier and appears in the window caption.

flags
Defines window properties. Currently the only supported property is ability to automatically change
the window size to fit the image being hold by the window. Use CV_WINDOW_AUTOSIZE for
enabling the automatical resizing ootherwise.

The functiocvNamedWindoWp 273 creates a window which can be used as a placeholder for images
and trackbars. Created windows are reffered by ttagires.

cvDestroyWindow
Destroys avindow
void cvDestroyWindow(const char* name);

name
Name of the window to baestroyed.

The functioricvDestroyWindowp 273 destroyes the window with the givaame.

cvResizeWindow

Sets windowsizes

void cvResizeWindow(const char* name, int width, int height);

name

Name of the window to be resized.
width

New width
height

New height

273

The functioricvResizeWindoWp 273 changes the sizes of théndow.

cvGetWindowHandle
Gets window handle byame
void* cvGetWindowHandle(const char* name);

name
Name of thevindow.

The functiorcvGetWindowHandlép 274 returns native window handle (HWND in case of Win32 and
Widget in case of XVindow).

cvGetWindowName

Gets window name blyandle

const char* cvGetWindowName(void* window_handle);

window_handle
Handle of thenvindow.

The functioncvGetWindowNamigp 274 returns the name of window given its native handle(HWND in
case of Win32 and Widget in case oiM¥ndow).

cvCreateTrackbar

Creates the trackbar and attaches it to the speuifiedbw
CV_EXTERN_C_FUNCPTR(void (*CvTrackbarCallback)(int pos));

int cvCreateTrackbar(const char* trackbar_name, const char* window_name,
int* value, int count, CvTrackbarCallback on_change);

trackbar_name
Name of createttackbar.
window_name
Name of the window which will be used as a parent for craedekbar.
value
Pointer to the integer variable, which value will reflect the position of the slider. Upon the creation
the slider position is defined by thiariable.
count
Maximal position of the slider. Minimal position is alw&ay:s

274

on_change
Pointer to the function to be called every time the slider changes the position. This function should be
prototypedas
void Foo(int);
Can be NULL if callback is natquired.

The functioricvCreateTrackb#p 274 creates the trackbar(slider) with the specified name and range,
assigns the variable to be syncronized with trackbar position and specifies callback function to be called
on trackbar position change. The created trackbar is displayed on top oivijidenv.

cvGetTrackbarPos

Retrieves trackbgposition

int cvGetTrackbarPos(const char* trackbar_name, const char* window_name);

trackbar_name
Name of trackbar.
window_name
Name of the window which is the parentti@ckbar.

The functioricvGetTrackbarP¢fp 275 returns the ciurrent position of the specifteatkbar.

cvSetTrackbarPos

Sets trackbaposition

void cvSetTrackbarPos(const char* trackbar_name, const char* window_name, int pos);

trackbar_name

Name of trackbar.
window_name

Name of the window which is the parent of trackbar.
pos

New position.

The functioricvSetTrackbarPoip 275 sets the position of the specifirdckbar.

cvSetMouseCallback

Assigns callback for mousevents

#define CV_EVENT_MOUSEMOVE 0

#define CV_EVENT_LBUTTONDOWN 1
#define CV_EVENT_RBUTTONDOWN 2
#define CV_EVENT_MBUTTONDOWN 3

275

#define CV_EVENT_LBUTTONUP 4
#define CV_EVENT_RBUTTONUP 5
#define CV_EVENT_MBUTTONUP 6
#define CV_EVENT_LBUTTONDBLCLK 7
#define CV_EVENT_RBUTTONDBLCLK 8
#define CV_EVENT_MBUTTONDBLCLK 9

#define CV_EVENT_FLAG_LBUTTON 1
#define CV_EVENT_FLAG_RBUTTON 2
#define CV_EVENT_FLAG_MBUTTON 4
#define CV_EVENT_FLAG_CTRLKEY 8
#define CV_EVENT_FLAG_SHIFTKEY 16
#define CV_EVENT_FLAG_ALTKEY 32

CV_EXTERN_C_FUNCPTR(void (*CvMouseCallback)(int event, int x, int y, int flags));

HIGHGUI_API void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mouse);

window_name
Name of the window.

on_mouse
Pointer to the function to be called every time mouse event occurs in the specified window. This
function should be prototyped as

void Foo(int event, int x, int y, int flags);

whereeventis one ofCV_EVENT_*x andy are coordinates of mouse pointer in image coordinates
(not window coordinates) arfthgsis a combination o€V_EVENT_FLAG

The functioricvSetMouseCallbaglp 275 sets the callback function for mouse events occuting within the
specified window. To see how it works, lookogiencv/samples/c/ffilldemodemo

Image handling functions

cvLoadlmage

Loads an image froffile

Iplimage* cvLoadlmage(const char* filename, int iscolor CV_DEFAULT(1));

filename
Name of file to bdoaded.
iscolor
If >0, the loaded image will always havel3annels;
if 0, the loaded image will always havehannel;
if <0, the loaded image will be loaded as is (with number of channels dependdita).the

276

The functioricvLoadlmagHp 276 loads an image from the specified file and returns the pointer to the
loaded image. Currently the following file formats are supported: Windows bitmaps - BMP, DIB; JPEG
files - JPEG, JPG, JPE; Portable Network Graphics - PNG; Portable image format - PBM, PGM, PPM,;
Sun rasters - SR, RAS; TIFF files - TIFHF.

If "filename" does not contain full path, the file is searched in the current directory and in directories
specified bycvAddSearchPalfp 283

cvSavelmage

Saves an image to tliee

int cvSavelmage(const char* filename, const CvArr* image);

filename

Name of thdile.
image

Image to besaved.

The functioricvSavelmadép 277] saves the image to the speciffid.

cvShowlmage

Shows the image in the specifiathdow

void cvShowlmage(const char* name, const CvArr* image);

name

Name of the window to attach the iméage
image

Image to beshown.

The functioricvShowlmaggdp 277] shows the image in the specified window. If the window was created
with CV_WINDOW_AUTOSIZE flag then the image will be shown with its original size otherwise the
image will be scaled to fit th@indow.

cvConvertimage

Converts one image to another with optional verfigal

void cvConvertimage(const CvArr* src, CvArr* dst, int flip CV_DEFAULT(0));

src
Sourcemage.

277

dst
Destination image.

flip
1 - to flip image vertically,
0 - not toflip.

The functioricvConvertimagép 277] converts one image to another and flips the result vertically if
required. This function does the same conversiofgs@stColof[p ?7 function, but do this automatically
accordingly to formats of input and outpuotages.

Video I/O functions

CvCapture
Structure for getting video from camera or Afilé
typedef struct CvCapture CvCapture;

The structurfCvCapturHp 278 does not have public interface and is used only as a parameter for video
capturefunctions.

cvCaptureFromAVI

Allocates CvCapture structure binds it to the specified #¥|

CvCapture* cvCaptureFromAVI(const char* filename);

filename
Name of the AVffile.

The functioricvCaptureFromA\[p 27§ allocates and initialized the CvCapture structure for reading the
video stream from the specified AYile.

After the allocated structure is not used any more it should be reledseRdigaseCaptdie 279
function.

cvCaptureFromCAM

Allocates CvCapture structure and binds it to the viclenera

CvCapture* cvCaptureFromCAM(int index);

278

index
Index of the camera to be used. If there is only one camera or it does not matter what camera to use,
-1 may bepassed.

The functioricvCaptureFromCAMp 279 allocates and initialized the CvCapture structure for reading a
video stream from the camera. Currently two camera interfaces can be used: Video for Windows (VFW)
and Matrox Imaging Library (MIL). To connect to VFW camera the parameter "index" should be in range
0-10, to connect to MIL camera the parameter "index" should be in range 100-115. If -1 is passed then the
function searches for VFW camera first and then for BHmera.

After the allocated CvCapture structure is not used any more it should be releasBe@leaseCaptdip
279 function.

cvReleaseCapture

Releases the CvCaptwstucture

void cvReleaseCapture(CvCapture** capture);

capture
Address of the pointer to CvCapture structure toebeased.

The functiorcvReleaseCaptyip 279 releases the CvCapture structure allocatgcMBaptureFromAV\|
[p 278 or[cvCaptureFromCAMp 27§ .

cvGrabFrame

Grabs frame from camera AV

int cvGrabFrame(CvCapture* capture);

capture
CvCapture representing camera or AN&.

The functioricvGrabFramigp 279 grabs the frame from camera or AVI. The grabbed frame is stored
internally. The purpose of this function is to grab frdastwhat is important for syncronization in case of
reading from several cameras simultaneously. The grabbed frames are not exposed because they may be
stored in compressed format (as defined by camera/driver). To get access to the grabbed frame

cvGrabFramiép ?7 should be followed bigvRetrieveFramp 279 .

cvRetrieveFrame

Gets the image grabbed withGrabFrame

279

Iplimage* cvRetrieveFrame(CvCapture* capture);

capture
CvCapture representing camera or AN4.

The functioricvRetrieveFranjép 279 returns the pointer to the image grabbed {sitGrabFramiép 279

function. The returned image should not be released hystre

cvQueryFrame
Grabs and returns a frame from camerAdr
Iplimage* cvQueryFrame(CvCapture* capture);

capture
CvCapture representing camera or AN4.

The functioricvQueryFramigp 280 grabs a frame from camera or AVI and returns the pointer to grabbed

image. Actually this function just successively gallsrabFramép ?7 andcvRetrieveFranjfp 279 .
The returned image should not be released bysbe

cvGetCaptureProperty

Gets camera/AVproperties

double cvGetCaptureProperty(CvCapture* capture, int property_id);

capture
CvCapture representing camera or AVI file.

property _id
property identifier. Can be one of tfalowing:
CV_CAP_PROP_POS_MSEC - film current position in milliseconds or video caphastamp
CV_CAP_PROP_POS_FRAMES - 0-based index of the frame to be decoded/captired
CV_CAP_PROP_POS_AVI_RATIO - relative position of AVI file (0 - start of the film, 1 - end of
thefilm)
CV_CAP_PROP_FRAME_WIDTH - width of frames in the viddoeam
CV_CAP_PROP_FRAME_HEIGHT - height of frames in the videeam
CV_CAP_PROP_FPS - frarmate
CV_CAP_PROP_FOURCC - 4-character code of codec. CV_CAP_PROP_FRAME_COUNT -
number of frames in AVI file.

The functioricvGetCaptureProper{y 280 retrieves the specified property of camer@vi.

280

cvSetCaptureProperty

Sets camera/AVproperties

int cvSetCaptureProperty(CvCapture* capture, int property_id, double value);

capture
CvCapture representing camera or AN&.

property_id
property identifier. Can be one of tf@lowing:
CV_CAP_PROP_POS_MSEC - (only fav1)
CV_CAP_PROP_POS_MSEC - set position (onlyAdis)
CV_CAP_PROP_POS_FRAMES - set position (onlyAdfis)
CV_CAP_PROP_POS_AVI_RATIO - set position (only AVIs)
CV_CAP_PROP_FRAME_WIDTH - width of frames in the vidgoeam
CV_CAP_PROP_FRAME_HEIGHT - height of frames in the vidgeam
CV_CAP_PROP_FPS - framate
CV_CAP_PROP_FOURCC - 4-character code of codec.

value
value of the property.

The functiorcvSetCapturePropeffp 281 sets the specified property of camera or AVI. Currently the
function works only for setting some AVI properties: CV_CAP_PROP_POS_MSEC,
CV_CAP_PROP_POS_FRAMESY_CAP_PROP_POS_AVI_RATIO

cvCreateAVIWriter

Creates AVwriter

typedef struct CvAVIWriter CvAVIWriter;
CvAVIWriter* cvCreateAVIWriter(const char* filename, int fourcc, double fps, CvSize frameSize)

filename
Name of AVI file to be written to. If file does not exist it is created.

fourcc
4-character code of codec used to compress the frames. For example, CV_FOURCC(P’,'I';’M’,’1’)
is MPEG-1 codec, CV_FOURCC(M','J','P’,’G") is motion-jpeg codec etc. Under Win32 it is
possible to pass -1 in order to choose compression method and additional compression parameters
from dialog.

fps
Framerate of the created video stream.

frameSize
Size of the frames of AMile.

The functiorcvCreateAVIWritel[p 281] allocates and initializes the hidden structure CvAVIWriter that is
used for writing AVI files frame bjrame.

281

NOTE: Writing to AVIs works under Win3anly

cvReleaseAVIWriter

Releases AVivriter

void cvReleaseAVIWriter(CvAVIWriter** writer);

writer
address of pointer to the released CvAVIWrggucture.

The functioricvReleaseAVIWritdfp 287 closes the AVI file being written and deallocates the memory
used by CvAVIWriterstructure.

cvWriteToAVI

Writes a frame to AVfile

int cvWriteToAVI(CvAVIWriter* writer, const Iplimage* image);

writer

Pointer to CvAVIWriter structure.
image

Frame to be written/appended to Afilé

The functiorcvWriteToAVI| [p 282 writes/appends one frame to AVI file binded“tariter".

Support/systemfunctions

cvInitSystem

InitializesHighGUI

void cvInitSystem(int argc, char** argv);

argc
Number of command line arguments.
argv
Array of command lin@rguments

The functiorfcvinitSysterh[p 287 initializes HighGUI. If it wasn't called explicitly by the user before the
first window is created, it is called implicitly then wigingc=0, argv=NULL. Under Win32 there is no

need to call it explicitly. Under X Window the arguments are used for creating Application Shell that is a
standard way to define a look of HighGUI windows andtrols.

282

cvWaitKey
Waits for presselley
int cvWaitKey(int delay CV_DEFAULT(0));

delay
Delay inmilliseconds.

The functiorfcvWaitKey [p 283 waits for key event infinitely (delay<=0) or for "delay" milliseconds.
Returns the code of pressed key or -1 if key was not pressed until the specified timetajidexs

Note: This function is the only method in HighGUI to fetch and handle events so it needs to be called
periodically for normal evergrocessing.

cvAddSearchPath
Adds the specified path to the list of segpelths;

/* add folder to the image search path (used by cvLoadlmage) */
void cvAddSearchPath(const char* path);

path
Path to add to the searlit.

The functioricvAddSearchPatfp 283 adds the specified folder to the search path list. The search path
list is used bjcvLoadlmagHp 276 function.

283

Bibliography

This bibliography provides a list of publications that might be useful to the Intel ® Computer Vision
Library users. This list is not complete; it serves only as a stamtiimg.

[Borgefors86] Gunilla Borgefors. Distance Transformations in Digital Images. Computer Vision, Graphics
and Image Processing 34, 344-31986).

[BradskiO0] G. Bradski and J. Davis. Motion Segmentation and Pose Recognition with Motion History
Gradients. IEEE WACV'002000.

[Burt81] P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of Image Region Properties
Through Cooperative Hierarchical Computation. IEEE Tran. On SMC, Vol. 11, N.12, 198D25809.

[Canny86] J. Canny. A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 8(6), pp. 679-68E286).

[Davis97] J. Davis and Bobick. The Representation and Recognition of Action Using Temporal
Templates. MIT Media Lab Technical Report 40297.

[DeMenthon92] Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose in 25 Lines of Code.
In Proceedings of ECCV '92, pp. 335-34392.

[Fitzgibbon95] Andrew W. Fitzgibbon, R.B.Fisher. A Buyer's Guide to Conic Fitting. Proc.5th British
Machine Vision Conference, Birmingham, pp. 513-52295.

[Horn81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Artificial Intelligence,
17, pp. 185-2031981.

[Hu62] M. Hu. Visual Pattern Recognition by Moment Invariants, IRE Transactions on Information
Theory, 8:2, pp. 179-1871962.

[Jahne97] B. Jahne. Digital Image Processing. Springer, New York, 1997.

[Kass88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models, International Journal
of Computer Vision, pp. 321-331, 1988.

[Matas98] J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough Transform. British Machine
Vision Conference]l998.

[Rosenfeld73] A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves. IEEE Trans. Computers,
22:875-8781973.

[RubnerJan98] Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with Applications to Image

Databases. Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India,
January 1998, p9-66.

284

[RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a Metric for Image
Retrieval. Technical Report STAN-CS-TN-98-86, Department of Computer Science, Stanford University,
Septembel998.

[RubnerOct98] Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE International Conference
on Systems, Man, and Cybernetics, San-Diego, CA, October 1998, pp. 4601-4607.
http://robotics.stanford.edu/~rubner/publications.html

[Serra82] J. Serra. Image Analysis and Mathematical Morphology. Academic F2@2s,

[Schiele00] Bernt Schiele and James L. Crowley. Recognition without Correspondence Using
Multidimensional Receptive Field Histograms. In International Journal of Computer Vision 36 (1), pp.
31-50, January 2000.

[Suzuki85] S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary Images by Border
Following. CVGIP, v.30, n.1. 1985, pp2-46.

[Teh89] C.H. Teh, R.T. Chin. On the Detection of Dominant Points on Digital Curves. - IEEE Tr. PAMI,
1989, v.11, No.8, B859-872.

[Trucco98] Emanuele Trucco, Alessandro Verri. Introductory Techniques for 3-D Computer Vision.
Prentice Hall, Inc.1998.

[Williams92] D. J. Williams and M. Shah. A Fast Algorithm for Active Contours and Curvature
Estimation. CVGIP: Image Understanding, Vol. 55, No. 1, pp. 14-26, Jan., 1992.
http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92A.pdf.

[Yuille89] A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from Faces Using Deformable
Templates in CVPR, pp. 104-1Q989.

[Zhang96] Z. Zhang. Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting,
Image and Vision Computing Journa§96.

[Zhang99] Z. Zhang. Flexible Camera Calibration By Viewing a Plane From Unknown Orientations.
International Conference on Computer Vision (ICCV’99), Corfu, Greece, pages 666-673, September
1999.

[Zhang00] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

285

	What is OpenCV
	The key features
	Who created it
	What's New
	Where to get OpenCV
	If you have a problem with installing/running/using OpenCV
	OpenCV Reference Manual
	Other resources
	Experimental Functionality Reference
	Object Detection Functions
	CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier, CvHaarClassifierCascade
	cvLoadHaarClassifierCascade
	cvReleaseHaarClassifierCascade
	cvCreateHidHaarClassifierCascade
	cvReleaseHidHaarClassifierCascade
	cvHaarDetectObjects
	Example. Using cascade of Haar classifiers to find faces.

	cvSetImagesForHaarClassifierCascade
	cvRunHaarClassifierCascade
	cvGetHaarClassifierCascadeScale
	cvGetHaarClassifierCascadeWindowSize

	Stereo Correspondence Functions
	FindStereoCorrespondence

	3D Tracking Functions
	3dTrackerCalibrateCameras
	3dTrackerLocateObjects

	General Questions
	
	How to install OpenCV properly?
	How can I get acquainted with OpenCV fast?
	Where do I submit Bug reports for the computer vision library?
	How do I send bug reports for the Intel® Image Processing Library?
	How do I join the web group for the library?
	How do I modify the web group so that I don't receive email everyday?
	Ok, I found the group completely useless for me. How can I unsubscribe?
	How do I get support for the Image Processing Library †IPL‡?
	In beta 3 IPL and OpenCV conflict. How to resolve it?
	Does OpenCV works on other processors?

	Windows® OS related Qs:
	
	When I try to build one of the apps, I get an error, streams.h not found.
	After installing DirectX SDK I'm still getting linker error about undefined or redefined "TransInPlace" filter class constructors etc.
	When I use try to use cvcam, it just crashes
	CamShiftDemo can not be run
	How to register *.ax †DirectShow filter‡?
	Filter couldn't be registered †regsvr32 reports an error‡
	LKDemo / HMMDemo reports an error during startup and no the view is completely black
	cvd.lib or cvd.dll are not found
	When compiling HighGUI I get the error message "mil.h is not found"
	How can I debug DirectShow filter?
	How can I create DeveloperStudio project to start playing with OpenCV

	Linux Related Qs:
	Technical Questions on Library use:
	
	How to access image pixels
	How to access matrix elements?
	How to process my data with OpenCV
	How to load and display image
	How to find and process contours
	How to calibrate camera using OpenCV

	Basic Structures and Operations Reference
	Helper structures
	CvPoint
	CvPoint2D32f
	CvPoint3D32f
	CvSize
	CvSize2D32f
	CvRect
	CvScalar

	Array structures
	CvMat
	CvMatND
	CvSparseMat
	IplImage
	CvArr

	Arrays: Allocation, deallocation, copying; setting and retrieving parts
	Alloc
	Free
	CreateImage
	CreateImageHeader
	ReleaseImageHeader
	ReleaseImage
	InitImageHeader
	CloneImage
	SetImageCOI
	GetImageCOI
	SetImageROI
	ResetImageROI
	GetImageROI
	CreateMat
	CreateMatHeader
	ReleaseMat
	InitMatHeader
	Mat
	CloneMat
	CreateMatND
	CreateMatNDHeader
	ReleaseMatND
	InitMatNDHeader
	CloneMatND
	DecRefData
	IncRefData
	CreateData
	ReleaseData
	SetData
	GetRawData
	GetMat
	GetImage
	GetSubRect
	GetRow, GetRows
	GetCol, GetCols
	GetDiag
	GetSize
	CreateSparseMat
	ReleaseSparseMat
	CloneSparseMat
	InitSparseMatIterator
	GetNextSparseNode
	GetElemType
	GetDims, GetDimSize
	Ptr*D
	Get*D
	GetReal*D
	mGet
	Set*D
	SetReal*D
	mSet
	Clear*D
	Copy
	Set
	SetZero

	Arrays: Conversions, transformations, basic operations
	Reshape
	ReshapeMatND
	Repeat
	Flip
	CvtPixToPlane
	CvtPlaneToPix
	ConvertScale
	ConvertScaleAbs
	Add
	AddS
	Sub
	SubS
	SubRS
	Mul
	Div
	And
	AndS
	Or
	OrS
	Xor
	XorS
	Not
	Cmp
	CmpS
	InRange
	InRangeS
	Max
	MaxS
	Min
	MinS
	AbsDiff
	AbsDiffS

	Array statistics
	CountNonZero
	Sum
	Avg
	AvgSdv
	MinMaxLoc
	Norm

	Matrix Operations, Linear Algebra and Math Functions
	SetIdentity
	DotProduct
	CrossProduct
	ScaleAdd
	MatMulAdd
	GEMM
	MatMulAddS
	MulTransposed
	Trace
	Transpose
	Det
	Invert
	Solve
	SVD
	SVBkSb
	EigenVV
	PerspectiveTransform
	CalcCovarMatrix
	Mahalonobis
	CartToPolar
	PolarToCart
	Pow
	Exp
	Log
	CheckArr
	RandInit
	RandSetRange
	Rand
	RandNext
	DFT
	MulCss
	DCT

	Dynamic Data Structures
	CvMemStorage
	CvMemBlock
	CvMemStoragePos
	CreateMemStorage
	CreateChildMemStorage
	ReleaseMemStorage
	ClearMemStorage
	MemStorageAlloc
	SaveMemStoragePos
	RestoreMemStoragePos

	Sequences
	CvSeq
	CvSeqBlock
	CreateSeq
	SetSeqBlockSize
	SeqPush
	SeqPop
	SeqPushFront
	SeqPopFront
	SeqPushMulti
	SeqPopMulti
	SeqInsert
	SeqRemove
	ClearSeq
	GetSeqElem
	SeqElemIdx
	CvtSeqToArray
	MakeSeqHeaderForArray
	SeqSlice
	SeqRemoveSlice
	SeqInsertSlice
	SeqInvert
	SeqSort
	StartAppendToSeq
	StartWriteSeq
	EndWriteSeq
	FlushSeqWriter
	StartReadSeq
	GetSeqReaderPos
	SetSeqReaderPos

	Sets
	CvSet
	CreateSet
	SetAdd
	SetRemove
	SetNew
	SetRemoveByPtr
	GetSetElem
	ClearSet

	Graphs
	CvGraph
	CreateGraph
	GraphAddVtx
	GraphRemoveVtx
	GraphRemoveVtxByPtr
	GetGraphVtx
	GraphVtxIdx
	GraphAddEdge
	GraphAddEdgeByPtr
	GraphRemoveEdge
	GraphRemoveEdgeByPtr
	FindGraphEdge
	FindGraphEdgeByPtr
	GraphEdgeIdx
	GraphVtxDegree
	GraphVtxDegreeByPtr
	ClearGraph
	CloneGraph
	CvGraphScanner
	StartScanGraph
	NextGraphItem
	EndScanGraph

	Trees
	CV_TREE_NODE_FIELDS
	CvTreeNodeIterator
	InitTreeNodeIterator
	NextTreeNode
	PrevTreeNode
	TreeToNodeSeq
	InsertNodeIntoTree
	RemoveNodeFromTree

	Persistence †Writing and Reading Structures‡
	OpenFileStorage
	ReleaseFileStorage
	Write
	StartWriteStruct
	EndWriteStruct
	WriteElem
	Read
	ReadElem
	CvFileNode
	GetFileNode
	ReadFileNode

	Image Processing and Analysis Reference
	Drawing Functions
	CV_RGB
	Line
	LineAA
	Rectangle
	Circle
	Ellipse
	EllipseAA
	FillPoly
	FillConvexPoly
	PolyLine
	PolyLineAA
	InitFont
	PutText
	GetTextSize

	Gradients, Edges and Corners
	Sobel
	Laplace
	Canny
	PreCornerDetect
	CornerEigenValsAndVecs
	CornerMinEigenVal
	FindCornerSubPix
	GoodFeaturesToTrack

	Sampling, Interpolation and Geometrical Transforms
	InitLineIterator
	Example. Using line iterator to calculate pixel values along the color line

	SampleLine
	GetRectSubPix
	GetQuadrangeSubPix
	Example. Using cvGetQuadrangeSubPix for image rotation.

	Resize

	Morphological Operations
	CreateStructuringElementEx
	ReleaseStructuringElement
	Erode
	Dilate
	MorphologyEx

	Filters and Color Conversion
	Smooth
	Integral
	CvtColor
	Threshold
	AdaptiveThreshold
	LUT

	Pyramids and the Applications
	PyrDown
	PyrUp
	PyrSegmentation

	Connected components
	CvConnectedComp
	FloodFill
	FindContours
	StartFindContours
	FindNextContour
	SubstituteContour
	EndFindContours
	DrawContours
	Example. Connected component detection via contour functions

	Image and contour moments
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedCentralMoment
	GetHuMoments

	Image Processing and Analysis Reference
	Special Image Transforms
	HoughLines
	Example. Detecting lines with Hough transform.

	DistTransform
	User-defined 3×3 mask †a=1, b=1.5‡
	User-defined 5×5 mask †a=1, b=1.5, c=2‡

	Histogram Functions
	CvHistogram
	CreateHist
	SetHistBinRanges
	ReleaseHist
	ClearHist
	MakeHistHeaderForArray
	QueryHistValue_1D
	GetHistValue_1D
	GetMinMaxHistValue
	NormalizeHist
	ThreshHist
	CompareHist
	CopyHist
	CalcHist
	Sample. Calculating and displaying 2D Hue-Saturation histogram of a color image

	CalcBackProject
	CalcBackProjectPatch
	Back Project Calculation by Patches

	CalcProbDensity
	CalcEMD2

	Utility Functions
	MatchTemplate

	Structural Analysis Reference
	Contour Processing Functions
	ApproxChains
	StartReadChainPoints
	ReadChainPoint
	ApproxPoly
	BoundingRect
	ContourArea
	ArcLength
	MatchShapes
	CreateContourTree
	ContourFromContourTree
	MatchContourTrees

	Geometry Functions
	MaxRect
	CvBox2D
	BoxPoints
	FitEllipse
	FitLine
	ConvexHull2
	Example. Building convex hull for a sequence or array of points

	CheckContourConvexity
	CvConvexityDefect
	Picture. Convexity defects for hand contour.

	ConvexityDefects
	MinAreaRect2
	Picture. Minimal-area bounding rectangle for contour

	MinEnclosingCircle
	CalcPGH
	KMeans
	Example. Clustering random samples of multi-gaussian distribution with k-means

	MinEnclosingCircle

	Planar Subdivisions
	CvSubdiv2D
	CvQuadEdge2D
	CvSubdiv2DPoint
	Subdiv2DGetEdge
	Subdiv2DRotateEdge
	Subdiv2DEdgeOrg
	Subdiv2DEdgeDst
	CreateSubdivDelaunay2D
	SubdivDelaunay2DInsert
	Subdiv2DLocate
	FindNearestPoint2D
	CalcSubdivVoronoi2D
	ClearSubdivVoronoi2D

	Motion Analysis and Object Tracking Reference
	Accumulation of Background Statistics
	Acc
	SquareAcc
	MultiplyAcc
	RunningAvg

	Motion Templates
	UpdateMotionHistory
	CalcMotionGradient
	CalcGlobalOrientation
	SegmentMotion

	Object Tracking
	MeanShift
	CamShift
	SnakeImage

	Optical Flow
	CalcOpticalFlowHS
	CalcOpticalFlowLK
	CalcOpticalFlowBM
	CalcOpticalFlowPyrLK

	Estimators
	CvKalman
	CreateKalman
	ReleaseKalman
	KalmanPredict
	KalmanCorrect
	Example. Using Kalman filter to track a rotating point

	CvConDensation
	CreateConDensation
	ReleaseConDensation
	ConDensInitSampleSet
	ConDensUpdateByTime

	Object Recognition Reference
	Eigen Objects †PCA‡ Functions
	CalcCovarMatrixEx
	CalcEigenObjects
	CalcDecompCoeff
	EigenDecomposite
	EigenProjection

	Embedded Hidden Markov Models Functions
	CvHMM
	CvImgObsInfo
	Create2DHMM
	Release2DHMM
	CreateObsInfo
	ReleaseObsInfo
	ImgToObs_DCT
	UniformImgSegm
	InitMixSegm
	EstimateHMMStateParams
	EstimateTransProb
	EstimateObsProb
	EViterbi
	MixSegmL2

	Camera Calibration and 3D Reconstruction Reference
	Camera Calibration Functions
	CalibrateCamera
	CalibrateCamera_64d
	Rodrigues
	UnDistortOnce
	UnDistortInit
	UnDistort
	FindChessBoardCornerGuesses

	Pose Estimation
	FindExtrinsicCameraParams
	FindExtrinsicCameraParams_64d
	CreatePOSITObject
	POSIT
	ReleasePOSITObject
	CalcImageHomography

	View Morphing Functions
	MakeScanlines
	PreWarpImage
	FindRuns
	DynamicCorrespondMulti
	MakeAlphaScanlines
	MorphEpilinesMulti
	PostWarpImage
	DeleteMoire

	Stereo Correspondence and Epipolar Geometry Functions
	FindFundamentalMat
	Example. Fundamental matrix calculation

	ComputeCorrespondEpilines

	GUI and Video Acquisition Reference
	HighGUI overview
	Window functions
	cvNamedWindow
	cvDestroyWindow
	cvResizeWindow
	cvGetWindowHandle
	cvGetWindowName
	cvCreateTrackbar
	cvGetTrackbarPos
	cvSetTrackbarPos
	cvSetMouseCallback

	Image handling functions
	cvLoadImage
	cvSaveImage
	cvShowImage
	cvConvertImage

	Video I/O functions
	CvCapture
	cvCaptureFromAVI
	cvCaptureFromCAM
	cvReleaseCapture
	cvGrabFrame
	cvRetrieveFrame
	cvQueryFrame
	cvGetCaptureProperty
	cvSetCaptureProperty
	cvCreateAVIWriter
	cvReleaseAVIWriter
	cvWriteToAVI

	Support/system functions
	cvInitSystem
	cvWaitKey
	cvAddSearchPath

	Bibliography

