
Intel® Open Source Computer Vision
Library

What is OpenCV
OpenCV means Intel® Open Source Computer Vision Library. It is a collection of C functions and few
C++ classes that implement some popular algorithms of Image Processing and Computer Vision.

The key features
OpenCV is cross-platform middle-to-high level API that consists of a few hundreds (>300) C functions. It
does not rely on external numerical libraries, though it can make use of some of them (see below) at
runtime, if they are available.

OpenCV is free for both non-commercial and commercial use (see the license for details).

OpenCV provides transparent for user interface to Intel® Integrated Performance Primitives (IPP) (only
ippcv for now). That is, it loads automatically IPP libraries optimized for specific processor at runtime, if
they are available. More information about IPP can be retrieved at
http://www.intel.com/software/products/ipp/ippvm20/index.htm

There are interfaces to OpenCV for some other languages/environments (more to come):

EiC - ANSI C interpreter written by Ed Breen. AFAIK, it is now abandoned. Hawk and CvEnv are
the interactive environments (written in MFC and TCL,respectively) that embedd EiC interpteter.
Ch - ANSI C/C++ interpreter with some scripting capabilities, created and supported by
SoftIntegration® company (http://www.softintegration.com) Wrappers for Ch are located at
opencv/interfaces/ch.
MATLAB® - great environment for numerical and symbolic computing by Mathworks. MATLAB®
interface for some of OpenCV functions can be found at opencv/interfaces/matlab/toolbox

Who created it
The complete list of authors can be found in the file AUTHORS.

Besides, a lot of people helped with suggestions, patches, bug reports etc. The incomplete list is in
THANKS file.

1

http://www.intel.com/software/products/ipp/ippvm20/index.htm
http://www.softintegration.com/

What’s New
The most important things arrived in beta 3 are:

Complete up-to-date HTML reference [we hope]
Source code for stereo correspondence [p 12]
Robust and fast face detection [p 4]
3D Object Tracker [p 14]

See ChangeLog file for full list of changes.

Where to get OpenCV
Go http://www.sourceforge.net/projects/opencvlibrary. If it does not work, type "OpenCV" in Google.

If you have a problem with installing/running/using
OpenCV

1. Read FAQs [p 17]
2. Search through OpenCV archives at www.yahoogroups.com

(http://groups.yahoo.com/group/OpenCV/)
3. Join OpenCV mailing list at yahoo groups (see FAQs on how to do it) and mail your questions (the

mailing list will probably migrate to OpenCV’s SourceForge site)
4. Look at the OpenCV sample code, read the reference manual :)

OpenCV Reference Manual
Basic Structures and Operations Reference [p 25]
Image Processing and Analysis Reference(1) [p 143]
Image Processing and Analysis Reference(2) [p 183]
Structural Analysis Reference [p 204]
Motion Analysis and Object Tracking Reference [p 227]
Object Recognition Reference [p 245]
Camera Calibration and 3D Reconstruction Reference [p 256]
Experimental Functionality [p 4]
GUI and Video Acquisition Reference [p 272]
Bibliography [p 284]
cvcam manual (RTF)

2

http://www.sourceforge.net/projects/opencvlibrary
http://www.google.com/
http://groups.yahoo.com/group/OpenCV/
http://www.sourceforge.net/projects/opencvlibrary

You may also look at the PDF manual, but do not trust it much - it is pretty out of date, especially, the
reference part.

Other resources
OpenCV Applications (Windows only)

If you have questions/corrections/suggestions about these pages (not about the library ifself), mail to
Vadim.Pisarevsky@intel.com.

All the trademarks referenced above belong to their respected owners.

3

Experimental Functionality Reference
The functionality resides in cvaux library. To use it in your application, place #include "cvaux.h" in your
source files and:

In case of Win32 link the app against cvaux.lib that is import library for cvaux.dll
In case of Linux use -lcvaux compiler option

Object Detection Functions [p 4]
CvHaar* [p 5]
LoadHaarClassifierCascade [p 7]
ReleaseHaarClassifierCascade [p 7]
CreateHidHaarClassifierCascade [p 8]
ReleaseHidHaarClassifierCascade [p 8]
HaarDetectObjects [p 9]
SetImagesForHaarClassifierCascade [p 11]
RunHaarClassifierCascade [p 11]
GetHaarClassifierCascadeScale [p 12]
GetHaarClassifierCascadeWindowSize [p 12]

Stereo Correspondence Functions [p 12]
FindStereoCorrespondence [p 13]

3D Tracking Functions [p 14]
3dTrackerCalibrateCameras [p 14]
3dTrackerLocateObjects [p 15]

Object Detection Functions
The object detector described below has been initially proposed by Paul Viola [Viola01] [p ??] and
improved by Rainer Lienhart [Lienhart02] [p ??] . First, a classifier (namely a cascade of boosted
classifiers working with haar-like features) is trained with a few hundreds of sample views of a particular
object (i.e., a face or a car), called positive examples, that are scaled to the same size (say, 20x20), and
negative examples - arbitrary images of the same size.

After a classifier is trained, it can be applied to a region of interest (of the same size as used during the
training) in an input image. The classifier outputs a "1" if the region is likely to show the object (i.e.,
face/car), and "0" otherwise. To search for the object in the whole image one can move the search window
across the image and check every location using the classifier. The classifier is designed so that it can be
easily "resized" in order to be able to find the objects of interest at different sizes, which is more efficient
than resizing the image itself. So, to find an object of an unknown size in the image the scan procedure
should be done several times at different scales.

4

The word "cascade" in the classifier name means that the resultant classifier consists of several simpler
classifiers (stages) that are applied subsequently to a region of interest until at some stage the candidate
is rejected or all the stages are passed. The word "boosted" means that the classifiers at every stage of the
cascade are complex themselves and they are built out of basic classifiers using one of four different
boosting techniques (weighted voting). Currently Discrete Adaboost, Real Adaboost, Gentle Adaboost and
Logitboost are supported. The basic classifiers are decision-tree classifiers with at least 2 leaves. Haar-like
features are the input to the basic classifers, and are calculated as described below. The current algorithm
uses the following Haar-like features:

The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within the region
of interest and the scale (this scale is not the same as the scale used at the detection stage, though these
two scales are multiplied). For example, in case of the third line feature (2c) the response is calculated as
the difference between the sum of image pixels under the rectangle covering the whole feature (including
the two white stripes and the black stripe in the middle) and the sum of the image pixels under the black
stripe multiplied by 3 in order to compensate for the differences in the size of areas. The sums of pixel
values over a rectangular regions are calculated rapidly using integral images (see below and cvIntegral [p
167] description).

To see the object detector at work, have a look at HaarFaceDetect demo.

The following reference is for the detection part only. There is a separate application called haartraining
that can train a cascade of boosted classifiers from a set of samples. See opencv/apps/haartraining for
details.

CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier,
CvHaarClassifierCascade

Boosted Haar classifier structures

#define CV_HAAR_FEATURE_MAX 3

/* a haar feature consists of 2-3 rectangles with appropriate weights */
typedef struct CvHaarFeature

5

{
 int tilted; /* 0 means up-right feature, 1 means 45--rotated feature */

 /* 2-3 rectangles with weights of opposite signs and
 with absolute values inversely proportional to the areas of the rectangles.
 if rect[2].weight !=0, then
 the feature consists of 3 rectangles, otherwise it consists of 2 */
 struct
 {
 CvRect r;
 float weight;
 } rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;

/* a single tree classifier (stump in the simplest case) that returns the response for the feature
 at the particular image location (i.e. pixel sum over subrectangles of the window) and gives out
 a value depending on the responce */
typedef struct CvHaarClassifier
{
 int count;
 /* number of nodes in the decision tree */
 CvHaarFeature* haarFeature;
 /* these are "parallel" arrays. Every index i
 corresponds to a node of the decision tree (root has 0-th index).

 left[i] - index of the left child (or negated index if the left child is a leaf)
 right[i] - index of the right child (or negated index if the right child is a leaf)
 threshold[i] - branch threshold. if feature responce is <= threshold, left branch
 is chosen, otherwise right branch is chosed.
 alpha[i] - output value correponding to the leaf. */
 float* threshold; /* array of decision thresholds */
 int* left; /* array of left-branch indices */
 int* right; /* array of right-branch indices */
 float* alpha; /* array of output values */
}
CvHaarClassifier;

/* a boosted battery of classifiers(=stage classifier):
 the stage classifier returns 1
 if the sum of the classifiers’ responces
 is greater than threshold and 0 otherwise */
typedef struct CvHaarStageClassifier
{
 int count; /* number of classifiers in the battery */
 float threshold; /* threshold for the boosted classifier */
 CvHaarClassifier* classifier; /* array of classifiers */
}
CvHaarStageClassifier;

/* cascade of stage classifiers */
typedef struct CvHaarClassifierCascade
{
 int count; /* number of stages */
 CvSize origWindowSize; /* original object size (the cascade is trained for) */
 CvHaarStageClassifier* stageClassifier; /* array of stage classifiers */
}
CvHaarClassifierCascade;

All the structures are used for representing a cascaded of boosted Haar classifiers. The cascade has the
following hierarchical structure:

6

 Cascade:
 Stage 1 :

 Classifier 11 :

 Feature 11

 Classifier 12 :

 Feature 12

 ...
 Stage 2 :

 Classifier 21 :

 Feature 21

 ...
 ...

The whole hierarchy can be constructed manually or loaded from a file or an embedded base using
function cvLoadHaarClassifierCascade [p 7] .

cvLoadHaarClassifierCascade

Loads a trained cascade classifier from file or the classifier database embedded in OpenCV

CvHaarClassifierCascade*
cvLoadHaarClassifierCascade(const char* directory="<default_face_cascade>",
 CvSize origWindowSize=cvSize(24,24));

directory
Name of file containing the description of a trained cascade classifier; or name in angle brackets of a
cascade in the classifier database embedded in OpenCV (only "<default_face_cascade>" is supported
now).

origWindowSize
Original size of objects the cascade has been trained on. Note that it is not stored in the cascade and
therefore must be specified separately.

The function cvLoadHaarClassifierCascade [p 7] loads a trained cascade of haar classifiers from a file or
the classifier database embedded in OpenCV. The base can be trained using haartraining application (see
opencv/apps/haartraining for details).

cvReleaseHaarClassifierCascade

Releases haar classifier cascade

void cvReleaseHaarClassifierCascade(CvHaarClassifierCascade** cascade);

cascade
Double pointer to the released cascade. The pointer is cleared by the function.

7

The function cvReleaseHaarClassifierCascade [p 7] deallocates the cascade that has been created
manually or by cvLoadHaarClassifierCascade [p 7] .

cvCreateHidHaarClassifierCascade

Converts boosted classifier cascade to internal representation

/* hidden (optimized) representation of Haar classifier cascade */
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;

CvHidHaarClassifierCascade*
cvCreateHidHaarClassifierCascade(CvHaarClassifierCascade* cascade,
 const CvArr* sumImage=0,
 const CvArr* sqSumImage=0,
 const CvArr* tiltedSumImage=0,
 double scale=1);

cascade
original cascade that may be loaded from file using cvLoadHaarClassifierCascade [p 7] .

sumImage
Integral (sum) single-channel image of 32-bit integer format. This image as well as the two
subsequent images are used for fast feature evaluation and brightness/contrast normalization. They all
can be retrieved from the input 8-bit single-channel image using function cvIntegral [p ??] . Note that
all the images are 1 pixel wider and 1 pixel taller than the source 8-bit image.

sqSumImage
Square sum single-channel image of 64-bit floating-point format.

tiltedSumImage
Tilted sum single-channel image of 32-bit integer format.

scale
Initial scale (see cvSetImagesForHaarClassifierCascade [p 11]).

The function cvCreateHidHaarClassifierCascade [p 8] converts pre-loaded cascade to internal faster
representation. This step must be done before the actual processing. The integral image pointers may be
NULL, in this case the images should be assigned later by cvSetImagesForHaarClassifierCascade [p 11] .

cvReleaseHidHaarClassifierCascade

Releases hidden classifier cascade structure

void cvReleaseHidHaarClassifierCascade(CvHidHaarClassifierCascade** cascade);

cascade
Double pointer to the released cascade. The pointer is cleared by the function.

The function cvReleaseHidHaarClassifierCascade [p 8] deallocates structure that is an internal ("hidden")
representation of haar classifier cascade.

8

cvHaarDetectObjects

Detects objects in the image

typedef struct CvAvgComp
{
 CvRect rect; /* bounding rectangle for the face (average rectangle of a group) */
 int neighbors; /* number of neighbor rectangles in the group */
}
CvAvgComp;

CvSeq* cvHaarDetectObjects(const IplImage* img, CvHidHaarClassifierCascade* cascade,
 CvMemStorage* storage, double scale_factor=1.1,
 int min_neighbors=3, int flags=0);

img
Image to detect objects in.

cascade
Haar classifier cascade in internal representation.

storage
Memory storage to store the resultant sequence of the object candidate rectangles.

scale_factor
The factor by which the search window is scaled between the subsequent scans, for example, 1.1
means increasing window by 10%.

min_neighbors
Minimum number (minus 1) of neighbor rectangles that makes up an object. All the groups of a
smaller number of rectangles than min_neighbors -1 are rejected. If min_neighbors is 0, the
function does not any grouping at all and returns all the detected candidate rectangles, which may be
useful if the user wants to apply a customized grouping procedure.

flags
Mode of operation. Currently the only flag that may be specified is
CV_HAAR_DO_CANNY_PRUNING. If it is set, the function uses Canny edge detector to reject some
image regions that contain too few or too much edges and thus can not contain the searched object.
The particular threshold values are tuned for face detection and in this case the pruning speeds up the
processing.

The function cvHaarDetectObjects [p 9] finds rectangular regions in the given image that are likely to
contain objects the cascade has been trained for and returns those regions as a sequence of rectangles. The
function scans the image several times at different scales (see cvSetImagesForHaarClassifierCascade [p
11]). Each time it considers overlapping regions in the image and applies the classifiers to the regions
using cvRunHaarClassifierCascade [p 11] . It may also apply some heuristics to reduce number of
analyzed regions, such as Canny prunning. After it has proceeded and collected the candidate rectangles
(regions that passed the classifier cascade), it groups them and returns a sequence of average rectangles for
each large enough group. The default parameters (scale_factor =1.1, min_neighbors =3,
flags =0) are tuned for accurate yet slow face detection. For faster face detection on real video images the
better settings are (scale_factor =1.2, min_neighbors =2,
flags =CV_HAAR_DO_CANNY_PRUNING).

9

Example. Using cascade of Haar classifiers to find faces.
#include "cv.h"
#include "cvaux.h"
#include "highgui.h"

CvHidHaarClassifierCascade* new_face_detector(void)
{
 CvHaarClassifierCascade* cascade = cvLoadHaarClassifierCascade("<default_face_cascade>", cvSize(24,24));
 /* images are assigned inside cvHaarDetectObject, so pass NULL pointers here */
 CvHidHaarClassifierCascade* hid_cascade = cvCreateHidHaarClassifierCascade(cascade, 0, 0, 0, 1);
 /* the original cascade is not needed anymore */
 cvReleaseHaarClassifierCascade(&cascade);
 return hid_cascade;
}

void detect_and_draw_faces(IplImage* image,
 CvHidHaarClassifierCascade* cascade,
 int do_pyramids)
{
 IplImage* small_image = image;
 CvMemStorage* storage = cvCreateMemStorage(0);
 CvSeq* faces;
 int i, scale = 1;

 /* if the flag is specified, down-scale the input image to get a
 performance boost w/o loosing quality (perhaps) */
 if(do_pyramids)
 {
 small_image = cvCreateImage(cvSize(image->width/2,image->height/2), IPL_DEPTH_8U, 3);
 cvPyrDown(image, small_image, CV_GAUSSIAN_5x5);
 scale = 2;
 }

 /* use the fastest variant */
 faces = cvHaarDetectObjects(small_image, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING);

 /* draw all the rectangles */
 for(i = 0; i < faces->total; i++)
 {
 /* extract the rectanlges only */
 CvRect face_rect = *(CvRect*)cvGetSeqElem(faces, i, 0);
 cvRectangle(image, cvPoint(face_rect.x*scale,face_rect.y*scale),
 cvPoint((face_rect.x+face_rect.width)*scale,
 (face_rect.y+face_rect.height)*scale),
 CV_RGB(255,0,0), 3);
 }

 if(small_image != image)
 cvReleaseImage(&small_image);
 cvReleaseMemStorage(&storage);
}

/* takes image filename from the command line */
int main(int argc, char** argv)
{
 IplImage* image;
 if(argc==2 && (image = cvLoadImage(argv[1], 1)) != 0)
 {
 CvHidHaarClassifierCascade* cascade = new_face_detector();
 detect_and_draw_faces(image, cascade, 1);
 cvNamedWindow("test", 0);
 cvShowImage("test", image);
 cvWaitKey(0);
 cvReleaseHidHaarClassifierCascade(&cascade);
 cvReleaseImage(&image);
 }

 return 0;
}

10

cvSetImagesForHaarClassifierCascade

Assigns images to the hidden cascade

void cvSetImagesForHaarClassifierCascade(CvHidHaarClassifierCascade* cascade,
 const CvArr* sumImage, const CvArr* sqSumImage,
 const CvArr* tiltedImage, double scale);

cascade
Hidden Haar classifier cascade, created by cvCreateHidHaarClassifierCascade [p 8] .

sumImage
Integral (sum) single-channel image of 32-bit integer format. This image as well as the two
subsequent images are used for fast feature evaluation and brightness/contrast normalization. They all
can be retrieved from input 8-bit single-channel image using function cvIntegral [p ??] . Note that all
the images are 1 pixel wider and 1 pixel taller than the source 8-bit image.

sqSumImage
Square sum single-channel image of 64-bit floating-point format.

tiltedSumImage
Tilted sum single-channel image of 32-bit integer format.

scale
Window scale for the cascade. If scale =1, original window size is used (objects of that size are
searched) - the same size as specified in cvLoadHaarClassifierCascade [p 7] (24x24 in case of
"<default_face_cascade>"), if scale =2, a two times larger window is used (48x48 in case of default
face cascade). While this will speed-up search about four times, faces smaller than 48x48 cannot be
detected.

The function cvSetImagesForHaarClassifierCascade [p 11] assigns images and/or window scale to the
hidden classifier cascade. If image pointers are NULL, the previously set images are used further (i.e.
NULLs mean "do not change images"). Scale parameter has no such a "protection" value, but the previous
value can be retrieved by cvGetHaarClassifierCascadeScale [p 12] function and reused again. The
function is used to prepare cascade for detecting object of the particular size in the particular image. The
function is called internally by cvHaarDetectObjects [p 9] , but it can be called by user if there is a need in
using lower-level function cvRunHaarClassifierCascade [p 11] .

cvRunHaarClassifierCascade

Runs cascade of boosted classifier at given image location

int cvRunHaarClassifierCascade(CvHidHaarClassifierCascade* cascade,
 CvPoint pt, int startStage=0);

cascade
Hidden Haar classifier cascade.

pt
Top-left corner of the analyzed region. Size of the region is a original window size scaled by the
currenly set scale. The current window size may be retrieved using

11

cvGetHaarClassifierCascadeWindowSize [p 12] function.
startStage

Initial zero-based index of the cascade stage to start from. The function assumes that all the previous
stages are passed. This feature is used internally by cvHaarDetectObjects [p 9] for better processor
cache utilization.

The function cvRunHaarHaarClassifierCascade [p ??] runs Haar classifier cascade at a single image
location. Before using this function the integral images and the appropriate scale (=> window size) should
be set using cvSetImagesForHaarClassifierCascade [p 11] . The function returns positive value if the
analyzed rectangle passed all the classifier stages (it is a candidate) and zero or negative value otherwise.

cvGetHaarClassifierCascadeScale

Retrieves the current scale of cascade of classifiers

double cvGetHaarClassifierCascadeScale(CvHidHaarClassifierCascadeScale* cascade);

cascade
Hidden Haar classifier cascade.

The function cvGetHaarHaarClassifierCascadeScale [p ??] retrieves the current scale factor for the search
window of the Haar classifier cascade. The scale can be changed by
cvSetImagesForHaarClassifierCascade [p 11] by passing NULL image pointers and the new scale value.

cvGetHaarClassifierCascadeWindowSize

Retrieves the current search window size of cascade of classifiers

CvSize cvGetHaarClassifierCascadeWindowSize(CvHidHaarClassifierCascadeWindowSize* cascade);

cascade
Hidden Haar classifier cascade.

The function cvGetHaarHaarClassifierCascadeWindowSize [p ??] retrieves the current search window
size for the Haar classifier cascade. The window size can be changed implicitly by setting appropriate
scale.

Stereo Correspondence Functions

12

FindStereoCorrespondence

Calculates disparity for stereo-pair

cvFindStereoCorrespondence(
 const CvArr* leftImage, const CvArr* rightImage,
 int mode, CvArr* depthImage,
 int maxDisparity,
 double param1, double param2, double param3,
 double param4, double param5);

leftImage
Left image of stereo pair, rectified grayscale 8-bit image

rightImage
Right image of stereo pair, rectified grayscale 8-bit image

mode
Algorithm used to find a disparity (now only CV_DISPARITY_BIRCHFIELD is supported)

depthImage
Destination depth image, grayscale 8-bit image that codes the scaled disparity, so that the zero
disparity (corresponding to the points that are very far from the cameras) maps to 0, maximum
disparity maps to 255.

maxDisparity
Maximum possible disparity. The closer the objects to the cameras, the larger value should be
specified here. Too big values slow down the process significantly.

param1, param2, param3, param4, param5
- parameters of algorithm. For example, param1 is the constant occlusion penalty, param2 is the
constant match reward, param3 defines a highly reliable region (set of contiguous pixels whose
reliability is at least param3), param4 defines a moderately reliable region, param5 defines a slightly
reliable region. If some parameter is omitted default value is used. In Birchfield’s algorithm param1 =
25, param2 = 5, param3 = 12, param4 = 15, param5 = 25 (These values have been taken from "Depth
Discontinuities by Pixel-to-Pixel Stereo" Stanford University Technical Report
STAN-CS-TR-96-1573, July 1996.)

The function cvFindStereoCorrespondence [p 13] calculates disparity map for two rectified grayscale
images.

Example. Calculating disparity for pair of 8-bit color images

/*---*/
IplImage* srcLeft = cvLoadImage("left.jpg",1);
IplImage* srcRight = cvLoadImage("right.jpg",1);
IplImage* leftImage = cvCreateImage(cvGetSize(srcLeft), IPL_DEPTH_8U, 1);
IplImage* rightImage = cvCreateImage(cvGetSize(srcRight), IPL_DEPTH_8U, 1);
IplImage* depthImage = cvCreateImage(cvGetSize(srcRight), IPL_DEPTH_8U, 1);

cvCvtColor(srcLeft, leftImage, CV_BGR2GRAY);
cvCvtColor(srcRight, rightImage, CV_BGR2GRAY);

cvFindStereoCorrespondence(leftImage, rightImage, CV_DISPARITY_BIRCHFIELD, depthImage, 50, 15, 3, 6, 8, 15);
/*---*/

13

And here is the example stereo pair that can be used to test the example

3D Tracking Functions
The section discusses functions for tracking objects in 3d space using a stereo camera. Besides C API,
there is DirectShow 3dTracker filter and the wrapper application 3dTracker. you may find a description
how to test the filter on sample data.

3dTrackerCalibrateCameras

Simultaneously determines position and orientation of multiple cameras

14

CvBool cv3dTrackerCalibrateCameras(int num_cameras,
 const Cv3dTrackerCameraIntrinsics camera_intrinsics[],
 CvSize checkerboard_size,
 IplImage *samples[],
 Cv3dTrackerCameraInfo camera_info[]);

num_cameras
the number of cameras to calibrate. This is the size of each of the three array parameters.

camera_intrinsics
camera intrinsics for each camera, such as determined by CalibFilter.

checkerboard_size
the width and height (in number of squares) of the checkerboard.

samples
images from each camera, with a view of the checkerboard.

camera_info
filled in with the results of the camera calibration. This is passed into 3dTrackerLocateObjects [p 15]
to do tracking.

The function cv3dTrackerCalibrateCameras [p 14] searches for a checkerboard of the specified size in
each of the images. For each image in which it finds the checkerboard, it fills in the corresponding slot in
camera_info with the position and orientation of the camera relative to the checkerboard and sets the
valid flag. If it finds the checkerboard in all the images, it returns true; otherwise it returns false.

This function does not change the members of the camera_info array that correspond to images in
which the checkerboard was not found. This allows you to calibrate each camera independently, instead of
simultaneously. To accomplish this, do the following:

1. clear all the valid flags before calling this function the first time;
2. call this function with each set of images;
3. check all the valid flags after each call. When all the valid flags are set, calibration is complete.

Note that this method works well only if the checkerboard is rigidly mounted; if it is handheld, all the
cameras should be calibrated simultanously to get an accurate result. To ensure that all cameras are
calibrated simultaneously, ignore the valid flags and use the return value to decide when calibration is
complete.

3dTrackerLocateObjects

Determines 3d location of tracked objects

int cv3dTrackerLocateObjects(int num_cameras,
 int num_objects,
 const Cv3dTrackerCameraInfo camera_info[],
 const Cv3dTracker2dTrackedObject tracking_info[],
 Cv3dTrackerTrackedObject tracked_objects[]);

15

num_cameras
the number of cameras.

num_objects
the maximum number of objects found by any camera. (Also the maximum number of objects
returned in tracked_objects .)

camera_info
camera position and location information for each camera, as determined by
3dTrackerCalibrateCameras [p 14] .

tracking_info
the 2d position of each object as seen by each camera. Although this is specified as a
one-dimensional array, it is actually a two-dimensional array: const
Cv3dTracker2dTrackedObject tracking_info[num_cameras][num_objects] .
The id field of any unused slots must be -1. Ids need not be ordered or consecutive.

tracked_objects
filled in with the results.

The function cv3dTrackerLocateObjects [p 15] determines the 3d position of tracked objects based on the
2d tracking information from multiple cameras and the camera position and orientation information
computed by 3dTrackerCalibrateCameras [p ??] . It locates any objects with the same id that are tracked
by more than one camera. It fills in the tracked_objects array and returns the number of objects
located. The id fields of any unused slots in tracked_objects are set to -1.

16

Frequently Asked Questions /
Troubleshootings / HOWTOs

General Questions

How to install OpenCV properly?

Read installation guide

How can I get acquainted with OpenCV fast?

Try to run Hawk (under Windows), load opencv\samples\c scripts and run them.
Then you can move to higher-weight applications like facedetection, lkdemo, camshift etc.
Also, scan through reference manual [p ??] - it contains some example code as well.
Search OpenCV archives at http://groups.yahoo.com/group/OpenCV for the topic you are interesting
in.
Create new project on base of sample script and an OpenCV demo application and modify it as
needed. There are application wizards for Microsoft Developer Studio that create OpenCV-aware
projects; look for them at http://groups.yahoo.com/group/OpenCV (Files section - you have to be
registered OpenCV@yahoogroups.com user) or at OpenCV SourceForge page. Also read below [p
??] how to create such a project from scratch

Where do I submit Bug reports for the computer vision library?

Send email to OpenCV@yahoogroups.com Subject: BUG <....your title...>

How do I send bug reports for the Intel® Image Processing Library?

Send email to developer_support@intel.com

How do I join the web group for the library?

Send email to OpenCV-subscribe@yahoogroups.com, after you are a member and select your logon, you
can read the web group at http://groups.yahoo.com/group/OpenCV

How do I modify the web group so that I don’t receive email everyday?

To get the messages real time, or once a day as a daily digest, you can go to
http://groups.yahoo.com/mygroups and choose your setting from the pull down list to the right of
OpenCV.;

17

http://groups.yahoo.com/group/OpenCV
http://groups.yahoo.com/group/OpenCV
http://www.sourceforge.net/projects/opencvlibrary
http://groups.yahoo.com/group/OpenCV
http://groups.yahoo.com/mygroups

Ok, I found the group completely useless for me. How can I unsubscribe?

Mail to OpenCV-unsubscribe@yahoogroups.com with subject [OpenCV] and arbitrary message contents.

How do I get support for the Image Processing Library (IPL)?

For the Image Processing Library, all support questions should go through:
http://support.intel.com/support/performancetools/support.htm (for release libraries)
https://premier.intel.com/scripts-quad/welcomeplsb.asp (for beta libraries)

In beta 3 IPL and OpenCV conflict. How to resolve it?

To be completely independent from IPL, OpenCV duplicates declarations of IplImage and few other
structures and constants if it is not told explicitly that IPL is present. Defining HAVE_IPL before
including OpenCV headers or putting "#include <ipl.h>" before OpenCV headers resolves the conflict.

Does OpenCV works on other processors?

Yes, OpenCV itself is open source and it is quite portable, especially across 32-bit platforms. On the other
hand, OpenCV can run much faster on Intel processors because of IPP [p ??] .

Windows® OS related Qs:

When I try to build one of the apps, I get an error, streams.h not found.

You need DirectShow SDK that is now a part of DirectX SDK.

1. Download DirectX SDK from msdn.microsoft.com/directx/ (It’s huge, but you can download it by
parts). If it doesn’t work for you, consider HighGUI that can capture video via VFW or MIL

2. Install it TOGETHER WITH SAMPLES.
3. Open <DirectXSDKInstallFolder>\samples\Multimedia\DirectShow\BaseClasses\baseclasses.dsw. If

there is no such file, it is that you either didn’t install samples or the path has changed, in the latter
case search for streams.h and open a workspace file (workspace files for Developer Studio .NET have
different extension) located in the same folder.

4. Build the library in both Release in Debug configurations.
5. Copy the built libraries (in DirectX 8.x they are called strmbase.lib and strmbasd.lib) to

<DirectXSDKInstallFolder>\lib.
6. In Developer Studio add the following paths:

<DirectXSDKInstallFolder>\include
<DirectXSDKInstallFolder>\samples\Multimedia\DirectShow\BaseClasses
to the includes’ search path (at Tools->Options->Directories->Include files in case of Developer
Studio 6.0)

18

http://support.intel.com/support/performancetools/support.htm
https://premier.intel.com/scripts-quad/welcomeplsb.asp

Add <DirectXSDKInstallFolder>\lib to the libraries’ search path (at
Tools->Options->Directories->Library files in case of Developer Studio 6.0)

NOTE: PUT THE ADDED LINES ON THE VERY TOP OF THE LISTS, OTHERWISE YOU
WILL STILL GET COMPILER OR LINKER ERRORS. This is necessary, because Developer
Studio 6.0 includes some older DirectX headers and libs that conflict with new DirectX SDK
versions.

7. Enjoy!

After installing DirectX SDK I’m still getting linker error about
undefined or redefined "TransInPlace" filter class constructors etc.

Read the instructions from the previous answer, especially about the order of search directories.

When I use try to use cvcam, it just crashes

Make sure, you registered ProxyTrans.ax and SyncFilter.ax

CamShiftDemo can not be run

Make sure, you registered CamShift.ax and you have DirectShow-compatible camera

How to register *.ax (DirectShow filter)?

Open the file (within explorer) using regsvr32.exe (under Win2000 it is done by Open with->Choose
Program...->Browse...->c:\windows\system32\regsvr32.exe (path may be different). You may remember
association to save clicks later.

Filter couldn’t be registered (regsvr32 reports an error)

The most probable reason is that the filter requires some DLLs that are not in the path. In case of OpenCV
make sure <OpenInstallFolder>\bin is in the path

LKDemo / HMMDemo reports an error during startup and no the view
is completely black

To run either of these apps you will need VFW-compatible camera. At startup the programs iterate
through registered video capture devices. It might be that they could not find one. Try to select the camera
manually by pressing "tune capture parameters" (camera) toolbar button. Then, try to setup video format
(the button on the left from camera) to make the camera work.

19

cvd.lib or cvd.dll are not found

cvd.dll means Debug version of cv.dll and cvd.lib is the import library for cvd.dll. Open
<OpenCVInstallFolder>_dsw\opencv.dsw, select "cv" as active project and select "Win32 Debug"
configuration. Build the library and you will get bin\cvd.dll and lib\cvd.lib files. The same is true for all of
OpenCV components - name of binary, ending with d means Debug version.

When compiling HighGUI I get the error message "mil.h is not found"
mil.h is a part of Matrox Imaging Library (MIL) that is usually supplied with Matrox (or compatible)
framegrabbers, such as Meteor, Meteor II etc.

If you have such a framegrabber and MIL installed, add mil\include and mil\lib to the search paths
within Developer Studio (submenu Tools->Options->Directories).
If you do not have MIL, just ignore the error. The file mil.h is only required to build MIL-aware
version of Highgui "Win32 MIL Debug" or "Win32 MIL Release". Select "Win32 Debug" or "Win32
Release" configuration of highgui (submenu Build->Set Active Configuration...) instead - these
versions of highgui can still be used to grab video via VFW interface, work with AVIs and still
images.

How can I debug DirectShow filter?

Open workspace with the filter (e.g. opencv.dsw),
select the filter as active project and build it in debug configuration,
switch to explorer for a minute to register debug version of the filter (e.g. regsvr32 camshiftd.ax) (it
needs to be done only when debug/release version are switched - not every time when filter is
recompiled, because registry stores only the filter name),
get back to Developer Studio and start debugging session (F5). It will ask, what application do you
want to run to debug the module. You may choose camshiftdemo to debug camshift.ax and DirectX
SDK tool graphedit to debug arbitrary DirectShow filter.
Within graphedit build filter graph (e.g. camera->camshift->renderer)
Save the graph (you may just load it next time)
Set the breakpoint inside ::Transform method of the filter or in other location.
Run the filter and ... have fun

How can I create DeveloperStudio project to start playing with OpenCV

(note: this is a lengthy answer)

To create your own OpenCV-based project in Developer Studio from scratch do the following:

1. Within Developer Studio create new application:
1. select from menu "File"->"New..."->"Projects" tab. Choose "Win32 Application" or "Win32

console application" - the latter is the easier variant and the both sample projects have this type.
2. type the project name and choose location
3. you may create own workspace for the project ("Create new workspace") or include the new

20

project into the currently loaded workspace ("Add to current workspace").
4. click "next" button
5. choose "An empty project", click "Finish", "OK".

After the above steps done Developer Studio will create the project folder (by default it has the same
name as the project), <project name>.dsp file and, optionally, <project name>.dsw,.ncb ... files if you
create own workspace.

2. Add a file to the project:
select from menu "File"->"New..."->"Files" tab.
choose "C++ Source File", type file name and press "OK"
add OpenCV-related #include directives:

 #include "cv.h"
 /* #inlcude "cvaux.h" // experimental stuff (if need) */
 #include "highgui.h"

Or, you may copy some existing file (say, opencv\samples\c\morphology.c) to the project folder,
open it and add to the project (right click in editor view -> "Insert File into Project" -> <your
project name>).

3. Customize project settings:
Activate project setting dialog by choosing menu item "Project"->"Settings...".
Select your project in the right pane.
Tune settings, common to both Release and Debug configurations:

Select "Settings For:"->"All Configurations"
Choose "C/C++" tab -> "Preprocessor" category -> "Additional Include Directories:". Add
comma-separated relative (to the .dsp file) or absolute paths to opencv\cv\include,
opencv\otherlibs\highgui and, optionally, opencv\cvaux\include.
Choose "Link" tab -> "Input" category -> "Additional library path:". Add the paths to all
neccessary import libraries

Tune settings for "Debug" configuration
Select "Settings For:"->"Win32 Debug".
Choose "Link" tab -> "General" category -> "Object/library modules". Add space-separated
cvd.lib, highguid.lib, cvauxd.lib (optionally)
You may also want to change location and name of output file. For example, if you want
the output .exe file to be put into the project folder, rather than Debug/ subfolder, you may
type ./<exe-name>d.exe in "Link" tab -> "General" category -> "Output file name:".

Tune settings for "Release" configuration
Select "Settings For:"->"Win32 Release".
Choose "Link" tab -> "General" category -> "Object/library modules". Add space-separated
cv.lib, highgui.lib, cvaux.lib (optionally)
Optionally, you may change name of the .exe file: type ./<exe-name>.exe in "Link" tab ->
"General" category -> "Output file name:".

4. Add dependency projects into workspace:
Choose from menu: "Project" -> "Insert project into workspace".
Select opencv\cv\make\cv.dsp.
Do the same for opencv\cvaux\make\cvaux.dsp, opencv\otherlibs\highgui\highgui.dsp.
Set dependencies:

21

Choose from menu: "Project" -> "Dependencies..."
For "cvaux" choose "cv",
for "highgui" choose "cv",
for your project choose all: "cv", "cvaux", "highgui".

The dependencies customization allows to automatically build debug versions of opencv
libraries and rebuild the binaries if the sources are changed somehow.

5. That’s it. Now compile and run everything.

Linux Related Qs:
TODO

Technical Questions on Library use:

How to access image pixels

(The coordinates are 0-based and counted from image origin, either top-left
(img->origin=IPL_ORIGIN_TL) or bottom-left (img->origin=IPL_ORIGIN_BL)

Suppose, we have 8-bit 1-channel image I (IplImage* img):

I(x,y) ~ ((uchar*)(img->imageData + img->widthStep*y))[x]

Suppose, we have 8-bit 3-channel image I (IplImage* img):

I(x,y) blue ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3]

I(x,y) green ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3+1]

I(x,y) red ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3+2]

e.g. increasing brightness of point (100,100) by 30 can be done this way:

CvPoint pt = {100,100};
((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3] += 30;
((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3+1] += 30;
((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3+2] += 30;

or more efficiently

CvPoint pt = {100,100};
uchar* temp_ptr = &((uchar*)(img->imageData + img->widthStep*pt.y))[x*3];
temp_ptr[0] += 30;
temp_ptr[1] += 30;
temp_ptr[2] += 30;

Suppose, we have 32-bit floating point, 1-channel image I (IplImage* img):

I(x,y) ~ ((float*)(img->imageData + img->widthStep*y))[x]

Now, the general case: suppose, we have N-channel image of type T:

22

I(x,y) c ~ ((T*)(img->imageData + img->widthStep*y))[x*N + c]

or you may use macro CV_IMAGE_ELEM(image_header, elemtype, y, x_Nc)
I(x,y) c ~ CV_IMAGE_ELEM(img, T, y, x*N + c)

There are functions that work with arbitrary (up to 4-channel) images and matrices (cvGet2D, cvSet2D),
but they are pretty slow.

How to access matrix elements?

The technique is very similar. (In the samples below i - 0-based row index, j - 0-based column index)

Suppose, we have 32-bit floating point real matrix M (CvMat* mat):

M(i,j) ~ ((float*)(mat->data.ptr + mat->step*i))[j]

Suppose, we have 64-bit floating point complex matrix M (CvMat* mat):

Re M(i,j) ~ ((double*)(mat->data.ptr + mat->step*i))[j*2]
Im M(i,j) ~ ((double*)(mat->data.ptr + mat->step*i))[j*2+1]

For single-channel matrices there is a macro CV_MAT_ELEM(matrix, elemtype, row, col), i.e. for
32-bit floating point real matrix

M(i,j) ~ CV_MAT_ELEM(mat, float, i, j),

e.g. filling 3x3 identity matrix:

CV_MAT_ELEM(mat, float, 0, 0) = 1.f;
CV_MAT_ELEM(mat, float, 0, 1) = 0.f;
CV_MAT_ELEM(mat, float, 0, 2) = 0.f;
CV_MAT_ELEM(mat, float, 1, 0) = 0.f;
CV_MAT_ELEM(mat, float, 1, 1) = 1.f;
CV_MAT_ELEM(mat, float, 1, 2) = 0.f;
CV_MAT_ELEM(mat, float, 2, 0) = 0.f;
CV_MAT_ELEM(mat, float, 2, 1) = 0.f;
CV_MAT_ELEM(mat, float, 2, 2) = 1.f;

How to process my data with OpenCV

Suppose, you have 300x200 32-bit floating point array, that resides in 60000-element array.

int cols = 300, rows = 200;
float* myarr = new float[rows*cols];

// step 1) initializing CvMat header
CvMat mat = cvMat(rows, cols,
 CV_32FC1, // 32-bit floating-point, single channel type
 myarr // user data pointer (no data is copied)
);
// step 2) using cv functions, e.g. calculating l2 (Frobenius) norm
double norm = cvNorm(&mat, 0, CV_L2);

...
delete myarr;

23

Other scenaria are described in the reference manual. See cvCreateMatHeader, cvInitMatHeader,
cvCreateImageHeader, cvSetData etc.

How to load and display image
/* usage: prog <image_name> */
#include "cv.h"
#include "highgui.h"

int main(int argc, char** argv)
{
 IplImage* img;
 if(argc == 2 && (img = cvLoadImage(argv[1], 1)) != 0)
 {
 cvNamedWindow("Image view", 1);
 cvShowImage("Image view", img);
 cvWaitKey(0); // very important
 cvDestroyWindow("Image view");
 cvReleaseImage(&img);
 return 0;
 }
 return -1;
}

How to find and process contours

Look at squares demo

How to calibrate camera using OpenCV

TODO

24

Basic Structures and Operations Reference

Helper structures [p 30]
Point [p 30]
Point2D32f [p 31]
Point3D32f [p 31]
Size [p 31]
Size2D32f [p 32]
Rect [p 32]
Scalar [p 32]

Array structures [p 33]
Mat [p 33]
MatND [p 33]
SparseMat [p 34]
Arr [p 35]

Arrays: Allocation/deallocation/copying/setting and retrieving parts [p 36]
Alloc [p 36]
Free [p 36]
CreateImage [p 36]
CreateImageHeader [p 37]
ReleaseImageHeader [p 37]
ReleaseImage [p 38]
InitImageHeader [p 38]
CloneImage [p 39]
SetImageCOI [p 39]
GetImageCOI [p 39]
SetImageROI [p 40]
ResetImageROI [p 40]
GetImageROI [p 40]
CreateMat [p 41]
CreateMatHeader [p 41]
ReleaseMat [p 42]
InitMatHeader [p 42]
Mat [p 43]
CloneMat [p 43]
CreateMatND [p 44]
CreateMatNDHeader [p 44]
ReleaseMatND [p 44]
InitMatNDHeader [p 45]
CloneMatND [p 45]
DecRefData [p 45]
IncRefData [p 46]

25

CreateData [p 46]
ReleaseData [p 47]
SetData [p 47]
GetRawData [p 47]
GetMat [p 48]
GetImage [p 49]
GetSubRect [p 49]
GetRow [p 50]
GetCol [p 50]
GetDiag [p 51]
GetSize [p 51]
CreateSparseMat [p 51]
ReleaseSparseMat [p 52]
CloneSparseMat [p 52]
InitSparseMatIterator [p 52]
GetNextSparseNode [p 52]
GetElemType [p 53]
GetDims [p 54]
Ptr*D [p 54]
Get*D [p 55]
GetReal*D [p 55]
mGet [p 56]
Set*D [p 56]
SetReal*D [p 57]
mSet [p 58]
Clear*D [p 58]
Copy [p 58]
Set [p 59]
SetZero [p 59]

Arrays: Conversions, transformations, basic operations [p 60]
Reshape [p 60]
ReshapeMatND [p 60]
Repeat [p 61]
Flip [p 62]
CvtPixToPlane [p 62]
CvtPlaneToPix [p 63]
ConvertScale [p 63]
ConvertScaleAbs [p 64]
Add [p 64]
AddS [p 65]
Sub [p 65]
SubS [p 66]
SubRS [p 66]

26

Mul [p 67]
Div [p 67]
And [p 68]
AndS [p 68]
Or [p 69]
OrS [p 69]
Xor [p 70]
XorS [p 70]
Not [p 71]
Cmp [p 72]
CmpS [p 72]
InRange [p 73]
InRangeS [p 73]
Max [p 74]
MaxS [p 75]
Min [p 75]
MinS [p 75]
AbsDiff [p 76]
AbsDiffS [p 76]

Array statistics [p 77]
CountNonZero [p 77]
Sum [p 77]
Avg [p 77]
AvgSdv [p 78]
MinMaxLoc [p 79]
Norm [p 79]

Matrix Operations, Linear Algebra and Math Functions [p 80]
SetIdentity [p 80]
DotProduct [p 81]
CrossProduct [p 81]
ScaleAdd [p 81]
MatMulAdd [p 82]
GEMM [p 82]
MatMulAddS [p 83]
MulTransposed [p 84]
Trace [p 84]
Transpose [p 84]
Det [p 85]
Invert [p 85]
Solve [p 86]
SVD [p 86]
SVBkSb [p 87]
EigenVV [p 88]

27

PerspectiveTransform [p 89]
CalcCovarMatrix [p 89]
Mahalonobis [p 90]
CartToPolar [p 90]
PolarToCart [p 91]
Pow [p 91]
Exp [p 92]
Log [p 92]
CheckArr [p 93]
RandInit [p 93]
RandSetRange [p 94]
Rand [p 94]
RandNext [p 95]
DFT [p 97]
MulCss [p 98]
DCT [p 98]

Dynamic Data Structures [p 99]
MemStorage [p 99]
MemBlock [p 100]
MemStoragePos [p 100]
CreateMemStorage [p 100]
CreateChildMemStorage [p 101]
ReleaseMemStorage [p 102]
ClearMemStorage [p 102]
MemStorageAlloc [p 102]
SaveMemStoragePos [p 103]
RestoreMemStoragePos [p 103]

Sequences [p 103]
Seq [p 104]
SeqBlock [p 106]
CreateSeq [p 106]
SetSeqBlockSize [p 107]
SeqPush [p 107]
SeqPop [p 108]
SeqPushFront [p 108]
SeqPopFront [p 108]
SeqPushMulti [p 109]
SeqPopMulti [p 109]
SeqInsert [p 110]
SeqRemove [p 110]
ClearSeq [p 110]
GetSeqElem [p 111]
SeqElemIdx [p 111]

28

tSeqToArray [p 112]
MakeSeqHeaderForArray [p 112]
SeqSlice [p 113]
SeqRemoveSlice [p 113]
SeqInsertSlice [p 114]
SeqInvert [p 114]
SeqSort [p 114]
StartAppendToSeq [p 115]
StartWriteSeq [p 116]
EndWriteSeq [p 116]
FlushSeqWriter [p 117]
StartReadSeq [p 117]
GetSeqReaderPos [p 118]
SetSeqReaderPos [p 118]

Sets [p 119]
Set [p 119]
CreateSet [p 120]
SetAdd [p 120]
SetRemove [p 120]
SetNew [p 121]
SetRemoveByPtr [p 121]
GetSetElem [p 121]
ClearSet [p 122]

Graphs [p 122]
Graph [p 122]
CreateGraph [p 123]
GraphAddVtx [p 124]
GraphRemoveVtx [p 124]
GraphRemoveVtxByPtr [p 124]
GetGraphVtx [p 125]
GraphVtxIdx [p 125]
GraphAddEdge [p 125]
GraphAddEdgeByPtr [p 126]
GraphRemoveEdge [p 126]
GraphRemoveEdgeByPtr [p 127]
FindGraphEdge [p 127]
FindGraphEdgeByPtr [p 128]
GraphEdgeIdx [p 128]
GraphVtxDegree [p 128]
GraphVtxDegreeByPtr [p 129]
ClearGraph [p 129]
CloneGraph [p 129]
GraphScanner [p 130]

29

StartScanGraph [p 130]
NextGraphItem [p 131]
EndScanGraph [p 131]

Trees [p 132]
TreeNodeIterator [p 132]
InitTreeNodeIterator [p 132]
NextTreeNode [p 133]
PrevTreeNode [p 133]
TreeToNodeSeq [p 134]
InsertNodeIntoTree [p 134]
RemoveNodeFromTree [p 134]

Persistence (Writing and Reading Structures) [p 135]
OpenFileStorage [p 135]
ReleaseFileStorage [p 135]
Write [p 136]
StartWriteStruct [p 137]
EndWriteStruct [p 138]
WriteElem [p 138]
Read [p 139]
ReadElem [p 139]
FileNode [p 140]
GetFileNode [p 141]
ReadFileNode [p 141]

Helper structures

CvPoint

2D point with integer coordinates

 typedef struct CvPoint
 {
 int x; /* x-coordinate, usually zero-based */
 int y; /* y-coordinate, usually zero-based */
 }
 CvPoint;

 /* the constructor function */
 inline CvPoint cvPoint(int x, int y);

 /* conversion from CvPoint2D32f */
 inline CvPoint cvPointFrom32f(CvPoint2D32f point);

30

CvPoint2D32f

2D point with floating-point coordinates

 typedef struct CvPoint2D32f
 {
 float x; /* x-coordinate, usually zero-based */
 float y; /* y-coordinate, usually zero-based */
 }
 CvPoint2D32f;

 /* the constructor function */
 inline CvPoint2D32f cvPoint2D32f(double x, double y);

 /* conversion from CvPoint */
 inline CvPoint2D32f cvPointTo32f(CvPoint point);

CvPoint3D32f

3D point with floating-point coordinates

 typedef struct CvPoint3D32f
 {
 float x; /* x-coordinate, usually zero-based */
 float y; /* y-coordinate, usually zero-based */
 float z; /* z-coordinate, usually zero-based */
 }
 CvPoint3D32f;

 /* the constructor function */
 inline CvPoint3D32f cvPoint3D32f(double x, double y, double z);

CvSize

pixel-accurate size of a rectangle

 typedef struct CvSize
 {
 int width; /* width of the rectangle */
 int height; /* height of the rectangle */
 }
 CvSize;

 /* the constructor function */
 inline CvSize cvSize(int width, int height);

31

CvSize2D32f

sub-pixel accurate size of a rectangle

 typedef struct CvSize2D32f
 {
 float width; /* width of the box */
 float height; /* height of the box */
 }
 CvSize2D32f;

 /* the constructor function */
 inline CvSize2D cvSize32f(double width, double height);

CvRect

offset and size of a rectangle

 typedef struct CvRect
 {
 int x; /* x-coordinate of the left-most rectangle corner[s] */
 int y; /* y-coordinate of the top-most or bottom-most
 rectangle corner[s] */
 int width; /* width of the rectangle */
 int height; /* height of the rectangle */
 }
 CvRect;

 /* the constructor function */
 inline CvRect cvRect(int x, int y, int width, int height);

CvScalar

A container for 1-,2-,3- or 4-tuples of numbers

 typedef struct CvScalar
 {
 double val[4];
 }
 CvScalar;

 /* the constructor function: initializes val[0] with val0, val[1] with val1 etc. */
 inline CvScalar cvScalar(double val0, double val1=0,
 double val2=0, double val3=0);
 /* the constructor function: initializes val[0]...val[3] with val0123 */
 inline CvScalar cvScalarAll(double val0123);

 /* the constructor function: initializes val[0] with val0, val[1]...val[3] with zeros */
 inline CvScalar cvRealScalar(double val0);

32

Array structures

CvMat

Multi-channel matrix

 typedef struct CvMat
 {
 int type; /* CvMat signature (CV_MAT_MAGIC_VAL), element type and flags */
 int step; /* full row length in bytes */

 int* refcount; /* underlying data reference counter */

 union
 {
 uchar* ptr;
 short* s;
 int* i;
 float* fl;
 double* db;
 } data; /* data pointers */

 #ifdef __cplusplus
 union
 {
 int rows;
 int height;
 };

 union
 {
 int cols;
 int width;
 };
 #else
 int rows; /* number of rows */
 int cols; /* number of columns */
 #endif

 } CvMat;

CvMatND

Multi-dimensional dense multi-channel array

 typedef struct CvMatND
 {
 int type; /* CvMatND signature (CV_MATND_MAGIC_VAL), element type and flags */
 int dims; /* number of array dimensions */

 int* refcount; /* underlying data reference counter */

33

 union
 {
 uchar* ptr;
 short* s;
 int* i;
 float* fl;
 double* db;
 } data; /* data pointers */

 /* pairs (number of elements, distance between elements in bytes) for
 every dimension */
 struct
 {
 int size;
 int step;
 }
 dim[CV_MAX_DIM];

 } CvMatND;

CvSparseMat

Multi-dimensional sparse multi-channel array

 typedef struct CvSparseMat
 {
 int type; /* CvSparseMat signature (CV_SPARSE_MAT_MAGIC_VAL), element type and flags */
 int dims; /* number of dimensions */
 int* refcount; /* reference counter - not used */
 struct CvSet* heap; /* a pool of hashtable nodes */
 void** hashtable; /* hashtable: each entry has a list of nodes
 having the same "hashvalue modulo hashsize" */
 int hashsize; /* size of hashtable */
 int total; /* total number of sparse array nodes */
 int valoffset; /* value offset in bytes for the array nodes */
 int idxoffset; /* index offset in bytes for the array nodes */
 int size[CV_MAX_DIM]; /* array of dimension sizes */

 } CvSparseMat;

IplImage

IPL image header

 typedef struct _IplImage
 {
 int nSize; /* sizeof(IplImage) */
 int ID; /* version (=0)*/
 int nChannels; /* Most of OpenCV functions support 1,2,3 or 4 channels */
 int alphaChannel; /* ignored by OpenCV */
 int depth; /* pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S,
 IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported */
 char colorModel[4]; /* ignored by OpenCV */
 char channelSeq[4]; /* ditto */
 int dataOrder; /* 0 - interleaved color channels, 1 - separate color channels.
 cvCreateImage can only create interleaved images */

34

 int origin; /* 0 - top-left origin,
 1 - bottom-left origin (Windows bitmaps style) */
 int align; /* Alignment of image rows (4 or 8).
 OpenCV ignores it and uses widthStep instead */
 int width; /* image width in pixels */
 int height; /* image height in pixels */
 struct _IplROI *roi;/* image ROI. when it is not NULL, this specifies image region to process */
 struct _IplImage *maskROI; /* must be NULL in OpenCV */
 void *imageId; /* ditto */
 struct _IplTileInfo *tileInfo; /* ditto */
 int imageSize; /* image data size in bytes
 (=image->height*image->widthStep
 in case of interleaved data)*/
 char *imageData; /* pointer to aligned image data */
 int widthStep; /* size of aligned image row in bytes */
 int BorderMode[4]; /* border completion mode, ignored by OpenCV */
 int BorderConst[4]; /* ditto */
 char *imageDataOrigin; /* pointer to a very origin of image data
 (not necessarily aligned) -
 it is needed for correct image deallocation */
 }
 IplImage;

The structure IplImage came from Intel Image Processing Library where the format is native. OpenCV
supports only subset of the possible IplImage formats:

alphaChannel is ignored by OpenCV.
colorModel and channelSeq are ignored by OpenCV. The single OpenCV function cvCvtColor
[p ??] working with color spaces takes the source and destination color spaces as a parameter.
dataOrder must be IPL_DATA_ORDER_PIXEL (the color channels are interleaved), however
selected channels of planar images can be processed as well if COI is set.
align is ignored by OpenCV, while widthStep is used to access to subsequent image rows.
maskROI is not supported. The function that can work with mask take it as a separate parameter.
Also the mask in OpenCV is 8-bit, whereas in IPL it is 1-bit.
tileInfo is not supported.
BorderMode and BorderConst are not supported. Every OpenCV function working with a pixel
neigborhood uses a single hard-coded border mode (most often, replication).

Besides the above restrictions, OpenCV handles ROI differently. It requires that the sizes or ROI sizes of
all source and destination images match exactly (according to the operation, e.g. for cvPyrDown [p ??]
destination width(height) must be equal to source width(height) divided by 2 ±1), whereas IPL processes
the intersection area - that is, the sizes or ROI sizes of all images may vary independently.

CvArr

Arbitrary array

 typedef void CvArr;

CvArr* [p ??] is used only as a function parameter to specify that the function accepts arrays of more than
a single type, for example IplImage* and CvMat*. The particular array type is determined in runtime from
looking at the first 4-byte field of array header.

35

Arrays: Allocation, deallocation, copying; setting and retrieving
parts

Alloc

Allocates memory buffer

void* cvAlloc(size_t size);

size
Buffer size in bytes.

The function cvAlloc [p 36] allocates size bytes and returns pointer to the allocated buffer. In case of error
the function reports an error and returns NULL pointer. By default cvAlloc calls icvAlloc which itself
calls malloc, however it is possible to assign user-defined memory allocation/deallocation functions using
cvSetMemoryManager [p ??] function.

Free

Deallocates memory buffer

void cvFree(void** buffer);

buffer
Double pointer to released buffer.

The function cvFree [p 36] deallocates memory buffer allocated by cvAlloc [p 36] . It clears the pointer to
buffer upon exit, that is why the double pointer is used. If *buffer is already NULL, the function does
nothing

CreateImage

Creates header and allocates data

IplImage* cvCreateImage(CvSize size, int depth, int channels);

size
Image width and height.

depth
Bit depth of image elements. Can be one of:
IPL_DEPTH_8U - unsigned 8-bit integers
IPL_DEPTH_8S - signed 8-bit integers
IPL_DEPTH_16S - signed 16-bit integers

36

IPL_DEPTH_32S - signed 32-bit integers
IPL_DEPTH_32F - single precision floating-point numbers
IPL_DEPTH_64F - double precision floating-point numbers

channels
Number of channels per element(pixel). Can be 1, 2, 3 or 4. The channels are interleaved, for
example the usual data layout of a color image is:
b0 g0 r0 b1 g1 r1 ...
Although in general IPL image format can store non-interleaved images as well and some of OpenCV
can process it, this function can create interleaved images only.

The function cvCreateImage [p 36] creates the header and allocates data. This call is a shortened form of

 header = cvCreateImageHeader(size,depth,channels);
 cvCreateData(header);

CreateImageHeader

Allocates, initializes, and returns structure IplImage

IplImage* cvCreateImageHeader(CvSize size, int depth, int channels);

size
Image width and height.

depth
Image depth (see CreateImage).

channels
Number of channels (see CreateImage).

The function cvCreateImageHeader [p 37] allocates, initializes, and returns the structure IplImage. This
call is an analogue of

 iplCreateImageHeader(channels, 0, depth,
 channels == 1 ? "GRAY" : "RGB",
 channels == 1 ? "GRAY" : channels == 3 ? "BGR" :
 channels == 4 ? "BGRA" : "",
 IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL, 4,
 size.width, size.height,
 0,0,0,0);

though it does not use IPL functions by default (see also CV_TURN_ON_IPL_COMPATIBILITY macro)

ReleaseImageHeader

Releases header

void cvReleaseImageHeader(IplImage** image);

37

image
Double pointer to the deallocated header.

The function cvReleaseImageHeader [p 37] releases the header. This call is an analogue of

 if(image)
 {
 iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);
 *image = 0;
 }

though it does not use IPL functions by default (see also CV_TURN_ON_IPL_COMPATIBILITY)

ReleaseImage

Releases header and image data

void cvReleaseImage(IplImage** image);

image
Double pointer to the header of the deallocated image.

The function cvReleaseImage [p 38] releases the header and the image data. This call is a shortened form
of

 if(*image)
 {
 cvReleaseData(*image);
 cvReleaseImageHeader(image);
 }

InitImageHeader

Initializes allocated by user image header

void cvInitImageHeader(IplImage* image, CvSize size, int depth,
 int channels, int origin, int align);

image
Image header to initialize.

size
Image width and height.

depth
Image depth (see CreateImage).

channels
Number of channels (see CreateImage).

origin
IPL_ORIGIN_TL or IPL_ORIGIN_BL.

38

align
Alignment for image rows, typically 4 or 8 bytes.

The function cvInitImageHeader [p 38] initializes the image header structure without memory allocation.

CloneImage

Makes a full copy of image

IplImage* cvCloneImage(const IplImage* image);

image
Original image.

The function cvCloneImage [p 39] makes a full copy of the image including header, ROI and data

SetImageCOI

Sets channel of interest to given value

void cvSetImageCOI(IplImage* image, int coi);

image
Image header.

coi
Channel of interest.

The function cvSetImageCOI [p 39] sets the channel of interest to a given value. Value 0 means that all
channels are selected, 1 means that the first channel is selected etc. If ROI is NULL and coi != 0, ROI is
allocated. Note that most of OpenCV functions do not support COI, so to process separate image/matrix
channel one may copy (via cvCopy [p 58] or cvCvtPixToPlane [p 62]) the channel to separate
image/matrix, process it and copy the result back (via cvCopy [p 58] or cvCvtPlaneToPix [p 63]) if need.

GetImageCOI

Returns index of channel of interest

int cvGetImageCOI(const IplImage* image);

image
Image header.

The function cvGetImageCOI [p 39] returns channel of interest of the image (it returns 0 if all the
channels are selected).

39

SetImageROI

Sets image ROI to given rectangle

void cvSetImageROI(IplImage* image, CvRect rect);

image
Image header.

rect
ROI rectangle.

The function cvSetImageROI [p 40] sets the image ROI to a given rectangle. If ROI is NULL and the
value of the parameter rect is not equal to the whole image, ROI is allocated. Unlike COI, most of
OpenCV functions do support ROI and treat it in a way as it would be a separate image (for example, all
the pixel coordinates are counted from top-left or bottom-left (depending on the image origin) corner of
ROI)

ResetImageROI

Releases image ROI

void cvResetImageROI(IplImage* image);

image
Image header.

The function cvResetImageROI [p 40] releases image ROI. After that the whole image is considered
selected. The similar result can be achieved by

cvSetImageROI(image, cvRect(0, 0, image->width, image->height));
cvSetImageCOI(image, 0);

But the latter variant does not deallocate image->roi.

GetImageROI

Returns image ROI coordinates

CvRect cvGetImageROI(const IplImage* image);

image
Image header.

The function cvGetImageROI [p 40] returns image ROI coordinates. The rectangle cvRect [p ??]
(0,0,image->width,image->height) is returned if there is no ROI

40

CreateMat

Creates new matrix

CvMat* cvCreateMat(int rows, int cols, int type);

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements. Usually it is specified in form
CV_<bit_depth>(S|U|F)C<number_of_channels>, for example:
CV_8UC1 means an 8-bit unsigned single-channel matrix, CV_32SC2 means a 32-bit signed matrix
with two channels.

The function cvCreateMat [p 41] allocates header for the new matrix and underlying data, and returns a
pointer to the created matrix. It is a short form for:

 CvMat* mat = cvCreateMatHeader(rows, cols, type);
 cvCreateData(mat);

Matrices are stored row by row. All the rows are aligned by 4 bytes.

CreateMatHeader

Creates new matrix header

CvMat* cvCreateMatHeader(int rows, int cols, int type);

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements (see cvCreateMat [p 41]).

The function cvCreateMatHeader [p 41] allocates new matrix header and returns pointer to it. The matrix
data can further be allocated using cvCreateData [p 46] or set explicitly to user-allocated data via
cvSetData [p 47] .

41

ReleaseMat

Deallocates matrix

void cvReleaseMat(CvMat** mat);

mat
Double pointer to the matrix.

The function cvReleaseMat [p 42] decrements the matrix data reference counter and releases matrix
header:

 if(*mat)
 cvDecRefData(*mat);
 cvFree((void**)mat);

InitMatHeader

Initializes matrix header

void cvInitMatHeader(CvMat* mat, int rows, int cols, int type,
 void* data=0, int step=CV_AUTOSTEP);

mat
Pointer to the matrix header to be initialized.

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements.

data
Optional data pointer assigned to the matrix header.

step
Full row width in bytes of the data assigned. By default, the minimal possible step is used, i.e., no
gaps is assumed between subsequent rows of the matrix.

The function cvInitMatHeader [p 42] initializes already allocated CvMat [p 33] structure. It can be used to
process raw data with OpenCV matrix functions.

For example, the following code computes matrix product of two matrices, stored as ordinary arrays.

Calculating Product of Two Matrices

 double a[] = { 1, 2, 3, 4
 5, 6, 7, 8,
 9, 10, 11, 12 };

 double b[] = { 1, 5, 9,

42

 2, 6, 10,
 3, 7, 11,
 4, 8, 12 };

 double c[9];
 CvMat Ma, Mb, Mc ;

 cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
 cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b);
 cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c);

 cvMatMulAdd(&Ma, &Mb, 0, &Mc);
 // c array now contains product of a(3x4) and b(4x3) matrices

Mat

Initializes matrix header (light-weight variant)

CvMat cvMat(int rows, int cols, int type, void* data = 0);

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements (see CreateMat).

data
Optional data pointer assigned to the matrix header.

The function cvMat [p 43] is a fast inline substitution for cvInitMatHeader [p 42] . Namely, it is
equivalent to:

 CvMat mat;
 cvInitMatHeader(&mat, rows, cols, type, data, CV_AUTOSTEP);

CloneMat

Creates matrix copy

CvMat* cvCloneMat(const CvMat* mat);

mat
Input matrix.

The function cvCloneMat [p 43] creates a copy of input matrix and returns the pointer to it.

43

CreateMatND

Creates multi-dimensional dense array

CvMatND* cvCreateMatND(int dims, int* size, int type);

dims
Number of array dimensions. It must not exceed CV_MAX_DIM (=16 by default, though it may be
changed at build time)

size
Array of dimension sizes.

type
Type of array elements. The same as for CvMat [p 33]

The function cvCreateMatND [p 44] allocates header for multi-dimensional dense array and the
underlying data, and returns pointer to the created array. It is a short form for:

 CvMatND* mat = cvCreateMatNDHeader(dims, size, type);
 cvCreateData(mat);

Array data is stored row by row. All the rows are aligned by 4 bytes.

CreateMatNDHeader

Creates new matrix header

CvMatND* cvCreateMatNDHeader(int dims, int* size, int type);

dims
Number of array dimensions.

size
Array of dimension sizes.

type
Type of array elements. The same as for CvMat

The function cvCreateMatND [p 44] allocates header for multi-dimensional dense array. The array data
can further be allocated using cvCreateData [p 46] or set explicitly to user-allocated data via cvSetData [p
47] .

ReleaseMatND

Deallocates multi-dimensional array

void cvReleaseMatND(CvMatND** mat);

44

mat
Double pointer to the array.

The function cvReleaseMatND [p 44] decrements the array data reference counter and releases the array
header:

 if(*mat)
 cvDecRefData(*mat);
 cvFree((void**)mat);

InitMatNDHeader

Initializes multi-dimensional array header

void cvInitMatNDHeader(CvMatND* mat, int dims, int* size, int type, void* data=0);

mat
Pointer to the array header to be initialized.

rows
Number of rows in the matrix.

cols
Number of columns in the matrix.

type
Type of the matrix elements.

data
Optional data pointer assigned to the matrix header.

The function cvInitMatNDHeader [p 45] initializes already allocated CvMatND [p 33] structure.

CloneMatND

Creates full copy of multi-dimensional array

CvMatND* cvCloneMatND(const CvMatND* mat);

mat
Input array.

The function cvCloneMatND [p 45] creates a copy of input array and returns pointer to it.

DecRefData

Decrements array data reference counter

45

void cvDecRefData(CvArr* array);

array
array header.

The function cvDecRefData [p 45] decrements CvMat [p 33] or CvMatND [p 33] data reference counter if
the reference counter pointer is not NULL and deallocates the data if the counter reaches zero. In the
current implementation the reference counter is not NULL only if the data was allocated using
cvCreateData [p 46] function, in other cases such as:
external data was assigned to the header using cvSetData [p 47]
the matrix header presents a part of a larger matrix or image
the matrix header was converted from image or n-dimensional matrix header
the reference counter is set to NULL and thus it is not decremented. Whenever the data is deallocated or
not, the data pointer and reference counter pointers are cleared by the function.

IncRefData

Increments array data reference counter

int cvIncRefData(CvArr* array);

array
array header.

The function cvIncRefData [p 46] increments CvMat [p 33] or CvMatND [p 33] data reference counter
and returns the new counter value if the reference counter pointer is not NULL, otherwise it returns zero.

CreateData

Allocates array data

void cvCreateData(CvArr* array);

array
Array header.

The function cvCreateData [p 46] allocates image, matrix or multi-dimensional array data. Note that in
case of matrix types OpenCV allocation functions are used and in case of IplImage they are used too
unless CV_TURN_ON_IPL_COMPATIBILITY was called. In the latter case IPL functions are used to
allocate the data

46

ReleaseData

Releases array data

void cvReleaseData(CvArr* array);

array
Array header

The function cvReleaseData [p 47] releases the array data. In case of CvMat [p 33] or CvMatND [p 33] it
simply calls cvDecRefData(), that is the function can not deallocate external data. See also the note to
cvCreateData [p 46] .

SetData

Assigns user data to the array header

void cvSetData(CvArr* array, void* data, int step);

array
Array header.

data
User data.

step
Full row length in bytes.

The function cvSetData [p 47] assigns user data to the array header. Header should be initialized before
using cvCreate*Header, cvInit*Header or cvMat [p 43] (in case of matrix) function.

GetRawData

Retrieves low-level information about the array

void cvGetRawData(const CvArr* array, uchar** data,
 int* step, CvSize* roiSize);

array
Array header.

data
Output pointer to the whole image origin or ROI origin if ROI is set.

step
Output full row length in bytes.

roiSize
Output ROI size.

47

The function cvGetRawData [p 47] fills output variables with low-level information about the array data.
All output parameters are optional, so some of the pointers may be set to NULL. If the array is IplImage
with ROI set, parameters of ROI are returned.

The following example shows how to get access to array elements using this function.

Using GetRawData to calculate absolute value of elements of a single-channel
floating-point array.

 float* data;
 int step;

 CvSize size;
 int x, y;

 cvGetRawData(array, (uchar**)&data, &step, &size);
 step /= sizeof(data[0]);

 for(y = 0; y < size.height; y++, data += step)
 for(x = 0; x < size.width; x++)
 data[x] = (float)fabs(data[x]);

GetMat

Returns matrix header for arbitrary array

CvMat* cvGetMat(const CvArr* arr, CvMat* mat, int* coi = 0, int allowND);

arr
Input array.

mat
Pointer to CvMat [p 33] structure used as a temporary buffer.

coi
Optional output parameter for storing COI.

allowND
If non-zero, the function accepts multi-dimensional dense arrays (CvMatND*) and returns 2D (if
CvMatND has two dimensions) or 1D matrix (when CvMatND has 1 dimension or more than 2
dimensions). The array must be continuous.

The function cvGetMat [p 48] returns matrix header for the input array that can be matrix - CvMat* [p ??]
, image - IplImage* or multi-dimensional dense array - CvMatND* [p ??] (latter case is allowed only if
allowND != 0) . In the case of matrix the function simply returns the input pointer. In the case of
IplImage* or CvMatND* [p ??] it initializes mat structure with parameters of the current image ROI and
returns pointer to this temporary structure. Because COI is not supported by CvMat [p 33] , it is returned
separately.

48

The function provides an easy way to handle both types of array - IplImage and CvMat [p 33] -, using the
same code. Reverse transform from CvMat [p 33] to IplImage can be done using cvGetImage [p 49]
function.

Input array must have underlying data allocated or attached, otherwise the function fails.

If the input array is IplImage with planar data layout and COI set, the function returns pointer to the
selected plane and COI = 0. It enables per-plane processing of multi-channel images with planar data
layout using OpenCV functions.

GetImage

Returns image header for arbitrary array

IplImage* cvGetImage(const CvArr* arr, IplImage* image_header);

arr
Input array.

image_header
Pointer to IplImage structure used as a temporary buffer.

The function cvGetImage [p 49] returns image header for the input array that can be matrix - CvMat* [p
??] , or image - IplImage*. In the case of image the function simply returns the input pointer. In the case of
CvMat* [p ??] it initializes image_header structure with parameters of the input matrix. Note that if we
transform IplImage to CvMat [p 33] and then transform CvMat back to IplImage, we can get different
headers if the ROI is set, and thus some IPL functions that calculate image stride from its width and align
may fail on the resultant image.

GetSubRect

Returns matrix header corresponding to the rectangular sub-array of input image or matrix

CvMat* cvGetSubRect(const CvArr* array, CvMat* subarr, CvRect rect);

array
Input array.

subarr
Pointer to the resultant subarray header.

rect
Zero-based coordinates of the rectangle of interest.

The function cvGetSubRect [p 49] returns header, corresponding to a specified rectangle of the input
array. In other words, it allows the user to treat a rectangular part of input array as a stand-alone array.
ROI is taken into account by the function so the sub-array of ROI is really extracted.

49

GetRow, GetRows

Returns array row or row span

CvMat* cvGetRow(const CvArr* arr, CvMat* subarr, int row);
CvMat* cvGetRows(const CvArr* arr, CvMat* subarr, int start_row, end_row);

arr
Input array.

subarr
Pointer to the resulting sub-array header.

row
Zero-based index of the selected row.

start_row
Zero-based index of the starting row (inclusive) of the span.

end_row
Zero-based index of the ending row (exclusive) of the span.

The functions GetRow and GetRows return the header, corresponding to a specified row/row span of the
input array. Note that GetRow is a shortcut for cvGetRows [p ??] :

cvGetRow(arr, subarr, row); // ~ cvGetRows(arr, subarr, row, row + 1);

GetCol, GetCols

Returns array column or column span

CvMat* cvGetCol(const CvArr* arr, CvMat* subarr, int col);
CvMat* cvGetCols(const CvArr* arr, CvMat* subarr, int start_col, end_col);

arr
Input array.

subarr
Pointer to the resulting sub-array header.

col
Zero-based index of the selected column.

start_col
Zero-based index of the starting column (inclusive) of the span.

end_col
Zero-based index of the ending column (exclusive) of the span.

The functions GetCol and GetCols return the header, corresponding to a specified column/column span of
the input array. Note that GetCol is a shortcut for cvGetCols [p ??] :

50

cvGetCol(arr, subarr, col); // ~ cvGetCols(arr, subarr, col, col + 1);

GetDiag

Returns one of array diagonals

CvMat* cvGetDiag(const CvArr* arr, CvMat* subarr, int diag=0);

arr
Input array.

subarr
Pointer to the resulting sub-array header.

diag
Array diagonal. Zero corresponds to the main diagonal, -1 corresponds to the diagonal above the
main etc., 1 corresponds to the diagonal below the main etc.

The function cvGetDiag [p 51] returns the header, corresponding to a specified diagonal of the input array.

GetSize

Returns size of matrix or image ROI

CvSize cvGetSize(const CvArr* arr);

arr
array header.

The function cvGetSize [p 51] returns number of rows (CvSize::height) and number of columns
(CvSize::width) of the input matrix or image. In case of image the size of ROI is returned.

CreateSparseMat

Creates sparse array

CvSparseMat* cvCreateSparseMat(int dims, int* size, int type);

dims
Number of array dimensions. It must not exceed CV_MAX_DIM (=16 by default, though it may be
changed at build time)

size
Array of dimension sizes.

type
Type of array elements. The same as for CvMat

51

The function cvCreateSparseMat [p 51] allocates multi-dimensional sparse array. Initially the array
contain no elements, that is cvGet*D will return zero for every index

ReleaseSparseMat

Deallocates sparse array

void cvReleaseSparseMat(CvSparseMat** mat);

mat
Double pointer to the array.

The function cvReleaseSparseMat [p 52] releases the sparse array and clears the array pointer upon exit

CloneSparseMat

Creates full copy of sparse array

CvSparseMat* cvCloneSparseMat(const CvSparseMat* mat);

mat
Input array.

The function cvCloneSparseMat [p 52] creates a copy of the input array and returns pointer to the copy.

InitSparseMatIterator

Initializes sparse array elements iterator

CvSparseMat* cvInitSparseMatIterator(const CvSparseMat* mat, CvSparseMatIterator* matIterator);

mat
Input array.

matIterator
Initialized iterator.

The function cvInitSparseMatIterator [p 52] initializes iterator of sparse array elements and returns pointer
to the first element, or NULL if the array is empty.

GetNextSparseNode

Initializes sparse array elements iterator

52

CvSparseMat* cvGetNextSparseNode(CvSparseMatIterator* matIterator);

matIterator
Sparse array iterator.

The function cvGetNextSparseNode [p 52] moves iterator to the next sparse matrix element and returns
pointer to it. In the current version there is no any particular order of the elements, because they are stored
in hash table. The sample below demonstrates how to iterate through the sparse matrix:

Using cvInitSparseMatIterator [p 52] and cvGetNextSparseNode [p 52] to calculate sum
of floating-point sparse array.

 double sum;
 int i, dims = cvGetDims(array);
 CvSparseMatIterator matIterator;
 CvSparseNode* node = cvInitSparseMatIterator(array, &matIterator);

 for(; node != 0; node = cvGetNextSparseNode(&matIterator))
 {
 int* idx = CV_NODE_IDX(array, node); /* get pointer to the element indices */
 float val = (float*)CV_NODE_VAL(array, node); /* get value of the element
 (assume that the type is CV_32FC1) */
 printf("(");
 for(i = 0; i < dims; i++)
 printf("%4d%s", idx[i], i < dims - 1 "," : "): ");
 printf("%g\n", val);

 sum += val;
 }

 printf("\nTotal sum = %g\n", sum);

GetElemType

Returns type of array elements

int cvGetElemType(const CvArr* arr);

arr
Input array.

The functions GetElemType returns type of the array elements as it is described in cvCreateMat
discussion:

CV_8UC1 ... CV_64FC4

53

GetDims, GetDimSize

Return number of array dimensions and their sizes or the size of particular dimension

int cvGetDims(const CvArr* arr, int* size=0);
int cvGetDimSize(const CvArr* arr, int index);

arr
Input array.

size
Optional output vector of the array dimension sizes. For 2d arrays the number of rows (height) goes
first, number of columns (width) next.

index
Zero-based dimension index (for matrices 0 means number of rows, 1 means number of columns; for
images 0 means height, 1 means width).

The function cvGetDims [p 54] returns number of array dimensions and their sizes. In case of IplImage or
CvMat [p 33] it always returns 2 regardless of number of image/matrix rows. The function cvGetDimSize
[p ??] returns the particular dimension size (number of elements per that dimension). For example, the
following code calculates total number of array elements:

// via cvGetDims()
int size[CV_MAX_DIM];
int i, total = 1;
int dims = cvGetDims(arr, size);
for(i = 0; i < dims; i++)
 total *= size[i];

// via cvGetDims() and cvGetDimSize()
int i, total = 1;
int dims = cvGetDims(arr);
for(i = 0; i < dims; i++)
 total *= cvGetDimsSize(arr, i);

Ptr*D

Return pointer to the particular array element

uchar* cvPtr1D(const CvArr* arr, int idx0, int* type=0);
uchar* cvPtr2D(const CvArr* arr, int idx0, int idx1, int* type=0);
uchar* cvPtr3D(const CvArr* arr, int idx0, int idx1, int idx2, int* type=0);
uchar* cvPtrND(const CvArr* arr, int* idx, int* type=0);

arr
Input array.

idx0
The first zero-based component of the element index

idx1
The second zero-based component of the element index

54

idx2
The third zero-based component of the element index

idx
Array of the element indices

type
Optional output parameter: type of matrix elements

The functions cvPtr*D [p 54] return pointer to the particular array element. Number of array dimension
should match to the number of indices passed to the function except for cvPtr1D [p ??] function that can
be used for sequential access to 1D, 2D or nD dense arrays.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and
set it to zero.

All these as well as other functions accessing array elements (cvGet[Real]*D [p ??] , cvSet[Real]*D [p ??]
) raise an error in case if the element index is out of range.

Get*D

Return the particular array element

CvScalar cvGet1D(const CvArr* arr, int idx0);
CvScalar cvGet2D(const CvArr* arr, int idx0, int idx1);
CvScalar cvGet3D(const CvArr* arr, int idx0, int idx1, int idx2);
CvScalar cvGetND(const CvArr* arr, int* idx);

arr
Input array.

idx0
The first zero-based component of the element index

idx1
The second zero-based component of the element index

idx2
The third zero-based component of the element index

idx
Array of the element indices

The functions cvGet*D [p 55] return the particular array element. In case of sparse array the functions
return 0 if the requested node does not exist (no new node is created by the functions)

GetReal*D

Return the particular element of single-channel array

55

double cvGetReal1D(const CvArr* arr, int idx0);
double cvGetReal2D(const CvArr* arr, int idx0, int idx1);
double cvGetReal3D(const CvArr* arr, int idx0, int idx1, int idx2);
double cvGetRealND(const CvArr* arr, int* idx);

arr
Input array. Must have a single channel.

idx0
The first zero-based component of the element index

idx1
The second zero-based component of the element index

idx2
The third zero-based component of the element index

idx
Array of the element indices

The functions cvGetReal*D [p 55] return the particular element of single-channel array. If the array has
multiple channels, runtime error is raised. Note that cvGet*D [p 55] function can be used safely for both
single-channel and multiple-channel arrays though they are a bit slower.

In case of sparse array the functions return 0 if the requested node does not exist (no new node is created
by the functions)

mGet

Return the particular element of single-channel floating-point matrix

double cvmGet(const CvMat* mat, int row, int col);

mat
Input matrix.

row
The zero-based index of row.

col
The zero-based index of column.

The function cvmGet [p 56] is a fast replacement for cvGetReal2D [p ??] in case of single-channel
floating-point matrices. It is faster because it is inline, it does less checks for array type and array element
type and it checks for the row and column ranges only in debug mode.

Set*D

Change the particular array element

56

void cvSet1D(CvArr* arr, int idx0, CvScalar new_value);
void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar new_value);
void cvSet3D(CvArr* arr, int idx0, int idx1, int idx2, CvScalar new_value);
void cvSetND(CvArr* arr, int* idx, CvScalar new_value);

arr
Input array.

idx0
The first zero-based component of the element index

idx1
The second zero-based component of the element index

idx2
The third zero-based component of the element index

idx
Array of the element indices

new_value
The assigned value

The functions cvSet*D [p 56] assign the new value to the particular element of array. In case of sparse
array the functions create the node if it does not exist yet

SetReal*D

Change the particular array element

void cvSetReal1D(CvArr* arr, int idx0, double new_value);
void cvSetReal2D(CvArr* arr, int idx0, int idx1, double new_value);
void cvSetReal3D(CvArr* arr, int idx0, int idx1, int idx2, double new_value);
void cvSetRealND(CvArr* arr, int* idx, double new_value);

arr
Input array.

idx0
The first zero-based component of the element index

idx1
The second zero-based component of the element index

idx2
The third zero-based component of the element index

idx
Array of the element indices

new_value
The assigned value

The functions cvSetReal*D [p 57] assign the new value to the particular element of single-channel array.
If the array has multiple channels, runtime error is raised. Note that cvSet*D [p 56] function can be used
safely for both single-channel and multiple-channel arrays though they are a bit slower.

57

In case of sparse array the functions create the node if it does not exist yet

mSet

Return the particular element of single-channel floating-point matrix

void cvmSet(CvMat* mat, int row, int col, double value);

mat
The matrix.

row
The zero-based index of row.

col
The zero-based index of column.

value
The new value of the matrix element

The function cvmSet [p 58] is a fast replacement for cvSetReal2D [p ??] in case of single-channel
floating-point matrices. It is faster because it is inline, it does less checks for array type and array element
type and it checks for the row and column ranges only in debug mode.

Clear*D

Clears the particular array element

void cvClearND(CvArr* arr, int* idx);

arr
Input array.

idx
Array of the element indices

The function cvClearND [p 58] clears (sets to zero) the particular element of dense array or deletes the
element of sparse array. If the element does not exists, the function does nothing.

Copy

Copies one array to another

void cvCopy(const CvArr* A, CvArr* B, const CvArr* mask =0);

A
The source array.

B
The destination array.

58

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvCopy [p 58] copies selected elements from input array to output array:

B(I)=A(I) if mask(I)!=0.

If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays must
have the same type, the same number of dimensions and the same size. The function can also copy sparse
arrays (mask is not supported in this case).

Set

Sets every element of array to given value

void cvSet(CvArr* A, CvScalar S, const CvArr* mask=0);

A
The destination array.

S
Fill value.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSet [p 59] copies scalar S to every selected element of the destination array:

A(I)=S if mask(I)!=0

If array A is of IplImage type, then is ROI used, but COI must not be set.

SetZero

Clears the array

void cvSetZero(CvArr* arr);
#define cvZero cvSetZero

arr
array to be cleared.

The function cvSetZero [p 59] clears the array. In case of dense arrays (CvMat, CvMatND or IplImage)
cvZero(array) is equivalent to cvSet(array,cvScalarAll(0),0), but the function can clear sparse arrays by
removing all the array elements

59

Arrays: Conversions, transformations, basic operations

Reshape

Changes shape of matrix/image without copying data

CvMat* cvReshape(const CvArr* array, CvMat* header, int new_cn, int new_rows=0);

array
Input array.

header
Output header to be filled.

new_cn
New number of channels. new_cn = 0 means that number of channels remains unchanged.

new_rows
New number of rows. new_rows = 0 means that number of rows remains unchanged unless it needs
to be changed according to new_cn value. destination array to be changed.

The function cvReshape [p 60] initializes CvMat header so that it points to the same data as the original
array but has different shape - different number of channels, different number of rows or both.

For example, the following code creates one image buffer and two image headers, first is for 320x240x3
image and the second is for 960x240x1 image:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
CvMat gray_mat_hdr;
IplImage gray_img_hdr, *gray_img;
cvReshape(color_img, &gray_mat_hdr, 1);
gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts 3x3 matrix to a single 1x9 vector

CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvMat row_header, *row;
row = cvReshape(mat, &row_header, 0, 1);

ReshapeMatND

Changes shape of multi-dimensional array w/o copying data

CvArr* cvReshapeMatND(const CvArr* array,
 int sizeof_header, CvArr* header,
 int new_cn, int new_dims, int* new_sizes);

#define cvReshapeND(arr, header, new_cn, new_dims, new_sizes) \
 cvReshapeMatND((arr), sizeof(*(header)), (header), \
 (new_cn), (new_dims), (new_sizes))

60

array
Input array.

sizeof_header
Size of output header to distinguish between IplImage, CvMat and CvMatND output headers.

header
Output header to be filled.

new_cn
New number of channels. new_cn = 0 means that number of channels remains unchanged.

new_dims
New number of dimensions. new_dims = 0 means that number of dimensions remains the same.

new_sizes
Array of new dimension sizes. Only new_dims-1 values are used, because the total number of
elements must remain the same. Thus, if new_dims = 1, new_sizes array is not used

The function cvReshapeMatND [p 60] is an advanced version of cvReshape [p 60] that can work with
multi-dimensional arrays as well (though, it can work with ordinary images and matrices) and change the
number of dimensions. Below are the two samples from the cvReshape [p 60] description rewritten using
cvReshapeMatND [p 60] :

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
IplImage gray_img_hdr, *gray_img;
gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);

...

/* second example is modified to convert 2x2x2 array to 8x1 vector */
int size[] = { 2, 2, 2 };
CvMatND* mat = cvCreateMatND(3, size, CV_32F);
CvMat row_header, *row;
row = cvReshapeND(mat, &row_header, 0, 1, 0);

Repeat

Fill destination array with tiled source array

void cvRepeat(const CvArr* A, CvArr* B);

A
Source array, image or matrix.

B
Destination array, image or matrix.

The function cvRepeat [p 61] fills the destination array with source array tiled:

B(i,j)=A(i%rows(A), j%cols(A))

where "%" means "modulo" operation. So the destination array may be as larger as well as smaller than
the source array.

61

Flip

Flip a 2D array around vertical, horizontall or both axises

void cvFlip(const CvArr* A, CvArr* B=0, int flip_mode=0);
#define cvMirror cvFlip

A
Source array.

B
Destination array. If dst = NULL the flipping is done inplace.

flip_mode
Specifies how to flip the array.
flip_mode = 0 means flipping around x-axis, flip_mode > 0 (e.g. 1) means flipping around y-axis and
flip_mode < 0 (e.g. -1) means flipping around both axises. See also the discussion below for the
formulas

The function cvFlip [p 62] flips the array in one of different 3 ways (row and column indices are 0-based):

B(i,j)=A(rows(A)-i-1,j) if flip_mode = 0

B(i,j)=A(i,cols(A)-j-1) if flip_mode > 0

B(i,j)=A(rows(A)-i-1,cols(A)-j-1) if flip_mode < 0

The typical scenaria of the function use are:

vertical flipping of the image (flip_mode > 0) to switch between top-left and bottom-left image
origin, which is typical operation in video processing under Win32 systems.
horizontal flipping of the image with subsequent horizontal shift and absolute difference calculation
to check for a vertical-axis symmetry (flip_mode > 0)
simultaneous horizontal and vertical flipping of the image with subsequent shift and absolute
difference calculation to check for a central symmetry (flip_mode < 0)
reversing the order of 1d point arrays(flip_mode > 0)

CvtPixToPlane

Divides multi-channel array into several single-channel arrays or extracts a single channel from the array

void cvCvtPixToPlane(const CvArr* src, CvArr* dst0, CvArr* dst1,
 CvArr* dst2, CvArr* dst3);

src
Source array.

dst0...dst3
Destination channels.

62

The function cvCvtPixToPlane [p 62] divides a multi-channel array into separate single-channel arrays.
Two modes are available for the operation. If the source array has N channels then if the first N
destination channels are not NULL, all they are extracted from the source array, otherwise if only a single
destination channel of the first N is not NULL, this particular channel is extracted, otherwise an error is
raised. Rest of destination channels (beyond the first N) must always be NULL. For IplImage cvCopy [p
58] with COI set can be also used to extract a single channel from the image.

CvtPlaneToPix

Composes multi-channel array from several single-channel arrays or inserts a single channel into the array

void cvCvtPlaneToPix(const CvArr* src0, const CvArr* src1,
 const CvArr* src2, const CvArr* src3, CvArr* dst);

src0... src3
Input channels.

dst
Destination array.

The function cvCvtPlaneToPix [p 63] is the opposite to the previous. If the destination array has N
channels then if the first N input channels are not NULL, all they are copied to the destination array,
otherwise if only a single source channel of the first N is not NULL, this particular channel is copied into
the destination array, otherwise an error is raised. Rest of source channels (beyond the first N) must
always be NULL. For IplImage cvCopy [p 58] with COI set can be also used to insert a single channel into
the image.

ConvertScale

Converts one array to another with optional linear transformation

void cvConvertScale(const CvArr* A, CvArr* B, double scale=1, double shift=0);

#define cvCvtScale cvConvertScale
#define cvScale cvConvertScale
#define cvConvert(A, B) cvConvertScale((A), (B), 1, 0)

A
Source array.

B
Destination array.

scale
Scale factor.

shift
Value added to the scaled source array elements.

63

The function cvConvertScale [p 63] has several different purposes and thus has several synonyms. It
copies one array to another with optional scaling, which is performed first, and/or optional type
conversion, performed after:

B(I)=A(I)*scale + (shift,shift,...)

All the channels of multi-channel arrays are processed independently.

The type conversion is done with rounding and saturation, that is if a result of scaling + conversion can not
be represented exactly by a value of destination array element type, it is set to the nearest representable
value on the real axis.

In case of scale=1, shift=0 no prescaling is done. This is a specially optimized case and it has the
appropriate cvConvert [p ??] synonym. If source and destination array types have equal types, this is also a
special case that can be used to scale and shift a matrix or an image and that fits to cvScale [p ??]
synonym.

ConvertScaleAbs

Converts input array elements to 8-bit unsigned integer another with optional linear transformation

void cvConvertScaleAbs(const CvArr* A, CvArr* B, double scale=1, double shift=0);
#define cvCvtScaleAbs cvConvertScaleAbs

A
Source array.

B
Destination array (should have 8u depth).

scale
ScaleAbs factor.

shift
Value added to the scaled source array elements.

The function cvConvertScaleAbs [p 64] is similar to the previous one, but it stores absolute values of the
conversion results:

B(I)=abs(A(I)*scale + (shift,shift,...))

The function supports only destination arrays of 8u (8-bit unsigned integers) type, for other types the
function can be emulated by combination of cvConvertScale [p 63] and cvAbs [p 76] functions.

Add

Computes per-element sum of two arrays

64

void cvAdd(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A
The first source array.

B
The second source array.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvAdd [p 64] adds one array to another one:

C(I)=A(I)+B(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

AddS

Computes sum of array and scalar

void cvAddS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A
The source array.

S
Added scalar.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvAddS [p 65] adds scalar S to every element in the source array A and stores the result in C

C(I)=A(I)+S if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

Sub

Computes per-element difference of two arrays

void cvSub(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A
The first source array.

65

B
The second source array.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSub [p 65] subtracts one array from another one:

C(I)=A(I)-B(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

SubS

Computes difference of array and scalar

void cvSubS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A
The source array.

S
Subed scalar.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSubS [p 66] subtracts a scalar from every element of the source array:

C(I)=A(I)+S if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

SubRS

Computes difference of scalar and array

void cvSubRS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A
The first source array.

S
Scalar to subtract from.

C
The destination array.

66

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvSubRS [p 66] subtracts every element of source array from a scalar:

C(I)=S-A(I) if mask(I)!=0

All the arrays must have the same type, except the mask, and the same size (or ROI size)

Mul

Calculates per-element product of two arrays

void cvMul(const CvArr* A, const CvArr* B, CvArr* C, double scale=1);

A
The first source array.

B
The second source array.

C
The destination array.

scale
Optional scale factor

The function cvMul [p 67] calculates per-element product of two arrays:

C(I)=scale •A(I) •B(I)

All the arrays must have the same type, and the same size (or ROI size)

Div

Performs per-element division of two arrays

void cvDiv(const CvArr* A, const CvArr* B, CvArr* C, double scale=1);

A
The first source array. If the pointer is NULL, the array is assumed to be all 1’s.

B
The second source array.

C
The destination array.

scale
Optional scale factor

67

The function cvDiv [p 67] divides one array by another:

C(I)=scale •A(I)/B(I), if A!=NULL
C(I)=scale/B(I), if A=NULL

All the arrays must have the same type, and the same size (or ROI size)

And

Calculates per-element bit-wise conjunction of two arrays

void cvAnd(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A
The first source array.

B
The second source array.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvAnd [p 68] calculates per-element bit-wise logical conjunction of two arrays:

C(I)=A(I)&B(I) if mask(I)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must
have the same type, except the mask, and the same size

AndS

Calculates per-element bit-wise conjunction of array and scalar

void cvAndS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A
The source array.

S
Scalar to use in the operation.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function AndS calculates per-element bit-wise conjunction of array and scalar:

68

C(I)=A(I)&S if mask(I)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of
floating-point arrays their bit representations are used for the operation. All the arrays must have the same
type, except the mask, and the same size

The following sample demonstrates how to calculate absolute value of floating-point array elements by
clearing the most-significant bit:

float a[] = { -1, 2, -3, 4, -5, 6, -7, 8, -9 };
CvMat A = cvMat(3, 3, CV_32F, &a);
int i, abs_mask = 0x7fffffff;
cvAndS(&A, cvRealScalar(*(float*)&abs_mask), &A, 0);
for(i = 0; i < 9; i++)
 printf("%.1f ", a[i]);

The code should print:

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Or

Calculates per-element bit-wise disjunction of two arrays

void cvOr(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A
The first source array.

B
The second source array.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvOr [p 69] calculates per-element bit-wise disjunction of two arrays:

C(I)=A(I)|B(I)

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must
have the same type, except the mask, and the same size

OrS

Calculates per-element bit-wise disjunction of array and scalar

69

void cvOrS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A
The source array.

S
Scalar to use in the operation.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function OrS calculates per-element bit-wise disjunction of array and scalar:

C(I)=A(I)|S if mask(I)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of
floating-point arrays their bit representations are used for the operation. All the arrays must have the same
type, except the mask, and the same size

Xor

Performs per-element bit-wise "exclusive or" operation on two arrays

void cvXor(const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A
The first source array.

B
The second source array.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function cvXor [p 70] calculates per-element bit-wise logical conjunction of two arrays:

C(I)=A(I)^B(I) if mask(I)!=0

In the case of floating-point arrays their bit representations are used for the operation. All the arrays must
have the same type, except the mask, and the same size

XorS

Performs per-element bit-wise "exclusive or" operation on array and scalar

70

void cvXorS(const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A
The source array.

S
Scalar to use in the operation.

C
The destination array.

mask
Operation mask, 8-bit single channel array; specifies elements of destination array to be changed.

The function XorS calculates per-element bit-wise conjunction of array and scalar:

C(I)=A(I)^S if mask(I)!=0

Prior to the actual operation the scalar is converted to the same type as the arrays. In the case of
floating-point arrays their bit representations are used for the operation. All the arrays must have the same
type, except the mask, and the same size

The following sample demonstrates how to conjugate complex vector by switching the most-significant bit
of imaging part:

float a[] = { 1, 0, 0, 1, -1, 0, 0, -1 }; /* 1, j, -1, -j */
CvMat A = cvMat(4, 1, CV_32FC2, &a);
int i, neg_mask = 0x80000000;
cvXorS(&A, cvScalar(0, *(float*)&neg_mask, 0, 0), &A, 0);
for(i = 0; i < 4; i++)
 printf("(%.1f, %.1f) ", a[i*2], a[i*2+1]);

The code should print:

(1.0,0.0) (0.0,-1.0) (-1.0,0.0) (0.0,1.0)

Not

Performs per-element bit-wise inversion of array elements

void cvNot(const CvArr* A, CvArr* C);

A
The source array.

C
The destination array.

The function Not inverses every bit of every array element:

C(I)=~A(I)

71

Cmp

Performs per-element comparison of two arrays

void cvCmp(const CvArr* A, const CvArr* B, CvArr* C, int cmp_op);

A
The first source array.

B
The second source array. Both source array must have a single channel.

C
The destination array, must have 8u or 8s type.

cmp_op
The flag specifying the relation between the elements to be checked:
CV_CMP_EQ - A(I) "equal to" B(I)
CV_CMP_GT - A(I) "greater than" B(I)
CV_CMP_GE - A(I) "greater or equal" B(I)
CV_CMP_LT - A(I) "less than" B(I)
CV_CMP_GE - A(I) "less or equal" B(I)
CV_CMP_NE - A(I) "not equal to" B(I)

The function cvCmp [p 72] compares the corresponding elements of two arrays and fills the destination
mask array:

C(I)=A(I) op B(I),

where op is ’=’, ’>’, ’>=’, ’<’, ’<=’ or ’!=’.

C(I) is set to 0xff (all ’1’-bits) if the particular relation between the elements is true and 0 otherwise. All
the arrays must have the same type, except the destination, and the same size (or ROI size)

CmpS

Performs per-element comparison of array and scalar

void cvCmpS(const CvArr* A, double S, CvArr* C, int cmp_op);

A
The source array, must have a single channel.

C
The destination array, must have 8u or 8s type.

cmp_op
The flag specifying the relation between the elements to be checked:
CV_CMP_EQ - A(I) "equal to" S
CV_CMP_GT - A(I) "greater than" S
CV_CMP_GE - A(I) "greater or equal" S
CV_CMP_LT - A(I) "less than" S

72

CV_CMP_GE - A(I) "less or equal" S
CV_CMP_NE - A(I) "not equal" S

The function cvCmpS [p 72] compares the corresponding elements of array and scalar and fills the
destination mask array:

C(I)=A(I) op S,

where op is ’=’, ’>’, ’>=’, ’<’, ’<=’ or ’!=’.

C(I) is set to 0xff (all ’1’-bits) if the particular relation between the elements is true and 0 otherwise. All
the arrays must have the same size (or ROI size)

InRange

Checks that array elements lie between elements of two other arrays

void cvInRange(const CvArr* A, const CvArr* L, const CvArr* U, CvArr* C);

A
The first source array.

L
The inclusive lower boundary array.

U
The exclusive upper boundary array.

C
The destination array, must have 8u or 8s type.

The function cvInRange [p 73] does the range check for every element of the input array:

C(I)=L(I) 0 <= A(I) 0 < U(I) 0

for single-channel arrays,

C(I)=L(I) 0 <= A(I) 0 < U(I) 0 &&

 L(I) 1 <= A(I) 1 < U(I) 1

for two-channel arrays etc.

C(I) is set to 0xff (all ’1’-bits) if A(I) is within the range and 0 otherwise. All the arrays must have the
same type, except the destination, and the same size (or ROI size)

InRangeS

Checks that array elements lie between two scalars

73

void cvInRangeS(const CvArr* A, CvScalar SL, CvScalar SU, CvArr* D);

A
The first source array.

SL
The inclusive lower boundary.

SU
The exclusive upper boundary.

C
The destination array, must have 8u or 8s type.

The function cvInRangeS [p 73] does the range check for every element of the input array:

C(I)=SL 0 <= A(I) 0 < SU 0

for a single-channel array,

C(I)=SL 0 <= A(I) 0 < SU 0 &&

 SL 1 <= A(I) 1 < SU 1

for a two-channel array etc.

C(I) is set to 0xff (all ’1’-bits) if A(I) is within the range and 0 otherwise. All the arrays must have the
same size (or ROI size)

Max

Finds per-element maximum of two arrays

void cvMax(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source array.

B
The second source array.

C
The destination array.

The function cvMax [p 74] calculates per-element maximum of two arrays:

C(I)=max(A(I), B(I))

All the arrays must have a single channel, the same data type and the same size (or ROI size).

74

MaxS

Finds per-element maximum of array and scalar

void cvMaxS(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source array.

B
The second source array.

C
The destination array.

The function cvMaxS [p 75] calculates per-element maximum of array and scalar:

C(I)=max(A(I), S)

All the arrays must have a single channel, the same data type and the same size (or ROI size).

Min

Finds per-element minimum of two arrays

void cvMin(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source array.

B
The second source array.

C
The destination array.

The function cvMin [p 75] calculates per-element minimum of two arrays:

C(I)=min(A(I),B(I))

All the arrays must have a single channel, the same data type and the same size (or ROI size).

MinS

Finds per-element minimum of array and scalar

void cvMinS(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source array.

75

B
The second source array.

C
The destination array.

The function cvMinS [p 75] calculates minimum of array and scalar:

C(I)=min(A(I), S)

All the arrays must have a single channel, the same data type and the same size (or ROI size).

AbsDiff

Calculates absolute difference between two arrays

void cvAbsDiff(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source array.

B
The second source array.

C
The destination array.

The function cvAbsDiff [p 76] calculates absolute difference between two arrays.

C(I) c = abs(A(I) c - B(I) c).

All the arrays must have the same data type and the same size (or ROI size).

AbsDiffS

Calculates absolute difference between array and scalar

void cvAbsDiffS(const CvArr* A, CvArr* C, CvScalar S);
#define cvAbs(A, C) cvAbsDiffS(A, C, cvScalarAll(0))

A
The source array.

C
The destination array.

S
The scalar.

The function cvAbsDiffS [p 76] calculates absolute difference between array and scalar.

76

C(I) c = abs(A(I) c - S c).

All the arrays must have the same data type and the same size (or ROI size).

Array statistics

CountNonZero

Counts non-zero array elements

int cvCountNonZero(const CvArr* A);

A
The array, must be single-channel array or multi-channel image with COI set.

The function cvCountNonZero [p 77] returns the number of non-zero elements in A:

result = sum I A(I)!=0

In case of IplImage both ROI and COI are supported.

Sum

Summarizes array elements

CvScalar cvSum(const CvArr* A);

A
The array.

The function cvSum [p 77] calculates sum S of array elements, independently for each channel:

S c = sum I A(I) c

If the array is IplImage and COI is set, the function processes the selected channel only and stores the sum
to the first scalar component (S0).

Avg

Calculates average (mean) of array elements

CvScalar cvAvg(const CvArr* A, const CvArr* mask=0);

77

A
The array.

mask
The optional operation mask.

The function cvAvg [p 77] calculates the average value M of array elements, independently for each
channel:

N = sum I mask(I)!=0

Mc = 1/N • sum I A(I) c

If the array is IplImage and COI is set, the function processes the selected channel only and stores the
average to the first scalar component (S0).

AvgSdv

Calculates average (mean) of array elements

void cvAvgSdv(const CvArr* A, CvScalar* _M, CvScalar* _S, const CvArr* mask=0);

A
The array.

_M
Pointer to the mean value, may be NULL if it is not needed.

_S
Pointer to the standard deviation.

mask
The optional operation mask.

The function cvAvgSdv [p 78] calculates the average value M=*_M and standard deviation S=*_S of
array elements, independently for each channel:

N = sum I mask(I)!=0

Mc = 1/N • sum I A(I) c

S c = sqrt(1/N • sum I (A(I) c - M c) 2)

If the array is IplImage and COI is set, the function processes the selected channel only and stores the
average and standard deviation to the first compoenents of output scalars (M 0 and S0).

78

MinMaxLoc

Finds global minimum and maximum in array or subarray

void cvMinMaxLoc(const CvArr* A, double* minVal, double* maxVal,
 CvPoint* minLoc, CvPoint* maxLoc, const CvArr* mask=0);

A
The source array, single-channel or multi-channel with COI set.

minVal
Pointer to returned minimum value.

maxVal
Pointer to returned maximum value.

minLoc
Pointer to returned minimum location.

maxLoc
Pointer to returned maximum location.

mask
The optional mask that is used to select a subarray.

The function MinMaxLoc finds minimum and maximum element values and their positions. The
extremums are searched over the whole array, selected ROI (in case of IplImage) or, if mask is not NULL,
in the specified array region. If the array has more than one channel, it must be IplImage with COI set. In
case if multi-dimensional arrays minLoc->x and maxLoc->x will contain raw (linear) positions of the
extremums.

Norm

Calculates absolute array norm, absolute difference norm or relative difference norm

double cvNorm(const CvArr* A, const CvArr* B, int normType, const CvArr* mask=0);

A
The first source image.

B
The second source image. If it is NULL, the absolute norm of A is calculated, otherwise absolute or
relative norm of A-B is calculated.

normType
Type of norm, see the discussion.

mask
The optional operation mask.

The function cvNorm [p 79] calculates the absolute norm of A if B is NULL:

79

norm = ||A|| C = max I abs(A(I)), if normType = CV_C

norm = ||A|| L1 = sum I abs(A(I)), if normType = CV_L1

norm = ||A|| L2 = sqrt(sum I A(I) 2), if normType = CV_L2

And the function calculates absolute or relative difference norm if B is not NULL:

norm = ||A-B|| C = max I abs(A(I)-B(I)), if normType = CV_C

norm = ||A-B|| L1 = sum I abs(A(I)-B(I)), if normType = CV_L1

norm = ||A-B|| L2 = sqrt(sum I (A(I)-B(I)) 2), if normType = CV_L2

or

norm = ||A-B|| C /||B|| C , if normType = CV_RELATIVE_C

norm = ||A-B|| L1 /||B|| L1 , if normType = CV_RELATIVE_L1

norm = ||A-B|| L2 /||B|| L2 , if normType = CV_RELATIVE_L2

The function Norm returns the calculated norm. The multiple-channel array are treated as single-channel,
that is results for all channels are combined.

Matrix Operations, Linear Algebra and Math Functions

SetIdentity

Initializes scaled identity matrix

void cvSetIdenity(CvArr* A, CvScalar S);

A
The matrix to initialize (not necesserily square).

S
The value to assign to the diagonal elements.

The function cvSetIdentity [p 80] initializes scaled identity matrix:

A(i,j)=S if i=j,
 0 otherwise

80

DotProduct

Calculates dot product of two arrays in Euclidian metrics

double cvDotProduct (const CvArr* A, const CvArr* B);

A
The first source array.

B
The second source array.

The function cvDotProduct [p 81] calculates and returns the Euclidean dot product of two arrays.

A•B = sum I (A(I)*B(I))

In case of multiple channel arrays the results for all channels are accumulated. In particular, it gives a
correct result for complex matrices. The function can process multi-dimensional arrays row by row.

CrossProduct

Calculates cross product of two 3D vectors

void cvCrossProduct(const CvArr* A, const CvArr* B, CvArr* C);

A
The first source vector.

B
The second source vector.

C
The destination vector.

The function cvCrossProduct [p 81] calculates the cross product of two 3D vectors:

C = A×B, (C 1 = A 2 B 3 - A 3 B 2 , C 2 = A 3 B 1 - A 1 B 3 , C 3 = A 1 B 2 - A 2 B 1).

ScaleAdd

Calculates sum of scaled array and another array

void cvScaleAdd(const CvArr* A, CvScalar S, const CvArr* B, CvArr* C);
#define cvMulAddS cvScaleAdd

A
The first source array.

S
Scale factor for the first array.

81

B
The second source array.

C
The destination array

The function cvScaleAdd [p 81] calculates sum of scaled array and another array:

C(I)=A(I)*S + B(I)

All array parameters should be of the same size and the same size

MatMulAdd

Calculates shifted matrix product

void cvMatMulAdd(const CvArr* A, const CvArr* B, const CvArr* C, CvArr* D);
#define cvMatMul(A, B, D) cvMatMulAdd(A, B, 0, D)

A
The first source array.

B
The second source array.

C
The third source array (shift). Can be NULL, if there is no shift.

D
The destination array.

The function cvMatMulAdd [p 82] calculates matrix product of two matrices and adds the third matrix to
the product:

D = A*B + C or D(i,j)=sum k (A(i,k)*B(k,j)) + C(i,j)

All the matrices should be of the same type and the coordinated sizes. Only real or complex floating-point
matrices are supported

GEMM

Performs generalized matrix multiplication

void cvGEMM(const CvArr* A, const CvArr* B, double alpha,
 const CvArr* C, double beta, CvArr* D, int tABC=0);
#define cvMatMulAddEx cvGEMM

A
The first source array.

B
The second source array.

82

C
The third source array (shift). Can be NULL, if there is no shift.

D
The destination array.

tABC
The operation flags that can be 0 or combination of the following:
CV_GEMM_A_T - transpose A
CV_GEMM_B_T - transpose B
CV_GEMM_C_T - transpose B
for example, CV_GEMM_A_T+CV_GEMM_C_T corresponds to

alpha*A T *B + beta*C T

The function cvGEMM [p 82] performs generalized matrix multiplication:

D = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X T

All the matrices should be of the same type and the coordinated sizes. Only real or complex floating-point
matrices are supported

MatMulAddS

Performs matrix transform on every element of array

void cvMatMulAddS(const CvArr* A, CvArr* C, const CvArr* M, const CvArr* V=0);

A
The first source array.

C
The destination array.

M
Transformation matrix.

V
Optional shift.

The function cvMatMulAddS [p 83] performs matrix transform on every element of array A and stores the
result in C:

C(i,j)=M*A(i,j) + V or C(i,j)(k)=sum l (M(k,l)*A(i,j)(l)) + V(k)

That is every element of N-channel array A is considered as N-element vector, which is transformed using
matrix N×N matrix M and shift vector V. There is an option to code V into A. In this case A should be
N×N+1 matrix and the right-most column is used as the shift vector.

Both source and destination arrays should be of the same size or selected ROI size and of the same type. M
and V should be real floating-point matrices. The function can be used for geometrical transforms of point
sets and linear color transformations.

83

MulTransposed

Calculates product of array and transposed array

void cvMulTransposed(const CvArr* A, CvArr* C, int order);

A
The source matrix.

C
The destination matrix.

order
Order of multipliers.

The function cvMulTransposed [p 84] calculates the product of A and its transposition.

The function evaluates

C=A*A T

if order=0, and

C=AT *A

otherwise

Trace

Returns trace of matrix

CvScalar cvTrace(const CvArr* A);

A
The source matrix.

The function cvTrace [p 84] returns sum of diagonal elements of the matrix A.

tr(A)=sum i A(i,i)

Transpose

Transposes matrix

void cvTranspose(const CvArr* A, CvArr* B);
#define cvT cvTranspose

84

A
The source matrix.

B
The destination matrix.

The function cvTranspose [p 84] transposes matrix A:

B(i,j)=A(j,i)

Note that no complex conjugation is done in case of complex matrix. Conjugation should be done
separately: look at the sample code in cvXorS [p 70] for example

Det

Returns determinant of matrix

CvScalar cvDet(const CvArr* A);

A
The source matrix.

The function cvDet [p 85] returns determinant of the square matrix A. The direct method is used for small
matrices and Gaussian elimination is used for larger matrices

Invert

Finds inverse or pseudo-inverse of matrix

double cvInvert(const CvArr* A, CvArr* B, int method);
#define cvInv cvInvert

A
The source matrix.

B
The destination matrix.

method
Inversion method:
CV_LU - Gaussian elimination with optimal pivot element chose CV_SVD - Singular decomposition
method

The function cvInvert [p 85] inverts matrix A and stores the result in B

In case of LU method the function returns A determinant (A must be square). If it is 0, the matrix is not
inverted and B is filled with zeros.

85

In case of SVD method the function returns the inversed condition number of A (ratio of the smallest
singular value to the largest singular value) and 0 if A is all zeros. This method calculates a pseudo-inverse
matrix if A is singular

Solve

Solves linear system or least-squares problem

int cvSolve(const CvArr* A, const CvArr* B, CvArr* X, int method);
#define cvInv cvSolve

A
The source matrix.

B
The right-hand part of the linear system.

method
The solution (matrix inversion) method:
CV_LU - Gaussian elimination with optimal pivot element chose CV_SVD - Singular decomposition
method

The function cvSolve [p 86] solves linear system or least-squares problem:

X * = arg min X ||A*X-B||

If CV_LU method is used, the function returns 1 if A is non-singular and 0 otherwise, in the latter case X is
not valid

SVD

Performs singular value decomposition of real floating-point matrix

void cvSVD(CvArr* A, CvArr* W, CvArr* U=0, CvArr* V=0, int flags=0);

A
Source M×N matrix.

W
Resulting singular value matrix (M×N or N×N) or vector (N×1).

U
Optional left orthogonal matrix (M×M or M×N). If CV_SVD_U_T is specified, the number of rows
and columns in the sentence above should be swapped.

V
Optional right orthogonal matrix (N×N)

flags
Operation flags; can be 0 or combination of the following:

CV_SVD_MODIFY_A enables modification of matrix A during the operation. It speeds up the
processing.

86

CV_SVD_U_T means that the tranposed matrix U is returned. Specifying the flag speeds up the
processing.
CV_SVD_V_T means that the tranposed matrix V is returned. Specifying the flag speeds up the
processing.

The function cvSVD [p 86] decomposes matrix A into a product of a diagonal matrix and two orthogonal
matrices:

A=U*W*VT

Where W is diagonal matrix of singular values that can be coded as a 1D vector of singular values and U
and V. All the singular values are non-negative and sorted (together with U and and V columns) in
descenting order.

SVD algorithm is numerically robust and its typical applications include:

accurate eigenvalue problem solution when matrix A is square, symmetric and positively defined
matrix, for example, when it is a covariation matrix. W in this case will be a vector of eigen values,
and U=V is matrix of eigen vectors (thus, only one of U or V needs to be calculated if the eigen
vectors are required)
accurate solution of poor-conditioned linear systems
least-squares solution of overdetermined linear systems. This and previous is done by cvSolve [p 86]
function with CV_SVD method
accurate calculation of different matrix characteristics such as rank (number of non-zero singular
values), condition number (ratio of the largest singular value to the smallest one), determinant
(absolute value of determinant is equal to the product of singular values). All the things listed in this
item do not require calculation of U and V matrices.

SVBkSb

Performs singular value back substitution

void cvSVBkSb(const CvArr* W, const CvArr* U, const CvArr* V,
 const CvArr* B, CvArr* X, int flags);

W
Matrix or vector of singular values.

U
Left orthogonal matrix (tranposed, perhaps)

V
Right orthogonal matrix (tranposed, perhaps)

B
The matrix to multiply the pseudo-inverse of the original matrix A by. This is the optional parameter.
If it is omitted then it is assumed to be an identity matrix of an appropriate size (So X will be the
reconstructed pseudo-inverse of A).

87

X
The destination matrix: result of back substitution.

flags
Operation flags, should match exactly to the flags passed to cvSVD [p 86] .

The function cvSVBkSb [p 87] calculates back substitution for decomposed matrix A (see cvSVD [p 86]
description) and matrix B:

X=V*W-1 *U T *B

Where

W-1 (i,j)=1/W(i,j) if W(i,j) > epsilon,
 0 otherwise

And epsilon is a small number - ≈10-6 or ≈10-15 depending on the matrices element type.

This function together with cvSVD [p 86] is used inside cvInvert [p 85] and cvSolve [p 86] , and the
possible reason to use these (svd & bksb) "low-level" function is to avoid temporary matrices allocation
inside the high-level counterparts (inv & solve).

EigenVV

Computes eigenvalues and eigenvectors of symmetric matrix

void cvEigenVV(CvArr* A, CvArr* evects, CvArr* evals, double eps);

A
The source symmetric square matrix. It is modified during the processing.

evects
The output matrix of eigenvectors, stored as a subsequent rows.

evals
The output vector of eigenvalues, stored in the descenting order (order of eigenvalues and
eigenvectors is syncronized, of course).

eps
Accuracy of diagonalization (typically, DBL_EPSILON=≈10-15 is enough).

The function cvEigenVV [p 88] computes the eigenvalues and eigenvectors of the matrix A:

A*evects(i,:)’ = evals(i)*evects(i,:)’ (in MATLAB notation)

The contents of matrix A is destroyed by the function.

Currently the function is slower than cvSVD [p 86] yet less accurate, so if A is known to be
positively-defined (for example, it is a covariation matrix), it is recommended to use cvSVD [p 86] to find
eigenvalues and eigenvectors of A, especially if eigenvectors are not required.

88

PerspectiveTransform

Performs perspective matrix transform on 3D vector array

void cvPerspectiveTransform(const CvArr* A, CvArr* B, const CvArr* M);

A
The source three-channel floating-point array.

B
The destination three-channel floating-point array.

M
4 × 4 transformation matrix.

The function cvPerspectiveTransform [p 89] transforms every element of A considering it a 3D vector as:

(x, y, z) -> (x’/w, y’/w, z’/w),

where
(x’, y’, z’, w’) = M*(x, y, z, 1)

and w = 1/w’ if w’!=0,
 1 otherwise

CalcCovarMatrix

Calculates covariation matrix out of the set of arrays

void cvCalcCovarMatrix(CvArr** Vs, CvArr* M, CvArr* A);

Vs
The set of input arrays. All the arrays must have the same type and the same size.

M
The output covariation matrix that should be floating-point and square. Number of arrays is implicitly
assumed to be equal to number of the matrix rows/columns.

A
The output array that is set to the average of the input arrays.

The function cvCalcCovarMatrix [p 89] calculates the covariation matrix and average array out of the set
of input arrays:

A(I)=sum k Vs (k) (I)

M(i,j)=(Vs (i) -A) •(Vs (j) -A)

Where the upper index in parentheses means the particular array from the set and "•" means dot product.
The covariation matrix may be used then (after inversion) in cvMahalonobis [p 90] function to measure a
distance between vectors, to find eigen objects via cvSVD [p 86] etc.

89

Mahalonobis

Calculates Mahalonobis distance between vectors

double cvMahalonobis(const CvArr* A, const CvArr* B, CvArr* T);

A
The first 1D source vector.

B
The second 1D source vector.

T
The inverse covariation matrix.

The function cvMahalonobis [p 90] calculates the weighted distance between two vectors and returns it:

d(A,B)=sqrt(sum i,j {T(i,j)*(A(i)-B(i))*(A(j)-B(j))})

The covariation matrix may be calculated using cvCalcCovarMatrix [p 89] function and further inverted
using cvInvert [p 85] function (CV_SVD method is the preffered one, because the matrix might be
singular).

CartToPolar

Calculates magnitude and/or angle of 2d vectors

void cvCartToPolar(const CvArr* X, const CvArr* Y, CvArr* M, CvArr* A,
 int angle_in_degrees=0);

X
The array of x-coordinates

Y
The array of y-coordinates

M
The destination array of magnitudes, may be set to NULL if it is not needed

A
The destination array of angles, may be set to NULL if it is not needed. The angles are measured in
radians (0..2π) or in degrees (0..360°).

angle_in_degrees
The flag indicating whether the angles are measured in radians, which is default mode, or in degrees.

The function cvCartToPolar [p 90] calculates either magnitude, angle, or both of every vector (X(I),Y(I)):

M(I)=sqrt(X(I) 2 +Y(I) 2),
A(I)=atan(Y(I)/X(I))

90

The angles are calculated with ≈0.1° accuracy. For (0,0) point the angle is set to 0.

PolarToCart

Calculates cartesian coordinates of 2d vectors represented in polar form

void cvPolarToCart(const CvArr* M, const CvArr* A, CvArr* X, CvArr* Y,
 int angle_in_degrees=0);

M
The array of magnitudes. If it is NULL, the magnitudes are assumed all 1’s.

A
The array of angles, whether in radians or degrees.

X
The destination array of x-coordinates, may be set to NULL if it is not needed.

Y
The destination array of y-coordinates, mau be set to NULL if it is not needed.

angle_in_degrees
The flag indicating whether the angles are measured in radians, which is default mode, or in degrees.

The function cvPolarToCart [p 91] calculates either x-coodinate, y-coordinate or both of every vector
M(I)*exp(A(I)*j) :

X(I)=M(I)*cos(A(I)),
Y(I)=M(I)*sin(A(I))

Pow

Raises every array element to power

void cvPow(const CvArr* X, CvArr* Y, double p);

X
The source array.

Y
The destination array, should be the same type as the source.

p
The exponent of power.

The function cvPow [p 91] raises every element of input array to p:

Y(I)=X(I) p , if p is integer
Y(I)=abs(X(I)) p , otherwise

That is, for non-integer power exponent the absolute values of input array elements are used. However, it
is possible to get true values for negative values using some extra operations, as the following sample,
computing cube root of array elements, shows:

91

CvSize size = cvGetSize(src);
CvMat* mask = cvCreateMat(size.height, size.width, CV_8UC1);
cvCmpS(src, 0, mask, CV_CMP_LT); /* find negative elements */
cvPow(src, dst, 1./3);
cvSubRS(dst, cvScalarAll(0), dst, mask); /* negate the results of negative inputs */
cvReleaseMat(&mask);

For some values of power, such as integer values, 0.5 and -0.5, an optimized algorithm is used.

Exp

Calculates exponent of every array element

void cvExp(const CvArr* X, CvArr* Y);

X
The source array.

Y
The destination array, it should have double type or the same type as the source.

The function cvExp [p 92] calculates exponent of every element of input array:

Y(I)=exp(X(I))

Maximum relative error is ≈7e-6. Currently, the function converts denormalized values to zeros on output.

Log

Calculates natural logarithm of every array element absolute value

void cvLog(const CvArr* X, CvArr* Y);

X
The source array.

Y
The destination array, it should have double type or the same type as the source.

The function cvLog [p 92] calculates natural logarithm of absolute value of every element of input array:

Y(I)=log(abs(X(I))), X(I)!=0
Y(I)=C, X(I)=0

Where C is large negative number (≈-700 in the current implementation)

92

CheckArr

Checks every element of input array for invalid values

int cvCheckArr(const CvArr* X, int flags=0,
 double minVal=0, double maxVal=0);
#define cvCheckArray cvCheckArr

X
The array to check.

flags
The operation flags, 0 or combination of:
CV_CHECK_RANGE - if set, the function checks that every value of array is within
[minVal,maxVal) range, otherwise it just checks that every element is neigther NaN nor ±∞.
CV_CHECK_QUIET - if set, the function does not raises an error if an element is invalid or out of
range

minVal
The inclusive lower boundary of valid values range. It is used only if CV_CHECK_RANGE is set.

maxVal
The exclusive upper boundary of valid values range. It is used only if CV_CHECK_RANGE is set.

The function cvCheckArr [p 93] checks that every array element is neither NaN nor ±∞. If
CV_CHECK_RANGE is set, it also checks that every element is greater than or equal to minVal and less
than maxVal. The function returns nonzero if the check succeeded, i.e. all elements are valid and within
the range, and zero otherwise. In the latter case if CV_CHECK_QUIET flag is not set, the function raiser
runtime error.

RandInit

Initializes random number generator state

void cvRandInit(CvRandState* state, double param1, double param2, int seed,
 int distType=CV_RAND_UNI);

state
Pointer to the initialized random number generator state structure.

param1
The first distribution parameter. In case of uniform distribution it is the inclusive lower boundary of
random numbers range. In case of normal distribution it is the standard deviation of random numbers.

param2
The second distribution parameter. In case of uniform distribution it is the exclusive upper boundary
of random numbers range. In case of normal distribution it is the mean value of random numbers.

seed
Initial 32-bit value to start a random sequence.

distType
Distribution type:
CV_RAND_UNI - uniform distribution

93

CV_RAND_NORMAL - normal or Gaussian distribution

The function cvRandInit [p 93] initializes the state structure that is used for generating uniformly
distributed numbers in the range [param1, param2) or normally distributed numbers with param1 mean
and param2 standard deviation. The parameters are set for all the dimensions simultaneously - resemble
that RNG has separate parameters for each of 4 dimensions. A multiply-with-carry generator is used.

RandSetRange

Changes the range of generated random numbers without touching RNG state

void cvRandSetRange(CvRandState* state, double param1, double param2, int index=-1);

state
State of random number generator (RNG).

param1
New lower boundary/deviation of generated numbers.

param2
New upper boundary/mean value of generated numbers.

index
The 0-based index of dimension/channel for which the parameter are changed, -1 means changing the
parameters for all dimensions.

The function cvRandSetRange [p 94] changes the range of generated random numbers without
reinitializing RNG state. It is useful if a few arrays of different types need to initialized with random
numbers within a loop. Alternatively, you may have a separate generator for each array, but then you
should provide several uncorrelated initialization seeds - one per each generator.

Rand

Fills array with random numbers and updates the RNG state

void cvRand(CvRandState* state, CvArr* arr);

state
RNG state initialized by RandInit and, optionally, customized by RandSetRange.

arr
The destination array.

The function cvRand [p 94] fills the destination array with uniformly or normally distributed random
numbers within the pre-set range and updates RNG state. In the sample below this and two functions
above are used to put a few normally distributed floating-point numbers to random locations within a 2d
array

94

/* let’s noisy_screen be the floating-point 2d array that is to be "crapped" */
CvRandState rng_state;
int i, pointCount = 1000;
/* allocate the array of coordinates of points */
CvMat* locations = cvCreateMat(pointCount, 1, CV_32SC2);
/* array of random point values */
CvMat* values = cvCreateMat(pointCount, 1, CV_32FC1);
CvSize size = cvGetSize(noisy_screen);

cvRandInit(&rng_state,
 0, 1, /* use dummy parameters now and adjust them further */
 0xffffffff /* just use a fixed seed here */,
 CV_RAND_UNI /* specify uniform type */);

/* customize the RNG to use it for initialiazing locations:
 the 0-th dimension is used for x’s and the 1st - for y’s */
cvRandSetRange(&rng_state, 0, size.width, 0);
cvRandSetRange(&rng_state, 0, size.height, 1);

/* initialize the locations */
cvRand(&rng_state, locations);

/* modify RNG to make it produce normally distributed values */
rng_state.disttype = CV_RAND_NORMAL;
cvRandSetRange(&rng_state,
 30 /* deviation */,
 100 /* average point brightness */,
 -1 /* initialize all the dimensions */);
/* generate values */
cvRand(&rng_state, values);

/* set the points */
for(i = 0; i < pointCount; i++)
{
 CvPoint pt = *(CvPoint*)cvPtr1D(locations, i, 0);
 float value = *(float*)cvPtr1D(values, i, 0);
 cvSetReal2D(noisy_screen, pt.y, pt.x, value);
}

/* not to forget to release the temporary arrays */
cvReleaseMat(&locations);
cvReleaseMat(&values);

/* cvRandInit does not allocate any memory, so there is no need
 (and no function) to deinitialize it */

RandNext

Returns 32-bit unsigned integer and updates RNG

unsigned cvRandNext(CvRandState* state);

95

state
RNG state initialized by RandInit and, optionally, customized by RandSetRange (though, the latter
function does not affect on the discussed function outcome).

The function cvRandNext [p 95] returns uniformly-distributed (regardless of the RNG distribution type
settings) "plain" integer random number and updates RNG state. It is similar to rand() function from C
runtime library, but it always generates 32-bit number whereas rand() returns a number in between 0 and
RAND_MAX which is 2**16 or 2**32, depending on the platform.

The function is useful for generating scalar random numbers, such as points, patch sizes, table indices etc,
where integer numbers of a certain range can be generated using modulo operation and floating-point
numbers can be generated by scaling to 0..1 of any other specific range. Here is the example from the
previous function discussion rewritten using cvRandNext [p 95] :

/* the input and the task is the same as in the previous sample. */
CvRandState rng_state;
int i, pointCount = 1000;
/* ... - no arrays are allocated here */
CvSize size = cvGetSize(noisy_screen);
/* make a buffer for normally distributed numbers to reduce call overhead */
#define bufferSize 16
float normalValueBuffer[bufferSize];
CvMat normalValueMat = cvMat(bufferSize, 1, CV_32F, normalValueBuffer);
int valuesLeft = 0;

/* initialize RNG to produce normally distributed values.
 Coordinates will be uniformly distributed within 0..2**32
 anyway as they are generated using cvRandNext */
cvRandInit(&rng_state,
 100,
 30,
 0xffffffff /* just use a fixed seed here */,
 CV_RAND_NORMAL /* specify uniform type */);

for(i = 0; i < pointCount; i++)
{
 CvPoint pt;
 /* generate random point */
 pt.x = cvRandNext(&rng_state) % size.width;
 pt.y = cvRandNext(&rng_state) % size.height;

 if(valuesLeft <= 0)
 {
 /* fulfill the buffer with normally distributed numbers if the buffer is empty */
 cvRand(&rng_state, &normalValueMat);
 valuesLeft = bufferSize;
 }
 cvSetReal2D(noisy_screen, pt.y, pt.x, normalValueBuffer[--valuesLeft]);
}

/* there is no need to deallocate normalValueMat because we have
both the matrix header and the data on stack. It is a common and efficient
practice of working with small, fixed-size matrices */

96

DFT

Performs forward or inverse Discrete Fourier transform of 1D or 2D floating-point array

#define CV_DXT_INVERSE 1
#define CV_DXT_SCALE 2
#define CV_DXT_INV_SCALE (CV_DXT_SCALE|CV_DXT_INVERSE)
#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE

void cvDFT(const CvArr* src, CvArr* dst, int flags);

src
Source array, real or complex.

dst
Destination array of the same size and same type as the source.

flags
Transformation flags, 0 or a combination of the following flags:
CV_DXT_INVERSE - perform inverse transform (w/o post-scaling>
CV_DXT_SCALE - divide the result by the number of array elements
For convenience, the constant CV_DXT_FORWARD may be used instead of literal 0.

The function cvDFT [p 97] performs forward or inverse transform of 1D or 2D floating-point array:

Forward Fourier transform of 1D vector of N elements:
y = F •x, where F ik =exp(-j •Pi •i •k/N), j=sqrt(-1)

Inverse Fourier transform of 1D vector of N elements:
x = F -1 •y = F T •y

Forward Fourier transform of 2D vector of M×N elements:
Y = F •X•F *

Inverse Fourier transform of 2D vector of M×N elements:
X = F * •Y•F

In case of real (single-channel) data, the packed format, borrowed from IPL, is used to to represent a result
of forward Fourier transform or input for inverse Fourier transform:

Re Y 0,0 Re Y 0,1 Im Y 0,1 Re Y 0,2 Im Y 0,2 ... Re Y 0,N/2-1 Im Y 0,N/2-1 Re Y 0,N/2

Re Y 1,0 Re Y 1,1 Im Y 1,1 Re Y 1,2 Im Y 1,2 ... Re Y 1,N/2-1 Im Y 1,N/2-1 Re Y 1,N/2

Im Y 2,0 Re Y 2,1 Im Y 2,1 Re Y 2,2 Im Y 2,2 ... Re Y 2,N/2-1 Im Y 2,N/2-1 Im Y 2,N/2

..
Re Y M/2-1,0 Re Y M-3,1 Im Y M-3,1 Re Y M-3,2 Im Y M-3,2 ... Re Y M-3,N/2-1 Im Y M-3,N/2-1 Re Y M-3,N/2

Im Y M/2-1,0 Re Y M-2,1 Im Y M-2,1 Re Y M-2,2 Im Y M-2,2 ... Re Y M-2,N/2-1 Im Y M-2,N/2-1 Im Y M-2,N/2

Re Y M/2,0 Re Y M-1,1 Im Y M-1,1 Re Y M-1,2 Im Y M-1,2 ... Re Y M-1,N/2-1 Im Y M-1,N/2-1 Im Y M-1,N/2

Note: the last column is present if N is even, the last row is present if M is even.

In case of 1D real transform the result looks like the first row of the above matrix

97

MulCss

Performs per-element multiplication of two Fourier spectrums of two real arrays

void cvMulCss(const CvArr* srcA, const CvArr* srcB, CvArr* dst);

srcA
The first source array.

srcB
The second source array.

dst
The destination array of the same type and the same size of the sources.

The function cvMulCss [p 98] performs per-element multiplication of the two packed matrices that are
produced by forward real Fourier transform (1D or 2D).

Calculating DFT’s of two real arrays, then multiplying results by cvMulCss and performing inverse DFT
on the product is equivalent yet faster way to find cyclic convolution of the two original arrays.

DCT

Performs forward or inverse Discrete Cosine transform of 1D or 2D floating-point array

#define CV_DXT_INVERSE 1
#define CV_DXT_SCALE 2
#define CV_DXT_INV_SCALE (CV_DXT_SCALE|CV_DXT_INVERSE)
#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE

void cvDCT(const CvArr* src, CvArr* dst, int flags);

src
Source array, real 1D or 2D array.

dst
Destination array of the same size and same type as the source.

flags
Transformation flags, 0 or a combination of the following flags:
CV_DXT_INVERSE - perform inverse transform
CV_DXT_SCALE - divide the result by the number of array elements
For convenience, the constant CV_DXT_FORWARD may be used instead of literal 0.

The function cvDCT [p 98] performs forward or inverse transform of 1D or 2D floating-point array:

98

Forward Cosine transform of 1D vector of N elements:
y = C •x, where C ik =sqrt((i==0?1:2)/N) •cos(Pi •(2i+1) •k/N), j=sqrt(-1)

Inverse Cosine transform of 1D vector of N elements:
x = C -1 •y = C T •y

Forward Cosine transform of 2D vector of M×N elements:
Y = C •X•CT

Inverse Fourier transform of 2D vector of M×N elements:
X = C T •Y•C

Dynamic Data Structures

CvMemStorage

Growing memory storage

 typedef struct CvMemStorage
 {
 struct CvMemBlock* bottom;/* first allocated block */
 struct CvMemBlock* top; /* the current memory block - top of the stack */
 struct CvMemStorage* parent; /* borrows new blocks from */
 int block_size; /* block size */
 int free_space; /* free space in the top block (in bytes) */
 } CvMemStorage;

Memory storage is a low-level structure used to store dynamically growing data structures such as
sequences, contours, graphs, subdivisions etc. It is organized as a list of memory blocks of equal size -
bottom field is the beginning of the list of blocks and top is the currently used block, but not necessarily
the last block of the list. All blocks between bottom and top, not including the latter, are considered fully
ocupied; and all blocks between top and the last block, not including top, are considered free and top block
itself is partly ocupied - free_space contains the number of free bytes left in the end of top.

New memory buffer that may be allocated explicitly by cvMemStorageAlloc [p 102] function or implicitly
by higher-level functions, such as cvSeqPush [p 107] , cvGraphAddEdge [p 125] etc., always starts in the
end of the current block if it fits there. After allocation free_space is decremented by the size of the
allocated buffer plus some padding to keep the proper alignment. When the allocated buffer does not fit
into the available part of top, the next storage block from the list is taken as top and free_space is reset to
the whole block size prior to the allocation.

If there is no more free blocks, a new block is allocated (or borrowed from parent, see
cvCreateChildMemStorage [p 101]) and added to the end of list. Thus, the storage behaves as a stack with
bottom indicating bottom of the stack and the pair (top, free_space) indicating top of the stack. The stack
top may be saved via cvSaveMemStoragePos [p 103] , restored via cvRestoreMemStoragePos [p 103] or
reset via cvClearStorage [p ??] .

99

CvMemBlock

Memory storage block

 typedef struct CvMemBlock
 {
 struct CvMemBlock* prev;
 struct CvMemBlock* next;
 } CvMemBlock;

The structure CvMemBlock [p 100] represents a single block of memory storage. Actual data of the
memory blocks follows the header, that is, the i-th byte of the memory block can be retrieved with the
expression ((char*)(mem_block_ptr+1))[i]. However, normally there is no need to access the storage
structure fields directly.

CvMemStoragePos

Memory storage position

 typedef struct CvMemStoragePos
 {
 CvMemBlock* top;
 int free_space;
 } CvMemStoragePos;

The structure described below stores the position of the stack top that can be saved via
cvSaveMemStoragePos [p 103] and restored via cvRestoreMemStoragePos [p 103] .

CreateMemStorage

Creates memory storage

CvMemStorage* cvCreateMemStorage(int blockSize=0);

blockSize
Size of the storage blocks in bytes. If it is 0, the block size is set to default value - currently it is
≈64K.

The function cvCreateMemStorage [p 100] creates a memory storage and returns pointer to it. Initially the
storage is empty. All fields of the header, except the block_size, are set to 0.

100

CreateChildMemStorage

Creates child memory storage

CvMemStorage* cvCreateChildMemStorage(CvMemStorage* parent);

parent
Parent memory storage.

The function cvCreateChildMemStorage [p 101] creates a child memory storage that is similar to simple
memory storage except for the differences in the memory allocation/deallocation mechanism. When a
child storage needs a new block to add to the block list, it tries to get this block from the parent. The first
unoccupied parent block available is taken and excluded from the parent block list. If no blocks are
available, the parent either allocates a block or borrows one from its own parent, if any. In other words, the
chain, or a more complex structure, of memory storages where every storage is a child/parent of another is
possible. When a child storage is released or even cleared, it returns all blocks to the parent. In other
aspects, the child storage is the same as the simple storage.

The children storages are useful in the following situation. Imagine that user needs to process dynamical
data resided in some storage and put the result back to the same storage. With the simplest approach, when
temporary data is resided in the same storage as the input and output data, the storage will look as
following after processing:

Dynamic data processing without using child storage

That is, garbage appears in the middle of the storage. However, if one creates a child memory storage in
the beginning of the processing, writes temporary data there and releases the child storage in the end, no
garbage will appear in the source/destination storage:

Dynamic data processing using a child storage

101

ReleaseMemStorage

Releases memory storage

void cvReleaseMemStorage(CvMemStorage** storage);

storage
Pointer to the released storage.

The function cvReleaseMemStorage [p 102] deallocates all storage memory blocks or returns them to the
parent, if any. Then it deallocates the storage header and clears the pointer to the storage. All children of
the storage must be released before the parent is released.

ClearMemStorage

Clears memory storage

void cvClearMemStorage(CvMemStorage* storage);

storage
Memory storage.

The function cvClearMemStorage [p 102] resets the top (free space boundary) of the storage to the very
beginning. This function does not deallocate any memory. If the storage has a parent, the function returns
all blocks to the parent.

MemStorageAlloc

Allocates memory buffer in the storage

void* cvMemStorageAlloc(CvMemStorage* storage, int size);

102

storage
Memory storage.

size
Buffer size.

The function cvMemStorageAlloc [p 102] allocates memory buffer in the storage. The buffer size must
not exceed the storage block size, otherwise runtime error is raised. The buffer address is aligned by
CV_STRUCT_ALIGN (=sizeof(double) for the moment) bytes.

SaveMemStoragePos

Saves memory storage position

void cvSaveMemStoragePos(const CvMemStorage* storage, CvMemStoragePos* pos);

storage
Memory storage.

pos
The output position of the storage top.

The function cvSaveMemStoragePos [p 103] saves the current position of the storage top to the parameter
pos. The function cvRestoreMemStoragePos [p 103] can further retrieve this position.

RestoreMemStoragePos

Restores memory storage position

void cvRestoreMemStoragePos(CvMemStorage* storage, CvMemStoragePos* pos);

storage
Memory storage.

pos
New storage top position.

The function cvRestoreMemStoragePos [p 103] restores the position of the storage top from the parameter
pos. This function and the function cvClearMemStorage [p 102] are the only methods to release memory
occupied in memory blocks. Note again that there is no way to free memory in the middle of the occupied
part of the storage.

Sequences

103

CvSeq

Growable sequence of elements

 #define CV_SEQUENCE_FIELDS() \
 int flags; /* micsellaneous flags */ \
 int header_size; /* size of sequence header */ \
 struct CvSeq* h_prev; /* previous sequence */ \
 struct CvSeq* h_next; /* next sequence */ \
 struct CvSeq* v_prev; /* 2nd previous sequence */ \
 struct CvSeq* v_next; /* 2nd next sequence */ \
 int total; /* total number of elements */ \
 int elem_size;/* size of sequence element in bytes */ \
 char* block_max;/* maximal bound of the last block */ \
 char* ptr; /* current write pointer */ \
 int delta_elems; /* how many elements allocated when the sequence grows (sequence granularity) */ \
 CvMemStorage* storage; /* where the seq is stored */ \
 CvSeqBlock* free_blocks; /* free blocks list */ \
 CvSeqBlock* first; /* pointer to the first sequence block */

 typedef struct CvSeq
 {
 CV_SEQUENCE_FIELDS()
 } CvSeq;

The structure CvSeq [p 104] is a base for all of OpenCV dynamic data structures.

Such an unusual definition via a helper macro simplifies the extension of the structure CvSeq [p 104] with
additional parameters. To extend CvSeq [p 104] the user may define a new structure and put user-defined
fields after all CvSeq [p 104] fields that are included via the macro CV_SEQUENCE_FIELDS().

There are two types of sequences - dense and sparse. Base type for dense sequences is CvSeq [p 104] and
such sequences are used to represent growable 1d arrays - vectors, stacks, queues, deques. They have no
gaps in the middle - if an element is removed from the middle or inserted into the middle of the sequence
the elements from the closer end are shifted. Sparse sequences have CvSet [p 119] base class and they are
discussed later in more details. They are sequences of nodes each of those may be either occupied or free
as indicated by the node flag. Such sequences are used for unordered data structures such as sets of
elements, graphs, hash tables etc.

The field header_size contains the actual size of the sequence header and should be greater or equal to
sizeof(CvSeq).

The fields h_prev, h_next, v_prev, v_next can be used to create hierarchical structures from separate
sequences. The fields h_prev and h_next point to the previous and the next sequences on the same
hierarchical level while the fields v_prev and v_next point to the previous and the next sequence in the
vertical direction, that is, parent and its first child. But these are just names and the pointers can be used in
a different way.

The field first points to the first sequence block, whose structure is described below.

The field total contains the actual number of dense sequence elements and number of allocated nodes in
sparse sequence.

104

The field flagscontain the particular dynamic type signature (CV_SEQ_MAGIC_VAL for dense sequences
and CV_SET_MAGIC_VAL for sparse sequences) in the highest 16 bits and miscellaneous information
about the sequence. The lowest CV_SEQ_ELTYPE_BITS bits contain the ID of the element type. Most of
sequence processing functions do not use element type but element size stored in elem_size. If sequence
contains the numeric data of one of CvMat [p 33] type then the element type matches to the corresponding
CvMat [p 33] element type, e.g. CV_32SC2 may be used for sequence of 2D points, CV_32FC1 for
sequences of floating-point values etc. CV_SEQ_ELTYPE(seq_header_ptr) macro retrieves the type of
sequence elements. Processing function that work with numerical sequences check that elem_size is equal
to the calculated from the type element size. Besides CvMat [p 33] compatible types, there are few extra
element types defined in cvtypes.h [p ??] header:

Standard Types of Sequence Elements

 #define CV_SEQ_ELTYPE_POINT CV_32SC2 /* (x,y) */
 #define CV_SEQ_ELTYPE_CODE CV_8UC1 /* freeman code: 0..7 */
 #define CV_SEQ_ELTYPE_GENERIC 0 /* unspecified type of sequence elements */
 #define CV_SEQ_ELTYPE_PTR CV_USRTYPE1 /* =6 */
 #define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /* &elem: pointer to element of other sequence */
 #define CV_SEQ_ELTYPE_INDEX CV_32SC1 /* #elem: index of element of some other sequence */
 #define CV_SEQ_ELTYPE_GRAPH_EDGE CV_SEQ_ELTYPE_GENERIC /* &next_o, &next_d, &vtx_o, &vtx_d */
 #define CV_SEQ_ELTYPE_GRAPH_VERTEX CV_SEQ_ELTYPE_GENERIC /* first_edge, &(x,y) */
 #define CV_SEQ_ELTYPE_TRIAN_ATR CV_SEQ_ELTYPE_GENERIC /* vertex of the binary tree */
 #define CV_SEQ_ELTYPE_CONNECTED_COMP CV_SEQ_ELTYPE_GENERIC /* connected component */
 #define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /* (x,y,z) */

The next CV_SEQ_KIND_BITS bits specify the kind of the sequence:

Standard Kinds of Sequences

 /* generic (unspecified) kind of sequence */
 #define CV_SEQ_KIND_GENERIC (0 << CV_SEQ_ELTYPE_BITS)

 /* dense sequence suntypes */
 #define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS)
 #define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS)

 /* sparse sequence (or set) subtypes */
 #define CV_SEQ_KIND_GRAPH (3 << CV_SEQ_ELTYPE_BITS)
 #define CV_SEQ_KIND_SUBDIV2D (4 << CV_SEQ_ELTYPE_BITS)

The remaining bits are used to identify different features specific to certain sequence kinds and element
types. For example, curves made of points (CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_POINT),
together with the flag CV_SEQ_FLAG_CLOSED belong to the type CV_SEQ_POLYGON or, if other flags
are used, to its subtype. Many contour processing functions check the type of the input sequence and
report an error if they do not support this type. The file cvtypes.h [p ??] stores the complete list of all
supported predefined sequence types and helper macros designed to get the sequence type of other
properties. Below follows the definition of the building block of sequences.

105

CvSeqBlock

Continuous sequence block

 typedef struct CvSeqBlock
 {
 struct CvSeqBlock* prev; /* previous sequence block */
 struct CvSeqBlock* next; /* next sequence block */
 int start_index; /* index of the first element in the block +
 sequence->first->start_index */
 int count; /* number of elements in the block */
 char* data; /* pointer to the first element of the block */
 } CvSeqBlock;

Sequence blocks make up a circular double-linked list, so the pointers prev and next are never NULL and
point to the previous and the next sequence blocks within the sequence. It means that next of the last block
is the first block and prev of the first block is the last block. The fields start_index and count help to track
the block location within the sequence. For example, if the sequence consists of 10 elements and splits into
three blocks of 3, 5, and 2 elements, and the first block has the parameter start_index = 2, then pairs
(start_index, count) for the sequence blocks are (2,3), (5, 5), and (10, 2) correspondingly. The parameter
start_index of the first block is usually 0 unless some elements have been inserted at the beginning of the
sequence.

CreateSeq

Creates sequence

CvSeq* cvCreateSeq(int seqFlags, int headerSize,
 int elemSize, CvMemStorage* storage);

seqFlags
Flags of the created sequence. If the sequence is not passed to any function working with a specific
type of sequences, the sequence value may be set to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize
Size of the sequence header; must be greater or equal to sizeof(CvSeq). If a specific type or its
extension is indicated, this type must fit the base type header.

elemSize
Size of the sequence elements in bytes. The size must be consistent with the sequence type. For
example, for a sequence of points to be created, the element type CV_SEQ_ELTYPE_POINT should
be specified and the parameter elemSize must be equal to sizeof(CvPoint).

storage
Sequence location.

The function cvCreateSeq [p 106] creates a sequence and returns the pointer to it. The function allocates
the sequence header in the storage block as one continuous chunk and fills the parameter elemSize, flags
headerSize, and storage with passed values, sets delta_elems to the default value (that may be reassigned
using cvSetSeqBlockSize [p 107] function), and clears other fields, including the space behind

106

sizeof(CvSeq).

SetSeqBlockSize

Sets up sequence block size

void cvSetSeqBlockSize(CvSeq* seq, int blockSize);

seq
Sequence.

blockSize
Desirable block size.

The function cvSetSeqBlockSize [p 107] affects the memory allocation granularity. When the free space
in the sequence buffers has run out, the function allocates blockSize bytes in the storage. If this block
immediately follows the one previously allocated, the two blocks are concatenated, otherwise, a new
sequence block is created. Therefore, the bigger the parameter is, the lower the possible sequence
fragmentation, but the more space in the storage is wasted. When the sequence is created, the parameter
blockSize is set to the default value ≈1K. The function can be called any time after the sequence is created
and affects future allocations. The final block size can be different from the one desired, e.g., if it is larger
than the storage block size, or smaller than the sequence block header size plus the sequence element size.

SeqPush

Adds element to sequence end

char* cvSeqPush(CvSeq* seq, void* element=0);

seq
Sequence.

element
Added element.

The function cvSeqPush [p 107] adds an element to the end of sequence and retuns pointer to the allocated
element. If the input element is NULL, the function simply allocates a space for one more element.

The following code demonstrates how to create a new sequence using this function:

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC1, /* sequence of integer elements */
 sizeof(CvSeq), /* header size - no extra fields */
 sizeof(int), /* element size */
 storage /* the container storage */);
int i;
for(i = 0; i < 100; i++)
{
 int* added = (int*)cvSeqPush(seq, &i);
 printf("%d is added\n", *added);

107

}

...
/* release memory storage in the end */
cvReleaseMemStorage(&storage);

The function cvSeqPush [p 107] has O(1) complexity, but there is a faster method for writing large
sequences (see cvStartWriteSeq [p 116] and related functions).

SeqPop

Removes element from sequence end

void cvSeqPop(CvSeq* seq, void* element=0);

seq
Sequence.

element
Optional parameter. If the pointer is not zero, the function copies the removed element to this
location.

The function cvSeqPop [p 108] removes an element from the sequence. The function reports an error if the
sequence is already empty. The function has O(1) complexity.

SeqPushFront

Adds element to sequence beginning

char* cvSeqPushFront(CvSeq* seq, void* element=0);

seq
Sequence.

element
Added element.

The function cvSeqPushFront [p 108] is similar to cvSeqPush [p 107] but it adds the new element to the
beginning of the sequence. The function has O(1) complexity.

SeqPopFront

Removes element from sequence beginning

void cvSeqPopFront(CvSeq* seq, void* element=0);

108

seq
Sequence.

element
Optional parameter. If the pointer is not zero, the function copies the removed element to this
location.

The function cvSeqPopFront [p 108] removes an element from the beginning of the sequence. The
function reports an error if the sequence is already empty. The function has O(1) complexity.

SeqPushMulti

Pushes several elements to the either end of sequence

void cvSeqPushMulti(CvSeq* seq, void* elements, int count, int in_front=0);

seq
Sequence.

elements
Added elements.

count
Number of elements to push.

in_front
The flags specifying the modified sequence end:
CV_BACK (=0) - the elements are added to the end of sequence
CV_FRONT(!=0) - the elements are added to the beginning of sequence

The function cvSeqPushMulti [p 109] adds several elements to either end of the sequence. The elements
are added to the sequence in the same order as they are arranged in the input array but they can fall into
different sequence blocks.

SeqPopMulti

Removes several elements from the either end of sequence

void cvSeqPopMulti(CvSeq* seq, void* elements, int count, int in_front=0);

seq
Sequence.

elements
Removed elements.

count
Number of elements to pop.

in_front
The flags specifying the modified sequence end:
CV_BACK (=0) - the elements are removed from the end of sequence
CV_FRONT(!=0) - the elements are removed from the beginning of sequence

109

The function cvSeqPopMulti [p 109] removes several elements from either end of the sequence. If the
number of the elements to be removed exceeds the total number of elements in the sequence, the function
removes as many elements as possible.

SeqInsert

Inserts element in sequence middle

char* cvSeqInsert(CvSeq* seq, int beforeIndex, void* element=0);

seq
Sequence.

beforeIndex
Index before which the element is inserted. Inserting before 0 (the minimal allowed value of the
parameter) is equal to cvSeqPushFront [p 108] and inserting before seq->total (the maximal allowed
value of the parameter) is equal to cvSeqPush [p 107] .

element
Inserted element.

The function cvSeqInsert [p 110] shifts the sequence elements from the inserted position to the nearest end
of the sequence and copies the element content there if the pointer is not NULL. The function returns
pointer to the inserted element.

SeqRemove

Removes element from sequence middle

void cvSeqRemove(CvSeq* seq, int index);

seq
Sequence.

index
Index of removed element.

The function cvSeqRemove [p 110] removes elements with the given index. If the index is out of range the
function reports an error. An attempt to remove an element from an empty sequence is a partitial case of
this situation. The function removes an element by shifting the sequence elements between the nearest end
of the sequence and the index-th position, not counting the latter.

ClearSeq

Clears sequence

110

void cvClearSeq(CvSeq* seq);

seq
Sequence.

The function cvClearSeq [p 110] removes all elements from the sequence. The function does not return the
memory to the storage, but this memory is reused later when new elements are added to the sequence. This
function time complexity is O(1).

GetSeqElem

Returns pointer to sequence element by its index

char* cvGetSeqElem(CvSeq* seq, int index, CvSeqBlock** block=0);
#define CV_GET_SEQ_ELEM(TYPE, seq, index) (TYPE*)cvGetSeqElem((CvSeq*)(seq), (index), 0)

seq
Sequence.

index
Index of element.

block
Optional output parameter. If it is not NULL, the pointer to the sequence block containing the
requested element is stored in this location.

The function cvGetSeqElem [p 111] finds the element with the given index in the sequence and returns the
pointer to it. In addition, the function can return the pointer to the sequence block that contains the
element. If the element is not found, the function returns 0. The function supports negative indices, where
-1 stands for the last sequence element, -2 stands for the one before last, etc. If the sequence is most likely
to consist of a single sequence block or the desired element is likely to be located in the first block, then
the macro CV_GET_SEQ_ELEM(elemType, seq, index) should be used, where the parameter elemType is
the type of sequence elements (CvPoint [p 30] for example), the parameter seq is a sequence, and the
parameter index is the index of the desired element. The macro checks first whether the desired element
belongs to the first block of the sequence and, if so, returns the element, otherwise the macro calls the
main function GetSeqElem. Negative indices always cause the cvGetSeqElem [p 111] call. The function
has O(1) time complexity assuming that number of blocks is much smaller than the number of elements.

SeqElemIdx

Returns index of concrete sequence element

int cvSeqElemIdx(CvSeq* seq, void* element, CvSeqBlock** block=0);

seq
Sequence.

element
Pointer to the element within the sequence.

111

block
Optional argument. If the pointer is not NULL, the address of the sequence block that contains the
element is stored in this location.

The function cvSeqElemIdx [p 111] returns the index of a sequence element or a negative number if the
element is not found.

CvtSeqToArray

Copies sequence to one continuous block of memory

void* cvCvtSeqToArray(CvSeq* seq, void* array, CvSlice slice=CV_WHOLE_SEQ);

seq
Sequence.

array
Pointer to the destination array that must fit all the sequence elements.

slice
The sequence part to copy to the array.

The function cvCvtSeqToArray [p ??] copies the entire sequence or subsequence to the specified buffer
and returns the pointer to the buffer.

MakeSeqHeaderForArray

Constructs sequence from array

void cvMakeSeqHeaderForArray(int seqType, int headerSize, int elemSize,
 void* array, int total,
 CvSeq* sequence, CvSeqBlock* block);

seqType
Type of the created sequence.

headerSize
Size of the header of the sequence. Parameter sequence must point to the structure of that size or
greater size.

elemSize
Size of the sequence element.

array
Pointer to the array that makes up the sequence.

total
Total number of elements in the sequence. The number of array elements must be equal to the value
of this parameter.

sequence
Pointer to the local variable that is used as the sequence header.

112

block
Pointer to the local variable that is the header of the single sequence block.

The function cvMakeSeqHeaderForArray [p 112] initializes sequence header for array. The sequence
header as well as the sequence block are allocated by the user (for example, on stack). No data is copied
by the function. The resultant sequence will consists of a single block and have NULL storage pointer,
thus, it is possible to read its elements, but the attempts to add elements to the sequence will raise an error
in most cases.

SeqSlice

Makes separate header for the sequence slice

CvSeq* cvSeqSlice(CvSeq* seq, CvSlice slice=CV_WHOLE_SEQ,
 CvMemStorage* storage=0, int copyData=0);

cvCloneSeq(seq[,storage]) ~ cvSeqSlice(seq,CV_WHOLE_SEQ,storage,1)

seq
Sequence.

slice
The part of the sequence to extract.

storage
The destination storage to keep the new sequence header and the copied data if any. If it is NULL, the
function uses the storage containing the input sequence.

copyData
The flag that indicates whether to copy the elements of the extracted slice (copyData!=0) or not
(copyData=0)

The function cvSeqSlice [p 113] creates another sequence and either makes it share the elements of the
specified slice with the original sequence or creates another copy of the slice. So if one needs to process a
part of sequence but the processing function does not have a slice parameter, the required sequence slice
may be represented as a separate sequence using this function. Another purpose of the function is to make
a copy of entire sequence that is done by cvCloneSeq [p ??] inline shortcut to cvSeqSlice [p 113]

SeqRemoveSlice

Removes sequence slice

void cvSeqRemoveSlice(CvSeq* seq, CvSlice slice);

seq
Sequence.

slice
The part of the sequence to remove.

113

The function cvSeqRemoveSlice [p 113] removes slice from the sequence.

SeqInsertSlice

Inserts array in the middle of sequence

void cvSeqInsertSlice(CvSeq* seq, int beforeIndex, const CvArr* fromArr);

seq
Sequence.

slice
The part of the sequence to remove.

The function cvSeqInsertSlice [p 114] inserts all fromArr array elements at the specified position of the
sequence. The array may be matrix or another sequence.

SeqInvert

Reverses the order of sequence elements

void cvSeqInvert(CvSeq* seq);

seq
Sequence.

The function cvSeqInvert [p 114] reverses the sequence in-place - makes the first element go last, the last
element go first etc.

SeqSort

Sorts sequence element using the specified comparison function

/* a < b ? -1 : a > b ? 1 : 0 */
typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

void cvSeqSort(CvSeq* seq, CvCmpFunc func, void* userdata);

seq
The sequence to sort

func
The comparison function that returns negative, zero or positive value depending on the elements
relation (see the above declaration and the example below) - similar function is used by qsort from C
runline except that in the latter userdata is not used

userdata
The user parameter passed to the compasion function; helps to avoid global variables in some cases.

114

The function cvSeqSort [p 114] sorts the sequence in-place using the specified criteria. Below is the
example of the function use:

/* Sort 2d points in top-to-bottom left-to-right order */
static int cmp_func(const void* _a, const void* _b, void* userdata)
{
 CvPoint* a = (CvPoint*)_a;
 CvPoint* b = (CvPoint*)_b;
 int y_diff = a->y - b->y;
 int x_diff = a->x - b->x;
 return y_diff ? y_diff : x_diff;
}

...

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage);
int i;

for(i = 0; i < 10; i++)
{
 CvPoint pt;
 pt.x = rand() % 1000;
 pt.y = rand() % 1000;
 cvSeqPush(seq, &pt);
}

cvSeqSort(seq, cmp_func, 0 /* userdata is not used here */);

/* print out the sorted sequence */
for(i = 0; i < seq->total; i++)
{
 CvPoint* pt = (CvPoint*)cvSeqElem(seq, i);
 printf("(%d,%d)\n", pt->x, pt->y);
}

cvReleaseMemStorage(&storage);

StartAppendToSeq

Initializes process of writing to sequence

void cvStartAppendToSeq(CvSeq* seq, CvSeqWriter* writer);

seq
Pointer to the sequence.

writer
Writer state; initialized by the function.

The function cvStartAppendToSeq [p 115] initializes the writer to write to the sequence. Written elements
are added to the end of the sequence by CV_WRITE_SEQ_ELEM(written_elem, writer) macro. Note that
during the writing process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see description of cvFlushSeqWriter [p 117] that helps to avoid some of that difficulties).

115

StartWriteSeq

Creates new sequence and initializes writer for it

void cvStartWriteSeq(int seqFlags, int headerSize, int elemSize,
 CvMemStorage* storage, CvSeqWriter* writer);

seqFlags
Flags of the created sequence. If the sequence is not passed to any function working with a specific
type of sequences, the sequence value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize
Size of the sequence header. The parameter value may not be less than sizeof(CvSeq). If a certain type
or extension is specified, it must fit the base type header.

elemSize
Size of the sequence elements in bytes; must be consistent with the sequence type. For example, if the
sequence of points is created (element type CV_SEQ_ELTYPE_POINT), then the parameter
elemSize must be equal to sizeof(CvPoint).

storage
Sequence location.

writer
Writer state; initialized by the function.

The function cvStartWriteSeq [p 116] is a composition of cvCreateSeq [p 106] and cvStartAppendToSeq
[p 115] . The pointer to the created sequence is stored at writer->seq and is also returned by
cvEndWriteSeq [p 116] function that should be called in the end.

EndWriteSeq

Finishes process of writing sequence

CvSeq* cvEndWriteSeq(CvSeqWriter* writer);

writer
Writer state

The function cvEndWriteSeq [p 116] finishes the writing process and returns the pointer to the written
sequence. The function also truncates the last incomplete sequence block to return the remaining part of
the block to the memory storage. After that the sequence can be read and modified safely.

116

FlushSeqWriter

Updates sequence headers from the writer state

void cvFlushSeqWriter(CvSeqWriter* writer);

writer
Writer state

The function cvFlushSeqWriter [p 117] is intended to enable the user to read sequence elements,
whenever required, during the writing process, e.g., in order to check specific conditions. The function
updates the sequence headers to make reading from the sequence possible. The writer is not closed,
however, so that the writing process can be continued any time. In some algorithm requires often flush’es,
consider using cvSeqPush [p 107] instead.

StartReadSeq

Initializes process of sequential reading from sequence

void cvStartReadSeq(CvSeq* seq, CvSeqReader* reader, int reverse=0);

seq
Sequence.

reader
Reader state; initialized by the function.

reverse
Determines the direction of the sequence traversal. If reverse is 0, the reader is positioned at the first
sequence element, otherwise it is positioned at the last element.

The function cvStartReadSeq [p 117] initializes the reader state. After that all the sequence elements from
the first down to the last one can be read by subsequent calls of the macro CV_READ_SEQ_ELEM(
read_elem, reader) in case of forward reading and by using CV_REV_READ_SEQ_ELEM(read_elem,
reader) in case of reversed reading. Both macros put the sequence element to read_elem and move the
reading pointer toward the next element. A circular structure of sequence blocks is used for the reading
process, that is, after the last element has been read by the macro CV_READ_SEQ_ELEM, the first
element is read when the macro is called again. The same applies to CV_REV_READ_SEQ_ELEM . There
is no function to finish the reading process, since it neither changes the sequence nor creates any
temporary buffers. The reader field ptr points to the current element of the sequence that is to be read next.
The code below demonstrates how to use sequence writer and reader.

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_32SC1, sizeof(CvSeq), sizeof(int), storage);
CvSeqWriter writer;
CvSeqReader reader;
int i;

cvStartAppendToSeq(seq, &writer);
for(i = 0; i < 10; i++)
{

117

 int val = rand()%100;
 CV_WRITE_SEQ_ELEM(val, writer);
 printf("%d is written\n", val);
}
cvEndWriteSeq(&writer);

cvStartReadSeq(seq, &reader, 0);
for(i = 0; i < seq->total; i++)
{
 int val;
 CV_READ_SEQ_ELEM(val, reader);
 printf("%d is read\n", val);
}
...

cvReleaseStorage(&storage);

GetSeqReaderPos

Returns the current reader position

int cvGetSeqReaderPos(CvSeqReader* reader);

reader
Reader state.

The function cvGetSeqReaderPos [p 118] returns the current reader position (within 0 ...
reader->seq->total - 1).

SetSeqReaderPos

Moves the reader to specified position

void cvSetSeqReaderPos(CvSeqReader* reader, int index, int is_relative=0);

reader
Reader state.

index
The destination position. If the positioning mode is used (see the next parameter) the actual position
will be index mod reader->seq->total.

is_relative
If it is not zero, then index is a relative to the current position.

The function cvSetSeqReaderPos [p 118] moves the read position to the absolute position or relative to the
current position.

118

Sets

CvSet

Collection of nodes

 typedef struct CvSetElem
 {
 int flags; /* it is negative if the node is free and zero or positive otherwise */
 struct CvSetElem* next_free; /* if the node is free, the field is a
 pointer to next free node */
 }
 CvSetElem;

 #define CV_SET_FIELDS() \
 CV_SEQUENCE_FIELDS() /* inherits from CvSeq */ \
 struct CvSetElem* free_elems; /* list of free nodes */

 typedef struct CvSet
 {
 CV_SET_FIELDS()
 } CvSet;

The structure CvSet [p 119] is a base for OpenCV sparse data structures.

As follows from the above declaration CvSet [p 119] inherits from CvSeq [p 104] and it adds free_elems
field it to, which is a list of free nodes. Every set node, whether free or not, is the element of the
underlying sequence. While there is no restrictions on elements of dense sequences, the set (and derived
structures) elements must start with integer field and be able to fit CvSetElem structure, because these two
fields (integer followed by the pointer) are required for organization of node set with the list of free nodes.
If a node is free, flags field is negative (the most-significant bit, or MSB, of the field is set), and next_free
points to the next free node (the first free node is referenced by free_elems field of CvSet [p 119]). And if
a node is occupied, flags field is positive and contains the node index that may be retrieved using
(set_elem->flags & CV_SET_ELEM_IDX_MASK) expression, the rest of the node content is determined
by the user. In particular, the occupied nodes are not linked as the free nodes are, so the second field can
be used for such a link as well as for some different purpose. The macro
CV_IS_SET_ELEM(set_elem_ptr) can be used to determined whether the specified node is occupied or
not.

Initially the set and the list are empty. When a new node is requiested from the set, it is taken from the list
of free nodes, which is updated then. If the list appears to be empty, a new sequence block is allocated and
all the nodes within the block are joined in the list of free nodes. Thus, total field of the set is the total
number of nodes both occupied and free. When an occupied node is released, it is added to the list of free
nodes. The node released last will be occupied first.

In OpenCV CvSet [p 119] is used for representing graphs (CvGraph [p 122]), sparse multi-dimensional
arrays (CvSparseMat [p 34]), planar subdivisions (CvSubdiv2D [p ??]) etc.

119

CreateSet

Creates empty set

CvSet* cvCreateSet(int setFlags, int headerSize,
 int elemSize, CvMemStorage* storage);

setFlags
Type of the created set.

headerSize
Set header size; may not be less than sizeof(CvSet).

elemSize
Set element size; may not be less than CvSetElem [p ??] .

storage
Container for the set.

The function cvCreateSet [p 120] creates an empty set with a specified header size and element size, and
returns the pointer to the set. The function is just a thin layer on top of cvCreateSeq [p 106] .

SetAdd

Occupies a node in the set

int cvSetAdd(CvSet* set, void* elem, void** insertedElem=0);

set
Set.

elem
Optional input argument, inserted element. If not NULL, the function copies the data to the allocated
node (The MSB of the first integer field is cleared after copying).

insertedElem
Optional output argument; the pointer to the allocated cell.

The function cvSetAdd [p 120] allocates a new node, optionally copies input element data to it, and
returns the pointer and the index to the node. The index value is taken from the lower bits of flags field of
the node. The function has O(1) complexity, however there exists a faster function for allocating set nodes
(see cvSetNew [p 121]).

SetRemove

Removes element from set

void cvSetRemove(CvSet* set, int index);

120

set
Set.

index
Index of the removed element.

The function cvSetRemove [p 120] removes an element with a specified index from the set. If the node at
the specified location is not occupied the function does nothing. The function has O(1) complexity,
however, cvSetRemoveByPtr [p 121] provides yet faster way to remove a set element if it is located
already.

SetNew

Adds element to set (fast variant)

CvSetElem* cvSetNew(CvSet* set);

set
Set.

The function cvSetNew [p 121] is inline light-weight variant of cvSetAdd [p 120] . It occupies a new node
and returns pointer to it rather than index.

SetRemoveByPtr

Removes set element given its pointer

void cvSetRemoveByPtr(CvSet* set, void* elem);

set
Set.

elem
Removed element.

The function cvSetRemoveByPtr [p 121] is inline light-weight variant of cvSetRemove [p 120] that takes
element pointer. The function does not check whether the node is occupied or not - the user should take
care of it.

GetSetElem

Finds set element by its index

CvSetElem* cvGetSetElem(CvSet* set, int index);

121

set
Set.

index
Index of the set element within a sequence.

The function cvGetSetElem [p 121] finds a set element by index. The function returns the pointer to it or 0
if the index is invalid or the corresponding node is free. The function supports negative indices as it uses
cvGetSeqElem [p 111] to locate the node.

ClearSet

Clears set

void cvClearSet(CvSet* set);

set
Cleared set.

The function cvClearSet [p 122] removes all elements from set. It has O(1) time complexity.

Graphs

CvGraph

Oriented or unoriented weigted graph

 #define CV_GRAPH_VERTEX_FIELDS() \
 int flags; /* vertex flags */ \
 struct CvGraphEdge* first; /* the first incident edge */

 typedef struct CvGraphVtx
 {
 CV_GRAPH_VERTEX_FIELDS()
 }
 CvGraphVtx;

 #define CV_GRAPH_EDGE_FIELDS() \
 int flags; /* edge flags */ \
 float weight; /* edge weight */ \
 struct CvGraphEdge* next[2]; /* the next edges in the incidence lists for staring (0) */ \
 /* and ending (1) vertices */ \
 struct CvGraphVtx* vtx[2]; /* the starting (0) and ending (1) vertices */

 typedef struct CvGraphEdge
 {
 CV_GRAPH_EDGE_FIELDS()
 }
 CvGraphEdge;

 #define CV_GRAPH_FIELDS() \
 CV_SET_FIELDS() /* set of vertices */ \

122

 CvSet* edges; /* set of edges */

 typedef struct CvGraph
 {
 CV_GRAPH_FIELDS()
 }
 CvGraph;

The structure CvGraph [p 122] is a base for graphs used in OpenCV.

Graph structure inherits from CvSet [p 119] - this part describes common graph properties and the graph
vertices, and contains another set as a member - this part describes the graph edges.

The vertex, edge and the graph header structures are declared using the same technique as other extendible
OpenCV structures - via macros, that simplifies extension and customization of the structures. While the
vertex and edge structures do not inherit from CvSetElem [p ??] explicitly, they satisfy both conditions on
the set elements - have an integer field in the beginning and fit CvSetElem structure. The flags fields are
used as for indicating occupied vertices and edges as well as for other purposes, for example, for graph
traversal (see cvStartScanGraph [p 130] et al.), so it is better not to use them directly.

The graph is represented as a set of edges each of whose has the list of incident edges. The incidence lists
for different vertices are interleaved to avoid information duplication as much as posssible.

The graph may be oriented or unoriented. In the latter case there is no distiction between edge connecting
vertex A with vertex B and the edge connecting vertex B with vertex A - only one of them can exist in the
graph at the same moment and it represents both <A, B> and <B, A> edges..

CreateGraph

Creates empty graph

CvGraph* cvCreateGraph(int graphFlags, int headerSize, int vertexSize,
 int edgeSize, CvStorage* storage);

graphFlags
Type of the created graph. Usually, it is either CV_SEQ_KIND_GRAPH for generic unoriented
graphs and CV_SEQ_KIND_GRAPH | CV_GRAPH_FLAG_ORIENTED for generic oriented graphs.

headerSize
Graph header size; may not be less than sizeof(CvGraph).

vertexSize
Graph vertex size; the custom vertex structure must start with CvGraphVtx [p ??] (use
CV_GRAPH_VERTEX_FIELDS())

edgeSize
Graph edge size; the custom edge structure must start with CvGraphEdge [p ??] (use
CV_GRAPH_EDGE_FIELDS())

storage
The graph container.

123

The function cvCreateGraph [p 123] creates an empty graph and returns pointer to it.

GraphAddVtx

Adds vertex to graph

int cvGraphAddVtx(CvGraph* graph, CvGraphVtx* vtx,
 CvGraphVtx** insertedVtx=0);

graph
Graph.

vtx
Optional input argument used to initialize the added vertex (only user-defined fields beyond
sizeof(CvGraphVtx) are copied).

insertedVtx
Optional output argument. If not NULL, the address of the new vertex is written there.

The function cvGraphAddVtx [p 124] adds a vertex to the graph and returns the vertex index.

GraphRemoveVtx

Removes vertex from graph

void cvGraphRemoveVtx(CvGraph* graph, int vtxIdx);

graph
Graph.

vtxIdx
Index of the removed vertex.

The function cvGraphRemoveAddVtx [p ??] removes a vertex from the graph together with all the edges
incident to it. The function reports an error, if the input vertex does not belong to the graph.

GraphRemoveVtxByPtr

Removes vertex from graph

void cvGraphRemoveVtxByPtr(CvGraph* graph, CvGraphVtx* vtx);

graph
Graph.

vtx
Pointer to the removed vertex.

124

The function cvGraphRemoveVtxByPtr [p 124] removes a vertex from the graph together with all the
edges incident to it. The function reports an error, if the vertex does not belong to the graph.

GetGraphVtx

Finds graph vertex by index

CvGraphVtx* cvGetGraphVtx(CvGraph* graph, int vtxIdx);

graph
Graph.

vtxIdx
Index of the vertex.

The function cvGetGraphVtx [p 125] finds the graph vertex by index and returns the pointer to it or NULL
if the vertex does not belong to the graph.

GraphVtxIdx

Returns index of graph vertex

int cvGraphVtxIdx(CvGraph* graph, CvGraphVtx* vtx);

graph
Graph.

vtx
Pointer to the graph vertex.

The function cvGraphVtxIdx [p 125] returns index of the graph vertex.

GraphAddEdge

Adds edge to graph

int cvGraphAddEdge(CvGraph* graph, int startIdx, int endIdx,
 CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

graph
Graph.

startIdx
Index of the starting vertex of the edge.

endIdx
Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

125

edge
Optional input parameter, initialization data for the edge.

insertedEdge
Optional output parameter to contain the address of the inserted edge.

The function cvGraphAddEdge [p 125] connects two specified vertices. The function returns 1 if the edge
has been added successfully, 0 if the edge connecting the two vertices exists already and -1 if either of the
vertices was not found, the starting and the ending vertex are the same or there is some other critical
situation. In the latter case (i.e. when the result is negative) the function also reports an error by default.

GraphAddEdgeByPtr

Adds edge to graph

int cvGraphAddEdgeByPtr(CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx* endVtx,
 CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

graph
Graph.

startVtx
Pointer to the starting vertex of the edge.

endVtx
Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

edge
Optional input parameter, initialization data for the edge.

insertedEdge
Optional output parameter to contain the address of the inserted edge within the edge set.

The function cvGraphAddEdge [p 125] connects two specified vertices. The function returns 1 if the edge
has been added successfully, 0 if the edge connecting the two vertices exists already and -1 if either of the
vertices was not found, the starting and the ending vertex are the same or there is some other critical
situation. In the latter case (i.e. when the result is negative) the function also reports an error by default.

GraphRemoveEdge

Removes edge from graph

void cvGraphRemoveEdge(CvGraph* graph, int startIdx, int endIdx);

graph
Graph.

startIdx
Index of the starting vertex of the edge.

126

endIdx
Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

The function cvGraphRemoveEdge [p 126] removes the edge connecting two specified vertices. If the
vertices are not connected [in that order], the function does nothing.

GraphRemoveEdgeByPtr

Removes edge from graph

void cvGraphRemoveEdgeByPtr(CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx* endVtx);

graph
Graph.

startVtx
Pointer to the starting vertex of the edge.

endVtx
Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

The function cvGraphRemoveEdgeByPtr [p 127] removes the edge connecting two specified vertices. If
the vertices are not connected [in that order], the function does nothing.

FindGraphEdge

Finds edge in graph

CvGraphEdge* cvFindGraphEdge(CvGraph* graph, int startIdx, int endIdx);
#define cvGraphFindEdge cvFindGraphEdge

graph
Graph.

startIdx
Index of the starting vertex of the edge.

endIdx
Index of the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

The function cvFindGraphEdge [p 127] finds the graph edge connecting two specified vertices and returns
pointer to it or NULL if the edge does not exists.

127

FindGraphEdgeByPtr

Finds edge in graph

CvGraphEdge* cvFindGraphEdgeByPtr(CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx* endVtx);
#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr

graph
Graph.

startVtx
Pointer to the starting vertex of the edge.

endVtx
Pointer to the ending vertex of the edge. For unoriented graph the order of the vertex parameters does
not matter.

The function cvFindGraphEdge [p 127] finds the graph edge connecting two specified vertices and returns
pointer to it or NULL if the edge does not exists.

GraphEdgeIdx

Returns index of graph edge

int cvGraphEdgeIdx(CvGraph* graph, CvGraphEdge* edge);

graph
Graph.

edge
Pointer to the graph edge.

The function cvGraphEdgeIdx [p 128] returns index of the graph edge.

GraphVtxDegree

Counts edges indicent to the vertex

int cvGraphVtxDegree(CvGraph* graph, int vtxIdx);

graph
Graph.

vtx
Index of the graph vertex.

The function cvGraphVtxDegree [p 128] returns the number of edges incident to the specified vertex, both
incoming and outcoming. To count the edges, the following code is used:

128

 CvGraphEdge* edge = vertex->first; int count = 0;
 while(edge)
 {
 edge = CV_NEXT_GRAPH_EDGE(edge, vertex);
 count++;
 }

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the edge incident to vertex that follows after
edge.

GraphVtxDegreeByPtr

Finds edge in graph

int cvGraphVtxDegreeByPtr(CvGraph* graph, CvGraphVtx* vtx);

graph
Graph.

vtx
Pointer to the graph vertex.

The function cvGraphVtxDegree [p 128] returns the number of edges incident to the specified vertex, both
incoming and outcoming.

ClearGraph

Clears graph

void cvClearGraph(CvGraph* graph);

graph
Graph.

The function cvClearGraph [p 129] removes all vertices and edges from the graph. The function has O(1)
time complexity.

CloneGraph

Clone graph

CvGraph* cvCloneGraph(const CvGraph* graph, CvMemStorage* storage);

graph
The graph to copy.

storage
Container for the copy.

129

The function cvCloneGraph [p 129] creates full copy of the graph. If the graph vertices or edges have
pointers to some external data, it still be shared between the copies. The vertex and edge indices in the
new graph may be different from the original, because the function defragments the vertex and edge sets.

CvGraphScanner

Graph traversal state

 typedef struct CvGraphScanner
 {
 CvGraphVtx* vtx; /* current graph vertex (or current edge origin) */
 CvGraphVtx* dst; /* current graph edge destination vertex */
 CvGraphEdge* edge; /* current edge */

 CvGraph* graph; /* the graph */
 CvSeq* stack; /* the graph vertex stack */
 int index; /* the lower bound of certainly visited vertices */
 int mask; /* event mask */
 }
 CvGraphScanner;

The structure CvGraphScanner [p 130] is used for depth-first graph traversal. See discussion of the
functions below.

StartScanGraph

Initializes graph traverser state

void cvStartScanGraph(CvGraph* graph, CvGraphScanner* scanner,
 CvGraphVtx* vtx=0, int mask=CV_GRAPH_ALL_ITEMS);

graph
Graph.

scanner
Graph traversal state. It is initialized by the function.

vtx
Initial vertex to start from.

mask
Event mask indicating which events are interesting to the user (where cvNextGraphItem [p 131]
function returns control to the user) It can be CV_GRAPH_ALL_ITEMS (all events are interesting) or
combination of the following flags:

CV_GRAPH_VERTEX - stop at the graph vertices visited for the first time
CV_GRAPH_TREE_EDGE - stop at tree edges (tree edge is the edge connecting the last visited
vertex and the vertex to be visited next)
CV_GRAPH_BACK_EDGE - stop at back edges (back edge is the edge connecting the last
visited vertex and the vertex that was visited before)
CV_GRAPH_FORWARD_EDGE - stop at forward edges (forward edge is the edge connecting
the vertex not visited yet and the last visited vertex (in that order). The forward edges are

130

possible only during oriented graph traversal)
CV_GRAPH_CROSS_EDGE - stop at cross edges (cross edge is similar to back edge but the
ending vertex belongs to another traversal tree). The cross edges are also possible only during
oriented graphs traversal)
CV_GRAPH_ANY_EDGE - stop and any edge (tree, back, forward and cross edges)
CV_GRAPH_NEW_TREE - stop in the beginning of every new traversal tree. When the
traversal procedure visits all vertices and edges reachible from the initial vertex (the visited vertices
together with tree edges make up a tree), it search for some unvisited vertices in the graph and resumes the
traversal process from the vertex. Before starting the new tree (including the initial call of the traversal
procedure) it generates CV_GRAPH_NEW_TREE event.
For unoriented graphs traversal tree corresponds to a connected component of the graph.
CV_GRAPH_BACKTRACKING - stop at every already visited vertex during backtracking -
returning to visited already visited vertexes of the traversal tree.

The function cvStartScanGraph [p 130] initializes graph traverser state. The initialized structure is used in
cvNextGraphItem [p 131] function - the incremental traversal procedure.

NextGraphItem

Makes one or more steps of the graph traversal procedure

int cvNextGraphItem(CvGraphScanner* scanner);

scanner
Graph traversal state. It is updated by the function.

The function cvNextGraphItem [p 131] traverses through the graph until an event interesting to the user
(that is, an event, marked in the mask in cvStartScanGraph [p 130] call) is met or the traversal is over. In
the first case it returns one of the events, listed in the description of mask parameter above and with the
next call with the same state it resumes the traversal. In the latter case it returns CV_GRAPH_OVER (-1).
When the event is CV_GRAPH_VERTEX, or CV_GRAPH_BACKTRACKING or
CV_GRAPH_NEW_TREE, the currently observed vertex is stored in scanner->vtx. And if the event is
edge-related, the edge itself is stored at scanner->edge, the previously visited vertex - at scanner->vtx and
the other ending vertex of the edge - at scanner->dst.

EndScanGraph

Finishes graph traversal procedure

void cvEndScanGraph(CvGraphScanner* scanner);

scanner
Graph traversal state.

131

The function cvEndScanGraph [p 131] finishes graph traversal procedure. It must be called after
CV_GRAPH_OVER event is received or if the traversal is interrupted somewhere before, because the
traverser state contains dynamically allocated structures that need to be released

Trees

CV_TREE_NODE_FIELDS

Helper macro for a tree node type declaration

#define CV_TREE_NODE_FIELDS(node_type) \
 int flags; /* micsellaneous flags */ \
 int header_size; /* size of sequence header */ \
 struct node_type* h_prev; /* previous sequence */ \
 struct node_type* h_next; /* next sequence */ \
 struct node_type* v_prev; /* 2nd previous sequence */ \
 struct node_type* v_next; /* 2nd next sequence */

The macro CV_TREE_NODE_FIELDS() is used to declare structures that can be organized into
hierarchical strucutures (trees). Although, it is not shown, the macro is used to declared CvSeq [p 104] -
the basic type for all dynamical structures and CvFileNode [p 140] - XML node type used in
reading/writing functions (see Persistence section below). The trees made of nodes declared using this
macro can be processed using the functions described below in this section.

CvTreeNodeIterator

Opens existing or creates new file storage

typedef struct CvTreeNodeIterator
{
 const void* node;
 int level;
 int maxLevel;
}
CvTreeNodeIterator;

The structure CvTreeNodeIterator [p 132] is used to traverse trees. The tree node declaration should start
with CV_TREE_NODE_FIELDS(...) macro.

InitTreeNodeIterator

Initializes tree node iterator

132

void cvInitTreeNodeIterator(CvTreeNodeIterator* treeIterator,
 const void* first, int maxLevel);

treeIterator
Tree iterator initialized by the function.

first
The initial node to start traversing from.

maxLevel
The maximal level of the tree (first node assumed to be at the first level) to traverse up to. For
example, 1 means that only nodes at the same level as first should be visited, 2 means that the nodes
on the same level as first and their direct children should be visited etc.

The function cvInitTreeNodeIterator [p 132] initializes tree iterator. The tree is traversed in depth-first
order.

NextTreeNode

Returns the currently observed node and moves iterator toward the next node

void* cvNextTreeNode(CvTreeNodeIterator* treeIterator);

treeIterator
Tree iterator initialized by the function.

The function cvNextTreeNode [p 133] returns the currently observed node and then updates the iterator -
moves it toward the next node. In other words, the function behavior is similar to *p++ expression on
usual C pointer or C++ collection iterator. The function returns NULL if there is no more nodes.

PrevTreeNode

Returns the currently observed node and moves iterator toward the previous node

void* cvPrevTreeNode(CvTreeNodeIterator* treeIterator);

treeIterator
Tree iterator initialized by the function.

The function cvPrevTreeNode [p 133] returns the currently observed node and then updates the iterator -
moves it toward the previous node. In other words, the function behavior is similar to *p-- expression on
usual C pointer or C++ collection iterator. The function returns NULL if there is no more nodes.

133

TreeToNodeSeq

Gathers all node pointers to the single sequence

CvSeq* cvTreeToNodeSeq(const void* first, int header_size, CvMemStorage* storage);

first
The initial tree node.

header_size
Header size of the created sequence (sizeof(CvSeq) is the most used value).

storage
Container for the sequence.

The function cvTreeToNodeSeq [p 134] puts pointers of all nodes reacheable from first to the single
sequence. The pointers are written subsequently in the depth-first order.

InsertNodeIntoTree

Adds new node to the tree

void cvInsertNodeIntoTree(void* node, void* parent, void* frame);

node
The inserted node.

parent
The parent node that is already in the tree.

frame
The top level node. If parent and frame are the same, v_prev field of node is set to NULL rather than
parent.

The function cvInsertNodeIntoTree [p 134] adds another node into tree. The function does not allocate any
memory, it can only modify links of the tree nodes.

RemoveNodeFromTree

Removes node from tree

void cvRemoveNodeFromTree(void* node, void* frame);

node
The removed node.

frame
The top level node. If node->v_prev = NULL and node->h_prev is NULL (i.e. if node is the first
child of frame), frame->v_next is set to node->h_next (i.e. the first child or frame is changed).

134

The function cvRemoveNodeFromTree [p 134] removes node from tree. The function does not deallocate
any memory, it can only modify links of the tree nodes.

Persistence (Writing and Reading Structures)

OpenFileStorage

Opens existing or creates new file storage

CvFileStorage* cvOpenFileStorage(const char* filename, CvMemStorage* memstorage, int flags);

filename
The storage file name.

memstorage
Memory storage used for storing temporary data and read dynamic structures. If it is NULL, the
temporary memory storage is created and used.

flags
Can be one of the following:
CV_STORAGE_READ - the storage is open for reading
CV_STORAGE_WRITE_TEXT - the storage is open for writing data in text format
CV_STORAGE_WRITE_BINARY - the storage is open for writing data in XDR and
base64-encoded binary format

The function cvOpenFileStorage [p 135] open existing file storage or creates a new storage. The file has
XML format and it allows user to store as standard OpenCV arrays and dynamic structures as well as
custom data structures. The function returns pointer to CvFileStorage [p ??] structure, which declaration is
hidden, though not needed to access directly.

ReleaseFileStorage

Releases file storage

void cvReleaseFileStorage(CvFileStorage** storage);

storage
Double pointer to the released file storage.

The function cvReleaseFileStorage [p 135] closes the file on disk that has been written or read and
releases all temporary structures. It must be called after all I/O operations with the storage are finished.

135

Write

Writes array or dynamic structure to the file storage

void cvWrite(CvFileStorage* storage, const char* name,
 const void* structPtr,
 CvAttrList attributes=cvAttrList(),
 int flags=0);

storage
File storage.

name
Name, or ID, of the written structure. It is used to index the written information and then access it
using these ID’s. If it is NULL or empty (""), no ID is written. If it has special value "<auto>", the
address of the written structure in heximal notation will be used as the name.

structPtr
The written structure - CvMat*, IplImage*, CvSeq*, CvGraph* etc.

attributes
The list of attributes that can be formed from NULL-terminated array of <attr_name, attr_value>
pairs using cvAttrList [p ??] () function (see the example below). Most often it is just empty. The
passed attributes override standard attributes with the same name, e.g. user may specify header_dt or
dt attributes to write dynamic structures with custom headers and element types.

flags
The operation flags passed into the specific loading/storing function for the particular data type.
Usually it is not used and may be set to 0. In case of contour trees (for details see cvFindContours [p
176] function in Structural Analysis chapter of the reference) it may be set to CV_WRITE_TREE to
force the whole contour tree to be written.

The function cvWrite [p 136] writes a passed structure to OpenCV file storage. The sample below
demonstrates how to write different types of data to storage.

/****************** Writing Data **************************/
#include <cv.h>

int main(int argc, char** argv)
{
 CvMemStorage* memstorage = cvCreateMemStorage(0);
 CvFileStorage* storage = cvOpenFileStorage("sample.xml", 0, CV_STORAGE_WRITE_TEXT);
 CvMat* mat = cvCreateMat(3, 3, CV_32FC1);
 CvSeq* seq = cvCreateSeq(CV_32SC1, sizeof(CvSeq), sizeof(int), memstorage);
 char* seq_attr[] =
 {
 "created_by", argv[0],
 "the_sequence_creation_date", "1 Sep 2002",
 "comment", "just a comment",
 0
 };
 CvTermCriteria criteria = { CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.1 };
 const char* string1 = "test";
 int i;

 cvSetIdentity(mat);
 cvWrite(storage, "The identity matrix", mat, cvAttrList(), 0);

 for(i = 0; i < 10; i++)

136

 cvSeqPush(seq, &i);

 cvWrite(storage, "SmallSequence", seq, cvAttrList(seq_attr,0), 0);
 cvWriteElem(storage, "SampleStructure", "iid", &criteria); /* writing C structure, see below */
 cvWriteElem(storage, "SampleString", "a", string1); /* writing C string, see below */

 cvReleaseFileStorage(&storage);
 cvReleaseMemStorage(&memstorage);
 return 0;
}
/**/

After compiling and runnning the sample the file sample.xml will contain something like this:

<?xml version="1.0"?>
<opencv_storage>
<struct id="The identity matrix" type="CvMat" dt="f" size="3 3" format="text">
 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000
 0.000000e+000 0.000000e+000 0.000000e+000 1.000000e+000
</struct>
<struct id="SmallSequence" type="CvSeq" flags="42990003" dt="i" format="text"
 created_by="D:\OpenCV\bin\test.exe" the_sequence_creation_date="1 Sep 2002"
 comment="just a comment">
 0 1 2 3 4 5 6 7 8 9
</struct>
<elem id="SampleStructure" dt="iid" value=" 3 10 1.000000000000000e-001"/>
<elem id="SampleString" dt="a" value="test"/>
</opencv_storage>

StartWriteStruct

Writes the opening tag of a compound structure

void cvStartWriteStruct(CvFileStorage* storage, const char* name,
 const char* typeName=0, const void* structPtr=0,
 CvAttrList attributes=cvAttrList());

storage
File storage.

name
Name, or ID, of the written structure. It is used to index the written information and then access it
using these ID’s. If it is NULL or empty (""), no ID is written. If it has special value "<auto>", the
address of the written structure in heximal notation will be used as the name.

structPtr
The written structure pointer. It is not used unless name = "<auto>" .

attributes
The list of attributes (the same as in the previous function)

The function cvStartWriteStruct [p 137] writes the opening tag of a compound structure. It is used by
cvWrite [p 136] function and can be used explicitly to group some structures or write an writer for some
custom data structure.

137

EndWriteStruct

Closes the last opened tag

void cvEndWriteStruct(CvFileStorage* storage);

storage
File storage.

The function cvEndWriteStruct [p 138] closes the most recent opened tag.

WriteElem

Writes a scalar variable

void cvWriteElem(CvFileStorage* storage, const char* name,
 const char* elem_spec, const void* data_ptr);

storage
File storage

name
Name, or ID, of the written scalar. As usual, "<auto>" means that the data pointer will be used as a
name.

elem_spec
A sequence of character each of whose specifies a type of particualar field of the written structure:

’a’ - NULL-terminated C string. It must be the only character of specification string.
’u’ - 8-bit unsigned number
’c’ - 8-bit signed number
’s’ - 16-bit signed number
’i’ - 32-bit signed number
’f’ - single precision floating-point number
’d’ - double precision floating-point number
’p’ - pointer, it is not stored, but it takes some space in the input structure, so it must be specified
in order to write the subsequent fields correctly.
’r’ - the same as pointer, but the integer number, but the lowest 32 bit of the pointer are written
as an integer. This is useful for storing dynamic structures where different nodes reference each
other. In this case the pointers are replaced with some indices, the structure is written and, the
pointers are restored back.

data_ptr
Pointer to the written data. The written data can be a single value of one of basic numerical types
(unsigned char, char, short, int, float or double), C structure containing one or more numerical fields
or a character string. In case of C structures an ideal alignment must be used - short’s must be aligned
by 2 bytes, integer’s and float’s by 4 bytes and double’s by 8 bytes. Usually such an alignment is
used by C/C++ compiler by default, however some structures, e.g. BITMAPFILEHEADER Win32
structure break this rule. If you want to store such a structure, you may use sprintf(elem_spec,

138

"%du", sizeof(my_struct)) to form an element spec that allows to store arbitrary structure, though the
representation will neither be readable nor portable.

The function cvWriteElem [p 138] writes a single numberical value, a structure of numerical values or a
character string. Here are some examples (see cvWrite [p 136] function discussion for complete sample):

CvScalar scalar = { 1., 2., 3.14, 4. };
cvWriteElem(filestorage, "scalar1", "4d", &scalar);

CvPoint pt = { 100, 50 };
cvWriteElem(filestorage, "feature_point", "2i", &pt };

struct
{
 char c;
 uchar u;
 short s;
 int i;
 float f;
 double d;
}
big_twos = { 20, 200, 20000, 2000000, 2e10, 2e100 };
cvWriteElem(filestorage, "big_twos", "cusifd", &big_twos);

cvWriteElem(filestorage, "string1", "a", "Hello, world!" };

Read

Reads array or dynamic structure from the file storage

void* cvRead(CvFileStorage* storage, const char* name, CvAttrList** list=0);

storage
File storage.

name
Name of the structure to read.

list
Optional output parameter that is filled with the node attributes list.

The function cvRead [p 139] reads a structure with the specified name from OpenCV file storage. The
structure is stored inside the file storage so it is be deallocated when the file storage is released, except the
case when it is dynamic strucutre and non-NULL memory storage was passed to cvOpenFileStorage [p
135] function. If you want to keep the sturcture, use cvClone* [p ??] .

ReadElem

Reads a scalar variable

139

void cvReadElem(CvFileStorage* storage, const char* name, void* data_ptr);

storage
File storage

name
Name of the variable to read.

data_ptr
Pointer to the destination structure. In case of strings, data_ptr should be char** - pointer to the
string pointer that is filled by the function.

The function cvReadElem [p 139] reads a single numberical value, a structure of numerical values or a
character string. The order the variables are read in may be different from the order they are written. Here
are examples - counterparts for examples from cvWriteElem [p 138] discussion:

CvScalar scalar;
cvWriteElem(filestorage, "scalar1", &scalar);

CvPoint pt;
cvWriteElem(filestorage, "feature_point", &pt };

struct
{
 char c;
 uchar u;
 short s;
 int i;
 float f;
 double d;
}
big_twos;

cvReadElem(filestorage, "big_twos", &big_twos);

const char* string1 = 0;
cvReadElem(filestorage, "string1", (void*)&string1 };

CvFileNode

XML node representation

typedef struct CvFileNode
{
 int flags; /* micsellaneous flags */
 int header_size; /* size of node header */
 struct node_type* h_prev; /* previous node having the same parent */
 struct node_type* h_next; /* next node having the same parent */
 struct node_type* v_prev; /* the parent node */
 struct node_type* v_next; /* the first child node */
 const char* tagname; /* INTERNAL: XML tag name */
 const char* name; /* the node name */
 CvAttrList* attr; /* list of attributes */
 struct CvFileNode* hash_next; /* INTERNAL: next entry in hash table */
 unsigned hash_val; /* INTERNAL: hash value */
 int elem_size; /* size of a structure elements */

140

 struct CvTypeInfo* typeinfo; /* INTERNAL: type information */
 const char* body; /* INTERNAL: pointer to the structure or scalar content within XML file,
 filled by XML parser */
 const void* content; /* the read structure, NULL if it is read yet */
}
CvFileNode;

The structure CvFileNode [p 140] represents an XML node - building block of OpenCV file storage. The
nodes are organized into tree that has a root node correponding to <opencv_storage> tag. When a file
storage is written, the tree is constructed by cvWrite [p 136] , cvStartWriteStruct [p 137] ,
cvEndWriteStruct [p 138] and cvWriteElem [p 138] functions, and it does not to be accessed directly in
most of cases. When the file storage is read, the whole tree is reconstructed by XML parser in
cvOpenFileStorage [p 135] function, but none of nodes are decoded. Instead, a particular node can be
decoded via cvReadFileNode [p 141] function, after its pointer is retrived by the node name using
cvGetFileNode [p 141] function or the node is reached from the root node. The functions
cvInitTreeNodeIterator [p 132] , cvNextTreeNode [p 133] and cvPrevTreeNode [p 133] can be used to
traverse the XML tree. When the node is decoded, content field becomes valid and the same pointer will
be returned by sebsequent calls to cvReadFileNode [p 141] or cvRead [p 139] for this node.

GetFileNode

Finds XML node by name

CvFileNode* cvGetFileNode(CvFileStorage* storage, const char* name);

storage
File storage.

name
The searched node name. If it is NULL, the root of the XML tree is returned.

The function cvGetFileNode [p 141] locates XML node by name and returns pointer to the node or NULL
if the node is not found.

.

ReadFileNode

Decodes XML node content

void* cvReadFileNode(CvFileStorage* storage, CvFileNode* node, CvAttrList** list=0);

storage
File storage.

node
The node to decode.

list
Optional output parameter that is filled with the node attributes list.

141

The function cvReadFileNode [p 141] decodes the file node content. If content field of the node is not
NULL, no decoding is done and the pointer is simply returned.

.

142

Image Processing and Analysis Reference

Drawing Functions [p 145]
Line [p 145]
LineAA [p 146]
Rectangle [p 146]
Circle [p 147]
Ellipse [p 147]
EllipseAA [p 148]
FillPoly [p 149]
FillConvexPoly [p 149]
PolyLine [p 150]
PolyLineAA [p 150]
InitFont [p 151]
PutText [p 151]
GetTextSize [p 152]

Gradients, Edges and Corners [p 152]
Sobel [p 152]
Laplace [p 154]
Canny [p 154]
PreCornerDetect [p 155]
CornerEigenValsAndVecs [p 155]
CornerMinEigenVal [p 156]
FindCornerSubPix [p 156]
GoodFeaturesToTrack [p 158]

Sampling, Interpolation and Geometrical Transforms [p 158]
InitLineIterator [p 158]
SampleLine [p 159]
GetRectSubPix [p 160]
GetQuadrangeSubPix [p 160]
Resize [p 162]

Morphological Operations [p 163]
CreateStructuringElementEx [p 163]
ReleaseStructuringElement [p 163]
Erode [p 164]
Dilate [p 164]
MorphologyEx [p 165]

Filters and Color Conversion [p 166]
Smooth [p 166]
Integral [p 167]
CvtColor [p 167]
Threshold [p 169]

143

AdaptiveThreshold [p 172]
LUT [p 173]

Pyramids and the Applications [p 173]
PyrDown [p 173]
PyrUp [p 173]
PyrSegmentation [p 174]

Connected components [p 175]
ConnectedComp [p 175]
FloodFill [p 175]
FindContours [p 176]
StartFindContours [p 177]
FindNextContour [p 178]
SubstituteContour [p 178]
EndFindContours [p 179]
DrawContours [p 179]

Image and contour moments [p 180]
Moments [p 180]
GetSpatialMoment [p 181]
GetCentralMoment [p 181]
GetNormalizedCentralMoment [p 181]
GetHuMoments [p 182]

Special Image Transforms [p ??]
HoughLines [p ??]
DistTransform [p ??]

Histogram Functions [p ??]
Histogram [p ??]
CreateHist [p ??]
SetHistBinRanges [p ??]
ReleaseHist [p ??]
ClearHist [p ??]
MakeHistHeaderForArray [p ??]
QueryHistValue_1D [p ??]
GetHistValue_1D [p ??]
GetMinMaxHistValue [p ??]
NormalizeHist [p ??]
ThreshHist [p ??]
CompareHist [p ??]
CopyHist [p ??]
CalcHist [p ??]
CalcBackProject [p ??]
CalcBackProjectPatch [p ??]
CalcProbDensity [p ??]
CalcEMD2 [p ??]

144

Utility Functions [p ??]
MatchTemplate [p ??]

Note:
The chapter describes functions for image processing and analysis. Most of the functions work with 2d
arrays of pixels. We refer the arrays as "images" however they do not neccesserily have to be IplImage’s,
they may be CvMat’s or CvMatND’s as well.

Drawing Functions
Drawing functions work with arbitrary 8-bit images or single-channel images with larger depth: 16s, 32s,
32f, 64f All the functions include parameter color that means rgb value (that may be constructed with
CV_RGB macro) for color images and brightness for grayscale images.

If a drawn figure is partially or completely outside the image, it is clipped.

CV_RGB

Constructs a color value

#define CV_RGB(r, g, b) (int)((uchar)(b) + ((uchar)(g) << 8) + ((uchar)(r) << 16))

Line

Draws simple or thick line segment

void cvLine(CvArr* img, CvPoint pt1, CvPoint pt2, double color, int thickness=1, int connectivity=8);

img
The image.

pt1
First point of the line segment.

pt2
Second point of the line segment.

color
Line color (RGB) or brightness (grayscale image).

thickness
Line thickness.

connectivity
Line connectivity, 8 (by default) or 4. It is possible to pass 0 instead of 8.

The function cvLine [p 145] draws the line segment between pt1 and pt2 points in the image. The line is
clipped by the image or ROI rectangle. The 8-connected or 4-connected Bresenham algorithm is used for
simple line segments. Thick lines are drawn with rounding endings. To specify the line color, the user may
use the macro CV_RGB(r, g, b) .

145

LineAA

Draws antialiased line segment

void cvLineAA(CvArr* img, CvPoint pt1, CvPoint pt2, double color, int scale=0);

img
Image.

pt1
First point of the line segment.

pt2
Second point of the line segment.

color
Line color (RGB) or brightness (grayscale image).

scale
Number of fractional bits in the end point coordinates.

The function cvLineAA [p 146] draws the 8-connected line segment between pt1 and pt2 points in the
image. The line is clipped by the image or ROI rectangle. The algorithm includes some sort of Gaussian
filtering to get a smooth picture. To specify the line color, the user may use the macro CV_RGB(r, g,
b) .

Rectangle

Draws simple, thick or filled rectangle

void cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2, double color, int thickness=1);

img
Image.

pt1
One of the rectangle vertices.

pt2
Opposite rectangle vertex.

color
Line color (RGB) or brightness (grayscale image).

thickness
Thickness of lines that make up the rectangle. Negative values, e.g. CV_FILLED, make the function
to draw a filled rectangle.

The function cvRectangle [p 146] draws a rectangle with two opposite corners pt1 and pt2 .

146

Circle

Draws simple, thick or filled circle

void cvCircle(CvArr* img, CvPoint center, int radius, double color, int thickness=1);

img
Image where the line is drawn.

center
Center of the circle.

radius
Radius of the circle.

color
Circle color (RGB) or brightness (grayscale image).

thickness
Thickness of the circle outline if positive, otherwise indicates that a filled circle has to be drawn.

The function cvCircle [p 147] draws a simple or filled circle with given center and radius. The circle is
clipped by ROI rectangle. The Bresenham algorithm is used both for simple and filled circles. To specify
the circle color, the user may use the macro CV_RGB (r, g, b) .

Ellipse

Draws simple or thick elliptic arc or fills ellipse sector

void cvEllipse(CvArr* img, CvPoint center, CvSize axes, double angle,
 double startAngle, double endAngle, double color, int thickness=1);

img
Image.

center
Center of the ellipse.

axes
Length of the ellipse axes.

angle
Rotation angle.

startAngle
Starting angle of the elliptic arc.

endAngle
Ending angle of the elliptic arc.

color
Ellipse color (RGB) or brightness (grayscale image).

thickness
Thickness of the ellipse arc.

147

The function cvEllipse [p 147] draws a simple or thick elliptic arc or fills an ellipse sector. The arc is
clipped by ROI rectangle. The generalized Bresenham algorithm for conic section is used for simple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and thick arcs. All the
angles are given in degrees. The picture below explains the meaning of the parameters.

Parameters of Elliptic Arc

EllipseAA

Draws antialiased elliptic arc

void cvEllipseAA(CvArr* img, CvPoint center, CvSize axes, double angle,
 double startAngle, double endAngle, double color, int scale=0);

img
Image.

center
Center of the ellipse.

axes
Length of the ellipse axes.

angle
Rotation angle.

startAngle
Starting angle of the elliptic arc.

endAngle
Ending angle of the elliptic arc.

color
Ellipse color (RGB) or brightness (grayscale image).

148

scale
Specifies the number of fractional bits in the center coordinates and axes sizes.

The function cvEllipseAA [p 148] draws an antialiased elliptic arc. The arc is clipped by ROI rectangle.
The generalized Bresenham algorithm for conic section is used for simple elliptic arcs here, and
piecewise-linear approximation is used for antialiased arcs and thick arcs. All the angles are in degrees.

FillPoly

Fills polygons interior

void cvFillPoly(CvArr* img, CvPoint** pts, int* npts, int contours, double color);

img
Image.

pts
Array of pointers to polygons.

npts
Array of polygon vertex counters.

contours
Number of contours that bind the filled region.

color
Polygon color (RGB) or brightness (grayscale image).

The function cvFillPoly [p 149] fills an area bounded by several polygonal contours. The function fills
complex areas, for example, areas with holes, contour self-intersection, etc.

FillConvexPoly

Fills convex polygon

void cvFillConvexPoly(CvArr* img, CvPoint* pts, int npts, double color);

img
Image.

pts
Array of pointers to a single polygon.

npts
Polygon vertex counter.

color
Polygon color (RGB) or brightness (grayscale image).

The function cvFillConvexPoly [p 149] fills convex polygon interior. This function is much faster than the
function cvFillPoly [p 149] and fills not only the convex polygon but any monotonic polygon, that is, a
polygon whose contour intersects every horizontal line (scan line) twice at the most.

149

PolyLine

Draws simple or thick polygons

void cvPolyLine(CvArr* img, CvPoint** pts, int* npts, int contours, int isClosed,
 double color, int thickness=1, int connectivity=8);

img
Image.

pts
Array of pointers to polylines.

npts
Array of polyline vertex counters.

contours
Number of polyline contours.

isClosed
Indicates whether the polylines must be drawn closed. If closed, the function draws the line from the
last vertex of every contour to the first vertex.

color
Polygon color (RGB) or brightness (grayscale image).

thickness
Thickness of the polyline edges.

connectivity
The connectivity of polyline segments, 8 (by default) or 4.

The function cvPolyLine [p 150] draws a set of simple or thick polylines.

PolyLineAA

Draws antialiased polygons

void cvPolyLineAA(CvArr* img, CvPoint** pts, int* npts, int contours,
 int isClosed, int color, int scale =0);

img
Image.

pts
Array of pointers to polylines.

npts
Array of polyline vertex counters.

contours
Number of polyline contours.

isClosed
Indicates whether the polylines must be drawn closed. If closed, the function draws the line from the
last vertex of every contour to the first vertex.

150

color
Polygon color (RGB) or brightness (grayscale image).

scale
Specifies number of fractional bits in the coordinates of polyline vertices.

The function cvPolyLineAA [p 150] draws a set of antialiased polylines.

InitFont

Initializes font structure

void cvInitFont(CvFont* font, CvFontFace fontFace, float hscale,
 float vscale, float italicScale, int thickness);

font
Pointer to the font structure initialized by the function.

fontFace
Font name identifier. Only the font CV_FONT_VECTOR0 is currently supported.

hscale
Horizontal scale. If equal to 1.0f , the characters have the original width depending on the font type.
If equal to 0.5f , the characters are of half the original width.

vscale
Vertical scale. If equal to 1.0f , the characters have the original height depending on the font type. If
equal to 0.5f , the characters are of half the original height.

italicScale
Approximate tangent of the character slope relative to the vertical line. Zero value means a non-italic
font, 1.0f means ≈45° slope, etc. thickness Thickness of lines composing letters outlines. The
function cvLine [p 145] is used for drawing letters.

The function cvInitFont [p 151] initializes the font structure that can be passed further into text drawing
functions. Although only one font is supported, it is possible to get different font flavors by varying the
scale parameters, slope, and thickness.

PutText

Draws text string

void cvPutText(CvArr* img, const char* text, CvPoint org, CvFont* font, int color);

img
Input image.

text
String to print.

org
Coordinates of the bottom-left corner of the first letter.

151

font
Pointer to the font structure.

color
Text color (RGB) or brightness (grayscale image).

The function cvPutText [p 151] renders the text in the image with the specified font and color. The printed
text is clipped by ROI rectangle. Symbols that do not belong to the specified font are replaced with the
rectangle symbol.

GetTextSize

Retrieves width and height of text string

void cvGetTextSize(CvFont* font, const char* textString, CvSize* textSize, int* ymin);

font
Pointer to the font structure.

textString
Input string.

textSize
Resultant size of the text string. Height of the text does not include the height of character parts that
are below the baseline.

ymin
Lowest y coordinate of the text relative to the baseline. Negative, if the text includes such characters
as g, j, p, q, y, etc., and zero otherwise.

The function cvGetTextSize [p 152] calculates the binding rectangle for the given text string when a
specified font is used.

Gradients, Edges and Corners

Sobel

Calculates first, second, third or mixed image derivatives using extended Sobel operator

void cvSobel(const CvArr* I, CvArr* J, int dx, int dy, int apertureSize=3);

I
Source image.

J
Destination image.

ox
Order of the derivative x .

152

oy
Order of the derivative y .

apertureSize
Size of the extended Sobel kernel, must be 1, 3, 5 or 7. In all cases except 1, apertureSize ×
apertureSize separable kernel will be used to calculate the derivative. For apertureSize =1 3x1 or
1x3 kernel is used (Gaussian smoothing is not done). There is also special value CV_SCHARR (=-1)
that corresponds to 3x3 Scharr filter that may give more accurate results than 3x3 Sobel. Scharr
aperture is:

| -3 0 3|
|-10 0 10|
| -3 0 3|

for x-derivative or transposed for y-derivative.

The function cvSobel [p 152] calculates the image derivative by convolving the image with the
appropriate kernel:

J(x,y) = d ox+oy I/dx ox •dy oy | (x,y)

The Sobel operators combine Gaussian smoothing and differentiation so the result is more or less robust to
the noise. Most often, the function is called with (ox=1, oy=0, apertureSize=3) or (ox=0, oy=1,
apertureSize=3) to calculate first x- or y- image derivative. The first case corresponds to

 |-1 0 1|
 |-2 0 2|
 |-1 0 1|

kernel and the second one corresponds to

 |-1 -2 -1|
 | 0 0 0|
 | 1 2 1|
or
 | 1 2 1|
 | 0 0 0|
 |-1 -2 -1|

kernel, depending on the image origin (origin field of IplImage structure). No scaling is done, so the
destination image usually has larger by absolute value numbers than the source image. To avoid overflow,
the function requires 16-bit destination image if the source image is 8-bit. The result can be converted
back to 8-bit using cvConvertScale [p ??] or cvConvertScaleAbs [p 64] functions. Besides 8-bit images
the function can process 32-bit floating-point images. Both source and destination must be single-channel
images of equal size or ROI size.

153

Laplace

Calculates Laplacian of the image

void cvLaplace(const CvArr* I, CvArr* J, int apertureSize=3);

I
Source image.

J
Destination image.

apertureSize
Aperture parameter for Sobel operator (see cvSobel [p 152]).

The function cvLaplace [p 154] calculates Laplacian of the source image by summing second x- and y-
derivatives calcualted using Sobel operator:

J(x,y) = d 2 I/dx 2 + d 2 I/dy 2

Specifying apertureSize =1 gives the fastest variant that is equal to convolving the image with the
following kernel:

|0 1 0|
|1 -4 1|
|0 1 0|

As well as in cvSobel [p 152] function, no scaling is done and the same combinations of input and output
formats are supported.

Canny

Implements Canny algorithm for edge detection

void cvCanny(const CvArr* img, CvArr* edges, double threshold1,
 double threshold2, int apertureSize=3);

img
Input image.

edges
Image to store the edges found by the function.

threshold1
The first threshold.

threshold2
The second threshold.

apertureSize
Aperture parameter for Sobel operator (see cvSobel [p 152]).

154

The function cvCanny [p 154] finds the edges on the input image img and marks them in the output image
edges using the Canny algorithm. The smallest of threshold1 and threshold2 is used for edge
linking, the largest - to find initial segments of strong edges.

PreCornerDetect

Calculates two constraint images for corner detection

void cvPreCornerDetect(const CvArr* img, CvArr* corners, int apertureSize=3);

img
Input image.

corners
Image to store the corner candidates.

apertureSize
Aperture parameter for Sobel operator (see cvSobel [p 152]).

The function cvPreCornerDetect [p 155] finds the corners on the input image img and stores them in the
corners image in accordance with Method 1 for corner detection desctibed in the guide.

CornerEigenValsAndVecs

Calculates eigenvalues and eigenvectors of image blocks for corner detection

void cvCornerEigenValsAndVecs(const CvArr* I, CvArr* eigenvv,
 int blockSize, int apertureSize=3);

I
Input image.

eigenvv
Image to store the results. It must be 6 times wider than the input image.

blockSize
Neighborhood size (see discussion).

apertureSize
Aperture parameter for Sobel operator (see cvSobel [p 152]).

For every pixel the function cvCornerEigenValsAndVecs considers blockSize × blockSize
neigborhood S(p). It calcualtes covariation matrix of derivatives over the neigborhood as:

 | sum S(p) (dI/dx) 2 sum S(p) (dI/dx •dI/dy)|

M = | |
 | sum S(p) (dI/dx •dI/dy) sum S(p) (dI/dy) 2 |

After that it finds eigenvectors and eigenvalues of the resultant matrix and stores them into destination
image in form (λ1 , λ2 , x1 , y1 , x2 , y2), where

λ1 , λ2 - eigenvalues of M; not sorted

155

(x1 , y1) - eigenvector corresponding to λ1

(x2 , y2) - eigenvector corresponding to λ2

CornerMinEigenVal

Calculates minimal eigenvalue of image blocks for corner detection

void cvCornerMinEigenVal(const CvArr* img, CvArr* eigenvv, int blockSize, int apertureSize=3);

img
Input image.

eigenvv
Image to store the minimal eigen values. Should have the same size as img

blockSize
Neighborhood size (see discussion of cvCornerEigenValsAndVecs [p 155]).

apertureSize
Aperture parameter for Sobel operator (see cvSobel [p 152]). format. In the case of floating-point
input format this parameter is the number of the fixed float filter used for differencing.

The function cvCornerMinEigenVal [p 156] is similar to cvCornerEigenValsAndVecs [p 155] but it
calculates and stores only the minimal eigen value of derivative covariation matrix for every pixel, i.e.
min(λ1 , λ2) in terms of the previous function.

FindCornerSubPix

Refines corner locations

void cvFindCornerSubPix(IplImage* I, CvPoint2D32f* corners,
 int count, CvSize win, CvSize zeroZone,
 CvTermCriteria criteria);

I
Input image.

corners
Initial coordinates of the input corners and refined coordinates on output.

count
Number of corners.

win
Half sizes of the search window. For example, if win =(5,5) then 5*2+1 × 5*2+1 = 11 × 11 search
window is used.

zeroZone
Half size of the dead region in the middle of the search zone over which the summation in formulae
below is not done. It is used sometimes to avoid possible singularities of the autocorrelation matrix.
The value of (-1,-1) indicates that there is no such size.

156

criteria
Criteria for termination of the iterative process of corner refinement. That is, the process of corner
position refinement stops either after certain number of iteration or when a required accuracy is
achieved. The criteria may specify either of or both the maximum number of iteration and the
required accuracy.

The function cvFindCornerSubPix [p 156] iterates to find the sub-pixel accurate location of a corner, or
"radial saddle point", as shown in on the picture below.

Sub-pixel accurate corner (radial saddle point) locator is based on the observation that any vector from q
to p is orthogonal to the image gradient.

The core idea of this algorithm is based on the observation that every vector from the center q to a point p
located within a neighborhood of q is orthogonal to the image gradient at p subject to image and
measurement noise. Thus:

ε i =DI p i
T •(q-p i)

where DI p i
 is the image gradient at the one of the points p i in a neighborhood of q . The value of q is

to be found such that ε i is minimized. A system of equations may be set up with ε i ’ set to zero:

sum i (DI p i
•DI p i

T) •q - sum i (DI p i
•DI p i

T •p i) = 0

where the gradients are summed within a neighborhood ("search window") of q. Calling the first gradient
term G and the second gradient term b gives:

q=G -1 •b

The algorithm sets the center of the neighborhood window at this new center q and then iterates until the
center keeps within a set threshold.

157

GoodFeaturesToTrack

Determines strong corners on image

void cvGoodFeaturesToTrack(IplImage* image, IplImage* eigImage, IplImage* tempImage,
 CvPoint2D32f* corners, int* cornerCount,
 double qualityLevel, double minDistance);

image
The source 8-bit or floating-point 32-bit, single-channel image.

eigImage
Temporary floating-point 32-bit image of the same size as image .

tempImage
Another temporary image of the same size and same format as eigImage .

corners
Output parameter. Detected corners.

cornerCount
Output parameter. Number of detected corners.

qualityLevel
Multiplier for the maxmin eigenvalue; specifies minimal accepted quality of image corners.

minDistance
Limit, specifying minimum possible distance between returned corners; Euclidian distance is used.

The function cvGoodFeaturesToTrack [p 158] finds corners with big eigenvalues in the image. The
function first calculates the minimal eigenvalue for every source image pixel using cvCornerMinEigenVal
[p 156] function and stores them in eigImage . Then it performs non-maxima suppression (only local
maxima in 3x3 neighborhood remain). The next step is rejecting the corners with the minimal eigenvalue
less than qualityLevel •max(eigImage (x,y)). Finally, the function ensures that all the corners found
are distanced enough from one another by considering the corners (the most strongest corners are
considered first) and checking that the distance between the newly considered feature and the features
considered earlier is larger than minDistance . So, the function removes the features than are too close
to the stronger features.

Sampling, Interpolation and Geometrical Transforms

InitLineIterator

Initializes line iterator

int cvInitLineIterator(const CvArr* img, CvPoint pt1, CvPoint pt2,
 CvLineIterator* lineIterator, int connectivity=8);

img
Image.

158

pt1
Starting the line point.

pt2
Ending the line point.

lineIterator
Pointer to the line iterator state structure.

connectivity
The scanned line connectivity, 4 or 8.

The function cvInitLineIterator [p 158] initializes the line iterator and returns the number of pixels
between two end points. Both points must be inside the image. After the iterator has been initialized, all
the points on the raster line that connects the two ending points may be retrieved by successive calls of
CV_NEXT_LINE_POINT point. The points on the line are calculated one by one using 4-connected or
8-connected Bresenham algorithm.

Example. Using line iterator to calculate pixel values along the color line

 CvScalar sum_line_pixels(IplImage* img, CvPoint pt1, CvPoint pt2)
 {
 CvLineIterator iterator;
 int blue_sum = 0, green_sum = 0, red_sum = 0;
 int count = cvInitLineIterator(img, pt1, pt2, &iterator, 8);

 for(int i = 0; i < count; i++){
 blue_sum += iterator.ptr[0];
 green_sum += iterator.ptr[1];
 red_sum += iterator.ptr[2];
 CV_NEXT_LINE_POINT(iterator);

 /* print the pixel coordinates: demonstrates how to calculate the coordinates */
 {
 int offset, x, y;
 /* assume that ROI is not set, otherwise need to take it into account. */
 offset = iterator.ptr - (uchar*)(img->imageData);
 y = offset/img->widthStep;
 x = (offset - y*img->widthStep)/(3*sizeof(uchar) /* size of pixel */);
 printf("(%d,%d)\n", x, y);
 }
 }
 return cvScalar(blue_sum, green_sum, red_sum);
 }

SampleLine

Reads raster line to buffer

int cvSampleLine(const CvArr* img, CvPoint pt1, CvPoint pt2,
 void* buffer, int connectivity=8);

img
Image.

159

pt1
Starting the line point.

pt2
Ending the line point.

buffer
Buffer to store the line points; must have enough size to store max(|pt2.x -pt1.x |+1,
|pt2.y -pt1.y |+1) points in case of 8-connected line and |pt2.x -pt1.x |+|pt2.y -pt1.y |+1 in
case of 4-connected line.

connectivity
The line connectivity, 4 or 8.

The function cvSampleLine [p 159] implements a particular case of application of line iterators. The
function reads all the image points lying on the line between pt1 and pt2 , including the ending points,
and stores them into the buffer.

GetRectSubPix

Retrieves pixel rectangle from image with sub-pixel accuracy

void cvGetRectSubPix(const CvArr* I, CvArr* J, CvPoint2D32f center);

I
Source image.

J
Extracted rectangle.

center
Floating point coordinates of the extracted rectangle center within the source image. The center must
be inside the image.

The function cvGetRectSubPix [p 160] extracts pixels from I :

J(x+width(J)/2, y+height(J)/2)=I(x+center.x, y+center.y)

where the values of pixels at non-integer coordinates (x+center.x, y+center.y) are retrieved using bilinear
interpolation. Every channel of multiple-channel images is processed independently. Whereas the
rectangle center must be inside the image, the whole rectangle may be partially occluded. In this case, the
replication border mode is used to get pixel values beyond the image boundaries.

GetQuadrangeSubPix

Retrieves pixel quadrangle from image with sub-pixel accuracy

void cvGetQuadrangeSubPix(const CvArr* I, CvArr* J, const CvArr* M,
 int fillOutliers=0, CvScalar fillValue=cvScalarAll(0));

160

I
Source image.

J
Extracted quadrangle.

M
The transformation 3 × 2 matrix [A|b] (see the discussion).

fillOutliers
The flag indicating whether to interpolate values of pixel taken from outside of the source image
using replication mode (fillOutliers =0) or set them a fixed value (fillOutliers =1).

fillValue
The fixed value to set the outlier pixels to if fillOutliers =1.

The function cvGetQuadrangleSubPix [p ??] extracts pixels from I at sub-pixel accuracy and stores them
to J as follows:

J(x+width(J)/2, y+height(J)/2)= I(A 11 x+A 12 y+b 1 , A 21 x+A 22 y+b 2),

where A and b are taken from M
 | A 11 A 12 b 1 |

M = | |
 | A 21 A 22 b 2 |

where the values of pixels at non-integer coordinates A•(x,y)T +b are retrieved using bilinear
interpolation. Every channel of multiple-channel images is processed independently.

Example. Using cvGetQuadrangeSubPix for image rotation.

#include "cv.h"
#include "highgui.h"
#include "math.h"

int main(int argc, char** argv)
{
 IplImage* src;
 /* the first command line parameter must be image file name */
 if(argc==2 && (src = cvLoadImage(argv[1], -1))!=0)
 {
 IplImage* dst = cvCloneImage(src);
 int delta = 1;
 int angle = 0;

 cvNamedWindow("src", 1);
 cvShowImage("src", src);

 for(;;)
 {
 float m[6];
 double factor = (cos(angle*CV_PI/180.) + 1.1)*3;
 CvMat M = cvMat(2, 3, CV_32F, m);
 int w = src->width;
 int h = src->height;

 m[0] = (float)(factor*cos(-angle*2*CV_PI/180.));

161

 m[1] = (float)(factor*sin(-angle*2*CV_PI/180.));
 m[2] = w*0.5f;
 m[3] = -m[1];
 m[4] = m[0];
 m[5] = h*0.5f;

 cvGetQuadrangleSubPix(src, dst, &M, 1, cvScalarAll(0));

 cvNamedWindow("dst", 1);
 cvShowImage("dst", dst);

 if(cvWaitKey(5) == 27)
 break;

 angle = (angle + delta) % 360;
 }
 }
 return 0;
}

Resize

Resizes image

void cvResize(const CvArr* I, CvArr* J, int interpolation=CV_INTER_LINEAR);

I
Source image.

J
Destination image.

interpolation
Interpolation method:

CV_INTER_NN - nearest-neigbor interpolation,
CV_INTER_LINEAR - bilinear interpolation (used by default)

The function cvResize [p 162] resizes image I so that it fits exactly to J . If ROI is set, the function
consideres the ROI as supported as usual. the source image using the specified structuring element B that
determines the shape of a pixel neighborhood over which the minimum is taken:

C=erode(A,B): C(I)=min (K in B I) A(K)

The function supports the in-place mode when the source and destination pointers are the same. Erosion
can be applied several times iterations parameter. Erosion on a color image means independent
transformation of all the channels.

162

Morphological Operations

CreateStructuringElementEx

Creates structuring element

IplConvKernel* cvCreateStructuringElementEx(int nCols, int nRows, int anchorX, int anchorY,
 CvElementShape shape, int* values);

nCols
Number of columns in the structuring element.

nRows
Number of rows in the structuring element.

anchorX
Relative horizontal offset of the anchor point.

anchorY
Relative vertical offset of the anchor point.

shape
Shape of the structuring element; may have the following values:

CV_SHAPE_RECT , a rectangular element;
CV_SHAPE_CROSS , a cross-shaped element;
CV_SHAPE_ELLIPSE , an elliptic element;
CV_SHAPE_CUSTOM , a user-defined element. In this case the parameter values specifies the
mask, that is, which neighbors of the pixel must be considered.

values
Pointer to the structuring element data, a plane array, representing row-by-row scanning of the
element matrix. Non-zero values indicate points that belong to the element. If the pointer is NULL ,
then all values are considered non-zero, that is, the element is of a rectangular shape. This parameter
is considered only if the shape is CV_SHAPE_CUSTOM .

The function cv CreateStructuringElementEx [p ??] allocates and fills the structure IplConvKernel ,
which can be used as a structuring element in the morphological operations.

ReleaseStructuringElement

Deletes structuring element

void cvReleaseStructuringElement(IplConvKernel** ppElement);

ppElement
Pointer to the deleted structuring element.

The function cv ReleaseStructuringElement [p ??] releases the structure IplConvKernel that is no
longer needed. If *ppElement is NULL , the function has no effect. The function returns created
structuring element.

163

Erode

Erodes image by using arbitrary structuring element

void cvErode(const CvArr* A, CvArr* C, IplConvKernel* B=0, int iterations=1);

A
Source image.

C
Destination image.

B
Structuring element used for erosion. If it is NULL, a 3×3 rectangular structuring element is used.

iterations
Number of times erosion is applied.

The function cvErode [p 164] erodes the source image using the specified structuring element B that
determines the shape of a pixel neighborhood over which the minimum is taken:

C=erode(A,B): C(x,y)=min ((x’,y’) in B (x,y)) A(x’,y’)

The function supports the in-place mode when the source and destination pointers are the same. Erosion
can be applied several times iterations parameter. Erosion on a color image means independent
transformation of all the channels.

Dilate

Dilates image by using arbitrary structuring element

void cvDilate(const CvArr* A, CvArr* C, IplConvKernel* B=0, int iterations=1);

A
Source image.

C
Destination image.

B
Structuring element used for erosion. If it is NULL, a 3×3 rectangular structuring element is used.

iterations
Number of times erosion is applied.

The function cvDilate [p 164] dilates the source image using the specified structuring element B that
determines the shape of a pixel neighborhood over which the maximum is taken:

C=dilate(A,B): C(x,y)=max ((x’,y’) in B (x,y)) A(x’,y’)

164

The function supports the in-place mode when the source and destination pointers are the same. Dilation
can be applied several times iterations parameter. Dilation on a color image means independent
transformation of all the channels.

MorphologyEx

Performs advanced morphological transformations

void cvMorphologyEx(const CvArr* A, CvArr* C, CvArr* temp,
 IplConvKernel* B, CvMorphOp op, int iterations);

A
Source image.

C
Destination image.

temp
Temporary image, required in some cases.

B
Structuring element.

op
Type of morphological operation (see the discussion).

iterations
Number of times erosion and dilation are applied.

The function cvMorphologyEx [p 165] performs advanced morphological transformations using on
erosion and dilation as basic operations.

Opening:
C=open(A,B)=dilate(erode(A,B),B), if op=CV_MOP_OPEN

Closing:
C=close(A,B)=erode(dilate(A,B),B), if op=CV_MOP_CLOSE

Morphological gradient:
C=morph_grad(A,B)=dilate(A,B)-erode(A,B), if op=CV_MOP_GRADIENT

"Top hat":
C=tophat(A,B)=A-erode(A,B), if op=CV_MOP_TOPHAT

"Black hat":
C=blackhat(A,B)=dilate(A,B)-A, if op=CV_MOP_BLACKHAT

The temporary image temp is required if op=CV_MOP_GRADIENT or if A=C (inplace operation) and
op=CV_MOP_TOPHAT or op=CV_MOP_BLACKHAT

165

Filters and Color Conversion

Smooth

Smooths the image in one of several ways

void cvSmooth(const CvArr* src, CvArr* dst,
 int smoothtype=CV_GAUSSIAN,
 int param1=3, int param2=0);

src
The source image.

dst
The destination image.

smoothtype
Type of the smoothing:

CV_BLUR_NO_SCALE (simple blur with no scaling) - summation over a pixel
param1 ×param2 neighborhood. If the neighborhood size is not fixed, one may use cvIntegral
[p 167] function.
CV_BLUR (simple blur) - summation over a pixel param1 ×param2 neighborhood with
subsequent scaling by 1/(param1 •param2).
CV_GAUSSIAN (gaussian blur) - convolving image with param1 ×param2 Gaussian.
CV_MEDIAN (median blur) - finding median of param1 ×param1 neighborhood (i.e. the
neighborhood is square).
CV_BILATERAL (bilateral filter) - applying bilateral 3x3 filtering with color sigma=param1
and space sigma=param2 . Information about bilateral filtering can be found at
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

param1
The first parameter of smoothing operation.

param2
The second parameter of smoothing operation. In case of simple scaled/non-scaled and Gaussian blur
if param2 is zero, it is set to param1 .

The function cvSmooth [p 166] smooths image using one of several methods. Every of the methods has
some features and restrictions listed below

Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit
format (similar to cvSobel [p 152] and cvLaplace [p 154]) and 32-bit floating point to 32-bit
floating-point format.

Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two
methods can process images in-place.

Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process images in-place.

166

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

Integral

Calculates integral images

void cvIntegral(const CvArr* I, CvArr* S, CvArr* Sq=0, CvArr* T=0);

I
The source image, w×h, single-channel, 8-bit, or floating-point (32f or 64f).

S
The sum image, w+1×h+1 , single-channel, 32-bit integer or double precision floating-point (64f).

Sq
The square sum image, w+1×h+1 , single-channel, double precision floating-point (64f).

T
The tilted sum image (sum of rotated by 45° image), w+1×h+1 , single-channel, the same data type as
sum.

The function cvIntegral [p 167] calculates one or more integral images for the source image as following:

S(X,Y)=sum x<X,y<Y I(x,y)

Sq(X,Y)=sum x<X,y<Y I(x,y) 2

T(X,Y)=sum y<Y,abs(x-X)<y I(x,y)

After that the images are calculated, they can be used to calculate sums of pixels over an arbitrary
rectangles, for example:

sum x1<=x<x2,y1<=y<y2 I(x,y)=S(x2,y2)-S(x1,y2)-S(x2,y1)+S(x1,x1)

It makes possible to do a fast blurring or fast block correlation with variable window size etc.

CvtColor

Converts image from one color space to another

void cvCvtColor(const CvArr* src, CvArr* dst, int code);

src
The source 8-bit image.

dst
The destination 8-bit image.

code
Color conversion operation that can be specifed using CV_<src_color_space>2<dst_color_space>
constants (see below).

167

The function cvCvtColor [p 167] converts input image from one color space to another. The function
ignores colorModel and channelSeq fields of IplImage header, so the source image color space
should be specified correctly (including order of the channels in case of RGB space, e.g. BGR means
24-bit format with B0 G0 R0 B1 G1 R1 ... layout, whereas RGB means 24-format with R0 G0 B0 R1

G1 B1 ... layout). The function can do the following transformations:

Transformations within RGB space like adding/removing alpha channel, reversing the channel order,
conversion to/from 16-bit (Rx5:Gx6:Rx5) color, as well as conversion to/from grayscale using:

RGB[A]->Gray: Y=0.212671*R + 0.715160*G + 0.072169*B + 0*A
Gray->RGB[A]: R=Y G=Y B=Y A=0

All the possible combinations of input and output format (except equal) are allowed here.

RGB<=>XYZ (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB):

X		0.412411 0.357585 0.180454		R
Y	=	0.212649 0.715169 0.072182	*	G
Z		0.019332 0.119195 0.950390		B

R		3.240479 -1.53715 -0.498535		X
G	=	-0.969256 1.875991 0.041556	*	Y
B		0.055648 -0.204043 1.057311		Z

RGB<=>YCrCb (CV_BGR2YCrCb, CV_RGB2YCrCb, CV_YCrCb2BGR, CV_YCrCb2RGB)

Y=0.299*R + 0.587*G + 0.114*B
Cr=(R-Y)*0.713 + 128
Cb=(B-Y)*0.564 + 128

R=Y + 1.403*(Cr - 128)
G=Y - 0.344*(Cr - 128) - 0.714*(Cb - 128)
B=Y + 1.773*(Cb - 128)

RGB=>HSV (CV_BGR2HSV,CV_RGB2HSV)

V=max(R,G,B)
S=(V-min(R,G,B))*255/V if V!=0, 0 otherwise

 (G - B)*60/S, if V=R
H= 180+(B - R)*60/S, if V=G
 240+(R - G)*60/S, if V=B

if H<0 then H=H+360

The hue values calcualted using the above formulae vary from 0° to 360° so they are divided by 2 to
fit into 8-bit destination format.

RGB=>Lab (CV_BGR2Lab, CV_RGB2Lab)

168

X		0.433910 0.376220 0.189860		R/255
Y	=	0.212649 0.715169 0.072182	*	G/255
Z		0.017756 0.109478 0.872915		B/255

L = 116*Y 1/3 for Y>0.008856
L = 903.3*Y for Y<=0.008856

a = 500*(f(X)-f(Y))
b = 200*(f(Y)-f(Z))
where f(t)=t 1/3 for t>0.008856
 f(t)=7.787*t+16/116 for t<=0.008856

The above formulae have been taken from
http://www.cica.indiana.edu/cica/faq/color_spaces/color.spaces.html

Bayer=>RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR,
CV_BayerBG2RGB, CV_BayerRG2BGR, CV_BayerGB2RGB, CV_BayerGR2BGR,
CV_BayerRG2RGB, CV_BayerBG2BGR, CV_BayerGR2RGB, CV_BayerGB2BGR)

Bayer pattern is widely used in CCD and CMOS cameras. It allows to get color picture out of a single
plane where R,G and B pixels (sensors of a particular component) are interleaved like this:

R G R G R

G B G B G

R G R G R

G B G B G

R G R G R

G B G B G

The output RGB components of a pixel are interpolated from 1, 2 or 4 neighbors of the pixel having
the same color. There are several modifications of the above pattern that can be achieved by shifting
the pattern one pixel left and/or one pixel up. The two letters C1 and C2 in the conversion constants

CV_BayerC1C22{BGR|RGB} indicate the particular pattern type - these are components from the

second row, second and third columns, respectively. For example, the above pattern has very popular
"BG" type.

Threshold

Applies fixed-level threshold to array elements

169

http://www.cica.indiana.edu/cica/faq/color_spaces/color.spaces.html

void cvThreshold(const CvArr* src, CvArr* dst, double threshold,
 double maxValue, int thresholdType);

src
Source array (single-channel, 8-bit of 32-bit floating point).

dst
Destination array; must be either the same type as src or 8-bit.

threshold
Threshold value.

maxValue
Maximum value to use with CV_THRESH_BINARY, CV_THRESH_BINARY_INV, and
CV_THRESH_TRUNC thresholding types.

thresholdType
Thresholding type (see the discussion)

The function cvThreshold [p 169] applies fixed-level thresholding to single-channel array. The function is
typically used to get bi-level (binary) image out of grayscale image or for removing a noise, i.e. filtering
out pixels with too small or too large values. There are several types of thresholding the function supports
that are determined by thresholdType :

thresholdType= CV_THRESH_BINARY:
dst(x,y) = maxValue, if src(x,y)>threshold
 0, otherwise

thresholdType= CV_THRESH_BINARY_INV:
dst(x,y) = 0, if src(x,y)>threshold
 maxValue, otherwise

thresholdType= CV_THRESH_TRUNC:
dst(x,y) = threshold, if src(x,y)>threshold
 src(x,y), otherwise

thresholdType= CV_THRESH_TOZERO:
dst(x,y) = src(x,y), if (x,y)>threshold
 0, otherwise

thresholdType= CV_THRESH_TOZERO_INV:
dst(x,y) = 0, if src(x,y)>threshold
 src(x,y), otherwise

And this is the visual description of thresholding types:

170

171

AdaptiveThreshold

Applies adaptive threshold to array

void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double maxValue,
 int adaptiveMethod, int thresholdType,
 int blockSize, double param1);

src
Source image.

dst
Destination image.

maxValue
Maximum value that is used with CV_THRESH_BINARY and CV_THRESH_BINARY_INV.

adaptiveMethod
Adaptive thresholding algorithm to use: CV_ADAPTIVE_THRESH_MEAN_C or
CV_ADAPTIVE_THRESH_GAUSSIAN_C (see the discussion).

thresholdType
Thresholding type; must be one of

CV_THRESH_BINARY,
CV_THRESH_BINARY_INV,

blockSize
The size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, ...

param1
The method-dependent parameter. For the methods CV_ADAPTIVE_THRESH_MEAN_C and
CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a constant subtracted from mean or weighted mean
(see the discussion), though it may be negative.

The function cvAdaptiveThreshold [p 172] transforms grayscale image to binary image according to the
formulae:

thresholdType= CV_THRESH_BINARY:
dst(x,y) = maxValue, if src(x,y)>T(x,y)
 0, otherwise

thresholdType= CV_THRESH_BINARY_INV:
dst(x,y) = 0, if src(x,y)>T(x,y)
 maxValue, otherwise

where T I is a threshold calculated individually for each pixel.

For the method CV_ADAPTIVE_THRESH_MEAN_C it is a mean of blockSize × blockSize pixel
neighborhood, subtracted by param1 .

For the method CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a weighted sum (gaussian) of
blockSize × blockSize pixel neighborhood, subtracted by param1 .

172

LUT

Performs look-up table transformation on image

CvMat* cvLUT(const CvArr* A, CvArr* B, const CvArr* lut);

A
Source array of 8-bit elements.

B
Destination array of arbitrary depth and of the same number of channels as the source array.

lut
Look-up table of 256 elements; should be of the same depth as the destination array.

The function cvLUT [p 173] fills the destination array with values of look-up table entries. Indices of the
entries are taken from the source array. That is, the function processes each pixel as follows:

B(x,y)=lut[A(x,y)+ ∆]

where ∆ is 0 for 8-bit unsigned source image type and 128 for 8-bit signed source image type.

Pyramids and the Applications

PyrDown

Downsamples image

void cvPyrDown(const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5);

src
The source image.

dst
The destination image, should have 2x smaller width and height than the source.

filter
Type of the filter used for convolution; only CV_GAUSSIAN_5x5 is currently supported.

The function cvPyrDown [p 173] performs downsampling step of Gaussian pyramid decomposition. First
it convolves source image with the specified filter and then downsamples the image by rejecting even
rows and columns.

PyrUp

Upsamples image

173

void cvPyrUp(const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5);

src
The source image.

dst
The destination image, should have 2x smaller width and height than the source.

filter
Type of the filter used for convolution; only CV_GAUSSIAN_5x5 is currently supported.

The function cvPyrUp [p 173] performs up-sampling step of Gaussian pyramid decomposition. First it
upsamples the source image by injecting even zero rows and columns and then convolves result with the
specified filter multiplied by 4 for interpolation. So the destination image is four times larger than the
source image.

PyrSegmentation

Implements image segmentation by pyramids

void cvPyrSegmentation(IplImage* src, IplImage* dst,
 CvMemStorage* storage, CvSeq** comp,
 int level, double threshold1, double threshold2);

src
The source image.

dst
The destination image.

storage
Storage; stores the resulting sequence of connected components.

comp
Pointer to the output sequence of the segmented components.

level
Maximum level of the pyramid for the segmentation.

threshold1
Error threshold for establishing the links.

threshold2
Error threshold for the segments clustering.

The function cvPyrSegmentation [p 174] implements image segmentation by pyramids. The pyramid
builds up to the level level . The links between any pixel a on level i and its candidate father pixel b on
the adjacent level are established if
p(c(a),c(b))<threshold1 . After the connected components are defined, they are joined into
several clusters. Any two segments A and B belong to the same cluster, if
p(c(A),c(B))<threshold2 . The input image has only one channel, then
p(c¹,c²)=|c¹-c²| . If the input image has three channels (red, green and blue), then
p(c¹,c²)=0,3·(c¹ r -c² r)+0,59·(c¹ g -c² g)+0,11·(c¹ b -c² b) . There may be more

than one connected component per a cluster.
The images src and dst should be 8-bit single-channel or 3-channel images or equal size

174

Connected components

CvConnectedComp

Connected component

 typedef struct CvConnectedComp
 {
 double area; /* area of the segmented component */
 float value; /* gray scale value of the segmented component */
 CvRect rect; /* ROI of the segmented component */
 } CvConnectedComp;

FloodFill

Fills a connected component with given color

void cvFloodFill(CvArr* img, CvPoint seed, double newVal,
 double lo=0, double up=0, CvConnectedComp* comp=0,
 int flags=4, CvArr* mask=0);
#define CV_FLOODFILL_FIXED_RANGE (1 << 16)
#define CV_FLOODFILL_MASK_ONLY (1 << 17)

img
Input image, either 1-,3-channel 8-bit, or single-channel floating-point image. It is modified by the
function unless CV_FLOODFILL_MASK_ONLY flag is set (see below).

seed
Coordinates of the seed point inside the image ROI.

newVal
New value of repainted domain pixels. For 8-bit color images it is a packed color (e.g. using CV_RGB
macro).

lo
Maximal lower brightness/color difference between the currently observed pixel and one of its
neighbor belong to the component or seed pixel to add the pixel to component. In case of 8-bit color
images it is packed value.

up
Maximal upper brightness/color difference between the currently observed pixel and one of its
neighbor belong to the component or seed pixel to add the pixel to component. In case of 8-bit color
images it is packed value.

comp
Pointer to structure the function fills with the information about the repainted domain.

flags
The operation flags. Lower bits contain connectivity value, 4 (by default) or 8, used within the
function. Connectivity determines which neighbors of a pixel are considered. Upper bits can be 0 or
combination of the following flags:

CV_FLOODFILL_FIXED_RANGE - if set the difference between the current pixel and seed

175

pixel is considered, otherwise difference between neighbor pixels is considered (the range is
floating).
CV_FLOODFILL_MASK_ONLY - if set, the function does not fill the image (newVal is
ignored), but the fills mask (that must be non-NULL in this case).

mask
Operation mask, should be singe-channel 8-bit image, 2 pixels wider and 2 pixels taller than img . If
not NULL, the function uses and updates the mask, so user takes responsibility of initializing mask
content. Floodfilling can’t go across non-zero pixels in the mask, for example, an edge detector
output can be used as a mask to stop filling at edges. Or it is possible to use the same mask in
multiple calls to the function to make sure the filled area do not overlap.

The function cvFloodFill [p 175] fills a connected component starting from the seed pixel where all pixels
within the component have close to each other values (prior to filling). The pixel is considered to belong to
the repainted domain if its value I(x,y) meets the following conditions (the particular cases are specifed
after commas):

I(x’,y’)-lo<=I(x,y)<=I(x’,y’)+up, grayscale image + floating range
I(seed.x,seed.y)-lo<=I(x,y)<=I(seed.x,seed.y)+up, grayscale image + floating range

I(x’,y’) r -lo r <=I(x,y) r <=I(x’,y’) r +up r and

I(x’,y’) g -lo g <=I(x,y) g <=I(x’,y’) g +up g and

I(x’,y’) b -lo b <=I(x,y) b <=I(x’,y’) b +up b , color image + floating range

I(seed.x,seed.y) r -lo r <=I(x,y) r <=I(seed.x,seed.y) r +up r and

I(seed.x,seed.y) g -lo g <=I(x,y) g <=I(seed.x,seed.y) g +up g and

I(seed.x,seed.y) b -lo b <=I(x,y) b <=I(seed.x,seed.y) b +up b , color image + fixed range

where I(x’,y’) is value of one of pixel neighbors (to be added to the connected component in case of
floating range, a pixel should have at least one neigbor with similar brightness)

FindContours

Finds contours in binary image

int cvFindContours(CvArr* img, CvMemStorage* storage, CvSeq** firstContour,
 int headerSize=sizeof(CvContour), CvContourRetrievalMode mode=CV_RETR_LIST,
 CvChainApproxMethod method=CV_CHAIN_APPROX_SIMPLE);

image
The source 8-bit single channel image. Non-zero pixels are treated as 1’s, zero pixels remain 0’s -
that is image treated as binary . To get such a binary image from grayscale, one may use
cvThreshold [p 169] , cvAdaptiveThreshold [p 172] or cvCanny [p 154] . The function modifies the
source image content.

storage
Container of the retrieved contours.

firstContour
Output parameter, will contain the pointer to the first outer contour.

176

headerSize
Size of the sequence header, >=sizeof(CvChain [p ??]) if method =CV_CHAIN_CODE, and
>=sizeof(CvContour) otherwise.

mode
Retrieval mode.

CV_RETR_EXTERNALretrives only the extreme outer contours
CV_RETR_LISTretrieves all the contours and puts them in the list
CV_RETR_CCOMPretrieves all the contours and organizes them into two-level hierarchy: top
level are external boundaries of the components, second level are bounda boundaries of the
holes
CV_RETR_TREEretrieves all the contours and reconstructs the full hierarchy of nested contours

method
Approximation method.

CV_CHAIN_CODEoutputs contours in the Freeman chain code. All other methods output
polygons (sequences of vertices).
CV_CHAIN_APPROX_NONEtranslates all the points from the chain code into points;
CV_CHAIN_APPROX_SIMPLEcompresses horizontal, vertical, and diagonal segments, that is,
the function leaves only their ending points;
CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS applies one of the flavors of Teh-Chin chain
approximation algorithm.
CV_LINK_RUNS uses completely different (from the previous methods) algorithm - linking of
horizontal segments of 1’s. Only CV_RETR_LIST retrieval mode is allowed by the method.

The function cvFindContours [p 176] retrieves contours from the binary image and returns the number of
retrieved contours. The pointer firstContour is filled by the function. It will contain pointer to the
first most outer contour or NULL if no contours is detected (if the image is completely black). Other
contours may be reached from firstContour using h_next and v_next links. The sample in
cvDrawContours [p 179] discussion shows how to use contours for connected component detection.
Contours can be also used for shape analysis and object recognition - see squares sample in CVPR
2001 tutorial course located at SourceForge site.

StartFindContours

Initializes contour scanning process

CvContourScanner cvStartFindContours(IplImage* img, CvMemStorage* storage,
 int headerSize, CvContourRetrievalMode mode,
 CvChainApproxMethod method);

image
The source 8-bit single channel binary image.

storage
Container of the retrieved contours.

177

headerSize
Size of the sequence header, >=sizeof(CvChain [p ??]) if method =CV_CHAIN_CODE, and
>=sizeof(CvContour) otherwise.

mode
Retrieval mode, has the same meaning as in cvFindContours [p 176] .

method
Approximation method, the same as in cvFindContours [p 176] except that CV_LINK_RUNS can
not be used here.

The function cvStartFindContours [p 177] initializes and returns pointer to the contour scanner. The
scanner is used further in cvFindNextContour [p 178] to retrieve the rest of contours.

FindNextContour

Finds next contour in the image

CvSeq* cvFindNextContour(CvContourScanner scanner);

scanner
Contour scanner initialized by the function cvStartFindContours [p 177] .

The function cvFindNextContour [p 178] locates and retrieves the next contour in the image and returns
pointer to it. The function returns NULL, if there is no more contours.

SubstituteContour

Replaces retrieved contour

void cvSubstituteContour(CvContourScanner scanner, CvSeq* newContour);

scanner
Contour scanner initialized by the function cvStartFindContours .

newContour
Substituting contour.

The function cvSubstituteContour [p 178] replaces the retrieved contour, that was returned from the
preceding call of the function cvFindNextContour [p 178] and stored inside the contour scanner state, with
the user-specified contour. The contour is inserted into the resulting structure, list, two-level hierarchy, or
tree, depending on the retrieval mode. If the parameter newContour =NULL, the retrieved contour is not
included into the resulting structure, nor all of its children that might be added to this structure later.

178

EndFindContours

Finishes scanning process

CvSeq* cvEndFindContours(CvContourScanner* scanner);

scanner
Pointer to the contour scanner.

The function cvEndFindContours [p 179] finishes the scanning process and returns the pointer to the first
contour on the highest level.

DrawContours

Draws contour outlines or interiors in the image

void cvDrawContours(CvArr *image, CvSeq* contour,
 double external_color, double hole_color,
 int max_level, int thickness=1,
 int connectivity=8);

image
Image where the contours are to be drawn. Like in any other drawing function, the contours are
clipped with the ROI.

contour
Pointer to the first contour.

externalColor
Color to draw external contours with.

holeColor
Color to draw holes with.

maxLevel
Maximal level for drawn contours. If 0, only contour is drawn. If 1, the contour and all contours
after it on the same level are drawn. If 2, all contours after and all contours one level below the
contours are drawn, etc. If the value is negative, the function does not draw the contours following
after contour but draws child contours of contour up to abs(maxLevel)-1 level.

thickness
Thickness of lines the contours are drawn with. If it is negative (e.g. =CV_FILLED), the contour
interiors are drawn.

connectivity
Connectivity of line segments of the contour outlines.

The function cvDrawContours [p 179] draws contour outlines in the image if thickness >=0 or fills
area bounded by the contours if thickness <0.

179

Example. Connected component detection via contour functions
#include "cv.h"
#include "highgui.h"

int main(int argc, char** argv)
{
 IplImage* src;
 // the first command line parameter must be file name of binary (black-n-white) image
 if(argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
 {
 IplImage* dst = cvCreateImage(cvGetSize(src), 8, 3);
 CvMemStorage* storage = cvCreateMemStorage(0);
 CvSeq* contour = 0;

 cvThreshold(src, src, 1, 255, CV_THRESH_BINARY);
 cvNamedWindow("Source", 1);
 cvShowImage("Source", src);

 cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
 cvZero(dst);

 for(; contour != 0; contour = contour->h_next)
 {
 int color = CV_RGB(rand(), rand(), rand());
 /* replace CV_FILLED with 1 to see the outlines */
 cvDrawContours(dst, contour, color, color, -1, CV_FILLED, 8);
 }

 cvNamedWindow("Components", 1);
 cvShowImage("Components", dst);
 cvWaitKey(0);
 }
}

Replace CV_FILLED with 1 in the sample below to see the contour outlines

Image and contour moments

Moments

Calculates all moments up to third order of a polygon or rasterized shape

void cvMoments(const CvArr* arr, CvMoments* moments, int isBinary=0);

arr
Image (1-channel or 3-channel with COI set) or polygon (CvSeq of points of a vector of points).

moments
Pointer to returned moment state structure.

isBinary
(For images only) If the flag is non-zero, all the zero pixel values are treated as zeroes, all the others
are treated as ones.

The function cvMoments [p 180] calculates spatial and central moments up to the third order and writes
them to moments . The moments may be used then to calculate gravity center of the shape, its area, main
axises and various shape characeteristics including 7 Hu invariants.

180

GetSpatialMoment

Retrieves spatial moment from moment state structure

double cvGetSpatialMoment(CvMoments* moments, int j, int i);

moments
The moment state, calculated by cvMoments [p 180] .

j
x-order of the retrieved moment, j >= 0.

i
y-order of the retrieved moment, i >= 0 and i + j <= 3.

The function cvGetSpatialMoment [p 181] retrieves the spatial moment, which in case of image moments
is defined as:

Mji =sum x,y (I(x,y) •x j •y i)

where I(x,y) is the intensity of the pixel (x, y) .

GetCentralMoment

Retrieves central moment from moment state structure

double cvGetCentralMoment(CvMoments* moments, int j, int i);

moments
Pointer to the moment state structure.

j
x-order of the retrieved moment, j >= 0.

i
y-order of the retrieved moment, i >= 0 and i + j <= 3.

The functioncvGetCentralMoment [p 181] retrieves the central moment, which in case of image moments
is defined as:

µ ij =sum x,y (I(x,y) •(x-x c) j •(y-y c) i),

where x c =M10 /M 00 , y c =M01 /M 00 - coordinates of the gravity center

GetNormalizedCentralMoment

Retrieves normalized central moment from moment state structure

181

double cvGetNormalizedCentralMoment(CvMoments* moments, int x_order, int y_order);

moments
Pointer to the moment state structure.

j
x-order of the retrieved moment, j >= 0.

i
y-order of the retrieved moment, i >= 0 and i + j <= 3.

The function cvGetNormalizedCentralMoment [p 181] retrieves the normalized central moment, which in
case of image moments is defined as:

η ij = µ ij /M 00
((i+j)/2+1)

GetHuMoments

Calculates seven Hu invariants

void cvGetHuMoments(CvMoments* moments, CvHuMoments* HuMoments);

moments
Pointer to the moment state structure.

HuMoments
Pointer to Hu moments structure.

The function cvGetHuMoments [p 182] calculates seven Hu invariants that are defined as:

 h 1 =η 20 +η 02

 h 2 =(η 20 - η 02)²+4 η 11 ²

 h 3 =(η 30 -3 η 12)²+ (3 η 21 - η 03)²

 h 4 =(η 30 +η 12)²+ (η 21 +η 03)²

 h 5 =(η 30 -3 η 12)(η 30 +η 12)[(η 30 +η 12)²-3(η 21 +η 03)²]+(3 η 21 - η 03)(η 21 +η 03)[3(η 30 +η 12)²-(η 21 +η 03)²]

 h 6 =(η 20 - η 02)[(η 30 +η 12)²- (η 21 +η 03)²]+4 η 11 (η 30 +η 12)(η 21 +η 03)

 h 7 =(3 η 21 - η 03)(η 21 +η 03)[3(η 30 +η 12)²-(η 21 +η 03)²]-(η 30 -3 η 12)(η 21 +η 03)[3(η 30 +η 12)²-(η 21 +η 03)²]

These values are proved to be invariants to the image scale, rotation, and reflection except the seventh one,
whose sign is changed by reflection.

182

Image Processing and Analysis Reference

Drawing Functions [p ??]
Line [p ??]
LineAA [p ??]
Rectangle [p ??]
Circle [p ??]
Ellipse [p ??]
EllipseAA [p ??]
FillPoly [p ??]
FillConvexPoly [p ??]
PolyLine [p ??]
PolyLineAA [p ??]
InitFont [p ??]
PutText [p ??]
GetTextSize [p ??]

Gradients, Edges and Corners [p ??]
Sobel [p ??]
Laplace [p ??]
Canny [p ??]
PreCornerDetect [p ??]
CornerEigenValsAndVecs [p ??]
CornerMinEigenVal [p ??]
FindCornerSubPix [p ??]
GoodFeaturesToTrack [p ??]

Sampling, Interpolation and Geometrical Transforms [p ??]
InitLineIterator [p ??]
SampleLine [p ??]
GetRectSubPix [p ??]
GetQuadrangeSubPix [p ??]
Resize [p ??]

Morphological Operations [p ??]
CreateStructuringElementEx [p ??]
ReleaseStructuringElement [p ??]
Erode [p ??]
Dilate [p ??]
MorphologyEx [p ??]

Filters and Color Conversion [p ??]
Smooth [p ??]
Integral [p ??]
CvtColor [p ??]
Threshold [p ??]

183

AdaptiveThreshold [p ??]
LUT [p ??]

Pyramids and the Applications [p ??]
PyrDown [p ??]
PyrUp [p ??]
PyrSegmentation [p ??]

Connected components [p ??]
ConnectedComp [p ??]
FloodFill [p ??]
FindContours [p ??]
StartFindContours [p ??]
FindNextContour [p ??]
SubstituteContour [p ??]
EndFindContours [p ??]
DrawContours [p ??]

Image and contour moments [p ??]
Moments [p ??]
GetSpatialMoment [p ??]
GetCentralMoment [p ??]
GetNormalizedCentralMoment [p ??]
GetHuMoments [p ??]

Special Image Transforms [p 185]
HoughLines [p 185]
DistTransform [p 189]

Histogram Functions [p 191]
Histogram [p 191]
CreateHist [p 192]
SetHistBinRanges [p 192]
ReleaseHist [p 193]
ClearHist [p 193]
MakeHistHeaderForArray [p 193]
QueryHistValue_1D [p 194]
GetHistValue_1D [p 194]
GetMinMaxHistValue [p 195]
NormalizeHist [p 195]
ThreshHist [p 196]
CompareHist [p 196]
CopyHist [p 197]
CalcHist [p 197]
CalcBackProject [p 198]
CalcBackProjectPatch [p 199]
CalcProbDensity [p 200]
CalcEMD2 [p 201]

184

Utility Functions [p 202]
MatchTemplate [p 202]

Note:
The chapter describes functions for image processing and analysis. Most of the functions work with 2d
arrays of pixels. We refer the arrays as "images" however they do not neccesserily have to be IplImage’s,
they may be CvMat’s or CvMatND’s as well.

Special Image Transforms

HoughLines

Finds lines in binary image using Hough transform

CvSeq* cvHoughLines2(CvArr* image, void* lineStorage, int method,
 double dRho, double dTheta, int threshold,
 double param1=0, double param2);

image
Source 8-bit single-channel (binary) image. It may be modified by the function.

lineStorage
The storage for the lines detected. It can be a memory storage (in this case a sequence of lines is
created in the storage and returned by the function) or single row/single column matrix (CvMat*) of a
particular type (see below) where the lines’ parameters are written. The matrix header is modified by
the function so its cols /rows contains a number of lines detected (that is a matrix is truncated to fit
exactly the detected lines, though no data is deallocated - only the header is modified). In the latter
case if the actual number of lines exceeds the matrix size, the maximum possible number of lines is
returned (the lines are not sorted by length, confidence or whatever criteria).

method
The Hough transform variant, one of:

CV_HOUGH_STANDARD - classical or standard Hough transform. Every line is represented by
two floating-point numbers (ρ, θ), where ρ is a distance between (0,0) point and the line, and θ
is the angle between x-axis and the normal to the line. Thus, the matrix must be (the created
sequence will be) of CV_32FC2 type.
CV_HOUGH_PROBABILISTIC - probabilistic Hough transform (more efficient in case if
picture contains a few long linear segments). It returns line segments rather than the whole lines.
Every segment is represented by starting and ending points, and the matrix must be (the created
sequence will be) of CV_32SC4 type.
CV_HOUGH_MULTI_SCALE - multi-scale variant of classical Hough transform. The lines are
encoded the same way as in CV_HOUGH_CLASSICAL.

dRho
Distance resolution in pixel-related units.

dTheta
Angle resolution measured in radians.

185

threshold
Threshold parameter. A line is returned by the function if the corresponding accumulator value is
greater than threshold .

param1
The first method-dependent parameter:

For classical Hough transform it is not used (0).
For probabilistic Hough transform it is the minimum line length.
For multi-scale Hough transform it is divisor for distance resolution dRho. (The coarse distance
resolution will be dRho and the accurate resolution will be (dRho / param1)).

param2
The second method-dependent parameter:

For classical Hough transform it is not used (0).
For probabilistic Hough transform it is the maximum gap between line segments lieing on the
same line to treat them as the single line segment (i.e. to join them).
For multi-scale Hough transform it is divisor for angle resolution dTheta . (The coarse angle
resolution will be dTheta and the accurate resolution will be (dTheta / param2)).

The function cvHoughLines2 [p ??] implements a few variants of Hough transform for line detection.

Example. Detecting lines with Hough transform.
/* This is a standalone program. Pass an image name as a first parameter of the program.
 Switch between standard and probabilistic Hough transform by changing "#if 1" to "#if 0" and back */
#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv)
{
 IplImage* src;
 if(argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
 {
 IplImage* dst = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* color_dst = cvCreateImage(cvGetSize(src), 8, 3);
 CvMemStorage* storage = cvCreateMemStorage(0);
 CvSeq* lines = 0;
 int i;
 cvCanny(src, dst, 50, 200, 3);
 cvCvtColor(dst, color_dst, CV_GRAY2BGR);
#if 1
 lines = cvHoughLines2(dst, storage, CV_HOUGH_CLASSICAL, 1, CV_PI/180, 150, 0, 0);

 for(i = 0; i < lines->total; i++)
 {
 float* line = (float*)cvGetSeqElem(lines,i);
 float rho = line[0];
 float theta = line[1];
 CvPoint pt1, pt2;
 double a = cos(theta), b = sin(theta);
 if(fabs(a) < 0.001)
 {
 pt1.x = pt2.x = cvRound(rho);
 pt1.y = 0;
 pt2.y = color_dst->height;
 }
 else if(fabs(b) < 0.001)
 {
 pt1.y = pt2.y = cvRound(rho);

186

 pt1.x = 0;
 pt2.x = color_dst->width;
 }
 else
 {
 pt1.x = 0;
 pt1.y = cvRound(rho/b);
 pt2.x = cvRound(rho/a);
 pt2.y = 0;
 }
 cvLine(color_dst, pt1, pt2, CV_RGB(255,0,0), 3, 8);
 }
#else
 lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI/180, 80, 30, 10);
 for(i = 0; i < lines->total; i++)
 {
 CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i);
 cvLine(color_dst, line[0], line[1], CV_RGB(255,0,0), 3, 8);
 }
#endif
 cvNamedWindow("Source", 1);
 cvShowImage("Source", src);

 cvNamedWindow("Hough", 1);
 cvShowImage("Hough", color_dst);

 cvWaitKey(0);
 }
}

This is the sample picture the function parameters have been tuned for:

187

And this is the output of the above program in case of probabilistic Hough transform ("#if 0" case):

188

DistTransform

Calculates distance to closest zero pixel for all non-zero pixels of source image

void cvDistTransform(const CvArr* src, CvArr* dst, CvDisType disType=CV_DIST_L2,
 int maskSize=3, float* mask=0);

src
Source 8-bit single-channel (binary) image.

dst
Output image with calculated distances (32-bit floating-point, single-channel).

disType
Type of distance; can be CV_DIST_L1, CV_DIST_L2, CV_DIST_C or CV_DIST_USER.

maskSize
Size of distance transform mask; can be 3 or 5. In case if CV_DIST_L1 or CV_DIST_C the
parameter is forced to 3, because 5×5 mask gives the same result as 3×3 in this case yet it is slower.

mask
User-defined mask in case of user-defined distance, it consists of 2 numbers (horizontal/vertical shift
cost, diagonal shift cost) in case of 3×3 mask and 3 numbers (horizontal/vertical shift cost, diagonal
shift cost, knight’s move cost) in case of 5×5 mask.

189

The function cvDistTransform [p 189] calculates the approximated distance from every binary image pixel
to the nearest zero pixel. For zero pixels the function sets the zero distance, for others it finds the shortest
path consisting of basic shifts: horizontal, vertical, diagonal or knight’s move (the latest is available for
5×5 mask). The overal distance is calculated as a sum of these basic distances. Because the distance
function should be symmetric, all the horizontal and vertical shifts must have the same cost (that is
denoted as a), all the diagonal shifts must have the same cost (denoted b), and all knight’s moves’ must
have the same cost (denoted c). For CV_DIST_C and CV_DIST_L1 types the distance is calculated
precisely, whereas for CV_DIST_L2 (Euclidian distance) the distance can be calculated only with some
relative error (5×5 mask gives more accurate results), OpenCV uses the values suggested in [Borgefors86]
[p 191] :

CV_DIST_C (3×3):
a=1, b=1

CV_DIST_L1 (3×3):
a=1, b=2

CV_DIST_L2 (3×3):
a=0.955, b=1.3693

CV_DIST_L2 (5×5):
a=1, b=1.4, c=2.1969

And below are samples of distance field (black (0) pixel is in the middle of white square) in case of
user-defined distance:

User-defined 3×3 mask (a=1, b=1.5)

4.5 4 3.5 3 3.5 4 4.5

4 3 2.5 2 2.5 3 4

3.5 2.5 1.5 1 1.5 2.5 3.5

3 2 1 0 1 2 3

3.5 2.5 1.5 1 1.5 2.5 3.5

4 3 2.5 2 2.5 3 4

4.5 4 3.5 3 3.5 4 4.5

User-defined 5×5 mask (a=1, b=1.5, c=2)

190

4.5 3.5 3 3 3 3.5 4.5

3.5 3 2 2 2 3 3.5

3 2 1.5 1 1.5 2 3

3 2 1 0 1 2 3

3 2 1.5 1 1.5 2 3

3.5 3 2 2 2 3 3.5

4 3.5 3 3 3 3.5 4

Typically, for fast coarse distance estimation CV_DIST_L2, 3×3 mask is used, and for more accurate
distance estimation CV_DIST_L2, 5×5 mask is used.

[Borgefors86] Gunilla Borgefors, "Distance Transformations in Digital Images". Computer Vision,
Graphics and Image Processing 34, 344-371 (1986).

Histogram Functions

CvHistogram

Muti-dimensional histogram

 typedef struct CvHistogram
 {
 int header_size; /* header’s size */
 CvHistType type; /* type of histogram */
 int flags; /* histogram’s flags */
 int c_dims; /* histogram’s dimension */
 int dims[CV_HIST_MAX_DIM]; /* every dimension size */
 int mdims[CV_HIST_MAX_DIM]; /* coefficients for fast access to element */
 /* &m[a,b,c] = m + a*mdims[0] + b*mdims[1] + c*mdims[2] */
 float* thresh[CV_HIST_MAX_DIM]; /* bin boundaries arrays for every dimension */
 float* array; /* all the histogram data, expanded into the single row */
 struct CvNode* root; /* root of balanced tree storing histogram bins */
 CvSet* set; /* pointer to memory storage (for the balanced tree) */
 int* chdims[CV_HIST_MAX_DIM]; /* cache data for fast calculating */
 } CvHistogram;

191

CreateHist

Creates histogram

CvHistogram* cvCreateHist(int cDims, int* dims, int type,
 float** ranges=0, int uniform=1);

cDims
Number of histogram dimensions.

dims
Array of histogram dimension sizes.

type
Histogram representation format: CV_HIST_ARRAY means that histogram data is represented as an
multi-dimensional dense array CvMatND [p ??] ; CV_HIST_TREE means that histogram data is
represented as a multi-dimensional sparse array CvSparseMat [p ??] .

ranges
Array of ranges for histogram bins. Its meaning depends on the uniform parameter value. The
ranges are used for when histogram is calculated or backprojected to determine, which histogram bin
corresponds to which value/tuple of values from the input image[s].

uniform
Uniformity flag; if not 0, the histogram has evenly spaced bins and for every 0<=i<cDims
ranges[i] is array of two numbers: lower and upper boundaries for the i-th histogram dimension.
The whole range [lower,upper] is split then into dims[i] equal parts to determine i-th input tuple
value ranges for every histogram bin. And if uniform=0 , then i-th element of ranges array
contains dims[i]+1 elements: lower 0 , upper 0 , lower 1 , upper 1 == lower 2 ,

..., upper dims[i]-1 , where lower j and upper j are lower and upper boundaries of i-th

input tuple value for j-th bin, respectively. In either case, the input values that are beyond the
specified range for a histogram bin, are not counted by cvCalcHist [p 197] and filled with 0 by
cvCalcBackProject [p 198] .

The function cvCreateHist [p 192] creates a histogram of the specified size and returns the pointer to the
created histogram. If the array ranges is 0, the histogram bin ranges must be specified later via the
function cvSetHistBinRanges [p 192] , though cvCalcHist [p 197] and cvCalcBackProject [p 198] may
process 8-bit images without setting bin ranges, they assume equally spaced in 0..255 bins.

SetHistBinRanges

Sets bounds of histogram bins

void cvSetHistBinRanges(CvHistogram* hist, float** ranges, int uniform=1);

hist
Histogram.

ranges
Array of bin ranges arrays, see cvCreateHist [p 192] .

192

uniform
Uniformity flag, see cvCreateHist [p 192] .

The function cvSetHistBinRanges [p 192] is a stand-alone function for setting bin ranges in the histogram.
For more detailed description of the parameters ranges and uniform see cvCalcHist [p 197] function,
that can initialize the ranges as well. Ranges for histogram bins must be set before the histogram is
calculated or backproject of the histogram is calculated.

ReleaseHist

Releases histogram

void cvReleaseHist(CvHistogram** hist);

hist
Double pointer to the released histogram.

The function cvReleaseHist [p 193] releases the histogram (header and the data). The pointer to histogram
is cleared by the function. If *hist pointer is already NULL, the function does nothing.

ClearHist

Clears histogram

void cvClearHist(CvHistogram* hist);

hist
Histogram.

The function cvClearHist [p 193] sets all histogram bins to 0 in case of dense histogram and removes all
histogram bins in case of sparse array.

MakeHistHeaderForArray

Makes a histogram out of array

void cvMakeHistHeaderForArray(int cDims, int* dims, CvHistogram* hist,
 float* data, float** ranges=0, int uniform=1);

cDims
Number of histogram dimensions.

dims
Array of histogram dimension sizes.

hist
The histogram header initialized by the function.

193

data
Array that will be used to store histogram bins.

ranges
Histogram bin ranges, see cvCreateHist [p 192] .

uniform
Uniformity flag, see cvCreateHist [p 192] .

The function cvMakeHistHeaderForArray [p 193] initializes the histogram, which header and bins are
allocated by user. No cvReleaseHist [p 193] need to be called afterwards. The histogram will be dense,
sparse histogram can not be initialized this way.

QueryHistValue_1D

Queries value of histogram bin

#define cvQueryHistValue_1D(hist, idx0) \
 cvGetReal1D((hist)->bins, (idx0))
#define cvQueryHistValue_2D(hist, idx0, idx1) \
 cvGetReal2D((hist)->bins, (idx0), (idx1))
#define cvQueryHistValue_3D(hist, idx0, idx1, idx2) \
 cvGetReal3D((hist)->bins, (idx0), (idx1), (idx2))
#define cvQueryHistValue_nD(hist, idx) \
 cvGetRealND((hist)->bins, (idx))

hist
Histogram.

idx0, idx1, idx2, idx3
Indices of the bin.

idx
Array of indices

The macros cvQueryHistValue_*D [p ??] return the value of the specified bin of 1D, 2D, 3D or nD
histogram. In case of sparse histogram the function returns 0, if the bin is not present in the histogram, and
no new bin is created.

GetHistValue_1D

Returns pointer to histogram bin

#define cvGetHistValue_1D(hist, idx0) \
 ((float*)(cvPtr1D((hist)->bins, (idx0), 0))
#define cvGetHistValue_2D(hist, idx0, idx1) \
 ((float*)(cvPtr2D((hist)->bins, (idx0), (idx1), 0))
#define cvGetHistValue_3D(hist, idx0, idx1, idx2) \
 ((float*)(cvPtr3D((hist)->bins, (idx0), (idx1), (idx2), 0))
#define cvGetHistValue_nD(hist, idx) \
 ((float*)(cvPtrND((hist)->bins, (idx), 0))

194

hist
Histogram.

idx0, idx1, idx2, idx3
Indices of the bin.

idx
Array of indices

The macros cvGetHistValue_*D [p ??] return pointer to the specified bin of 1D, 2D, 3D or nD histogram.
In case of sparse histogram the function creates a new bins and fills it with 0, if it does not exists.

GetMinMaxHistValue

Finds minimum and maximum histogram bins

void cvGetMinMaxHistValue(const CvHistogram* hist,
 float* minVal, float* maxVal,
 int* minIdx =0, int* maxIdx =0);

hist
Histogram.

minVal
Pointer to the minimum value of the histogram; can be NULL.

maxVal
Pointer to the maximum value of the histogram; can be NULL.

minIdx
Pointer to the array of coordinates for minimum. If not NULL, must have hist->c_dims elements
to store the coordinates.

maxIdx
Pointer to the array of coordinates for maximum. If not NULL, must have hist->c_dims elements
to store the coordinates.

The function cvGetMinMaxHistValue [p 195] finds the minimum and maximum histogram bins and their
positions. In case of several maximums or minimums the earliest in lexicographical order extrema
locations are returned.

NormalizeHist

Normalizes histogram

void cvNormalizeHist(CvHistogram* hist, double factor);

hist
Pointer to the histogram.

factor
Normalization factor.

195

The function cvNormalizeHist [p 195] normalizes the histogram bins by scaling them, such that the sum of
the bins becomes equal to factor .

ThreshHist

Thresholds histogram

void cvThreshHist(CvHistogram* hist, double thresh);

hist
Pointer to the histogram.

thresh
Threshold level.

The function cvThreshHist [p 196] clears histogram bins that are below the specified level.

CompareHist

Compares two dense histograms

double cvCompareHist(const CvHistogram* H1, const CvHistogram* H2,
 CvCompareMethod method);

H1
The first dense histogram.

H2
The second dense histogram.

method
Comparison method, one of:

CV_COMP_CORREL;
CV_COMP_CHISQR;
CV_COMP_INTERSECT.

The function cvCompareHist [p 196] compares two histograms using specified method and returns the
comparison result. It processes as following:

Correlation (method=CV_COMP_CORREL):
d(H 1 ,H 2)=sum I (H’ 1 (I) •H’ 2 (I))/sqrt(sum I [H’ 1 (I) 2] •sum I [H’ 2 (I) 2])

where
H’ k (I)=H k (I)-1/N •sum J Hk (J) (N=number of histogram bins)

Chi-Square (method=CV_COMP_CHISQR):
d(H 1 ,H 2)=sum I [(H 1 (I)-H 2 (I))/(H 1 (I)+H 2 (I))]

Intersection (method=CV_COMP_INTERSECT):
d(H 1 ,H 2)=sum I max(H 1 (I),H 2 (I))

196

Note, that the function can operate on dense histogram only. To compare sparse histogram or more general
sparse configurations of weighted points, consider cvCalcEMD [p ??] function.

CopyHist

Copies histogram

void cvCopyHist(CvHistogram* src, CvHistogram** dst);

src
Source histogram.

dst
Pointer to destination histogram.

The function cvCopyHist [p 197] makes a copy of the histogram. If the second histogram pointer *dst is
NULL, a new histogram of the same size as src is created. Otherwise, both histograms must have equal
types and sizes. Then the function copies the source histogram bins values to destination histogram and
sets the same as src ’s value ranges.

CalcHist

Calculates histogram of image(s)

void cvCalcHist(IplImage** img, CvHistogram* hist,
 int doNotClear=0, const CvArr* mask=0);

img
Source images (though, you may pass CvMat** as well).

hist
Pointer to the histogram.

doNotClear
Clear flag, if it is non-zero, the histogram is not cleared before calculation. It may be useful for
iterative histogram update.

mask
The operation mask, determines what pixels of the source images are counted.

The function cvCalcHist [p 197] calculates the histogram of one or more single-channel images. The
elements of a tuple that is used to increment a histogram bin are taken at the same location from the
corresponding input images.

Sample. Calculating and displaying 2D Hue-Saturation histogram of a color image
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
 IplImage* src;
 if(argc == 2 && (src=cvLoadImage(argv[1], 1))!= 0)
 {

197

 IplImage* h_plane = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* s_plane = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* v_plane = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* planes[] = { h_plane, s_plane };
 IplImage* hsv = cvCreateImage(cvGetSize(src), 8, 3);
 int h_bins = 30, s_bins = 32;
 int hist_size[] = {h_bins, s_bins};
 float h_ranges[] = { 0, 180 }; /* hue varies from 0 (~0°red) to 180 (~360°red again) */
 float s_ranges[] = { 0, 255 }; /* saturation varies from 0 (black-gray-white) to 255 (pure spectrum color) */
 float* ranges[] = { h_ranges, s_ranges };
 int scale = 10;
 IplImage* hist_img = cvCreateImage(cvSize(h_bins*scale,s_bins*scale), 8, 3);
 CvHistogram* hist;
 float max_value = 0;
 int h, s;

 cvCvtColor(src, hsv, CV_BGR2HSV);
 cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0);
 hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
 cvCalcHist(planes, hist, 0, 0);
 cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);
 cvZero(hist_img);

 for(h = 0; h < h_bins; h++)
 {
 for(s = 0; s < s_bins; s++)
 {
 float bin_val = cvQueryHistValue_2D(hist, h, s);
 int intensity = cvRound(bin_val*255/max_value);
 cvRectangle(hist_img, cvPoint(h*scale, s*scale),
 cvPoint((h+1)*scale - 1, (s+1)*scale - 1),
 CV_RGB(intensity,intensity,intensity), /* graw a grayscale histogram.
 if you have idea how to do it
 nicer let us know */
 CV_FILLED);
 }
 }

 cvNamedWindow("Source", 1);
 cvShowImage("Source", src);

 cvNamedWindow("H-S Histogram", 1);
 cvShowImage("H-S Histogram", hist_img);

 cvWaitKey(0);
 }
}

CalcBackProject

Calculates back projection

void cvCalcBackProject(IplImage** img, CvArr* backProject, const CvHistogram* hist);

img
Source images (though you may pass CvMat** as well).

backProject
Destination back projection image of the same type as the source images.

hist
Histogram.

The function cvCalcBackProject [p 198] calculates the back project of the histogram. For each tuple of
pixels at the same position of all input single-channel images the function puts the value of the histogram
bin, corresponding to the tuple, to the destination image. In terms of statistics, the value of each output
image pixel is probability of the observed tuple given the distribution (histogram). For example, to find a

198

red object in the picture, one may do the following:

1. Calculate a hue histogram for the red object assuming the image contains only this object. The
histogram is likely to have a strong maximum, corresponding to red color.

2. Calculate back projection of a hue plane of input image where the object is searched, using the
histogram. Threshold the image.

3. Find connected components in the resulting picture and choose the right component using some
additional criteria, for example, the largest connected component.

That is the approximate algorithm of Camshift color object tracker, except for the last step, where
CAMSHIFT algorithm is used to locate the object on the back projection given the previous object
position.

CalcBackProjectPatch

Locates a template within image by histogram comparison

void cvCalcBackProjectPatch(IplImage** img, CvArr* dst,
 CvSize patchSize, CvHistogram* hist,
 int method, float normFactor);

img
Source images (though, you may pass CvMat** as well)

dst
Destination image.

patchSize
Size of patch slid though the source image.

hist
Histogram

method
Compasion method, passed to cvCompareHist [p 196] (see description of that function).

normFactor
Normalization factor for histograms, will affect normalization scale of destination image, pass 1. if
unsure.

The function cvCalcBackProjectPatch [p 199] calculates back projection by comparing histograms of the
source image patches with the given histogram. Taking measurement results from some image at each
location over ROI creates an array img . These results might be one or more of hue, x derivative, y
derivative, Laplacian filter, oriented Gabor filter, etc. Each measurement output is collected into its own
separate image. The img image array is a collection of these measurement images. A multi-dimensional
histogram hist is constructed by sampling from the img image array. The final histogram is normalized.
The hist histogram has as many dimensions as the number of elements in img array.

Each new image is measured and then converted into an img image array over a chosen ROI. Histograms
are taken from this img image in an area covered by a "patch" with anchor at center as shown in the
picture below. The histogram is normalized using the parameter norm_factor so that it may be
compared with hist . The calculated histogram is compared to the model histogram; hist uses the

199

function cvCompareHist [p 196] with the comparison method=method). The resulting output is placed at
the location corresponding to the patch anchor in the probability image dst . This process is repeated as
the patch is slid over the ROI. Iterative histogram update by subtracting trailing pixels covered by the
patch and adding newly covered pixels to the histogram can save a lot of operations, though it is not
implemented yet.

Back Project Calculation by Patches

CalcProbDensity

Divides one histogram by another

void cvCalcProbDensity(const CvHistogram* hist1, const CvHistogram* hist2,
 CvHistogram* histDens, double scale=255);

hist1
first histogram (divisor).

hist2
second histogram.

200

histDens
destination histogram.

The function cvCalcProbDensity [p 200] calculates the object probability density from the two histograms
as:

histDens(I)=0 if hist1(I)==0
 scale if hist1(I)!=0 && hist2(I)>hist1(I)
 hist2(I)*scale/hist1(I) if hist1(I)!=0 && hist2(I)<=hist1(I)

So the destination histogram bins are within [0,scale).

CalcEMD2

Computes "minimal work" distance between two weighted point configurations

float cvCalcEMD2(const CvArr* signature1, const CvArr* signature2, CvDisType distType,
 float (*distFunc)(const float* f1, const float* f2, void* userParam),
 const CvArr* costMatrix, CvArr* flow,
 float* lowerBound, void* userParam);

signature1
First signature, size1 ×dims+1 floating-point matrix. Each row stores the point weight followed by
the point coordinates. The matrix is allowed to have a single column (weights only) if the
user-defined cost matrix is used.

signature2
Second signature of the same format as signature1 , though the number of rows may be different.
The total weights may be different, in this case an extra "dummy" point is added to either
signature1 or signature2 .

distType
Metrics used; CV_DIST_L1, CV_DIST_L2 , and CV_DIST_C stand for one of the standard
metrics; CV_DIST_USER means that a user-defined function distFunc or pre-calculated
costMatrix is used.

distFunc
The user-defined distance function. It takes coordinates of two points and returns the distance
between the points.

costMatrix
The user-defined size1 ×size2 cost matrix. At least one of costMatrix and distFunc must
be NULL. Also, if a cost matrix is used, lower boundary (see below) can not be calculated, because it
needs a metric function.

flow
The resultant size1 ×size2 flow matrix: flow ij is a flow from i-th point of signature1 to

j-th point of signature2
lowerBound

Optional output parameter: lower boundary of distance between the two signatures that is a distance
between mass centers. The lower boundary may not be calculated if the user-defined cost matrix is
used, the total weights of point configurations are not equal, or there is the signatures consist of
weights only (i.e. the matrices have a single column).

201

userParam
Pointer to optional data that is passed into the user-defined distance function.

The function cvCalcEMD2 [p 201] computes earth mover distance and/or a lower boundary of the
distance between the two weighted point configurations. One of the application desctibed in
[RubnerSept98] [p 202] is multi-dimensional histogram comparison for image retrieval. EMD is a
transportation problem that is solved using some modification of simplex algorithm, thus the complexity is
exponential in the worst case, though, it is much faster in average. In case of real metric the lower
boundary can be calculated even faster (using linear-time algorithm) and it can be used to determine
roughly whether the two signatures are far enough so that they cannot relate to the same object.

[RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a Metric for
Image Retrieval. Technical Report STAN-CS-TN-98-86, Department of Computer Science, Stanford
University, September 1998.

Utility Functions

MatchTemplate

Compares template against overlapped image regions

void cvMatchTemplate(const CvArr* I, const CvArr* T,
 CvArr* result, int method);

I
Image where the search is running. It should be single-chanel, 8-bit or 32-bit floating-point.

T
Searched template; must be not greater than the source image and the same data type as the image.

R
Image of comparison results; single-channel 32-bit floating-point. If I is W×H and T is w×h then R
must be W-w+1×H-h+1 .

method
Specifies the way the template must be compared with image regions (see below).

The function cvMatchTemplate [p 202] is similiar to cvCalcBackProjectPatch [p 199] . It slids through I ,
compares w×h patches against T using the specified method and stores the comparison results to result .
Here are the formular for the different comparison methods one may use (the summation is done over
template and/or the image patch: x’=0..w-1, y’=0..h-1):

method=CV_TM_SQDIFF:
R(x,y)=sum x’,y’ [T(x’,y’)-I(x+x’,y+y’)] 2

method=CV_TM_SQDIFF_NORMED:
R(x,y)=sum x’,y’ [T(x’,y’)-I(x+x’,y+y’)] 2 /sqrt[sum x’,y’ T(x’,y’) 2 •sum x’,y’ I(x+x’,y+y’) 2]

method=CV_TM_CCORR:
R(x,y)=sum x’,y’ [T(x’,y’) •I(x+x’,y+y’)]

202

method=CV_TM_CCORR_NORMED:
R(x,y)=sum x’,y’ [T(x’,y’) •I(x+x’,y+y’)]/sqrt[sum x’,y’ T(x’,y’) 2 •sum x’,y’ I(x+x’,y+y’) 2]

method=CV_TM_CCOEFF:
R(x,y)=sum x’,y’ [T’(x’,y’) •I’(x+x’,y+y’)],

where T’(x’,y’)=T(x’,y’) - 1/(w •h) •sum x",y" T(x",y") (mean template brightness=>0)

 I’(x+x’,y+y’)=I(x+x’,y+y’) - 1/(w •h) •sum x",y" I(x+x",y+y") (mean patch brightness=>0)

method=CV_TM_CCOEFF_NORMED:
R(x,y)=sum x’,y’ [T’(x’,y’) •I’(x+x’,y+y’)]/sqrt[sum x’,y’ T’(x’,y’) 2 •sum x’,y’ I’(x+x’,y+y’) 2]

After the function finishes comparison, the best matches can be found as global minimums
(CV_TM_SQDIFF*) or maximums (CV_TM_CCORR* and CV_TM_CCOEFF*) using cvMinMaxLoc
[p 79] function.

203

Structural Analysis Reference

Contour Processing Functions [p 205]
ApproxChains [p 205]
StartReadChainPoints [p 205]
ReadChainPoint [p 206]
ApproxPoly [p 206]
BoundingRect [p 206]
ContourArea [p 207]
ArcLength [p 208]
MatchShapes [p 209]
CreateContourTree [p 209]
ContourFromContourTree [p 210]
MatchContourTrees [p 210]

Geometry Functions [p 211]
MaxRect [p 211]
Box2D [p 211]
BoxPoints [p 211]
FitEllipse [p 212]
FitLine2D [p 212]
ConvexHull2 [p 213]
CheckContourConvexity [p 215]
ConvexityDefect [p 216]
ConvexityDefects [p 216]
MinAreaRect2 [p 217]
MinEnclosingCircle [p 220]
CalcPGH [p 218]
KMeans [p 218]
MinEnclosingCircle [p 220]

Planar Subdivisions [p 220]
Subdiv2D [p 220]
QuadEdge2D [p 221]
Subdiv2DPoint [p 222]
Subdiv2DGetEdge [p 223]
Subdiv2DRotateEdge [p 223]
Subdiv2DEdgeOrg [p 224]
Subdiv2DEdgeDst [p 224]
CreateSubdivDelaunay2D [p 224]
SubdivDelaunay2DInsert [p 225]
Subdiv2DLocate [p 225]
FindNearestPoint2D [p 226]
CalcSubdivVoronoi2D [p 226]

204

ClearSubdivVoronoi2D [p 226]

Contour Processing Functions

ApproxChains

Approximates Freeman chain(s) with polygonal curve

CvSeq* cvApproxChains(CvSeq* srcSeq, CvMemStorage* storage,
 CvChainApproxMethod method=CV_CHAIN_APPROX_SIMPLE,
 double parameter=0, int minimalPerimeter=0, int recursive=0);

srcSeq
Pointer to the chain that can refer to other chains.

storage
Storage location for the resulting polylines.

method
Approximation method (see the description of the function cvFindContours [p 176]).

parameter
Method parameter (not used now).

minimalPerimeter
Approximates only those contours whose perimeters are not less than minimalPerimeter. Other
chains are removed from the resulting structure.

recursive
If not 0, the function approximates all chains that access can be obtained to from srcSeq by h_next or
v_next links. If 0, the single chain is approximated.

This is a stand-alone approximation routine. The function cvApproxChains [p 205] works exactly in the
same way as cvFindContours [p 176] with the corresponding approximation flag. The function returns
pointer to the first resultant contour. Other approximated contours, if any, can be accessed via v_next or
h_next fields of the returned structure.

StartReadChainPoints

Initializes chain reader

void cvStartReadChainPoints(CvChain* chain, CvChainPtReader* reader);

chain Pointer to chain. reader Chain reader state.

The function cvStartReadChainPoints [p 205] initializes a special reader (see Dynamic Data Structures [p
99] for more information on sets and sequences).

205

ReadChainPoint

Gets next chain point

CvPoint cvReadChainPoint(CvChainPtReader* reader);

reader
Chain reader state.

The function cvReadChainPoint [p 206] returns the current chain point and updates the reader position.

ApproxPoly

Approximates polygonal curve(s) with desired precision

CvSeq* cvApproxPoly(const void* srcSeq, int headerSize, CvMemStorage* storage,
 int method, double parameter,
 int parameter2=0);

srcSeq
Sequence of array of points.

headerSize
Header size of approximated curve[s].

storage
Container for approximated contours. If it is NULL, the input sequences’ storage is used.

method
Approximation method; only CV_POLY_APPROX_DP is supported, that corresponds to
Douglas-Peucker algorithm.

parameter
Method-specific parameter; in case of CV_POLY_APPROX_DP it is a desired approximation
accuracy.

parameter2
If case if srcSeq is sequence it means whether the single sequence should be approximated or all
sequences on the same level or below srcSeq (see cvFindContours [p 176] for description of
hierarchical contour structures). And if srcSeq is array (CvMat [p ??] *) of points, the parameter
specifies whether the curve is closed (parameter2!=0) or not (parameter2=0).

The function cvApproxPoly [p 206] approximates one or more curves and returns the approximation
result[s]. In case of multiple curves approximation the resultant tree will have the same structure as the
input one (1:1 correspondence).

BoundingRect

Calculates up-right bounding rectangle of point set

206

CvRect cvBoundingRect(CvArr* contour, int update);

contour
Sequence or array of points.

update
The update flag. Here is list of possible combination of the flag values and type of contour:

update=0, contour ~ CvContour*: the bounding rectangle is not calculated, but it is taken from
rect field of the contour header.
update=1, contour ~ CvContour*: the bounding rectangle is calculated and written to rect field
of the contour header.
update=0, contour ~ CvSeq* or CvMat*: the bounding rectangle is calculated and returned.
update=1, contour ~ CvSeq* or CvMat*: runtime error is raised.

The function cvBoundingRect [p 206] returns the up-right bounding rectangle for 2d point set.

ContourArea

Calculates area of the whole contour or contour section

double cvContourArea(const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ);

contour
Contour (sequence or array of vertices).

slice
Starting and ending points of the contour section of interest, by default area of the whole contour is
calculated.

The function cvContourArea [p 207] calculates area of the whole contour or contour section. In the latter
case the total area bounded by the contour arc and the chord connecting the 2 selected points is calculated
as shown on the picture below:

207

NOTE: Orientation of the contour affects the area sign, thus the function may return negative result. Use
fabs() function from C runtime to get the absolute value of area.

ArcLength

Calculates contour perimeter or curve length

double cvArcLength(const void* curve, CvSlice slice=CV_WHOLE_SEQ, int isClosed=-1);

curve
Sequence or array of the curve points.

slice
Starting and ending points of the curve, by default the whole curve length is calculated.

isClosed
Indicates whether the curve is closed or not. There are 3 cases:

isClosed=0 - the curve is assumed to be unclosed.
isClosed>0 - the curve is assumed to be closed.
isClosed<0 - if curve is sequence, the flag CV_SEQ_FLAG_CLOSED of
((CvSeq*)curve)->flags is checked to determine if the curve is closed or not, otherwise (curve is
represented by array (CvMat*) of points) it is assumed to be unclosed.

The function cvArcLength [p 208] calculates length or curve as sum of lengths of segments between
subsequent points

208

MatchShapes

Compares two shapes

double cvMatchShapes(const void* A, const void* B,
 int method, double parameter=0);

A
First contour or grayscale image

B
Second contour or grayscale image

method
Comparison method, one of CV_CONTOUR_MATCH_I1, CV_CONTOURS_MATCH_I2 or
CV_CONTOURS_MATCH_I3.

parameter
Method-specific parameter (is not used now).

The function cvMatchShapes [p 209] compares two shapes. The 3 implemented methods all use Hu
moments (see cvGetHuMoments [p 182]):

method=CV_CONTOUR_MATCH_I1:
I 1 (A,B)=sum i=1..7 abs(1/m A

i - 1/m B
i)

method=CV_CONTOUR_MATCH_I2:
I 2 (A,B)=sum i=1..7 abs(m A

i - m B
i)

method=CV_CONTOUR_MATCH_I3:
I 3 (A,B)=sum i=1..7 abs(m A

i - m B
i)/abs(m A

i)

where
mA

i =sign(h A
i) •log(h A

i),

mB
i =sign(h B

i) •log(h B
i),

h A
i , h B

i - Hu moments of A and B, respectively.

CreateContourTree

Creates hierarchical representation of contour

CvContourTree* cvCreateContourTree(cont CvSeq* contour, CvMemStorage* storage, double threshold);

contour
Input contour.

storage
Container for output tree.

threshold
Approximation accuracy.

209

The function cvCreateContourTree [p 209] creates binary tree representation for the input contour and
returns the pointer to its root. If the parameter threshold is less than or equal to 0, the function creates full
binary tree representation. If the threshold is greater than 0, the function creates representation with the
precision threshold: if the vertices with the interceptive area of its base line are less than threshold, the tree
should not be built any further. The function returns the created tree.

ContourFromContourTree

Restores contour from tree

CvSeq* cvContourFromContourTree(const CvContourTree* tree, CvMemStorage* storage,
 CvTermCriteria criteria);

tree
Contour tree.

storage
Container for the reconstructed contour.

criteria
Criteria, where to stop reconstruction.

The function cvContourFromContourTree [p 210] restores the contour from its binary tree representation.
The parameter criteria determines the accuracy and/or the number of tree levels used for reconstruction,
so it is possible to build approximated contour. The function returns reconstructed contour.

MatchContourTrees

Compares two contours using their tree representations

double cvMatchContourTrees(const CvContourTree* tree1, const CvContourTree* tree2,
 CvTreeMatchMethod method, double threshold);

tree1
First contour tree.

tree2
Second contour tree.

method
Similarity measure, only CV_CONTOUR_TREES_MATCH_I1 is supported.

threshold
Similarity threshold.

The function cvMatchContourTrees [p 210] calculates the value of the matching measure for two contour
trees. The similarity measure is calculated level by level from the binary tree roots. If at the certain level
difference between contours becomes less than threshold, the reconstruction process is interrupted and the
current difference is returned.

210

Geometry Functions

MaxRect

Finds bounding rectangle for two given rectangles

CvRect cvMaxRect(const CvRect* rect1, const CvRect* rect2);

rect1
First rectangle

rect2
Second rectangle

The function cvMaxRect [p 211] finds minimum area rectangle that contains both input rectangles inside:

CvBox2D

Rotated 2D box

typedef struct CvBox2D
{
 CvPoint2D32f center; /* center of the box */
 CvSize2D32f size; /* box width and length */
 float angle; /* angle between the horizontal axis
 and the first side (i.e. length) in radians */
}
CvBox2D;

BoxPoints

Finds box vertices

211

void cvBoxPoints(CvBox2D box, CvPoint2D32f pt[4]);

box
Box

pt
Array of vertices

The function cvBoxPoints [p 211] calculates vertices of the input 2d box. Here is the function code:

void cvBoxPoints(CvBox2D box, CvPoint2D32f pt[4])
{
 float a = (float)cos(box.angle)*0.5f;
 float b = (float)sin(box.angle)*0.5f;

 pt[0].x = box.center.x - a*box.size.height - b*box.size.width;
 pt[0].y = box.center.y + b*box.size.height - a*box.size.width;
 pt[1].x = box.center.x + a*box.size.height - b*box.size.width;
 pt[1].y = box.center.y - b*box.size.height - a*box.size.width;
 pt[2].x = 2*box.center.x - pt[0].x;
 pt[2].y = 2*box.center.y - pt[0].y;
 pt[3].x = 2*box.center.x - pt[1].x;
 pt[3].y = 2*box.center.y - pt[1].y;
}

FitEllipse

Fits ellipse to set of 2D points

CvBox2D cvFitEllipse2(const CvArr* points);

points
Sequence or array of points.

The function cvFitEllipse [p 212] calculates ellipse that fits best (in least-squares sense) to a set of 2D
points. The meaning of the returned structure fields is similar to those in cvEllipse [p 147] except that size
stores the full lengths of the ellipse axises, not half-lengths

FitLine

Fits line to 2D or 3D point set

void cvFitLine(const CvArr* points, CvDisType disType, double C,
 double reps, double aeps, float* line);

points
Sequence or array of 2D or 3D points with 32-bit integer or floating-point coordinates.

disType
The distance used for fitting (see the discussion).

212

C
Numerical parameter for some types of distances, if 0 then some optimal value is chosen.

reps, aeps
Sufficient accuracy for radius (distance between the coordinate origin and the line) and angle,
respectively, 0.01 would be a good defaults for both. is used.

line
The output line parameters. In case of 2d fitting it is array of 4 floats (vx, vy, x0, y0) where (vx, vy) is
a normalized vector collinear to the line and (x0, y0) is some point on the line. In case of 3D fitting it
is array of 6 floats (vx, vy, vz, x0, y0, z0) where (vx, vy, vz) is a normalized vector collinear to the line
and (x0, y0, z0) is some point on the line.

The function cvFitLine [p ??] fits line to 2D or 3D point set by minimizing sumi ρ(r i), where r i is distance

between i-th point and the line and ρ(r) is a distance function, one of:

disType=CV_DIST_L2 (L 2):

ρ(r)=r 2 /2 (the simplest and the fastest least-squares method)

disType=CV_DIST_L1 (L 1):

ρ(r)=r

disType=CV_DIST_L12 (L 1 -L 2):

ρ(r)=2 •[sqrt(1+r 2 /2) - 1]

disType=CV_DIST_FAIR (Fair):
ρ(r)=C 2 •[r/C - log(1 + r/C)], C=1.3998

disType=CV_DIST_WELSCH (Welsch):
ρ(r)=C 2 /2 •[1 - exp(-(r/C) 2)], C=2.9846

disType=CV_DIST_HUBER (Huber):
ρ(r)= r 2 /2, if r < C
 C •(r-C/2), otherwise; C=1.345

ConvexHull2

Finds convex hull of points set

CvSeq* cvConvexHull2(const void* points, void* hullStorage=0,
 int orientation=CV_CLOCKWISE, int returnPoints=0);

points
Sequence or array of 2D points with 32-bit integer or floating-point coordinates.

hullStorage
The destination array (CvMat*) or memory storage (CvMemStorage*) that will store the convex hull.
If it is array, it should be 1d and have the same number of elements as the input array/sequence. On
output the header is modified so to truncate the array downto the hull size.

orientation
Desired orientation of convex hull: CV_CLOCKWISE or CV_COUNTER_CLOCKWISE.

213

returnPoints
If non-zero, the points themselves will be stored in the hull instead of indices if hullStorage is array,
or pointers if hullStorage is memory storage.

The function cvConvexHull2 [p 213] finds convex hull of 2D point set using Sklansky’s algorithm. If
hullStorage is memory storage, the function creates a sequence containing the hull points or pointers to
them, depending on returnPoints value and returns the sequence on output.

Example. Building convex hull for a sequence or array of points

#include "cv.h"
#include "highgui.h"
#include <stdlib.h>

#define ARRAY 0 /* switch between array/sequence method by replacing 0<=>1 */

void main(int argc, char** argv)
{
 IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);
 cvNamedWindow("hull", 1);

#if !ARRAY
 CvMemStorage* storage = cvCreateMemStorage();
#endif

 for(;;)
 {
 int i, count = rand()%100 + 1, hullcount;
 CvPoint pt0;
#if !ARRAY
 CvSeq* ptseq = cvCreateSeq(CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvContour),
 sizeof(CvPoint), storage);
 CvSeq* hull;

 for(i = 0; i < count; i++)
 {
 pt0.x = rand() % (img->width/2) + img->width/4;
 pt0.y = rand() % (img->height/2) + img->height/4;
 cvSeqPush(ptseq, &pt0);
 }
 hull = cvConvexHull2(ptseq, 0, CV_CLOCKWISE, 0);
 hullcount = hull->total;
#else
 CvPoint* points = (CvPoint*)malloc(count * sizeof(points[0]));
 int* hull = (int*)malloc(count * sizeof(hull[0]));
 CvMat pointMat = cvMat(1, count, CV_32SC2, points);
 CvMat hullMat = cvMat(1, count, CV_32SC1, hull);

 for(i = 0; i < count; i++)
 {
 pt0.x = rand() % (img->width/2) + img->width/4;
 pt0.y = rand() % (img->height/2) + img->height/4;
 points[i] = pt0;
 }
 cvConvexHull2(&pointMat, &hullMat, CV_CLOCKWISE, 0);

214

 hullcount = hullMat.cols;
#endif
 cvZero(img);
 for(i = 0; i < count; i++)
 {
#if !ARRAY
 pt0 = *CV_GET_SEQ_ELEM(CvPoint, ptseq, i);
#else
 pt0 = points[i];
#endif
 cvCircle(img, pt0, 2, CV_RGB(255, 0, 0), CV_FILLED);
 }

#if !ARRAY
 pt0 = **CV_GET_SEQ_ELEM(CvPoint*, hull, hullcount - 1);
#else
 pt0 = points[hull[hullcount-1]];
#endif

 for(i = 0; i < hullcount; i++)
 {
#if !ARRAY
 CvPoint pt = **CV_GET_SEQ_ELEM(CvPoint*, hull, i);
#else
 CvPoint pt = points[hull[i]];
#endif
 cvLine(img, pt0, pt, CV_RGB(0, 255, 0));
 pt0 = pt;
 }

 cvShowImage("hull", img);

 int key = cvWaitKey(0);
 if(key == 27) // ’ESC’
 break;

#if !ARRAY
 cvClearMemStorage(storage);
#else
 free(points);
 free(hull);
#endif
 }
}

CheckContourConvexity

Tests contour convex

int cvCheckContourConvexity(const void* contour);

contour
Tested contour (sequence or array of points).

215

The function cvCheckContourConvexity [p 215] tests whether the input contour is convex or not. The
contour must be simple, i.e. without self-intersections.

CvConvexityDefect

Structure describing a single contour convexity detect

typedef struct CvConvexityDefect
{
 CvPoint* start; /* point of the contour where the defect begins */
 CvPoint* end; /* point of the contour where the defect ends */
 CvPoint* depth_point; /* the farthest from the convex hull point within the defect */
 float depth; /* distance between the farthest point and the convex hull */
} CvConvexityDefect;

Picture. Convexity defects for hand contour.

ConvexityDefects

Finds convexity defects of contour

CvSeq* cvConvexityDefects(const void* contour, const void* convexhull,
 CvMemStorage* storage=0);

216

contour
Input contour.

convexhull
Convex hull obtained using cvConvexHull2 [p 213] that should contain pointers or indices to the
contour points, not the hull points themselves, i.e. returnPoints parameter in cvConvexHull2 [p 213]
should be 0.

storage
Container for output sequence of convexity defects. If it is NULL, contour or hull (in that order)
storage is used.

The function cvConvexityDefects [p 216] finds all convexity defects of the input contour and returns a
sequence of the CvConvexityDefect [p 216] structures.

MinAreaRect2

Finds circumscribed rectangle of minimal area for given 2D point set

CvBox2D cvMinAreaRect2(const void* points, CvMemStorage* storage=0);

points
Sequence or array of points.

storage
Optional temporary memory storage.

The function cvMinAreaRect2 [p 217] finds a circumscribed rectangle of the minimal area for 2D point
set by building convex hull for the set and applying rotating calipers technique to the hull.

Picture. Minimal-area bounding rectangle for contour

MinEnclosingCircle

Finds circumscribed circle of minimal area for given 2D point set

void cvMinEnclosingCircle(const void* points, CvPoint2D32f* center, float* radius);

217

points
Sequence or array of 2D points.

center
Output parameter. The center of the enclosing circle.

radius
Output parameter. The radius of the enclosing circle.

The function cvMinEnclosingCircle [p 217] finds the minimal circumscribed circle for 2D point set using
iterative algorithm.

CalcPGH

Calculates pair-wise geometrical histogram for contour

void cvCalcPGH(const CvSeq* contour, CvHistogram* hist);

contour
Input contour. Currently, only integer point coordinates are allowed.

hist
Calculated histogram; must be two-dimensional.

The function cvCalcPGH [p 218] calculates 2D pair-wise geometrical histogram (PGH), described in
[Iivarinen97] [p ??] , for the contour. The algorithm considers every pair of the contour edges. The angle
between the edges and the minimum/maximum distances are determined for every pair. To do this each of
the edges in turn is taken as the base, while the function loops through all the other edges. When the base
edge and any other edge are considered, the minimum and maximum distances from the points on the
non-base edge and line of the base edge are selected. The angle between the edges defines the row of the
histogram in which all the bins that correspond to the distance between the calculated minimum and
maximum distances are incremented (that is, the histogram is transposed relatively to [Iivarninen97]
definition). The histogram can be used for contour matching.

[Iivarinen97] Jukka Iivarinen, Markus Peura, Jaakko Srel, and Ari Visa. Comparison of Combined
Shape Descriptors for Irregular Objects, 8th British Machine Vision Conference, BMVC’97. You
may find online version at http://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97.html

KMeans

Splits set of vectors by given number of clusters

void cvKMeans2(const CvArr* samples, int numClusters,
 CvArr* clusterIdx, CvTermCriteria termcrit);

samples
Floating-point matrix of input samples, one row per sample.

218

http://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97.html

numClusters
Number of clusters to split the set by.

clusterIdx
Output integer vector storing cluster indices for every sample.

termcrit
Specifies maximum number of iterations and/or accuracy (distance the centers move by between the
subsequent iterations).

The function cvKMeans2 [p ??] implements k-means algorithm that finds centers of numClusters clusters
and groups the input samples around the clusters. On output clusterIdx(i) contains a cluster index for
sample stored in i-th rows of samples.

Example. Clustering random samples of multi-gaussian distribution with k-means
#include "cv.h"
#include "highgui.h"

void main(int argc, char** argv)
{
 #define MAX_CLUSTERS 5
 static const int color_tab[MAX_CLUSTERS] =
 {
 CV_RGB(255,0,0), CV_RGB(0,255,0), CV_RGB(100,100,255),
 CV_RGB(255,0,255), CV_RGB(255,255,0)
 };
 IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);
 CvRandState rng;
 cvRandInit(&rng, 0, 1, -1, CV_RAND_NORMAL);

 cvNamedWindow("clusters", 1);

 for(;;)
 {
 int k, cluster_count = cvRandNext(&rng)%MAX_CLUSTERS + 1;
 int i, sample_count = cvRandNext(&rng)%1000 + 1;
 CvMat* points = cvCreateMat(sample_count, 1, CV_32FC2);
 CvMat* clusters = cvCreateMat(sample_count, 1, CV_32SC1);

 /* generate random sample from multigaussian distribution */
 for(k = 0; k < cluster_count; k++)
 {
 CvPoint center;
 CvMat point_chunk;
 center.x = cvRandNext(&rng)%img->width;
 center.y = cvRandNext(&rng)%img->height;
 cvRandSetRange(&rng, center.x, img->width/6, 0);
 cvRandSetRange(&rng, center.y, img->height/6, 1);
 cvGetRows(points, &point_chunk, k*sample_count/cluster_count,
 k == cluster_count - 1 ? sample_count : (k+1)*sample_count/cluster_count);

 cvRand(&rng, &point_chunk);
 }

 /* shuffle samples */
 for(i = 0; i < sample_count/2; i++)
 {
 CvPoint2D32f* pt1 = (CvPoint2D32f*)points->data.fl + cvRandNext(&rng)%sample_count;
 CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl + cvRandNext(&rng)%sample_count;
 CvPoint2D32f temp;
 CV_SWAP(*pt1, *pt2, temp);

219

 }

 cvKMeans2(points, cluster_count, clusters,
 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0));

 cvZero(img);

 for(i = 0; i < sample_count; i++)
 {
 CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];
 int cluster_idx = clusters->data.i[i];
 cvCircle(img, cvPointFrom32f(pt), 2, color_tab[cluster_idx], CV_FILLED);
 }

 cvReleaseMat(&points);
 cvReleaseMat(&clusters);

 cvShowImage("clusters", img);

 int key = cvWaitKey(0);
 if(key == 27) // ’ESC’
 break;
 }
}

MinEnclosingCircle

Finds circumscribed circle of minimal area for given 2D point set

void cvMinEnclosingCircle(const void* points, CvPoint2D32f* center, float* radius);

points
Sequence or array of 2D points.

center
Output parameter. The center of the enclosing circle.

radius
Output parameter. The radius of the enclosing circle.

The function cvMinEnclosingCircle [p 220] finds the minimal circumscribed circle for 2D point set using
iterative algorithm.

Planar Subdivisions

CvSubdiv2D

Planar subdivision

#define CV_SUBDIV2D_FIELDS() \
 CV_GRAPH_FIELDS() \
 int quad_edges; \
 int is_geometry_valid; \
 CvSubdiv2DEdge recent_edge; \

220

 CvPoint2D32f topleft; \
 CvPoint2D32f bottomright;

typedef struct CvSubdiv2D
{
 CV_SUBDIV2D_FIELDS()
}
CvSubdiv2D;

Planar subdivision is a subdivision of a plane into a set of non-overlapped regions (facets) that cover the
whole plane. The above structure describes a subdivision built on 2d point set, where the points are linked
together and form a planar graph, which, together with a few edges connecting exterior subdivision points
(namely, convex hull points) with infinity, subdivides a plane into facets by its edges.

For every subdivision there exists dual subdivision there facets and points (subdivision vertices) swap
their roles, that is, a facet is treated as a vertex (called virtual point below) of dual subdivision and the
original subdivision vertices become facets. On the picture below original subdivision is marked with solid
lines and dual subdivision with dot lines

OpenCV subdivides plane into triangles using Delaunay’s algorithm. Subdivision is built iteratively
starting from a dummy triangle that includes all the subdivision points for sure. In this case the dual
subdivision is Voronoi diagram of input 2d point set. The subdivisions can be used for 3d piece-wise
transformation of a plane, morphing, fast location of points on the plane, building special graphs (such as
NNG,RNG) etc.

CvQuadEdge2D

Quad-edge of planar subdivision

/* one of edges within quad-edge, lower 2 bits is index (0..3)
 and upper bits are quad-edge pointer */
typedef long CvSubdiv2DEdge;

/* quad-edge structure fields */

221

#define CV_QUADEDGE2D_FIELDS() \
 int flags; \
 struct CvSubdiv2DPoint* pt[4]; \
 CvSubdiv2DEdge next[4];

typedef struct CvQuadEdge2D
{
 CV_QUADEDGE2D_FIELDS()
}
CvQuadEdge2D;

Quad-edge is a basic element of subdivision, it contains four edges (e, eRot and reversed e & eRot):

CvSubdiv2DPoint

Point of original or dual subdivision

#define CV_SUBDIV2D_POINT_FIELDS()\
 int flags; \
 CvSubdiv2DEdge first; \
 CvPoint2D32f pt;

#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)

typedef struct CvSubdiv2DPoint

222

{
 CV_SUBDIV2D_POINT_FIELDS()
}
CvSubdiv2DPoint;

Subdiv2DGetEdge

Returns one of edges related to given

CvSubdiv2DEdge cvSubdiv2DGetEdge(CvSubdiv2DEdge edge, CvNextEdgeType type);
#define cvSubdiv2DNextEdge(edge) cvSubdiv2DGetEdge(edge, CV_NEXT_AROUND_ORG)

edge
Subdivision edge (not a quad-edge)

type
Specifies, which of related edges to return, one of:

CV_NEXT_AROUND_ORG - next around the edge origin (eOnext on the picture above if e is
the input edge)
CV_NEXT_AROUND_DST - next around the edge vertex (eDnext)
CV_PREV_AROUND_ORG - previous around the edge origin (reversed eRnext)
CV_PREV_AROUND_DST - previous around the edge destination (reversed eLnext)
CV_NEXT_AROUND_LEFT - next around the left facet (eLnext)
CV_NEXT_AROUND_RIGHT - next around the right facet (eRnext)
CV_PREV_AROUND_LEFT - previous around the left facet (reversed eOnext)
CV_PREV_AROUND_RIGHT - previous around the right facet (reversed eDnext)

The function cvSubdiv2DGetEdge [p 223] returns one the edges related to the input edge.

Subdiv2DRotateEdge

Returns another edge of the same quad-edge

CvSubdiv2DEdge cvSubdiv2DRotateEdge(CvSubdiv2DEdge edge, int rotate);

edge
Subdivision edge (not a quad-edge)

type
Specifies, which of edges of the same quad-edge as the input one to return, one of:

0 - the input edge (e on the picture above if e is the input edge)
1 - the rotated edge (eRot)
2 - the reversed edge (reversed e (in green))
3 - the reversed rotated edge (reversed eRot (in green))

The function cvSubdiv2DRotateEdge [p 223] returns one the edges of the same quad-edge as the input
edge.

223

Subdiv2DEdgeOrg

Returns edge origin

CvSubdiv2DPoint* cvSubdiv2DEdgeOrg(CvSubdiv2DEdge edge);

edge
Subdivision edge (not a quad-edge)

The function cvSubdiv2DEdgeOrg [p 224] returns the edge origin. The returned pointer may be NULL if
the edge is from dual subdivision and the virtual point coordinates are not calculated yet. The virtual
points can be calculated using function cvCalcSubdivVoronoi2D [p 226] .

Subdiv2DEdgeDst

Returns edge destination

CvSubdiv2DPoint* cvSubdiv2DEdgeDst(CvSubdiv2DEdge edge);

edge
Subdivision edge (not a quad-edge)

The function cvSubdiv2DEdgeDst [p 224] returns the edge destination. The returned pointer may be
NULL if the edge is from dual subdivision and the virtual point coordinates are not calculated yet. The
virtual points can be calculated using function cvCalcSubdivVoronoi2D [p 226] .

CreateSubdivDelaunay2D

Creates empty Delaunay triangulation

CvSubdiv2D* cvCreateSubdivDelaunay2D(CvRect rect, CvMemStorage* storage);

rect
Rectangle that includes all the 2d points that are to be added to subdivision.

storage
Container for subdivision.

The function cvCreateSubdivDelaunay2D [p 224] creates an empty Delaunay subdivision, where 2d points
can be added further using function cvSubdivDelaunay2DInsert [p 225] . All the points to be added must
be within the specified rectangle, otherwise a runtime error will be raised.

224

SubdivDelaunay2DInsert

Inserts a single point to Delaunay triangulation

CvSubdiv2DPoint* cvSubdivDelaunay2DInsert(CvSubdiv2D* subdiv, CvPoint2D32f pt);

subdiv
Delaunay subdivision created by function cvCreateSubdivDelaunay2D [p 224] .

pt
Inserted point.

The function cvSubdivDelaunay2DInsert [p 225] inserts a single point to subdivision and modifies the
subdivision topology appropriately. If a points with same coordinates exists already, no new points is
added. The function returns pointer to the allocated point. No virtual points coordinates is calculated at
this stage.

Subdiv2DLocate

Inserts a single point to Delaunay triangulation

CvSubdiv2DPointLocation cvSubdiv2DLocate(CvSubdiv2D* subdiv, CvPoint2D32f pt,
 CvSubdiv2DEdge *edge,
 CvSubdiv2DPoint** vertex=0);

subdiv
Delaunay or another subdivision.

pt
The point to locate.

edge
The output edge the point falls onto or right to.

vertex
Optional output vertex double pointer the input point coinsides with.

The function cvSubdiv2DLocate [p 225] locates input point within subdivision. There are 5 cases:

point falls into some facet. The function returns CV_PTLOC_INSIDE and *edge will contain one of
edges of the facet.
point falls onto the edge. The function returns CV_PTLOC_ON_EDGE and *edge will contain this
edge.
point coinsides with one of subdivision vertices. The function returns CV_PTLOC_VERTEX and
*vertex will contain pointer to the vertex.
point is outside the subdivsion reference rectangle. The function returns
CV_PTLOC_OUTSIDE_RECT and no pointers is filled.
one of input arguments is invalid. Runtime error is raised or, if silent or "parent" error processing
mode is selected, CV_PTLOC_ERROR is returnd.

225

FindNearestPoint2D

Finds the closest subdivision vertex to given point

CvSubdiv2DPoint* cvFindNearestPoint2D(CvSubdiv2D* subdiv, CvPoint2D32f pt);

subdiv
Delaunay or another subdivision.

pt
Input point.

The function cvFindNearestPoint2D [p 226] is another function that locates input point within subdivision.
It finds subdivision vertex that is the closest to the input point. It is not necessarily one of vertices of the
facet containing the input point, though the facet (located using cvSubdiv2DLocate [p 225]) is used as a
starting point. The function returns pointer to the found subdivision vertex

CalcSubdivVoronoi2D

Calculates coordinates of Voronoi diagram cells

void cvCalcSubdivVoronoi2D(CvSubdiv2D* subdiv);

subdiv
Delaunay subdivision, where all the points are added already.

The function cvCalcSubdivVoronoi2D [p 226] calculates coordinates of virtual points. All virtual points
corresponding to some vertex of original subdivision form (when connected together) a boundary of
Voronoi cell of that point.

ClearSubdivVoronoi2D

Removes all virtual points

void cvClearSubdivVoronoi2D(CvSubdiv2D* subdiv);

subdiv
Delaunay subdivision.

The function cvClearSubdivVoronoi2D [p 226] removes all virtual points. It is called internally in
cvCalcSubdivVoronoi2D [p 226] if the subdivision was modified after previous call to the function.

There are a few other lower-level functions that work with planar subdivisions, see cv.h and the sources.
Demo script delaunay.c that builds Delaunay triangulation and Voronoi diagram of random 2d point set
can be found at opencv/samples/c.

226

Motion Analysis and Object Tracking Reference

Accumulation of Background Statistics [p 227]
Acc [p 227]
SquareAcc [p 228]
MultiplyAcc [p 228]
RunningAvg [p 229]

Motion Templates [p 229]
UpdateMotionHistory [p 229]
CalcMotionGradient [p 230]
CalcGlobalOrientation [p 230]
SegmentMotion [p 231]

Object Tracking [p 232]
MeanShift [p 232]
CamShift [p 232]
SnakeImage [p 233]

Optical Flow [p 234]
CalcOpticalFlowHS [p 234]
CalcOpticalFlowLK [p 235]
CalcOpticalFlowBM [p 235]
CalcOpticalFlowPyrLK [p 236]

Estimators [p 237]
Kalman [p 237]
CreateKalman [p 239]
ReleaseKalman [p 239]
KalmanPredict [p 239]
KalmanCorrect [p 240]
CreateConDensation [p 243]
ReleaseConDensation [p 243]
ConDensInitSampleSet [p 243]
ConDensUpdateByTime [p 244]

Accumulation of Background Statistics

Acc

Adds frame to accumulator

void cvAcc(const CvArr* I, CvArr* S, const CvArr* mask=0);

227

I
Input image, 1- or 3-channel, 8-bit or 32-bit floating point. (each channel of multi-channel image is
processed independently).

S
Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.

mask
Optional operation mask.

The function cvAcc [p 227] adds the whole image I or its selected region to accumulator S:

S(x,y)=S(x,y)+I(x,y) if mask(x,y)!=0

SquareAcc

Adds the square of source image to accumulator

void cvSquareAcc(const CvArr* img, CvArr* sqSum, const CvArr* mask=0);

I
Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is
processed independently).

Sq
Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.

mask
Optional operation mask.

The function cvSquareAcc [p 228] adds the square of input image I or its selected region to accumulator
Sq:

Sq(x,y)=Sq(x,y)+I(x,y) 2 if mask(x,y)!=0

MultiplyAcc

Adds product of two input images to accumulator

void cvMultiplyAcc(const CvArr* I, const CvArr* J, CvArr* Sp, const CvArr* mask=0);

I
First input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image
is processed independently).

J
Second input image, the same format as I.

Sp
Accumulator of the same number of channels as input images, 32-bit or 64-bit floating-point.

mask
Optional operation mask.

228

The function cvMultiplyAcc [p 228] adds product of the whole images I and J or their selected regions to
accumulator Sp:

Sp(x,y)=Sp(x,y)+I(x,y) •J(x,y) if mask(x,y)!=0

RunningAvg

Updates running average

void cvRunningAvg(const CvArr* I, CvArr* R, double alpha, const CvArr* mask=0);

I
Input image, 1- or 3-channel, 8-bit or 32-bit floating point (each channel of multi-channel image is
processed independently).

R
Accumulator of the same number of channels as input image, 32-bit or 64-bit floating-point.

alpha
Weight of input image.

mask
Optional operation mask.

The function cvRunningAvg [p 229] calculates weighted sum of input image I and accumulator R so that
R becomes a running average of frame sequence:

R(x,y)=(1- α) •R(x,y) + α•I(x,y) if mask(x,y)!=0

where α (alpha) regulates update speed (how fast accumulator forgets about previous frames).

Motion Templates

UpdateMotionHistory

Updates motion history image by moving silhouette

void cvUpdateMotionHistory(const CvArr* S, CvArr* MHI,
 double timestamp, double duration);

S
Silhouette mask that has non-zero pixels where the motion occurs.

MHI
Motion history image, that is updated by the function (single-channel, 32-bit floating-point)

timestamp
Current time in milliseconds or other units.

duration
Maximal duration of motion track in the same units as timestamp.

229

The function cvUpdateMotionHistory [p 229] updates the motion history image as following:

MHI(x,y)=timestamp if S(x,y)!=0
 0 if S(x,y)=0 and MHI(x,y)<timestamp-duration
 MHI(x,y) otherwise

That is, MHI pixels where motion occurs are set to the current timestamp, while the pixels where motion
happened far ago are cleared.

CalcMotionGradient

Calculates gradient orientation of motion history image

void cvCalcMotionGradient(const CvArr* MHI, CvArr* mask, CvArr* orientation,
 double delta1, double delta2, int apertureSize=3);

MHI
Motion history image.

mask
Mask image; marks pixels where motion gradient data is correct. Output parameter.

orientation
Motion gradient orientation image; contains angles from 0 to ~360°.

delta1, delta2
The function finds minimum (m(x,y)) and maximum (M(x,y)) MHI values over each pixel (x,y)
neihborhood and assumes the gradient is valid only if

min(delta1,delta2) <= M(x,y)-m(x,y) <= max(delta1,delta2).

apertureSize
Aperture size of derivative operators used by the function: CV_SCHARR, 1, 3, 5 or 7 (see cvSobel [p
152]).

The function cvCalcMotionGradient [p 230] calculates the derivatives Dx and Dy of MHI and then
calculates gradient orientation as:

orientation(x,y)=arctan(Dy(x,y)/Dx(x,y))

where both Dx(x,y)’ and Dy(x,y)’ signs are taken into account (as in cvCartToPolar [p 90] function). After
that mask is filled to indicate where the orientation is valid (see delta1 and delta2 description).

CalcGlobalOrientation

Calculates global motion orientation of some selected region

double cvCalcGlobalOrientation(const CvArr* orientation, const CvArr* mask, const CvArr* MHI,
 double currTimestamp, double mhiDuration);

230

orientation
Motion gradient orientation image; calculated by the function cvCalcMotionGradient [p 230] .

mask
Mask image. It may be a conjunction of valid gradient mask, obtained with cvCalcMotionGradient [p
230] and mask of the region, whose direction needs to be calculated.

MHI
Motion history image.

timestamp
Current time in milliseconds or other units, it is better to store time passed to cvUpdateMotionHistory
[p 229] before and reuse it here, because running cvUpdateMotionHistory [p 229] and
cvCalcMotionGradient [p 230] on large images may take some time.

duration
Maximal duration of motion track in milliseconds, the same as in cvUpdateMotionHistory [p 229] .

The function cvCalcGlobalOrientation [p 230] calculates the general motion direction in the selected
region and returns the angle between 0° and 360°. At first the function builds the orientation histogram
and finds the basic orientation as a coordinate of the histogram maximum. After that the function
calculates the shift relative to the basic orientation as a weighted sum of all orientation vectors: the more
recent is the motion, the greater is the weight. The resultant angle is a circular sum of the basic orientation
and the shift.

SegmentMotion

Segments whole motion into separate moving parts

CvSeq* cvSegmentMotion(const CvArr* MHI, CvArr* segMask, CvMemStorage* storage,
 double timestamp, double segthresh);

mhi
Motion history image.

segMask
Image where the mask found should be stored, single-channel, 32-bit floating-point.

storage
Memory storage that will contain a sequence of motion connected components.

timestamp
Current time in milliseconds or other units.

segthresh
Segmentation threshold; recommended to be equal to the interval between motion history "steps" or
greater.

The function cvSegmentMotion [p 231] finds all the motion segments and marks them in segMask with
individual values each (1,2,...). It also returns a sequence of CvConnectedComp [p 175] structures, one per
each motion components. After than the motion direction for every component can be calculated with
cvCalcGlobalOrientation [p 230] using extracted mask of the particular component (using cvCmp [p 72])

231

Object Tracking

MeanShift

Finds object center on back projection

int cvMeanShift(const CvArr* imgProb, CvRect windowIn,
 CvTermCriteria criteria, CvConnectedComp* comp);

imgProb
Back projection of object histogram (see cvCalcBackProject [p 198]).

windowIn
Initial search window.

criteria
Criteria applied to determine when the window search should be finished.

comp
Resultant structure that contains converged search window coordinates (comp->rect field) and sum
of all pixels inside the window (comp->area field).

The function cvMeanShift [p 232] iterates to find the object center given its back projection and initial
position of search window. The iterations are made until the search window center moves by less than the
given value and/or until the function has done the maximum number of iterations. The function returns the
number of iterations made.

CamShift

Finds object center, size, and orientation

int cvCamShift(const CvArr* imgProb, CvRect windowIn, CvTermCriteria criteria,
 CvConnectedComp* comp, CvBox2D* box=0);

imgProb
Back projection of object histogram (see cvCalcBackProject [p 198]).

windowIn
Initial search window.

criteria
Criteria applied to determine when the window search should be finished.

comp
Resultant structure that contains converged search window coordinates (comp->rect field) and sum
of all pixels inside the window (comp->area field).

box
Circumscribed box for the object. If not NULL, contains object size and orientation.

232

The function cvCamShift [p 232] implements CAMSHIFT object tracking algrorithm ([Bradski98] [p 237]
). First, it finds an object center using cvMeanShift [p 232] and, after that, calculates the object size and
orientation. The function returns number of iterations made within cvMeanShift [p 232] .

CvCamShiftTracker [p ??] class declared in cv.hpp implements color object tracker that uses the function.

[Bradski98] G.R. Bradski. Computer vision face tracking as a component of a perceptual user
interface. In Workshop on Applications of Computer Vision, pages 214219, Princeton, NJ, Oct.
1998.
Updated version can be viewed online at http://www.intel.com/technology/itj/q21998/articles/art_2.htm.
Also, it is included into OpenCV distribution (camshift.pdf)

SnakeImage

Changes contour position to minimize its energy

void cvSnakeImage(const IplImage* image, CvPoint* points, int length,
 float* alpha, float* beta, float* gamma, int coeffUsage,
 CvSize win, CvTermCriteria criteria, int calcGradient=1);

image
The source image or external energy field.

points
Contour points (snake).

length
Number of points in the contour.

alpha
Weight[s] of continuity energy, single float or array of length floats, one per each contour point.

beta
Weight[s] of curvature energy, similar to alpha.

gamma
Weight[s] of image energy, similar to alpha.

coeffUsage
Variant of usage of the previous three parameters:

CV_VALUE indicates that each of alpha, beta, gamma is a pointer to a single value to be used
for all points;
CV_ARRAY indicates that each of alpha, beta, gamma is a pointer to an array of coefficients
different for all the points of the snake. All the arrays must have the size equal to the contour
size.

win
Size of neighborhood of every point used to search the minimum, both win.width and win.height must
be odd.

criteria
Termination criteria.

calcGradient
Gradient flag. If not 0, the function calculates gradient magnitude for every image pixel and
consideres it as the energy field, otherwise the input image itself is considered.

233

http://www.intel.com/technology/itj/q21998/articles/art_2.htm

The function cvSnakeImage [p 233] updates snake in order to minimize its total energy that is a sum of
internal energy that depends on contour shape (the smoother contour is, the smaller internal energy is) and
external energy that depends on the energy field and reaches minimum at the local energy extremums that
correspond to the image edges in case of image gradient.

The parameter criteria.epsilon is used to define the minimal number of points that must be moved during
any iteration to keep the iteration process running.

If at some iteration the number of moved points is less than criteria.epsilon or the function performed
criteria.maxIter iterations, the function terminates.

Optical Flow

CalcOpticalFlowHS

Calculates optical flow for two images

void cvCalcOpticalFlowHS(const CvArr* imgA, const CvArr* imgB, int usePrevious,
 CvArr* velx, CvArr* vely, double lambda,
 CvTermCriteria criteria);

imgA
First image, 8-bit, single-channel.

imgB
Second image, 8-bit, single-channel.

usePrevious
Uses previous (input) velocity field.

velx
Horizontal component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

vely
Vertical component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

lambda
Lagrangian multiplier.

criteria
Criteria of termination of velocity computing.

The function cvCalcOpticalFlowHS [p 234] computes flow for every pixel of the first input image using
Horn & Schunck algorithm [Horn81] [p ??] .

[Horn81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Artificial
Intelligence, 17, pp. 185-203, 1981.

234

CalcOpticalFlowLK

Calculates optical flow for two images

void cvCalcOpticalFlowLK(const CvArr* imgA, const CvArr* imgB, CvSize winSize,
 CvArr* velx, CvArr* vely);

imgA
First image, 8-bit, single-channel.

imgB
Second image, 8-bit, single-channel.

winSize
Size of the averaging window used for grouping pixels.

velx
Horizontal component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

vely
Vertical component of the optical flow of the same size as input images, 32-bit floating-point,
single-channel.

The function cvCalcOpticalFlowLK [p 235] computes flow for every pixel of the first input image using
Lucas & Kanade algorithm [Lucas81] [p 235] .

[Lucas81] Lucas, B., and Kanade, T. An Iterative Image Registration Technique with an
Application to Stereo Vision, Proc. of 7th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 674-679.

CalcOpticalFlowBM

Calculates optical flow for two images by block matching method

void cvCalcOpticalFlowBM(const CvArr* imgA, const CvArr* imgB, CvSize blockSize,
 CvSize shiftSize, CvSize maxRange, int usePrevious,
 CvArr* velx, CvArr* vely);

imgA
First image, 8-bit, single-channel.

imgB
Second image, 8-bit, single-channel.

blockSize
Size of basic blocks that are compared.

shiftSize
Block coordinate increments.

maxRange
Size of the scanned neighborhood in pixels around block.

235

usePrevious
Uses previous (input) velocity field.

velx
Horizontal component of the optical flow of
floor((imgA->width - blockSize.width)/shiftSize.width) × floor((imgA->height -
blockSize.height)/shiftSize.height) size, 32-bit floating-point, single-channel.

vely
Vertical component of the optical flow of the same size velx, 32-bit floating-point, single-channel.

The function cvCalcOpticalFlowBM [p 235] calculates optical flow for overlapped blocks
blockSize.width×blockSize.height pixels each, thus the velocity fields are smaller than the original images.
For every block in imgA the functions tries to find a similar block in imgB in some neighborhood of the
original block or shifted by (velx(x0,y0),vely(x0,y0)) block as has been calculated by previous function
call (if usePrevious=1)

CalcOpticalFlowPyrLK

Calculates optical flow for a sparse feature set using iterative Lucas-Kanade method in pyramids

void cvCalcOpticalFlowPyrLK(const CvArr* imgA, const CvArr* imgB, CvArr* pyrA, CvArr* pyrB,
 CvPoint2D32f* featuresA, CvPoint2D32f* featuresB,
 int count, CvSize winSize, int level, char* status,
 float* error, CvTermCriteria criteria , int flags);

imgA
First frame, at time t.

imgB
Second frame, at time t + dt .

pyrA
Buffer for the pyramid for the first frame. If the pointer is not NULL , the buffer must have a
sufficient size to store the pyramid from level 1 to level #level ; the total size of (imgSize.width +8)*
imgSize.height /3 bytes is sufficient.

pyrB
Similar to pyrA , applies to the second frame.

featuresA
Array of points for which the flow needs to be found.

featuresB
Array of 2D points containing calculated new positions of input

features
in the second image.

count
Number of feature points.

winSize
Size of the search window of each pyramid level.

level
Maximal pyramid level number. If 0 , pyramids are not used (single level), if 1 , two levels are used,
etc.

236

status
Array. Every element of the array is set to 1 if the flow for the corresponding feature has been found,
0 otherwise.

error
Array of double numbers containing difference between patches around the original and moved
points. Optional parameter; can be NULL .

criteria
Specifies when the iteration process of finding the flow for each point on each pyramid level should
be stopped.

flags
Miscellaneous flags:

CV_LKFLOW_PYR_A_READY , pyramid for the first frame is precalculated before the call;
CV_LKFLOW_PYR_B_READY , pyramid for the second frame is precalculated before the call;
CV_LKFLOW_INITIAL_GUESSES , array B contains initial coordinates of features before the
function call.

The function cvCalcOpticalFlowPyrLK [p 236] implements sparse iterative version of Lucas-Kanade
optical flow in pyramids ([Bouguet00] [p ??]). Calculates the optical flow between two images for the
given set of points. The function finds the flow with sub-pixel accuracy.

Both parameters pyrA and pyrB comply with the following rules: if the image pointer is 0 , the function
allocates the buffer internally, calculates the pyramid, and releases the buffer after processing. Otherwise,
the function calculates the pyramid and stores it in the buffer unless the flag
CV_LKFLOW_PYR_A[B]_READY is set. The image should be large enough to fit the Gaussian pyramid
data. After the function call both pyramids are calculated and the ready flag for the corresponding image
can be set in the next call.

[Bouguet00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker.
The paper is included into OpenCV distribution (algo_tracking.pdf)

Estimators

CvKalman

Kalman filter state

typedef struct CvKalman
{
 int MP; /* number of measurement vector dimensions */
 int DP; /* number of state vector dimensions */
 int CP; /* number of control vector dimensions */

 /* backward compatibility fields */
#if 1
 float* PosterState; /* =state_pre->data.fl */
 float* PriorState; /* =state_post->data.fl */
 float* DynamMatr; /* =transition_matrix->data.fl */

237

 float* MeasurementMatr; /* =measurement_matrix->data.fl */
 float* MNCovariance; /* =measurement_noise_cov->data.fl */
 float* PNCovariance; /* =process_noise_cov->data.fl */
 float* KalmGainMatr; /* =gain->data.fl */
 float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
 float* PosterErrorCovariance;/* =error_cov_post->data.fl */
 float* Temp1; /* temp1->data.fl */
 float* Temp2; /* temp2->data.fl */
#endif

 CvMat* state_pre; /* predicted state (x’(k)):
 x(k)=A*x(k-1)+B*u(k) */
 CvMat* state_post; /* corrected state (x(k)):
 x(k)=x’(k)+K(k)*(z(k)-H*x’(k)) */
 CvMat* transition_matrix; /* state transition matrix (A) */
 CvMat* control_matrix; /* control matrix (B)
 (it is not used if there is no control)*/
 CvMat* measurement_matrix; /* measurement matrix (H) */
 CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
 CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
 CvMat* error_cov_pre; /* priori error estimate covariance matrix (P’(k)):
 P’(k)=A*P(k-1)*At + Q)*/
 CvMat* gain; /* Kalman gain matrix (K(k)):
 K(k)=P’(k)*Ht*inv(H*P’(k)*Ht+R)*/
 CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
 P(k)=(I-K(k)*H)*P’(k) */
 CvMat* temp1; /* temporary matrices */
 CvMat* temp2;
 CvMat* temp3;
 CvMat* temp4;
 CvMat* temp5;
}
CvKalman;

The structure CvKalman [p 237] is used to keep Kalman filter state. It is created by cvCreateKalman [p
239] function, updated by cvKalmanPredict [p 239] and cvKalmanCorrect [p 240] functions and released
by cvReleaseKalman [p 239] functions. Normally, the structure is used for standard Kalman filter
(notation and formulae are borrowed from excellent Kalman tutorial [Welch95] [p ??]):

x k =A•x k-1 +B•u k +w k

z k =H•x k +v k ,

where:

x k (x k-1) - state of the system at the moment k (k-1)

z k - measurement of the system state at the moment k

u k - external control applied at the moment k

wk and v k are normally-distributed process and measurement noise, respectively:

p(w) ~ N(0,Q)
p(v) ~ N(0,R),

that is,
Q - process noise covariance matrix, constant or variable,
R - measurement noise covariance matrix, constant or variable

238

In case of standard Kalman filter, all the matrices: A, B, H, Q and R are initialized once after CvKalman
[p 237] structure is allocated via cvCreateKalman [p 239] . However, the same structure and the same
functions may be used to simulate extended Kalman filter by linearizing extended Kalman filter equation
in the current system state neighborhood, in this case A, B, H (and, probably, Q and R) should be updated
on every step.

[Welch95] Greg Welch, Gary Bishop. An Introduction To the Kalman Filter. Technical Report
TR95-041, University of North Carolina at Chapel Hill, 1995. Online version is available at
http://www.cs.unc.edu/~welch/kalman/kalman_filter/kalman.html

CreateKalman

Allocates Kalman filter structure

CvKalman* cvCreateKalman(int dynamParams, int measureParams, int controParams=0);

dynamParams
dimensionality of the state vector

measureParams
dimensionality of the measurement vector

controlParams
dimensionality of the control vector

The function cvCreateKalman [p 239] allocates CvKalman [p 237] and all its matrices and initializes them
somehow.

ReleaseKalman

Deallocates Kalman filter structure

void cvReleaseKalman(CvKalman** kalman);

kalman
double pointer to the Kalman filter structure.

The function cvReleaseKalman [p 239] releases the structure CvKalman [p 237] and all underlying
matrices.

KalmanPredict

Estimates subsequent model state

const CvMat* cvKalmanPredict(CvKalman* kalman, const CvMat* control=NULL);
#define cvKalmanUpdateByTime cvKalmanPredict

239

http://www.cs.unc.edu/~welch/kalman/kalman_filter/kalman.html

kalman
Kalman filter state.

control
Control vector (uk), should be NULL iff there is no external control (controlParams=0).

The function cvKalmanPredict [p 239] estimates the subsequent stochastic model state by its current state
and stores it at kalman->state_pre:

 x’ k =A•x k +B•u k

 P’ k =A•P k-1 *A T + Q,

where
x’ k is predicted state (kalman->state_pre),

x k-1 is corrected state on the previous step (kalman->state_post)

 (should be initialized somehow in the beginning, zero vector by default),
u k is external control (control parameter),

P’ k is priori error covariance matrix (kalman->error_cov_pre)

P k-1 is posteriori error covariance matrix on the previous step (kalman->error_cov_post)

 (should be initialized somehow in the beginning, identity matrix by default),

The function returns the estimated state.

KalmanCorrect

Adjusts model state

void cvKalmanCorrect(CvKalman* kalman, const CvMat* measurement=NULL);
#define cvKalmanUpdateByMeasurement cvKalmanCorrect

kalman
Pointer to the structure to be updated.

measurement
Pointer to the structure CvMat containing the measurement vector.

The function cvKalmanCorrect [p 240] adjusts stochastic model state on the basis of the given
measurement of the model state:

K k =P’ k •HT •(H •P’ k •HT +R) -1

x k =x’ k +K k •(z k -H •x’ k)

P k =(I-K k •H) •P’ k

where
z k - given measurement (mesurement parameter)

K k - Kalman "gain" matrix.

The function stores adjusted state at kalman->state_post and returns it on output.

240

Example. Using Kalman filter to track a rotating point

#include "cv.h"
#include "highgui.h"
#include <math.h>

int main(int argc, char** argv)
{
 /* A matrix data */
 const float A[] = { 1, 1, 0, 1 };

 IplImage* img = cvCreateImage(cvSize(500,500), 8, 3);
 CvKalman* kalman = cvCreateKalman(2, 1, 0);
 /* state is (phi, delta_phi) - angle and angle increment */
 CvMat* state = cvCreateMat(2, 1, CV_32FC1);
 CvMat* process_noise = cvCreateMat(2, 1, CV_32FC1);
 /* only phi (angle) is measured */
 CvMat* measurement = cvCreateMat(1, 1, CV_32FC1);
 CvRandState rng;
 int code = -1;

 cvRandInit(&rng, 0, 1, -1, CV_RAND_UNI);

 cvZero(measurement);
 cvNamedWindow("Kalman", 1);

 for(;;)
 {
 cvRandSetRange(&rng, 0, 0.1, 0);
 rng.disttype = CV_RAND_NORMAL;

 cvRand(&rng, state);

 memcpy(kalman->transition_matrix->data.fl, A, sizeof(A));
 cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1));
 cvSetIdentity(kalman->process_noise_cov, cvRealScalar(1e-5));
 cvSetIdentity(kalman->measurement_noise_cov, cvRealScalar(1e-1));
 cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));
 /* choose random initial state */
 cvRand(&rng, kalman->state_post);

 rng.disttype = CV_RAND_NORMAL;

 for(;;)
 {
 #define calc_point(angle) \
 cvPoint(cvRound(img->width/2 + img->width/3*cos(angle)), \
 cvRound(img->height/2 - img->width/3*sin(angle)))

 float state_angle = state->data.fl[0];
 CvPoint state_pt = calc_point(state_angle);

 /* predict point position */
 const CvMat* prediction = cvKalmanPredict(kalman, 0);
 float predict_angle = prediction->data.fl[0];
 CvPoint predict_pt = calc_point(predict_angle);
 float measurement_angle;
 CvPoint measurement_pt;

241

 cvRandSetRange(&rng, 0, sqrt(kalman->measurement_noise_cov->data.fl[0]), 0);
 cvRand(&rng, measurement);

 /* generate measurement */
 cvMatMulAdd(kalman->measurement_matrix, state, measurement, measurement);

 measurement_angle = measurement->data.fl[0];
 measurement_pt = calc_point(measurement_angle);

 /* plot points */
 #define draw_cross(center, color, d) \
 cvLine(img, cvPoint(center.x - d, center.y - d), \
 cvPoint(center.x + d, center.y + d), color, 1, 0); \
 cvLine(img, cvPoint(center.x + d, center.y - d), \
 cvPoint(center.x - d, center.y + d), color, 1, 0)

 cvZero(img);
 draw_cross(state_pt, CV_RGB(255,255,255), 3);
 draw_cross(measurement_pt, CV_RGB(255,0,0), 3);
 draw_cross(predict_pt, CV_RGB(0,255,0), 3);
 cvLine(img, state_pt, predict_pt, CV_RGB(255,255,0), 3, 0);

 /* adjust Kalman filter state */
 cvKalmanCorrect(kalman, measurement);

 cvRandSetRange(&rng, 0, sqrt(kalman->process_noise_cov->data.fl[0]), 0);
 cvRand(&rng, process_noise);
 cvMatMulAdd(kalman->transition_matrix, state, process_noise, state);

 cvShowImage("Kalman", img);
 code = cvWaitKey(100);

 if(code > 0) /* break current simulation by pressing a key */
 break;
 }
 if(code == 27) /* exit by ESCAPE */
 break;
 }

 return 0;
}

CvConDensation

ConDenstation state

 typedef struct CvConDensation
 {
 int MP; //Dimension of measurement vector
 int DP; // Dimension of state vector
 float* DynamMatr; // Matrix of the linear Dynamics system
 float* State; // Vector of State
 int SamplesNum; // Number of the Samples
 float** flSamples; // array of the Sample Vectors
 float** flNewSamples; // temporary array of the Sample Vectors

242

 float* flConfidence; // Confidence for each Sample
 float* flCumulative; // Cumulative confidence
 float* Temp; // Temporary vector
 float* RandomSample; // RandomVector to update sample set
 CvRandState* RandS; // Array of structures to generate random vectors
 } CvConDensation;

The structure CvConDensation [p ??] stores CONditional DENSity propagATION tracker state. The
information about the algorithm can be found at
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html

CreateConDensation

Allocates ConDensation filter structure

CvConDensation* cvCreateConDensation(int DynamParams, int MeasureParams, int SamplesNum);

DynamParams
Dimension of the state vector.

MeasureParams
Dimension of the measurement vector.

SamplesNum
Number of samples.

The function cvCreateConDensation [p 243] creates CvConDensation [p ??] structure and returns pointer
to the structure.

ReleaseConDensation

Deallocates ConDensation filter structure

void cvReleaseConDensation(CvConDensation** ConDens);

ConDens
Pointer to the pointer to the structure to be released.

The function cvReleaseConDensation [p 243] releases the structure CvConDensation [p ??] (see
cvConDensation [p ??]) and frees all memory previously allocated for the structure.

ConDensInitSampleSet

Initializes sample set for condensation algorithm

void cvConDensInitSampleSet(CvConDensation* ConDens, CvMat* lowerBound, CvMat* upperBound);

243

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/ISARD1/condensation.html

ConDens
Pointer to a structure to be initialized.

lowerBound
Vector of the lower boundary for each dimension.

upperBound
Vector of the upper boundary for each dimension.

The function cvConDensInitSampleSet [p 243] fills the samples arrays in the structure CvConDensation [p
??] with values within specified ranges.

ConDensUpdateByTime

Estimates subsequent model state

void cvConDensUpdateByTime(CvConDensation* ConDens);

ConDens
Pointer to the structure to be updated.

The function cvConDensUpdateByTime [p 244] estimates the subsequent stochastic model state from its
current state.

244

Object Recognition Reference

Eigen Objects (PCA) Functions [p 245]
CalcCovarMatrixEx [p 245]
CalcEigenObjects [p 246]
CalcDecompCoeff [p 247]
EigenDecomposite [p 247]
EigenProjection [p 248]

Embedded Hidden Markov Models Functions [p 249]
HMM [p 249]
ImgObsInfo [p 250]
Create2DHMM [p 250]
Release2DHMM [p 251]
CreateObsInfo [p 251]
ReleaseObsInfo [p 251]
ImgToObs_DCT [p 252]
UniformImgSegm [p 252]
InitMixSegm [p 253]
EstimateHMMStateParams [p 253]
EstimateTransProb [p 254]
EstimateObsProb [p 254]
EViterbi [p 254]
MixSegmL2 [p 255]

Eigen Objects (PCA) Functions
The functions described in this section do PCA analysis and compression for a set of 8-bit images that
may not fit into memory all together. If your data fits into memory and the vectors are not 8-bit (or you
want a simpler interface), use cvCalcCovarMatrix [p 89] , cvSVD [p 86] and cvGEMM [p 82] to do PCA

CalcCovarMatrixEx

Calculates covariance matrix for group of input objects

void cvCalcCovarMatrixEx(int nObjects, void* input, int ioFlags,
 int ioBufSize, uchar* buffer, void* userData,
 IplImage* avg, float* covarMatrix);

nObjects
Number of source objects.

245

input
Pointer either to the array of IplImage input objects or to the read callback function according to the
value of the parameter ioFlags.

ioFlags
Input/output flags.

ioBufSize
Input/output buffer size.

buffer
Pointer to the input/output buffer.

userData
Pointer to the structure that contains all necessary data for the

callback
functions.

avg
Averaged object.

covarMatrix
Covariance matrix. An output parameter; must be allocated before the call.

The function cvCalcCovarMatrixEx [p 245] calculates a covariance matrix of the input objects group
using previously calculated averaged object. Depending on ioFlags parameter it may be used either in
direct access or callback mode. If ioFlags is not CV_EIGOBJ_NO_CALLBACK, buffer must be allocated
before calling the function.

CalcEigenObjects

Calculates orthonormal eigen basis and averaged object for group of input objects

void cvCalcEigenObjects(int nObjects, void* input, void* output, int ioFlags,
 int ioBufSize, void* userData, CvTermCriteria* calcLimit,
 IplImage* avg, float* eigVals);

nObjects
Number of source objects.

input
Pointer either to the array of IplImage input objects or to the read callback function according to the
value of the parameter ioFlags.

output
Pointer either to the array of eigen objects or to the write callback function according to the value of
the parameter ioFlags .

ioFlags
Input/output flags.

ioBufSize
Input/output buffer size in bytes. The size is zero, if unknown.

userData
Pointer to the structure that contains all necessary data for the callback functions.

246

calcLimit
Criteria that determine when to stop calculation of eigen objects.

avg
Averaged object.

eigVals
Pointer to the eigenvalues array in the descending order; may be NULL .

The function cvCalcEigenObjects [p 246] calculates orthonormal eigen basis and the averaged object for a
group of the input objects. Depending on ioFlags parameter it may be used either in direct access or
callback mode. Depending on the parameter calcLimit, calculations are finished either after first
calcLimit.maxIters dominating eigen objects are retrieved or if the ratio of the current eigenvalue to the
largest eigenvalue comes down to calcLimit.epsilon threshold. The value calcLimit -> type must be
CV_TERMCRIT_NUMB, CV_TERMCRIT_EPS, or CV_TERMCRIT_NUMB | CV_TERMCRIT_EPS . The
function returns the real values calcLimit -> maxIter and calcLimit -> epsilon .

The function also calculates the averaged object, which must be created previously. Calculated eigen
objects are arranged according to the corresponding eigenvalues in the descending order.

The parameter eigVals may be equal to NULL, if eigenvalues are not needed.

The function cvCalcEigenObjects [p 246] uses the function cvCalcCovarMatrixEx [p 245] .

CalcDecompCoeff

Calculates decomposition coefficient of input object

double cvCalcDecompCoeff(IplImage* obj, IplImage* eigObj, IplImage* avg);

obj
Input object.

eigObj
Eigen object.

avg
Averaged object.

The function cvCalcDecompCoeff [p 247] calculates one decomposition coefficient of the input object
using the previously calculated eigen object and the averaged object.

EigenDecomposite

Calculates all decomposition coefficients for input object

void cvEigenDecomposite(IplImage* obj, int nEigObjs, void* eigInput,
 int ioFlags, void* userData, IplImage* avg, float* coeffs);

247

obj
Input object.

nEigObjs
Number of eigen objects.

eigInput
Pointer either to the array of IplImage input objects or to the read callback function according to the
value of the parameter ioFlags.

ioFlags
Input/output flags.

userData
Pointer to the structure that contains all necessary data for the callback functions.

avg
Averaged object.

coeffs
Calculated coefficients; an output parameter.

The function cvEigenDecomposite [p 247] calculates all decomposition coefficients for the input object
using the previously calculated eigen objects basis and the averaged object. Depending on ioFlags
parameter it may be used either in direct access or callback mode.

EigenProjection

Calculates object projection to the eigen sub-space

void cvEigenProjection(int nEigObjs, void* eigInput, int ioFlags,
 void* userData, float* coeffs,
 IplImage* avg, IplImage* proj);

nEigObjs
Number of eigen objects.

eigInput
Pointer either to the array of IplImage input objects or to the read callback function according to the
value of the parameter ioFlags.

ioFlags
Input/output flags.

userData
Pointer to the structure that contains all necessary data for the callback functions.

coeffs
Previously calculated decomposition coefficients.

avg
Averaged object.

proj
Decomposed object projection to the eigen sub-space.

248

The function cvEigenProjection [p 248] calculates an object projection to the eigen sub-space or, in other
words, restores an object using previously calculated eigen objects basis, averaged object, and
decomposition coefficients of the restored object. Depending on ioFlags parameter it may be used either
in direct access or callback mode.

The functions of the eigen objects group have been developed to be used for any number of objects, even
if their total size exceeds free RAM size. So the functions may be used in two main modes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input and eigen objects
allocation. This mode is set if the parameter ioFlags is equal to CV_EIGOBJ_NO_CALLBACK . In this
case input and output parameters are pointers to arrays of input/output objects of IplImage* type. The
parameters ioBufSize and userData are not used.

Embedded Hidden Markov Models Functions
In order to support embedded models the user must define structures to represent 1D HMM and 2D
embedded HMM model.

CvHMM

Embedded HMM Structure

 typedef struct _CvEHMM
 {
 int level;
 int num_states;
 float* transP;
 float** obsProb;
 union
 {
 CvEHMMState* state;
 struct _CvEHMM* ehmm;
 } u;
 } CvEHMM;

level
Level of embedded HMM. If level ==0 , HMM is most external. In 2D HMM there are two types of
HMM: 1 external and several embedded. External HMM has level ==1 , embedded HMMs have level
==0 .

num_states
Number of states in 1D HMM.

transP
State-to-state transition probability, square matrix (num_state×num_state).

obsProb
Observation probability matrix.

249

state
Array of HMM states. For the last-level HMM, that is, an HMM without embedded HMMs, HMM
states are real.

ehmm
Array of embedded HMMs. If HMM is not last-level, then HMM states are not real and they are
HMMs.

For representation of observations the following structure is defined:

CvImgObsInfo

Image Observation Structure

 typedef struct CvImgObsInfo
 {
 int obs_x;
 int obs_y;
 int obs_size;
 float** obs;
 int* state;
 int* mix;
 } CvImgObsInfo;

obs_x
Number of observations in the horizontal direction.

obs_y
Number of observations in the vertical direction.

obs_size
Length of every observation vector.

obs
Pointer to observation vectors stored consequently. Number of vectors is obs_x*obs_y .

state
Array of indices of states, assigned to every observation vector.

mix
Index of mixture component, corresponding to the observation vector within an assigned state.

Create2DHMM

Creates 2D embedded HMM

CvEHMM* cvCreate2DHMM(int* stateNumber, int* numMix, int obsSize);

stateNumber
Array, the first element of the which specifies the number of superstates in the HMM. All subsequent
elements specify the number of states in every embedded HMM, corresponding to each superstate.
So, the length of the array is stateNumber [0]+1 .

250

numMix
Array with numbers of Gaussian mixture components per each internal state. The number of elements
in the array is equal to number of internal states in the HMM, that is, superstates are not counted here.

obsSize
Size of observation vectors to be used with created HMM.

The function cvCreate2DHMM [p 250] returns the created structure of the type CvEHMM [p ??] with
specified parameters.

Release2DHMM

Releases 2D embedded HMM

void cvRelease2DHMM(CvEHMM** hmm);

hmm
Address of pointer to HMM to be released.

The function cvRelease2DHMM [p 251] frees all the memory used by HMM and clears the pointer to
HMM.

CreateObsInfo

Creates structure to store image observation vectors

CvImgObsInfo* cvCreateObsInfo(CvSize numObs, int obsSize);

numObs
Numbers of observations in the horizontal and vertical directions. For the given image and scheme of
extracting observations the parameter can be computed via the macro CV_COUNT_OBS(roi, dctSize,
delta, numObs), where roi, dctSize, delta, numObs are the pointers to structures of the type CvSize [p
??] . The pointer roi means size of roi of image observed, numObs is the output parameter of the
macro.

obsSize
Size of observation vectors to be stored in the structure.

The function cvCreateObsInfo [p 251] creates new structures to store image observation vectors. For
definitions of the parameters roi, dctSize, and delta see the specification of the function
cvImgToObs_DCT [p 252] .

ReleaseObsInfo

Releases observation vectors structure

251

void cvReleaseObsInfo(CvImgObsInfo** obsInfo);

obsInfo
Address of the pointer to the structure CvImgObsInfo [p 250] .

The function cvReleaseObsInfo [p 251] frees all memory used by observations and clears pointer to the
structure CvImgObsInfo [p 250] .

ImgToObs_DCT

Extracts observation vectors from image

void cvImgToObs_DCT(IplImage* image, float* obs, CvSize dctSize,
 CvSize obsSize, CvSize delta);

image
Input image.

obs
Pointer to consequently stored observation vectors.

dctSize
Size of image blocks for which DCT (Discrete Cosine Transform) coefficients are to be computed.

obsSize
Number of the lowest DCT coefficients in the horizontal and vertical directions to be put into the
observation vector.

delta
Shift in pixels between two consecutive image blocks in the horizontal and vertical directions.

The function cvImgToObs_DCT [p 252] extracts observation vectors, that is, DCT coefficients, from the
image. The user must pass obsInfo.obs as the parameter obs to use this function with other HMM
functions and use the structure obsInfo of the CvImgObsInfo [p 250] type.

Calculating Observations for HMM

 CvImgObsInfo* obs_info;

 ...

 cvImgToObs_DCT(image,obs_info->obs, //!!!

 dctSize, obsSize, delta);

UniformImgSegm

Performs uniform segmentation of image observations by HMM states

252

void cvUniformImgSegm(CvImgObsInfo* obsInfo, CvEHMM* hmm);

obsInfo
Observations structure.

hmm
HMM structure.

The function cvUniformImgSegm [p 252] segments image observations by HMM states uniformly (see
Initial Segmentation for 2D Embedded HMM for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

Initial Segmentation for 2D Embedded HMM

InitMixSegm

Segments all observations within every internal state of HMM by state mixture components

void cvInitMixSegm(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM* hmm);

obsInfoArray
Array of pointers to the observation structures.

numImg
Length of above array.

hmm
HMM.

The function cvInitMixSegm [p 253] takes a group of observations from several training images already
segmented by states and splits a set of observation vectors within every internal HMM state into as many
clusters as the number of mixture components in the state.

EstimateHMMStateParams

Estimates all parameters of every HMM state

void cvEstimateHMMStateParams(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM* hmm);

obsInfoArray
Array of pointers to the observation structures.

numImg
Length of the array.

253

hmm
HMM.

The function cvEstimateHMMStateParams [p 253] computes all inner parameters of every HMM state,
including Gaussian means, variances, etc.

EstimateTransProb

Computes transition probability matrices for embedded HMM

void cvEstimateTransProb(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM* hmm);

obsInfoArray
Array of pointers to the observation structures.

numImg
Length of the above array.

hmm
HMM.

The function cvEstimateTransProb [p 254] uses current segmentation of image observations to compute
transition probability matrices for all embedded and external HMMs.

EstimateObsProb

Computes probability of every observation of several images

void cvEstimateObsProb(CvImgObsInfo* obsInfo, CvEHMM* hmm);

obsInfo
Observation structure.

hmm
HMM structure.

The function cvEstimateObsProb [p 254] computes Gaussian probabilities of each observation to occur in
each of the internal HMM states.

EViterbi

Executes Viterbi algorithm for embedded HMM

float cvEViterbi(CvImgObsInfo* obsInfo, CvEHMM* hmm);

obsInfo
Observation structure.

254

hmm
HMM structure.

The function cvEViterbi [p 254] executes Viterbi algorithm for embedded HMM. Viterbi algorithm
evaluates the likelihood of the best match between the given image observations and the given HMM and
performs segmentation of image observations by HMM states. The segmentation is done on the basis of
the match found.

MixSegmL2

Segments observations from all training images by mixture components of newly assigned states

void cvMixSegmL2(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM* hmm);

obsInfoArray
Array of pointers to the observation structures.

numImg
Length of the array.

hmm
HMM.

The function cvMixSegmL2 [p 255] segments observations from all training images by mixture
components of newly Viterbi algorithm-assigned states. The function uses Euclidean distance to group
vectors around the existing mixtures centers.

255

Camera Calibration and 3D Reconstruction Reference

Camera Calibration Functions [p 256]
CalibrateCamera [p 256]
CalibrateCamera_64d [p 257]
Rodrigues [p 258]
UnDistortOnce [p 258]
UnDistortInit [p 259]
UnDistort [p 259]
FindChessBoardCornerGuesses [p 260]

Pose Estimation [p 261]
FindExtrinsicCameraParams [p 261]
FindExtrinsicCameraParams_64d [p 261]
CreatePOSITObject [p 262]
POSIT [p 263]
ReleasePOSITObject [p 263]
CalcImageHomography [p 263]

View Morphing Functions [p 264]
MakeScanlines [p 264]
PreWarpImage [p 265]
FindRuns [p 265]
DynamicCorrespondMulti [p 266]
MakeAlphaScanlines [p 266]
MorphEpilinesMulti [p 267]
PostWarpImage [p 268]
DeleteMoire [p 268]

Epipolar Geometry Functions [p ??]
FindFundamentalMat [p 269]
ComputeCorrespondEpilines [p 271]

Camera Calibration Functions

CalibrateCamera

Calibrates camera with single precision

void cvCalibrateCamera(int numImages, int* numPoints, CvSize imageSize,
 CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f,
 CvVect32f distortion32f, CvMatr32f cameraMatrix32f,
 CvVect32f transVects32f, CvMatr32f rotMatrs32f,
 int useIntrinsicGuess);

256

numImages
Number of the images.

numPoints
Array of the number of points in each image.

imageSize
Size of the image.

imagePoints32f
Pointer to the images.

objectPoints32f
Pointer to the pattern.

distortion32f
Array of four distortion coefficients found.

cameraMatrix32f
Camera matrix found.

transVects32f
Array of translate vectors for each pattern position in the image.

rotMatrs32f
Array of the rotation matrix for each pattern position in the image.

useIntrinsicGuess
Intrinsic guess. If equal to 1, intrinsic guess is needed.

The function cvCalibrateCamera [p 256] calculates the camera parameters using information points on the
pattern object and pattern object images.

CalibrateCamera_64d

Calibrates camera with double precision

void cvCalibrateCamera_64d(int numImages, int* numPoints, CvSize imageSize,
 CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints,
 CvVect64d distortion, CvMatr64d cameraMatrix,
 CvVect64d transVects, CvMatr64d rotMatrs,
 int useIntrinsicGuess);

numImages
Number of the images.

numPoints
Array of the number of points in each image.

imageSize
Size of the image.

imagePoints
Pointer to the images.

objectPoints
Pointer to the pattern.

distortion
Distortion coefficients found.

257

cameraMatrix
Camera matrix found.

transVects
Array of the translate vectors for each pattern position on the image.

rotMatrs
Array of the rotation matrix for each pattern position on the image.

useIntrinsicGuess
Intrinsic guess. If equal to 1, intrinsic guess is needed.

The function cvCalibrateCamera_64d [p 257] is basically the same as the function cvCalibrateCamera [p
256] , but uses double precision.

Rodrigues

Converts rotation matrix to rotation vector and vice versa with single precision

void cvRodrigues(CvMat* rotMatrix, CvMat* rotVector,
 CvMat* jacobian, int convType);

rotMatrix
Rotation matrix (3x3), 32-bit or 64-bit floating point.

rotVector
Rotation vector (3x1 or 1x3) of the same type as rotMatrix.

jacobian
Jacobian matrix 3 × 9.

convType
Type of conversion; must be CV_RODRIGUES_M2V for converting the matrix to the vector or
CV_RODRIGUES_V2M for converting the vector to the matrix.

The function cvRodrigues [p 258] converts the rotation matrix to the rotation vector or vice versa.

UnDistortOnce

Corrects camera lens distortion

void cvUnDistortOnce(const CvArr* srcImage, CvArr* dstImage,
 const float* intrMatrix,
 const float* distCoeffs,
 int interpolate=1);

srcImage
Source (distorted) image.

dstImage
Destination (corrected) image.

intrMatrix
Matrix of the camera intrinsic parameters (3x3).

258

distCoeffs
Vector of the four distortion coefficients k1 , k2 , p1 and p2 .

interpolate
Bilinear interpolation flag.

The function cvUnDistortOnce [p 258] corrects camera lens distortion in case of a single image. Matrix of
the camera intrinsic parameters and distortion coefficients k1 , k2 , p1 , and p2 must be preliminarily

calculated by the function cvCalibrateCamera [p 256] .

UnDistortInit

Calculates arrays of distorted points indices and interpolation coefficients

void cvUnDistortInit(const CvArr* srcImage, CvArr* undistMap,
 const float* intrMatrix,
 const float* distCoeffs,
 int interpolate=1);

srcImage
Artibtrary source (distorted) image, the image size and number of channels do matter.

undistMap
32-bit integer image of the same size as the source image (if interpolate=0) or 3 times wider than the
source image (if interpolate=1).

intrMatrix
Matrix of the camera intrinsic parameters.

distCoeffs
Vector of the 4 distortion coefficients k1 , k2 , p1 and p2 .

interpolate
Bilinear interpolation flag.

The function cvUnDistortInit [p 259] calculates arrays of distorted points indices and interpolation
coefficients using known matrix of the camera intrinsic parameters and distortion coefficients. It calculates
undistortion map for cvUnDistort [p 259] .

Matrix of the camera intrinsic parameters and the distortion coefficients may be calculated by
cvCalibrateCamera [p 256] .

UnDistort

Corrects camera lens distortion

void cvUnDistort(const void* srcImage, void* dstImage,
 const void* undistMap, int interpolate=1);

259

srcImage
Source (distorted) image.

dstImage
Destination (corrected) image.

undistMap
Undistortion map, pre-calculated by cvUnDistortInit [p 259] .

interpolate
Bilinear interpolation flag, the same as in cvUnDistortInit [p 259] .

The function cvUnDistort [p 259] corrects camera lens distortion using previously calculated undistortion
map. It is faster than cvUnDistortOnce [p 258] .

FindChessBoardCornerGuesses

Finds approximate positions of internal corners of the chessboard

int cvFindChessBoardCornerGuesses(IplImage* img, IplImage* thresh, CvSize etalonSize,
 CvPoint2D32f* corners, int* cornerCount);

img
Source chessboard view; must have the depth of IPL_DEPTH_8U.

thresh
Temporary image of the same size and format as the source image.

etalonSize
Number of inner corners per chessboard row and column. The width (the number of columns) must
be less or equal to the height (the number of rows).

corners
Pointer to the corner array found.

cornerCount
Signed value whose absolute value is the number of corners found. A positive number means that a
whole chessboard has been found and a negative number means that not all the corners have been
found.

The function cvFindChessBoardCornerGuesses [p 260] attempts to determine whether the input image is a
view of the chessboard pattern and locate internal chessboard corners. The function returns non-zero value
if all the corners have been found and they have been placed in a certain order (row by row, left to right in
every row), otherwise, if the function fails to find all the corners or reorder them, the function returns 0.
For example, a simple chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points, where the
squares are tangent. The word "approximate" in the above description means that the corner coordinates
found may differ from the actual coordinates by a couple of pixels. To get more precise coordinates, the
user may use the function cvFindCornerSubPix [p ??] .

260

Pose Estimation

FindExtrinsicCameraParams

Finds extrinsic camera parameters for pattern

void cvFindExtrinsicCameraParams(int numPoints, CvSize imageSize,
 CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f,
 CvVect32f focalLength32f, CvPoint2D32f principalPoint32f,
 CvVect32f distortion32f, CvVect32f rotVect32f,
 CvVect32f transVect32f);

numPoints
Number of the points.

ImageSize
Size of the image.

imagePoints32f
Pointer to the image.

objectPoints32f
Pointer to the pattern.

focalLength32f
Focal length.

principalPoint32f
Principal point.

distortion32f
Distortion.

rotVect32f
Rotation vector.

transVect32f
Translate vector.

The function cvFindExtrinsicCameraParams [p 261] finds the extrinsic parameters for the pattern.

FindExtrinsicCameraParams_64d

Finds extrinsic camera parameters for pattern with double precision

void cvFindExtrinsicCameraParams_64d(int numPoints, CvSize imageSize,
 CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints,
 CvVect64d focalLength, CvPoint2D64d principalPoint,
 CvVect64d distortion, CvVect64d rotVect,
 CvVect64d transVect);

numPoints
Number of the points.

261

ImageSize
Size of the image.

imagePoints
Pointer to the image.

objectPoints
Pointer to the pattern.

focalLength
Focal length.

principalPoint
Principal point.

distortion
Distortion.

rotVect
Rotation vector.

transVect
Translate vector.

The function cvFindExtrinsicCameraParams_64d [p 261] finds the extrinsic parameters for the pattern
with double precision.

CreatePOSITObject

Initializes structure containing object information

CvPOSITObject* cvCreatePOSITObject(CvPoint3D32f* points, int numPoints);

points
Pointer to the points of the 3D object model.

numPoints
Number of object points.

The function cvCreatePOSITObject [p 262] allocates memory for the object structure and computes the
object inverse matrix.

The preprocessed object data is stored in the structure CvPOSITObject [p ??] , internal for OpenCV,
which means that the user cannot directly access the structure data. The user may only create this structure
and pass its pointer to the function.

Object is defined as a set of points given in a coordinate system. The function cvPOSIT [p 263] computes
a vector that begins at a camera-related coordinate system center and ends at the points[0] of the object.

Once the work with a given object is finished, the function cvReleasePOSITObject [p 263] must be called
to free memory.

262

POSIT

Implements POSIT algorithm

void cvPOSIT(CvPoint2D32f* imagePoints, CvPOSITObject* pObject,
 double focalLength, CvTermCriteria criteria,
 CvMatrix3* rotation, CvPoint3D32f* translation);

imagePoints
Pointer to the object points projections on the 2D image plane.

pObject
Pointer to the object structure.

focalLength
Focal length of the camera used.

criteria
Termination criteria of the iterative POSIT algorithm.

rotation
Matrix of rotations.

translation
Translation vector.

The function cvPOSIT [p 263] implements POSIT algorithm. Image coordinates are given in a
camera-related coordinate system. The focal length may be retrieved using camera calibration functions.
At every iteration of the algorithm new perspective projection of estimated pose is computed.

Difference norm between two projections is the maximal distance between corresponding points. The
parameter criteria.epsilon serves to stop the algorithm if the difference is small.

ReleasePOSITObject

Deallocates 3D object structure

void cvReleasePOSITObject(CvPOSITObject** ppObject);

ppObject
Address of the pointer to the object structure.

The function cvReleasePOSITObject [p 263] releases memory previously allocated by the function
cvCreatePOSITObject [p 262] .

CalcImageHomography

Calculates homography matrix for oblong planar object (e.g. arm)

263

void cvCalcImageHomography(float* line, CvPoint3D32f* center,
 float* intrinsic, float homography[3][3]);

line
the main object axis direction (vector (dx,dy,dz)).

center
object center ((cx,cy,cz)).

intrinsic
intrinsic camera parameters (3x3 matrix).

homography
output homography matrix (3x3).

The function cvCalcImageHomography [p 263] calculates the homography matrix for the initial image
transformation from image plane to the plane, defined by 3D oblong object line (See Figure 6-10 in
OpenCV Guide 3D Reconstruction Chapter).

View Morphing Functions

MakeScanlines

Calculates scanlines coordinates for two cameras by fundamental matrix

void cvMakeScanlines(CvMatrix3* matrix, CvSize imgSize, int* scanlines1,
 int* scanlines2, int* lens1, int* lens2, int* numlines);

matrix
Fundamental matrix.

imgSize
Size of the image.

scanlines1
Pointer to the array of calculated scanlines of the first image.

scanlines2
Pointer to the array of calculated scanlines of the second image.

lens1
Pointer to the array of calculated lengths (in pixels) of the first image scanlines.

lens2
Pointer to the array of calculated lengths (in pixels) of the second image scanlines.

numlines
Pointer to the variable that stores the number of scanlines.

The function cvMakeScanlines [p 264] finds coordinates of scanlines for two images.

This function returns the number of scanlines. The function does nothing except calculating the number of
scanlines if the pointers scanlines1 or scanlines2 are equal to zero.

264

PreWarpImage

Rectifies image

void cvPreWarpImage(int numLines, IplImage* img, uchar* dst,
 int* dstNums, int* scanlines);

numLines
Number of scanlines for the image.

img
Image to prewarp.

dst
Data to store for the prewarp image.

dstNums
Pointer to the array of lengths of scanlines.

scanlines
Pointer to the array of coordinates of scanlines.

The function cvPreWarpImage [p 265] rectifies the image so that the scanlines in the rectified image are
horizontal. The output buffer of size max(width,height)*numscanlines*3 must be allocated before calling
the function.

FindRuns

Retrieves scanlines from rectified image and breaks them down into runs

void cvFindRuns(int numLines, uchar* prewarp_1, uchar* prewarp_2,
 int* lineLens_1, int* lineLens_2,
 int* runs_1, int* runs_2,
 int* numRuns_1, int* numRuns_2);

numLines
Number of the scanlines.

prewarp_1
Prewarp data of the first image.

prewarp_2
Prewarp data of the second image.

lineLens_1
Array of lengths of scanlines in the first image.

lineLens_2
Array of lengths of scanlines in the second image.

runs_1
Array of runs in each scanline in the first image.

runs_2
Array of runs in each scanline in the second image.

265

numRuns_1
Array of numbers of runs in each scanline in the first image.

numRuns_2
Array of numbers of runs in each scanline in the second image.

The function cvFindRuns [p 265] retrieves scanlines from the rectified image and breaks each scanline
down into several runs, that is, series of pixels of almost the same brightness.

DynamicCorrespondMulti

Finds correspondence between two sets of runs of two warped images

void cvDynamicCorrespondMulti(int lines, int* first, int* firstRuns,
 int* second, int* secondRuns,
 int* firstCorr, int* secondCorr);

lines
Number of scanlines.

first
Array of runs of the first image.

firstRuns
Array of numbers of runs in each scanline of the first image.

second
Array of runs of the second image.

secondRuns
Array of numbers of runs in each scanline of the second image.

firstCorr
Pointer to the array of correspondence information found for the first runs.

secondCorr
Pointer to the array of correspondence information found for the second runs.

The function cvDynamicCorrespondMulti [p 266] finds correspondence between two sets of runs of two
images. Memory must be allocated before calling this function. Memory size for one array of
correspondence information is
max(width,height)* numscanlines*3*sizeof (int) .

MakeAlphaScanlines

Calculates coordinates of scanlines of image from virtual camera

void cvMakeAlphaScanlines(int* scanlines_1, int* scanlines_2,
 int* scanlinesA, int* lens,
 int numlines, float alpha);

266

scanlines_1
Pointer to the array of the first scanlines.

scanlines_2
Pointer to the array of the second scanlines.

scanlinesA
Pointer to the array of the scanlines found in the virtual image.

lens
Pointer to the array of lengths of the scanlines found in the virtual image.

numlines
Number of scanlines.

alpha
Position of virtual camera (0.0 - 1.0) .

The function cvMakeAlphaScanlines [p 266] finds coordinates of scanlines for the virtual camera with the
given camera position.

Memory must be allocated before calling this function. Memory size for the array of correspondence runs
is numscanlines*2*4*sizeof(int) . Memory size for the array of the scanline lengths is
numscanlines*2*4*sizeof(int) .

MorphEpilinesMulti

Morphs two pre-warped images using information about stereo correspondence

void cvMorphEpilinesMulti(int lines, uchar* firstPix, int* firstNum,
 uchar* secondPix, int* secondNum,
 uchar* dstPix, int* dstNum,
 float alpha, int* first, int* firstRuns,
 int* second, int* secondRuns,
 int* firstCorr, int* secondCorr);

lines
Number of scanlines in the prewarp image.

firstPix
Pointer to the first prewarp image.

firstNum
Pointer to the array of numbers of points in each scanline in the first image.

secondPix
Pointer to the second prewarp image.

secondNum
Pointer to the array of numbers of points in each scanline in the second image.

dstPix
Pointer to the resulting morphed warped image.

dstNum
Pointer to the array of numbers of points in each line.

267

alpha
Virtual camera position (0.0 - 1.0) .

first
First sequence of runs.

firstRuns
Pointer to the number of runs in each scanline in the first image.

second
Second sequence of runs.

secondRuns
Pointer to the number of runs in each scanline in the second image.

firstCorr
Pointer to the array of correspondence information found for the first runs.

secondCorr
Pointer to the array of correspondence information found for the second runs.

The function cvMorphEpilinesMulti [p 267] morphs two pre-warped images using information about
correspondence between the scanlines of two images.

PostWarpImage

Warps rectified morphed image back

void cvPostWarpImage(int numLines, uchar* src, int* srcNums,
 IplImage* img, int* scanlines);

numLines
Number of the scanlines.

src
Pointer to the prewarp image virtual image.

srcNums
Number of the scanlines in the image.

img
Resulting unwarp image.

scanlines
Pointer to the array of scanlines data.

The function cvPostWarpImage [p 268] warps the resultant image from the virtual camera by storing its
rows across the scanlines whose coordinates are calculated by cvMakeAlphaScanlines [p 266] .

DeleteMoire

Deletes moire in given image

void cvDeleteMoire(IplImage* img);

268

img
Image.

The function cvDeleteMoire [p 268] deletes moire from the given image. The post-warped image may
have black (un-covered) points because of possible holes between neighboring scanlines. The function
deletes moire (black pixels) from the image by substituting neighboring pixels for black pixels. If all the
scanlines are horizontal, the function may be omitted.

Stereo Correspondence and Epipolar Geometry Functions

FindFundamentalMat

Calculates fundamental matrix from corresponding points in two images

int cvFindFundamentalMat(CvMat* points1,
 CvMat* points2,
 CvMat* fundMatr,
 int method,
 double param1,
 double param2,
 CvMat* status=0);

points1
Array of the first image points of 2xN/Nx2 or 3xN/Nx3 size (N is number of points). The point
coordinates should be floating-point (single or double precision)

points2
Array of the second image points of the same size and format as points1

fundMatr
The output fundamental matrix or matrices. Size 3x3 or 9x3 (7-point method can returns up to 3
matrices).

method
Method for computing fundamental matrix
CV_FM_7POINT - for 7-point algorithm. Number of points == 7
CV_FM_8POINT - for 8-point algorithm. Number of points >= 8
CV_FM_RANSAC - for RANSAC algorithm. Number of points >= 8
CV_FM_LMEDS - for LMedS algorithm. Number of points >= 8

param1
The parameter is used for RANSAC or LMedS methods only. It is the maximum distance from point
to epipolar line, beyound which the point is considered bad and is not considered in further
calculations. Usually it is set to 0.5 or 1.0.

param2
The parameter is used for RANSAC or LMedS methods only. It denotes the desirable level of
confidense the matrix is the correct (up to some precision). It can be set to 0.99 for example.

status
Array of N elements, every element of which is set to 1 if the point was not rejected during the
computation, 0 otherwise. The array is computed only in RANSAC and LMedS methods. For other

269

methods it is set to all 1’s. This is the optional parameter.

The epipolar geometry is described by the following equation:

p 2
T *F*p 1 =0,

where F is fundamental matrix, p1 and p2 are corresponding points on the two images.

The function FindFundamentalMat calculates fundamental matrix using one of four methods listed above
and returns the number of fundamental matrix found: 0 if the matrix could not be found, 1 or 3 if the
matrix or matrices have been found successfully.

The calculated fundamental matrix may be passed further to ComputeCorrespondEpilines function that
computes coordinates of corresponding epilines on two images.

For 7-point method uses exactly 7 points. It can find 1 or 3 fundamental matrices. It returns number of the
matrices found and if there is a room in the destination array to keep all the detected matrices, stores all of
them there, otherwise it stores only one of the matrices.

All other methods use 8 or more points and return a single fundamental matrix.

Example. Fundamental matrix calculation

int numPoints = 100;
CvMat* points1;
CvMat* points2;
CvMat* status;
CvMat* fundMatr;

points1 = cvCreateMat(2,numPoints,CV_32F);
points2 = cvCreateMat(2,numPoints,CV_32F);
status = cvCreateMat(1,numPoints,CV_32F);

/* Fill the points here ... */

fundMatr = cvCreateMat(3,3,CV_32F);
int num = cvFindFundamentalMat(points1,points2,fundMatr,CV_FM_RANSAC,1.0,0.99,status);
if(num == 1)
{
 printf("Fundamental matrix was found\n");
}
else
{
 printf("Fundamental matrix was not found\n");
}

/*====== Example of code for three matrixes ======*/
CvMat* points1;
CvMat* points2;
CvMat* fundMatr;

points1 = cvCreateMat(2,7,CV_32F);
points2 = cvCreateMat(2,7,CV_32F);

270

/* Fill the points here... */

fundMatr = cvCreateMat(9,3,CV_32F);
int num = cvFindFundamentalMat(points1,points2,fundMatr,CV_FM_7POINT,0,0,0);
printf("Found %d matrixes\n",num);

ComputeCorrespondEpilines

For every input point on one of image computes the corresponding epiline on the other image

void cvComputeCorrespondEpilines(const CvMat* points,
 int pointImageID,
 CvMat* fundMatr,
 CvMat* corrLines);

points
The input points: 2xN or 3xN array (N number of points)

pointImageID
Image ID there are points are located, 1 or 2

fundMatr
Fundamental matrix

corrLines
Computed epilines, 3xN array

The function ComputeCorrespondEpilines computes the corresponding epiline for every input point using
the basic equation of epipolar line geometry:

If points located on first image (ImageID=1), corresponding epipolar line can be computed as:

l 2 =F*p 1

where F is fundamental matrix, p1 point on first image, l 2 corresponding epipolar line on second image.

If points located on second image (ImageID=2):

l 1 =F T *p 2

where F is fundamental matrix, p2 point on second image, l 1 corresponding epipolar line on first image

Each epipolar line is present by coefficients a,b,c of line equation:

a*x + b*y + c = 0

Also computed line normalized by a2+b 2=1. It’s useful if distance from point to line must be computed
later.

271

GUI and Video Acquisition Reference

Window functions [p 273]
NamedWindow [p 273]
DestroyWindow [p 273]
ResizeWindow [p 273]
GetWindowHandle [p 274]
GetWindowName [p 274]
CreateTrackbar [p 274]
GetTrackbarPos [p 275]
SetTrackbarPos [p 275]
SetMouseCallback [p 275]

Image handling functions [p 276]
LoadImage [p 276]
SaveImage [p 277]
ShowImage [p 277]
ConvertImage [p 277]

Video I/O functions [p 278]
CvCapture [p 278]
CaptureFromAVI [p 278]
CaptureFromCAM [p 278]
ReleaseCapture [p 279]
GrabFrame [p 279]
RetrieveFrame [p 279]
QueryFrame [p 280]
GetCaptureProperty [p 280]
SetCaptureProperty [p 281]
CreateAVIWriter [p 281]
ReleaseAVIWriter [p 282]
WriteToAVI [p 282]

Support/system functions [p 282]
InitSystem [p 282]
WaitKey [p 283]
AddSearchPath [p 283]

HighGUI overview

TODO

272

Window functions

cvNamedWindow

Creates a window (image placeholder)

int cvNamedWindow(const char* name, unsigned long flags);

name
Name of the window which is used as window identifier and appears in the window caption.

flags
Defines window properties. Currently the only supported property is ability to automatically change
the window size to fit the image being hold by the window. Use CV_WINDOW_AUTOSIZE for
enabling the automatical resizing or 0 otherwise.

The function cvNamedWindow [p 273] creates a window which can be used as a placeholder for images
and trackbars. Created windows are reffered by their names.

cvDestroyWindow

Destroys a window

void cvDestroyWindow(const char* name);

name
Name of the window to be destroyed.

The function cvDestroyWindow [p 273] destroyes the window with the given name.

cvResizeWindow

Sets window sizes

void cvResizeWindow(const char* name, int width, int height);

name
Name of the window to be resized.

width
New width

height
New height

273

The function cvResizeWindow [p 273] changes the sizes of the window.

cvGetWindowHandle

Gets window handle by name

void* cvGetWindowHandle(const char* name);

name
Name of the window.

The function cvGetWindowHandle [p 274] returns native window handle (HWND in case of Win32 and
Widget in case of X Window).

cvGetWindowName

Gets window name by handle

const char* cvGetWindowName(void* window_handle);

window_handle
Handle of the window.

The function cvGetWindowName [p 274] returns the name of window given its native handle(HWND in
case of Win32 and Widget in case of X Window).

cvCreateTrackbar

Creates the trackbar and attaches it to the specified window

CV_EXTERN_C_FUNCPTR(void (*CvTrackbarCallback)(int pos));

int cvCreateTrackbar(const char* trackbar_name, const char* window_name,
 int* value, int count, CvTrackbarCallback on_change);

trackbar_name
Name of created trackbar.

window_name
Name of the window which will be used as a parent for created trackbar.

value
Pointer to the integer variable, which value will reflect the position of the slider. Upon the creation
the slider position is defined by this variable.

count
Maximal position of the slider. Minimal position is always 0.

274

on_change
Pointer to the function to be called every time the slider changes the position. This function should be
prototyped as
void Foo(int);
Can be NULL if callback is not required.

The function cvCreateTrackbar [p 274] creates the trackbar(slider) with the specified name and range,
assigns the variable to be syncronized with trackbar position and specifies callback function to be called
on trackbar position change. The created trackbar is displayed on top of given window.

cvGetTrackbarPos

Retrieves trackbar position

int cvGetTrackbarPos(const char* trackbar_name, const char* window_name);

trackbar_name
Name of trackbar.

window_name
Name of the window which is the parent of trackbar.

The function cvGetTrackbarPos [p 275] returns the ciurrent position of the specified trackbar.

cvSetTrackbarPos

Sets trackbar position

void cvSetTrackbarPos(const char* trackbar_name, const char* window_name, int pos);

trackbar_name
Name of trackbar.

window_name
Name of the window which is the parent of trackbar.

pos
New position.

The function cvSetTrackbarPos [p 275] sets the position of the specified trackbar.

cvSetMouseCallback

Assigns callback for mouse events

#define CV_EVENT_MOUSEMOVE 0
#define CV_EVENT_LBUTTONDOWN 1
#define CV_EVENT_RBUTTONDOWN 2
#define CV_EVENT_MBUTTONDOWN 3

275

#define CV_EVENT_LBUTTONUP 4
#define CV_EVENT_RBUTTONUP 5
#define CV_EVENT_MBUTTONUP 6
#define CV_EVENT_LBUTTONDBLCLK 7
#define CV_EVENT_RBUTTONDBLCLK 8
#define CV_EVENT_MBUTTONDBLCLK 9

#define CV_EVENT_FLAG_LBUTTON 1
#define CV_EVENT_FLAG_RBUTTON 2
#define CV_EVENT_FLAG_MBUTTON 4
#define CV_EVENT_FLAG_CTRLKEY 8
#define CV_EVENT_FLAG_SHIFTKEY 16
#define CV_EVENT_FLAG_ALTKEY 32

CV_EXTERN_C_FUNCPTR(void (*CvMouseCallback)(int event, int x, int y, int flags));

HIGHGUI_API void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mouse);

window_name
Name of the window.

on_mouse
Pointer to the function to be called every time mouse event occurs in the specified window. This
function should be prototyped as

void Foo(int event, int x, int y, int flags);

where event is one of CV_EVENT_*, x and y are coordinates of mouse pointer in image coordinates
(not window coordinates) and flags is a combination of CV_EVENT_FLAG.

The function cvSetMouseCallback [p 275] sets the callback function for mouse events occuting within the
specified window. To see how it works, look at opencv/samples/c/ffilldemo.c demo

Image handling functions

cvLoadImage

Loads an image from file

IplImage* cvLoadImage(const char* filename, int iscolor CV_DEFAULT(1));

filename
Name of file to be loaded.

iscolor
If >0, the loaded image will always have 3 channels;
if 0, the loaded image will always have 1 channel;
if <0, the loaded image will be loaded as is (with number of channels depends on the file).

276

The function cvLoadImage [p 276] loads an image from the specified file and returns the pointer to the
loaded image. Currently the following file formats are supported: Windows bitmaps - BMP, DIB; JPEG
files - JPEG, JPG, JPE; Portable Network Graphics - PNG; Portable image format - PBM, PGM, PPM;
Sun rasters - SR, RAS; TIFF files - TIFF, TIF.

If "filename" does not contain full path, the file is searched in the current directory and in directories
specified by cvAddSearchPath [p 283]

cvSaveImage

Saves an image to the file

int cvSaveImage(const char* filename, const CvArr* image);

filename
Name of the file.

image
Image to be saved.

The function cvSaveImage [p 277] saves the image to the specified file.

cvShowImage

Shows the image in the specified window

void cvShowImage(const char* name, const CvArr* image);

name
Name of the window to attach the image to.

image
Image to be shown.

The function cvShowImage [p 277] shows the image in the specified window. If the window was created
with CV_WINDOW_AUTOSIZE flag then the image will be shown with its original size otherwise the
image will be scaled to fit the window.

cvConvertImage

Converts one image to another with optional vertical flip

void cvConvertImage(const CvArr* src, CvArr* dst, int flip CV_DEFAULT(0));

src
Source image.

277

dst
Destination image.

flip
1 - to flip image vertically,
0 - not to flip.

The function cvConvertImage [p 277] converts one image to another and flips the result vertically if
required. This function does the same conversions as cvCvtColor [p ??] function, but do this automatically
accordingly to formats of input and output images.

Video I/O functions

CvCapture

Structure for getting video from camera or AVI file

typedef struct CvCapture CvCapture;

The structure CvCapture [p 278] does not have public interface and is used only as a parameter for video
capture functions.

cvCaptureFromAVI

Allocates CvCapture structure binds it to the specified AVI file

CvCapture* cvCaptureFromAVI(const char* filename);

filename
Name of the AVI file.

The function cvCaptureFromAVI [p 278] allocates and initialized the CvCapture structure for reading the
video stream from the specified AVI file.

After the allocated structure is not used any more it should be released by cvReleaseCapture [p 279]
function.

cvCaptureFromCAM

Allocates CvCapture structure and binds it to the video camera

CvCapture* cvCaptureFromCAM(int index);

278

index
Index of the camera to be used. If there is only one camera or it does not matter what camera to use,
-1 may be passed.

The function cvCaptureFromCAM [p 278] allocates and initialized the CvCapture structure for reading a
video stream from the camera. Currently two camera interfaces can be used: Video for Windows (VFW)
and Matrox Imaging Library (MIL). To connect to VFW camera the parameter "index" should be in range
0-10, to connect to MIL camera the parameter "index" should be in range 100-115. If -1 is passed then the
function searches for VFW camera first and then for MIL camera.

After the allocated CvCapture structure is not used any more it should be released by cvReleaseCapture [p
279] function.

cvReleaseCapture

Releases the CvCapture structure

void cvReleaseCapture(CvCapture** capture);

capture
Address of the pointer to CvCapture structure to be released.

The function cvReleaseCapture [p 279] releases the CvCapture structure allocated by cvCaptureFromAVI
[p 278] or cvCaptureFromCAM [p 278] .

cvGrabFrame

Grabs frame from camera or AVI

int cvGrabFrame(CvCapture* capture);

capture
CvCapture representing camera or AVI file.

The function cvGrabFrame [p 279] grabs the frame from camera or AVI. The grabbed frame is stored
internally. The purpose of this function is to grab frame fast what is important for syncronization in case of
reading from several cameras simultaneously. The grabbed frames are not exposed because they may be
stored in compressed format (as defined by camera/driver). To get access to the grabbed frame
cvGrabFrame [p ??] should be followed by cvRetrieveFrame [p 279] .

cvRetrieveFrame

Gets the image grabbed with cvGrabFrame

279

IplImage* cvRetrieveFrame(CvCapture* capture);

capture
CvCapture representing camera or AVI file.

The function cvRetrieveFrame [p 279] returns the pointer to the image grabbed with cvGrabFrame [p 279]
function. The returned image should not be released by the user.

cvQueryFrame

Grabs and returns a frame from camera or AVI

IplImage* cvQueryFrame(CvCapture* capture);

capture
CvCapture representing camera or AVI file.

The function cvQueryFrame [p 280] grabs a frame from camera or AVI and returns the pointer to grabbed
image. Actually this function just successively calls cvGrabFrame [p ??] and cvRetrieveFrame [p 279] .
The returned image should not be released by the user.

cvGetCaptureProperty

Gets camera/AVI properties

double cvGetCaptureProperty(CvCapture* capture, int property_id);

capture
CvCapture representing camera or AVI file.

property_id
property identifier. Can be one of the following:
CV_CAP_PROP_POS_MSEC - film current position in milliseconds or video capture timestamp
CV_CAP_PROP_POS_FRAMES - 0-based index of the frame to be decoded/captured next
CV_CAP_PROP_POS_AVI_RATIO - relative position of AVI file (0 - start of the film, 1 - end of
the film)
CV_CAP_PROP_FRAME_WIDTH - width of frames in the video stream
CV_CAP_PROP_FRAME_HEIGHT - height of frames in the video stream
CV_CAP_PROP_FPS - frame rate
CV_CAP_PROP_FOURCC - 4-character code of codec. CV_CAP_PROP_FRAME_COUNT -
number of frames in AVI file.

The function cvGetCaptureProperty [p 280] retrieves the specified property of camera or AVI.

280

cvSetCaptureProperty

Sets camera/AVI properties

int cvSetCaptureProperty(CvCapture* capture, int property_id, double value);

capture
CvCapture representing camera or AVI file.

property_id
property identifier. Can be one of the following:
CV_CAP_PROP_POS_MSEC - (only for AVI)
CV_CAP_PROP_POS_MSEC - set position (only for AVIs)
CV_CAP_PROP_POS_FRAMES - set position (only for AVIs)
CV_CAP_PROP_POS_AVI_RATIO - set position (only for AVIs)
CV_CAP_PROP_FRAME_WIDTH - width of frames in the video stream
CV_CAP_PROP_FRAME_HEIGHT - height of frames in the video stream
CV_CAP_PROP_FPS - frame rate
CV_CAP_PROP_FOURCC - 4-character code of codec.

value
value of the property.

The function cvSetCaptureProperty [p 281] sets the specified property of camera or AVI. Currently the
function works only for setting some AVI properties: CV_CAP_PROP_POS_MSEC,
CV_CAP_PROP_POS_FRAMES, CV_CAP_PROP_POS_AVI_RATIO

cvCreateAVIWriter

Creates AVI writer

typedef struct CvAVIWriter CvAVIWriter;
CvAVIWriter* cvCreateAVIWriter(const char* filename, int fourcc, double fps, CvSize frameSize)

filename
Name of AVI file to be written to. If file does not exist it is created.

fourcc
4-character code of codec used to compress the frames. For example, CV_FOURCC(’P’,’I’,’M’,’1’)
is MPEG-1 codec, CV_FOURCC(’M’,’J’,’P’,’G’) is motion-jpeg codec etc. Under Win32 it is
possible to pass -1 in order to choose compression method and additional compression parameters
from dialog.

fps
Framerate of the created video stream.

frameSize
Size of the frames of AVI file.

The function cvCreateAVIWriter [p 281] allocates and initializes the hidden structure CvAVIWriter that is
used for writing AVI files frame by frame.

281

NOTE: Writing to AVIs works under Win32 only

cvReleaseAVIWriter

Releases AVI writer

void cvReleaseAVIWriter(CvAVIWriter** writer);

writer
address of pointer to the released CvAVIWriter structure.

The function cvReleaseAVIWriter [p 282] closes the AVI file being written and deallocates the memory
used by CvAVIWriter structure.

cvWriteToAVI

Writes a frame to AVI file

int cvWriteToAVI(CvAVIWriter* writer, const IplImage* image);

writer
Pointer to CvAVIWriter structure.

image
Frame to be written/appended to AVI file

The function cvWriteToAVI [p 282] writes/appends one frame to AVI file binded to "writer".

Support/system functions

cvInitSystem

Initializes HighGUI

void cvInitSystem(int argc, char** argv);

argc
Number of command line arguments.

argv
Array of command line arguments

The function cvInitSystem [p 282] initializes HighGUI. If it wasn’t called explicitly by the user before the
first window is created, it is called implicitly then with argc=0, argv=NULL. Under Win32 there is no
need to call it explicitly. Under X Window the arguments are used for creating Application Shell that is a
standard way to define a look of HighGUI windows and controls.

282

cvWaitKey

Waits for pressed key

int cvWaitKey(int delay CV_DEFAULT(0));

delay
Delay in milliseconds.

The function cvWaitKey [p 283] waits for key event infinitely (delay<=0) or for "delay" milliseconds.
Returns the code of pressed key or -1 if key was not pressed until the specified timeout has elapsed.

Note: This function is the only method in HighGUI to fetch and handle events so it needs to be called
periodically for normal event processing.

cvAddSearchPath

Adds the specified path to the list of search paths;

/* add folder to the image search path (used by cvLoadImage) */
void cvAddSearchPath(const char* path);

path
Path to add to the search list.

The function cvAddSearchPath [p 283] adds the specified folder to the search path list. The search path
list is used by cvLoadImage [p 276] function.

283

Bibliography
This bibliography provides a list of publications that might be useful to the Intel ® Computer Vision
Library users. This list is not complete; it serves only as a starting point.

[Borgefors86] Gunilla Borgefors. Distance Transformations in Digital Images. Computer Vision, Graphics
and Image Processing 34, 344-371 (1986).

[Bradski00] G. Bradski and J. Davis. Motion Segmentation and Pose Recognition with Motion History
Gradients. IEEE WACV’00, 2000.

[Burt81] P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of Image Region Properties
Through Cooperative Hierarchical Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp. 802-809.

[Canny86] J. Canny. A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 8(6), pp. 679-698 (1986).

[Davis97] J. Davis and Bobick. The Representation and Recognition of Action Using Temporal
Templates. MIT Media Lab Technical Report 402, 1997.

[DeMenthon92] Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose in 25 Lines of Code.
In Proceedings of ECCV ’92, pp. 335-343, 1992.

[Fitzgibbon95] Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic Fitting. Proc.5th British
Machine Vision Conference, Birmingham, pp. 513-522, 1995.

[Horn81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Artificial Intelligence,
17, pp. 185-203, 1981.

[Hu62] M. Hu. Visual Pattern Recognition by Moment Invariants, IRE Transactions on Information
Theory, 8:2, pp. 179-187, 1962.

[Jahne97] B. Jahne. Digital Image Processing. Springer, New York, 1997.

[Kass88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models, International Journal
of Computer Vision, pp. 321-331, 1988.

[Matas98] J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough Transform. British Machine
Vision Conference, 1998.

[Rosenfeld73] A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves. IEEE Trans. Computers,
22:875-878, 1973.

[RubnerJan98] Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with Applications to Image
Databases. Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India,
January 1998, pp. 59-66.

284

[RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a Metric for Image
Retrieval. Technical Report STAN-CS-TN-98-86, Department of Computer Science, Stanford University,
September 1998.

[RubnerOct98] Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE International Conference
on Systems, Man, and Cybernetics, San-Diego, CA, October 1998, pp. 4601-4607.
http://robotics.stanford.edu/~rubner/publications.html

[Serra82] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

[Schiele00] Bernt Schiele and James L. Crowley. Recognition without Correspondence Using
Multidimensional Receptive Field Histograms. In International Journal of Computer Vision 36 (1), pp.
31-50, January 2000.

[Suzuki85] S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary Images by Border
Following. CVGIP, v.30, n.1. 1985, pp. 32-46.

[Teh89] C.H. Teh, R.T. Chin. On the Detection of Dominant Points on Digital Curves. - IEEE Tr. PAMI,
1989, v.11, No.8, p. 859-872.

[Trucco98] Emanuele Trucco, Alessandro Verri. Introductory Techniques for 3-D Computer Vision.
Prentice Hall, Inc., 1998.

[Williams92] D. J. Williams and M. Shah. A Fast Algorithm for Active Contours and Curvature
Estimation. CVGIP: Image Understanding, Vol. 55, No. 1, pp. 14-26, Jan., 1992.
http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92A.pdf.

[Yuille89] A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from Faces Using Deformable
Templates in CVPR, pp. 104-109, 1989.

[Zhang96] Z. Zhang. Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting,
Image and Vision Computing Journal, 1996.

[Zhang99] Z. Zhang. Flexible Camera Calibration By Viewing a Plane From Unknown Orientations.
International Conference on Computer Vision (ICCV’99), Corfu, Greece, pages 666-673, September
1999.

[Zhang00] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

285

	What is OpenCV
	The key features
	Who created it
	What's New
	Where to get OpenCV
	If you have a problem with installing/running/using OpenCV
	OpenCV Reference Manual
	Other resources
	Experimental Functionality Reference
	Object Detection Functions
	CvHaarFeature, CvHaarClassifier, CvHaarStageClassifier, CvHaarClassifierCascade
	cvLoadHaarClassifierCascade
	cvReleaseHaarClassifierCascade
	cvCreateHidHaarClassifierCascade
	cvReleaseHidHaarClassifierCascade
	cvHaarDetectObjects
	Example. Using cascade of Haar classifiers to find faces.

	cvSetImagesForHaarClassifierCascade
	cvRunHaarClassifierCascade
	cvGetHaarClassifierCascadeScale
	cvGetHaarClassifierCascadeWindowSize

	Stereo Correspondence Functions
	FindStereoCorrespondence

	3D Tracking Functions
	3dTrackerCalibrateCameras
	3dTrackerLocateObjects

	General Questions
	
	How to install OpenCV properly?
	How can I get acquainted with OpenCV fast?
	Where do I submit Bug reports for the computer vision library?
	How do I send bug reports for the Intel® Image Processing Library?
	How do I join the web group for the library?
	How do I modify the web group so that I don't receive email everyday?
	Ok, I found the group completely useless for me. How can I unsubscribe?
	How do I get support for the Image Processing Library †IPL‡?
	In beta 3 IPL and OpenCV conflict. How to resolve it?
	Does OpenCV works on other processors?

	Windows® OS related Qs:
	
	When I try to build one of the apps, I get an error, streams.h not found.
	After installing DirectX SDK I'm still getting linker error about undefined or redefined "TransInPlace" filter class constructors etc.
	When I use try to use cvcam, it just crashes
	CamShiftDemo can not be run
	How to register *.ax †DirectShow filter‡?
	Filter couldn't be registered †regsvr32 reports an error‡
	LKDemo / HMMDemo reports an error during startup and no the view is completely black
	cvd.lib or cvd.dll are not found
	When compiling HighGUI I get the error message "mil.h is not found"
	How can I debug DirectShow filter?
	How can I create DeveloperStudio project to start playing with OpenCV

	Linux Related Qs:
	Technical Questions on Library use:
	
	How to access image pixels
	How to access matrix elements?
	How to process my data with OpenCV
	How to load and display image
	How to find and process contours
	How to calibrate camera using OpenCV

	Basic Structures and Operations Reference
	Helper structures
	CvPoint
	CvPoint2D32f
	CvPoint3D32f
	CvSize
	CvSize2D32f
	CvRect
	CvScalar

	Array structures
	CvMat
	CvMatND
	CvSparseMat
	IplImage
	CvArr

	Arrays: Allocation, deallocation, copying; setting and retrieving parts
	Alloc
	Free
	CreateImage
	CreateImageHeader
	ReleaseImageHeader
	ReleaseImage
	InitImageHeader
	CloneImage
	SetImageCOI
	GetImageCOI
	SetImageROI
	ResetImageROI
	GetImageROI
	CreateMat
	CreateMatHeader
	ReleaseMat
	InitMatHeader
	Mat
	CloneMat
	CreateMatND
	CreateMatNDHeader
	ReleaseMatND
	InitMatNDHeader
	CloneMatND
	DecRefData
	IncRefData
	CreateData
	ReleaseData
	SetData
	GetRawData
	GetMat
	GetImage
	GetSubRect
	GetRow, GetRows
	GetCol, GetCols
	GetDiag
	GetSize
	CreateSparseMat
	ReleaseSparseMat
	CloneSparseMat
	InitSparseMatIterator
	GetNextSparseNode
	GetElemType
	GetDims, GetDimSize
	Ptr*D
	Get*D
	GetReal*D
	mGet
	Set*D
	SetReal*D
	mSet
	Clear*D
	Copy
	Set
	SetZero

	Arrays: Conversions, transformations, basic operations
	Reshape
	ReshapeMatND
	Repeat
	Flip
	CvtPixToPlane
	CvtPlaneToPix
	ConvertScale
	ConvertScaleAbs
	Add
	AddS
	Sub
	SubS
	SubRS
	Mul
	Div
	And
	AndS
	Or
	OrS
	Xor
	XorS
	Not
	Cmp
	CmpS
	InRange
	InRangeS
	Max
	MaxS
	Min
	MinS
	AbsDiff
	AbsDiffS

	Array statistics
	CountNonZero
	Sum
	Avg
	AvgSdv
	MinMaxLoc
	Norm

	Matrix Operations, Linear Algebra and Math Functions
	SetIdentity
	DotProduct
	CrossProduct
	ScaleAdd
	MatMulAdd
	GEMM
	MatMulAddS
	MulTransposed
	Trace
	Transpose
	Det
	Invert
	Solve
	SVD
	SVBkSb
	EigenVV
	PerspectiveTransform
	CalcCovarMatrix
	Mahalonobis
	CartToPolar
	PolarToCart
	Pow
	Exp
	Log
	CheckArr
	RandInit
	RandSetRange
	Rand
	RandNext
	DFT
	MulCss
	DCT

	Dynamic Data Structures
	CvMemStorage
	CvMemBlock
	CvMemStoragePos
	CreateMemStorage
	CreateChildMemStorage
	ReleaseMemStorage
	ClearMemStorage
	MemStorageAlloc
	SaveMemStoragePos
	RestoreMemStoragePos

	Sequences
	CvSeq
	CvSeqBlock
	CreateSeq
	SetSeqBlockSize
	SeqPush
	SeqPop
	SeqPushFront
	SeqPopFront
	SeqPushMulti
	SeqPopMulti
	SeqInsert
	SeqRemove
	ClearSeq
	GetSeqElem
	SeqElemIdx
	CvtSeqToArray
	MakeSeqHeaderForArray
	SeqSlice
	SeqRemoveSlice
	SeqInsertSlice
	SeqInvert
	SeqSort
	StartAppendToSeq
	StartWriteSeq
	EndWriteSeq
	FlushSeqWriter
	StartReadSeq
	GetSeqReaderPos
	SetSeqReaderPos

	Sets
	CvSet
	CreateSet
	SetAdd
	SetRemove
	SetNew
	SetRemoveByPtr
	GetSetElem
	ClearSet

	Graphs
	CvGraph
	CreateGraph
	GraphAddVtx
	GraphRemoveVtx
	GraphRemoveVtxByPtr
	GetGraphVtx
	GraphVtxIdx
	GraphAddEdge
	GraphAddEdgeByPtr
	GraphRemoveEdge
	GraphRemoveEdgeByPtr
	FindGraphEdge
	FindGraphEdgeByPtr
	GraphEdgeIdx
	GraphVtxDegree
	GraphVtxDegreeByPtr
	ClearGraph
	CloneGraph
	CvGraphScanner
	StartScanGraph
	NextGraphItem
	EndScanGraph

	Trees
	CV_TREE_NODE_FIELDS
	CvTreeNodeIterator
	InitTreeNodeIterator
	NextTreeNode
	PrevTreeNode
	TreeToNodeSeq
	InsertNodeIntoTree
	RemoveNodeFromTree

	Persistence †Writing and Reading Structures‡
	OpenFileStorage
	ReleaseFileStorage
	Write
	StartWriteStruct
	EndWriteStruct
	WriteElem
	Read
	ReadElem
	CvFileNode
	GetFileNode
	ReadFileNode

	Image Processing and Analysis Reference
	Drawing Functions
	CV_RGB
	Line
	LineAA
	Rectangle
	Circle
	Ellipse
	EllipseAA
	FillPoly
	FillConvexPoly
	PolyLine
	PolyLineAA
	InitFont
	PutText
	GetTextSize

	Gradients, Edges and Corners
	Sobel
	Laplace
	Canny
	PreCornerDetect
	CornerEigenValsAndVecs
	CornerMinEigenVal
	FindCornerSubPix
	GoodFeaturesToTrack

	Sampling, Interpolation and Geometrical Transforms
	InitLineIterator
	Example. Using line iterator to calculate pixel values along the color line

	SampleLine
	GetRectSubPix
	GetQuadrangeSubPix
	Example. Using cvGetQuadrangeSubPix for image rotation.

	Resize

	Morphological Operations
	CreateStructuringElementEx
	ReleaseStructuringElement
	Erode
	Dilate
	MorphologyEx

	Filters and Color Conversion
	Smooth
	Integral
	CvtColor
	Threshold
	AdaptiveThreshold
	LUT

	Pyramids and the Applications
	PyrDown
	PyrUp
	PyrSegmentation

	Connected components
	CvConnectedComp
	FloodFill
	FindContours
	StartFindContours
	FindNextContour
	SubstituteContour
	EndFindContours
	DrawContours
	Example. Connected component detection via contour functions

	Image and contour moments
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedCentralMoment
	GetHuMoments

	Image Processing and Analysis Reference
	Special Image Transforms
	HoughLines
	Example. Detecting lines with Hough transform.

	DistTransform
	User-defined 3×3 mask †a=1, b=1.5‡
	User-defined 5×5 mask †a=1, b=1.5, c=2‡

	Histogram Functions
	CvHistogram
	CreateHist
	SetHistBinRanges
	ReleaseHist
	ClearHist
	MakeHistHeaderForArray
	QueryHistValue_1D
	GetHistValue_1D
	GetMinMaxHistValue
	NormalizeHist
	ThreshHist
	CompareHist
	CopyHist
	CalcHist
	Sample. Calculating and displaying 2D Hue-Saturation histogram of a color image

	CalcBackProject
	CalcBackProjectPatch
	Back Project Calculation by Patches

	CalcProbDensity
	CalcEMD2

	Utility Functions
	MatchTemplate

	Structural Analysis Reference
	Contour Processing Functions
	ApproxChains
	StartReadChainPoints
	ReadChainPoint
	ApproxPoly
	BoundingRect
	ContourArea
	ArcLength
	MatchShapes
	CreateContourTree
	ContourFromContourTree
	MatchContourTrees

	Geometry Functions
	MaxRect
	CvBox2D
	BoxPoints
	FitEllipse
	FitLine
	ConvexHull2
	Example. Building convex hull for a sequence or array of points

	CheckContourConvexity
	CvConvexityDefect
	Picture. Convexity defects for hand contour.

	ConvexityDefects
	MinAreaRect2
	Picture. Minimal-area bounding rectangle for contour

	MinEnclosingCircle
	CalcPGH
	KMeans
	Example. Clustering random samples of multi-gaussian distribution with k-means

	MinEnclosingCircle

	Planar Subdivisions
	CvSubdiv2D
	CvQuadEdge2D
	CvSubdiv2DPoint
	Subdiv2DGetEdge
	Subdiv2DRotateEdge
	Subdiv2DEdgeOrg
	Subdiv2DEdgeDst
	CreateSubdivDelaunay2D
	SubdivDelaunay2DInsert
	Subdiv2DLocate
	FindNearestPoint2D
	CalcSubdivVoronoi2D
	ClearSubdivVoronoi2D

	Motion Analysis and Object Tracking Reference
	Accumulation of Background Statistics
	Acc
	SquareAcc
	MultiplyAcc
	RunningAvg

	Motion Templates
	UpdateMotionHistory
	CalcMotionGradient
	CalcGlobalOrientation
	SegmentMotion

	Object Tracking
	MeanShift
	CamShift
	SnakeImage

	Optical Flow
	CalcOpticalFlowHS
	CalcOpticalFlowLK
	CalcOpticalFlowBM
	CalcOpticalFlowPyrLK

	Estimators
	CvKalman
	CreateKalman
	ReleaseKalman
	KalmanPredict
	KalmanCorrect
	Example. Using Kalman filter to track a rotating point

	CvConDensation
	CreateConDensation
	ReleaseConDensation
	ConDensInitSampleSet
	ConDensUpdateByTime

	Object Recognition Reference
	Eigen Objects †PCA‡ Functions
	CalcCovarMatrixEx
	CalcEigenObjects
	CalcDecompCoeff
	EigenDecomposite
	EigenProjection

	Embedded Hidden Markov Models Functions
	CvHMM
	CvImgObsInfo
	Create2DHMM
	Release2DHMM
	CreateObsInfo
	ReleaseObsInfo
	ImgToObs_DCT
	UniformImgSegm
	InitMixSegm
	EstimateHMMStateParams
	EstimateTransProb
	EstimateObsProb
	EViterbi
	MixSegmL2

	Camera Calibration and 3D Reconstruction Reference
	Camera Calibration Functions
	CalibrateCamera
	CalibrateCamera_64d
	Rodrigues
	UnDistortOnce
	UnDistortInit
	UnDistort
	FindChessBoardCornerGuesses

	Pose Estimation
	FindExtrinsicCameraParams
	FindExtrinsicCameraParams_64d
	CreatePOSITObject
	POSIT
	ReleasePOSITObject
	CalcImageHomography

	View Morphing Functions
	MakeScanlines
	PreWarpImage
	FindRuns
	DynamicCorrespondMulti
	MakeAlphaScanlines
	MorphEpilinesMulti
	PostWarpImage
	DeleteMoire

	Stereo Correspondence and Epipolar Geometry Functions
	FindFundamentalMat
	Example. Fundamental matrix calculation

	ComputeCorrespondEpilines

	GUI and Video Acquisition Reference
	HighGUI overview
	Window functions
	cvNamedWindow
	cvDestroyWindow
	cvResizeWindow
	cvGetWindowHandle
	cvGetWindowName
	cvCreateTrackbar
	cvGetTrackbarPos
	cvSetTrackbarPos
	cvSetMouseCallback

	Image handling functions
	cvLoadImage
	cvSaveImage
	cvShowImage
	cvConvertImage

	Video I/O functions
	CvCapture
	cvCaptureFromAVI
	cvCaptureFromCAM
	cvReleaseCapture
	cvGrabFrame
	cvRetrieveFrame
	cvQueryFrame
	cvGetCaptureProperty
	cvSetCaptureProperty
	cvCreateAVIWriter
	cvReleaseAVIWriter
	cvWriteToAVI

	Support/system functions
	cvInitSystem
	cvWaitKey
	cvAddSearchPath

	Bibliography

