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ABSTRACT

The increase in the number of multimedia applications that require
robust speech recognition systems determined a large interest in
the study of audio-visual speech recognition (AVSR) systems. The
use of visual features in AVSR is justified by both the audio and
visual modality of the speech generation and the need for features
that are invariant to acoustic noise perturbation. The speaker in-
dependent audio-visual continuous speech recognition system pre-
sented in this paper relies on a robust set of visual features obtained
from the accurate detection and tracking of the mouth region. Fur-
ther, the visual and acoustic observation sequences are integrated
using a coupled hidden Markov (CHMM) model. The statistical
properties of the CHMM can model the audio and visual state
asynchrony while preserving their natural correlation over time.
The experimental results show that the current system tested on
the XM2VTS database reduces by over 55% the error rate of the
audio only speech recognition system at SNR of 0db.

1. INTRODUCTION

The success of currently available ASR systems is restricted to rel-
atively controlled environments and well defined applications such
as dictation or small to medium vocabulary voice-based control
commands (hands free dialing, etc). In recent years, together with
the investigation of several acoustic noise reduction techniques,
the study of systems that combine the audio and visual features
[11] emerged as an attractive solution to speech recognition un-
der less constrained environments. The visual features are often
derived from the shape of the mouth [9] [3], [2]. Although
very popular, these methods rely exclusively on the accurate de-
tection of the lip contours, often a challenging task under varying
illumination conditions or rotations of the face. An alternative ap-
proach is to obtain visual features from the transformed gray scale
intensity image of the lip region. Several intensity or appearance
modeling techniques were described for principal component anal-
ysis [2], linear discriminant analysis, two-dimensional DCT and
maximum likelihood linear transform [11]. Methods that combine
shape and appearance modeling were presented in [5] and [11].

In an audio visual feature fusion system, the observation vec-
tors are obtained by the concatenation of the audio and visual ob-
servation vectors, followed by a dimensionality reduction trans-
form [11]. The resulting observation sequences are then modeled
using one HMM [15]. The multi-stream HMM proposed in [14]),
assumes that audio and video sequences are state synchronous but
allows the audio and video components to have different contri-
bution to the overall observation likelihood. However, it is well
known that the acoustic features of speech are delayed from the

visual features of speech, and assuming state synchronous models
can be inaccurate. The audio visual product HMM introduced in
[5] can be seen as an extension of the multi-stream HMM that al-
lows for audio-video state asynchrony. Decision fusion systems
independently model the audio and video sequences using two
HMMs, and combine the likelihood of each observation sequence
based on the reliability of each modality [11].

The speaker independent audio-visual continuous speech recog-
nition system presented in this paper starts with the detection and
tracking of the mouth region (Section 2) followed by the extrac-
tion of a robust set of visual observations from the mouth region
(Section 3). The audio observations ([15]) are then combined
with the visual observations using a coupled hidden Markov model
( [10]) as described in Section 4.

2. MOUTH DETECTION AND TRACKING

The mouth detection approach presented in this paper (Figure 1)
begins with the detection of the user’s face (Figure 2a) using the
neural network-based approach described in [1].
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Figure 1: The mouth detection and tracking system.

As the search area for the mouth is significantly reduced by the
results of the face detector, we use a cascade of support vector ma-
chine (SVM) classifiers [17] to locate the mouth within the lower
region of the face (Figure 2a). The SVM cascade is designed to
insure both the real-time and accuracy requirements of the overall
AVSR system. To adapt to scale variations, a multi-scale search
in an estimated range is employed by repeatedly resampling the
source region image by a constant factor. A pre-processing step
normalizes each test pattern with respect to variations in illumina-
tion via histogram equalization and gradient illumination correc-
tion [16]. Next, a SVM filter of size �� � �� with linear kernel
was applied to the lower region of the face to determine the coarse
location of the mouth. Finally, two SVM classifiers with Gaus-
sian kernel of size ��� ��, trained on examples of mouth regions



with and without facial hair, are applied to each test pattern and its
rotated versions in the image plane. The highest mouth classifica-
tion score among all rotated patterns and SVM classifiers is used
to determine the refined location of the mouth.

The positive examples used for the training of the SVM fil-
ters consist of a set of manually labeled mouth images and a set
of negative examples (facial regions other than the mouth). Us-
ing the labeled points in the positive set, including the corners, the
upper and lower points, and the center of the mouth, the size of
the training set is enhanced with several geometric variations such
as scaling, horizontal mirroring and rotations in the image plane.
Then, a pre-processing step consisting of scale normalization, his-
togram equalization and illumination correction [16] is applied
to both the positive and the negative examples in the training set.
The Gaussian kernel SVM filters are trained via bootstrapping as
follows:

1. train the SVM filters using the positive and negative training
sets, [13].

2. run the SVM filters on a validation set and enhance both the
positive set with undetected mouth regions and the negative
set with false alarms,

3. repeat step 1-2 until the mouth detector reaches the desired
performance.

In our experiments, the training sets, obtained after the bootstrap-
ping procedure, consist on approximately 8000 non-mouth, 9000
mouth and 6000 mouth-and-beard samples respectively. The mouth
samples were obtained by mirroring, rotating, and re-scaling of
250 and 800 images of users with and without beards respectively.
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Figure 2: (a) An example of the face detection (white rectangle),
and the estimated region of search for the mouth (black rectangle).
(b) The estimated region of search for the mouth, enlarged. (c)
The convolution result for the mouth SVM. (d) The convolution
result for the mouth and beard SVM. (e) The combined convolu-
tion result. (f) The mouth detection result (white rectangle) from
the initial region of search for the mouth (black rectangle).

Following the detection of the face and mouth region, the mouth
position is tracked over consecutive frames. The center of the
mouth is estimated from the previous frame, and the mouth de-
tection algorithm is applied to a reduced area around the estimated
center of the mouth. If all the test patterns in the search area fail
to be assigned to the mouth region, the system re-initializes with
the face and mouth detection algorithm, or the new mouth center

is estimated and the mouth tracking continues. The mouth track
is further smoothed using a median filter followed by a Gaussian
filter. Figure 3 shows several results of the mouth detection and
tracking system. The approach was tested on the ”Clients” subset
of the XM2VTS database [8] representing 190 sequences recorded
from 95 speakers (Figure 3). The overall accuracy of the mouth
detection and tracking system is 95.26%, with 86.67% for the 30
sequences of people wearing beards and 96.88% for the remaining
sequences.
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Figure 3: Examples of accurate (a-g) and inaccurate (h,i) results of
the mouth detection and tracking system
.

3. THE VISUAL FEATURE EXTRACTION

The set of visual observation vectors used in our AVSR system is
extracted from a region of size �� � �� around the center of the
mouth using a cascade algorithm. First, the gray level pixels in the
mouth region are mapped to a 32-dimensional feature space using
the principal component analysis (PCA). The PCA decomposition
is computed from a set of approximately 200,000 mouth region
images obtained from the tracking system described above. Figure
4 shows the 32 eigenvectors used in our PCA decomposition. The

Figure 4: The first 32 eigenvectors corresponding the mouth region

resulting vector of size 32 is upsampled to match the frequency
of the audio features (100Hz) and standardized using the feature
mean normalization (FMN) described in [11]. Next, blocks of



� visual observation vectors are concatenated and projected on a
13 class linear discriminant space ( [4]), obtaining a new set of
visual observation vectors of size 13. The class information used
in the linear discriminant analysis (LDA) corresponds to the 13
English visemes ( [11]). The visual feature extraction technique
described in this paper was tested in a speaker independent visual-
only continuous speech recognition system tested on the XM2VTS
database. In our experiments, the English visemes are modeled
by hidden Markov models with 3 states, 12 mixture of Gaussian
components per state and diagonal covariance matrix. The training
and testing sets consists of over 700 sequences from the ”Clients”
set and 139 digit enumeration sequences spoken by 70 speakers
from the ”Impostors” set respectively. Figure 5 and Table 1 show
the decrease in visual-only word error rate (WER), obtained using
PCA instead of DCT coefficients [11], followed by LDA with �

concatenated frames.
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Figure 5: The visual-only word error rate.

� 9 11 15 19

DCT+LDA 46.18% 45.14% 43.38% 43.41%
PCA+LDA 48.45% 44.28% 42.55% 42.23%

Table 1: The word error rate of the visual-only speech recognition
system using PCA and DCT coefficients followed by LDA using
� concatenated frames.

4. THE AUDIO-VISUAL MODEL

The audio and visual observation vectors described above are fur-
ther integrated using a coupled hidden Markov model (CHMM).
A CHMM can be seen as a collection of hidden Markov mod-
els (HMM), one for each data stream, where the hidden backbone
nodes at time � for each HMM are conditioned by the backbone
nodes at time � � � of all the related HMMs. Figure 6 illus-
trates a continuous mixture two-stream coupled HMM used in our
audio-visual speech recognition system. The squares represent the
hidden discrete nodes while the circles describe the continuous ob-
servable nodes. The CHMM allows for asynchrony in the audio
and visual states, while preserving the natural dependency of the
audio and video sequences. In addition, with the coupled HMM,
the audio and video observation likelihoods are computed indepen-
dently significantly reducing the parameter space and complexity

Figure 6: The audio-visual coupled HMM.

of this model compared to the models that require the concate-
nation of the audio and visual observations [11]. In our contin-
uous audio-visual speech recognition system, a CHMM models
each viseme-phoneme pair. The training of the parameters starts
with Viterbi-based initialization [10] followed by the estimation-
maximization (EM) algorithm [7] for isolated words. Next, the
parameters of all CHMMs are estimated together from continu-
ous audio-visual speech using the EM algorithm. The embedded
trainingfor HMM, similar to the training method described for in
this paper CHMM, is extensively explained in [6]. The contin-
uous speech recognition is carried out via a graph decoder using
a single-pass Viterbi beam search [6], [12]. At the recognition
stage, the audio and video observation probabilities are modified
to handle different levels of noise.
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where ��
�� 	 � and ��� �� � � are the exponents of the audio
and video streams. The values of ��� �� corresponding to a spe-
cific acoustic SNR level are obtained experimentally to maximize
the average recognition rate.

5. EXPERIMENTAL RESULTS

We tested the speaker dependent audio-visual word recognition
system on the XM2VTS database using the same testing and train-
ing sets used for visual-only speech recognition. In our experi-
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Figure 7: The word error rate of the audio-only, visual-only and
audio-visual speech recognition system at different levels of SNR.



ments the visual features are obtained as explained in Sections 2
and 3, with � 	 ��. The acoustic observation vectors consist
of 13 MFCC coefficients extracted from a window of 20ms, with
an overlap of 15ms. For the audio-video recognition, we used a
coupled HMM with three states per node in both the audio and
the video streams, with no back transitions, with 32 mixture per
state, and diagonal covariance matrix . The average word error
rate (WER) of our audio-visual recognition system is presented in
Table 2. Our experimental results (Figure 7) indicate that the
audio-visual speech recognition rate increases by 55% the audio-
only speech recognition at SNR of 0db.

SNR(db) 0 5 10 15

WER(%) 24.93 16.22 9.93 5.76

SNR(db) 20 25 30 clean

WER (%) 3.09 1.76 1.55 1.26

Table 2: The word error rate of the audio-visual speech recognition
system for several SNR levels

6. CONCLUSIONS

This papers presents a speaker independent audio-visual contin-
uous speech recognition system that significantly reduces the er-
ror rate of the audio-only system in noisy environments. The im-
proved accuracy of the audio-visual system is achieved using a
robust set of visual observation vectors obtained from the mouth
region. The accurate detection of the mouth is obtained from the
detected face region using a set of SVM classifiers trained for dif-
ferent mouth appearances. The visual observation vectors are ob-
tained from a cascade algorithm that applies PCA and LDA to the
mouth region. Further the audio and visual observation vectors are
integrated using a coupled HMM. Unlike the HMM, the CHMM
allows for asynchrony in the audio and visual states, while preserv-
ing the natural dependency of the audio and video signals. The ex-
perimental results, tested on a subset of the XM2VTS database of
numeric sentences, show that our system improves the recognition
rate of the audio only speech recognition system consistently at all
SNR levels, achieving a WER reduction of over 55% at SNR of 0
db.
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