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ABSTRACT

With the increase in the computational complexity of recent
computers, audio-visual speech recognition (AVSR) became
an attractive research topic that can lead to a robust solution
for speech recognition in noisy environments. In the audio
visual continuous speech recognition system presented in
this paper, the audio and visual observation sequences are
integrated using a coupled hidden Markov model (CHMM).
The statistical properties of the CHMM can describe the
asyncrony of the audio and visual features while preserv-
ing their natural correlation over time. The experimental re-
sults show that the current system tested on the XM2VTS
database reduces the error rate of the audio only speech
recognition system at SNR of 0db by over 55%.

1. INTRODUCTION

The success of currently available speech recognition sys-
tems is restricted to relatively controlled environments and
well defined applications such as dictation or small to medium
vocabulary voice-based control command (hands free dial-
ing, etc). In recent years, together with the investigation
of several acoustic noise reduction techniques, the study of
systems that combine the audio and visual features emerged
as an attractive solution to speech recognition under less
constrained environments. A number of techniques have
been presented to address the audio-visual integration prob-
lem, which can be broadly grouped into feature fusion and
decision fusion methods. In an audio-visual feature fusion
system, the observation vectors are obtained by the concate-
nation of the audio and visual observation vectors, followed
by a dimensionality reduction transform [8]. The resulting
observation sequences are then modeled using one hidden
Markov model (HMM) [11]. However, this method cannot
model the natural asyncrony between the audio and visual
features. Decision fusion systems on the other side model
independently the audio and video sequences and enforce
the synchrony of the audio and visual features only at the
model boundaries. These systems fail to capture entirely
the dependencies between the audio and video features. The
feature fusion system using a multi-stream HMM proposed

in [10] assumes the audio and video sequences are state
synchronous, but allows the audio and video components to
have different contributions to the overall observation like-
lihood. The audio visual product HMM introduced in [2]
can be seen as an extension of the multi-stream HMM that
allows for audio-visual state asynchrony. The coupled hid-
den Markov model (CHMM) based audio-visual continuous
speech recognition (AVCSR) system presented in this paper
is an extension of the decision fusion system at phone level.
The CHMM can model the audio-visual state asynchrony
and preserve at the same time the natural audio visual de-
pendencies over time. The formal definition of the audio-
visual model is given in section 2. In sections 3 and 4,
we describe the framework of CHMM training and decod-
ing for AVCSR respectively. The experimental results are
presented in section 5.

2. THE AUDIO-VISUAL CHMM

A CHMM can be seen as a collection of hidden Markov
models (HMM), one for each data stream, where the hid-
den backbone nodes at time t for each HMM are condi-
tioned by the backbone nodes at time t � 1 for all the re-
lated HMMs. Figure 1 illustrates a continuous mixture
two-stream coupled HMM used in our audio-visual speech
recognition system. The squares represent the hidden dis-
crete nodes (backbone and mixture nodes) while the circles
describe the continuous observable nodes. Unlike the inde-
pendent HMM used for audio-visual data, the CHMM can
capture the interactions between audio and video streams
through the transition probabilities between the backbone
nodes. In the AVCSR system presented in this paper, the
audio visual CHMM allows for asynchrony in the audio and
visual states but forces them to be synchronized at the model
boundaries. In addition, with the coupled HMM, the audio
and video observation likelihoods are computed indepen-
dently, significantly reducing the parameter space and com-
plexity of the model compared to the models that require
the concatenation of the audio and visual observations [8].



The parameters of a CHMM are defined below:
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Figure 1: The audio-visual coupled HMM.

the probabilities of the observed nodes are given by:
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where �ci;m and Uc
i;m are the mean and covariance matrix

of the ith state of a coupled node, and mth component of
the associated mixture node in the cth channel. M c

i is the
number of mixtures corresponding to the ith state of a cou-
pled node in the cth stream and the weight w c

i;m represents
the conditional probability P (sct = mjqct = i) where sct
is the component of the mixture node in the cth stream at
time t. Unlike isolated word audio-visual speech recogni-
tion where one CHMM is used to model each audio-visual
word, in audio-visual continuous speech recognition, each
CHMM models one of the possible phoeneme-viseme pairs
as defined in [8].

3. TRAINING

The training of the CHMM parameters for AVCSR is per-
formed in two stages and is an extension of the training
used in audio-only continuous speech recognition [3]. In
the first stage, the CHMM parameters are estimated for iso-
lated phoneme-viseme pairs. In this stage, the training se-
quences are labeled using an audio-only speech recogni-
tion system, and the phoeneme-viseme correspondence ta-
bles [8]. The parameters of the isolated phoeneme-viseme
CHMMs are estimated first using the Viterbi-based initial-
ization described in [7] followed by the estimation-maximization
(EM) algorithm [4]. To deal with the requirements of a con-
tinuous speech recognition systems, two additional CHMMs

are trained to model the silence between consecutive words
and sentences. In the second stage, the parameters of the
CHMMs, estimated individually in the first stage, are re-
fined through the embedded training of all CHMM from
continuous audio-visual speech. In this stage, the labels
of the training sequences consist only on the sequence of
phoeneme-viseme with all boundary information being ig-
nored. In a way similar to the embedded training for HMMs
[3], each of the models obtained in the first stage are ex-
tended with one entry and one exit non-emitting states. The
use of the non-emitting states also enforces the phoeneme-
viseme synchrony at the model boundaries.

The embedded training follows the steps of the EM al-
gorithm for continuous audio-visual speech, and is described
by the following:
E step: The forward probability�t(i; j) = P (O1; : : : ;Ot;

q0t = i; q1t = j) and the backward probability �t(i; j) =
P (Ot + 1; : : : ;OT jq

0
t = i; q1t = j) are computed. Starting

with the initial conditions

�1(i; j) = �01(i)�
1
1(j)b

0
1(i)b

1
1(j);

the forward probabilities are computed recursively from

�t(i; j) = b0t�1(i)b
1
t�1(j)

X

l;k

ai;jjl;k�t�1(l; k)

for t = 2; 3; : : : ; T . Similarly, from the initial conditions
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for t = T � 1; T � 2; : : : ; 1 where i; j are the states of the
audio and video chain respectively and a i;jjk;l = aijk;lajjk;l
is the transition probabilities between the set of audio vi-
sual states i; j and k; l. The probability of the rth observa-
tion sequence Or = [Or
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�Tr
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states in the audio and video chain respectively and Tr is
the length of the observation sequenceOr.
M step: The forward and backward probabilities obtained
in the E step are used to re-estimate the state parameters as
follows:

~�ci;m =

P
r

P
t 


r;c
t (i;m)Or

tP
r

P
t 


r;c
t (i;m)

~Uc
i;m =

P
r

P
t 


r;c
t (i;m)(Or

t � �ci;m)(Or
t � �ci;m)0

P
r

P
t 


r;c
t (i;m)



~wc
i;m =

P
r

P
t 


r;c
t (i;m)P

r

P
t

P
m 


r;c
t (i;m)

where



r;c
t (i;m) =

P
j
1

Pr
�rt (i; j)�

r
t (i; j)P

i;j
1

Pr
�t(i; j)�t(i; j)

wc
i;mN(Or

t ; �
c
i;m;U

c
i;m)

P
m wc

i;mN(Or
t ; �

c
i;m;U

c
i;m)

The state transition probabilities can be estimated using:
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Assuming that a0;1
ijk;l = P (q0;1t = ijq0;1t = k)P (q0;1t =

ijq1;0t = l), the re-estimation of the transition probabilities
can be simplified. For example, P (q0t = ijq1t = k) can be
estimated as:
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The transitions from a non-emitting entry state i to any
pair of audio-visual states (k; l) is given by
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and the transitions from a state pair (k; l) to the exit non-
emitting exit state o are given by
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4. RECOGNITION

The audio-visual continuous speech recognition is carried
out via a graph decoder applied to the word network con-
sisting of all the words in the test dictionary. Each word
in the network is stored as a sequence of phoneme-viseme
CHMMs, and the best sequence of words is obtained through
an extension of the token passing algorithm [3], [9] to
audio-visual data. To handle different levels of noise in the
audio channel, the audio and video observation probabilities
are modified such that ~b0;1t (i) = b

0;1
t

�0;1
where �0+�0 = 1

and �0; �0 � 0 are the exponents of the audio and video
streams respectively. The values �0; �1 corresponding to a
specific acoustic SNR level are obtained experimentally to
minimize the average word error rate.

5. EXPERIMENTAL RESULTS

We tested the audio-visual continuous speech recognition
system described here on the XM2VTS database [6]. We
used a set of 1450 digit enumeration sequences captured
from 200 speakers for training and a set of 700 sequences
from other 95 speakers for decoding. The training sequences
are recorded with ”clean” audio. The audio data of the test-
ing sequences is corrupted with several levels of white noise
to allow the study of AVSR under less constrained acous-
tic conditions. In our experiments the acoustic observation
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Figure 2: The word error rate of the audio-only, visual-only
and audio-visual speech recognition system at different lev-
els of SNR.

vectors consist of 13 MFCC coefficients, extracted from a
window of 25.6 ms, with an overlap of 15.6 ms, with their
first and second order time derivatives. The visual features
are obtained from the mouth region through a cascade al-
gorithm described in more detail in [5]. The extraction
of the visual features starts with the neural network based
face detection system followed by the detection and tracking
of the mouth region using a set of support vector machine
classifiers. The pixels in the mouth region are mapped to a
32-dimensional feature space using the principal component
analysis. Then, blocks of 15 visual observation vectors are
concatenated and projected on a 13 class, linear discrimi-
nant space [1]. Finally, the resulting vectors of size 13,
their first and second order time derivatives are used as the
visual observation sequences. The audio and visual features
are integrated using a CHMM with three states in both the
audio and video chains, with no back transitions, with 32
mixture per state, and diagonal covariance matrix.

Table 1 and Figure 2 compare the WER of our current
AVSR system with an audio only speech recognition sys-
tem. For fair comparison, in the audio-only speech recog-
nition system, all phoenemes were modeled using a HMM
with the same characteristics as the audio HMM in the audio-
visual CHMM.



SNR(db) 0 5 10 15

WER(%) 24.62 15.71 9.47 5.13

SNR(db) 20 25 30 clean

WER (%) 2.95 1.86 1.59 1.14

Table 1: The word error rate of the audio-visual speech
recognition system for several SNR levels.

6. CONCLUSIONS

This paper presents an audio-visual continuous speech recog-
nition system that uses a CHMM for audio and visual fea-
ture integration. This audio visual model used in our system
allows for the natural asynchrony between the audio and
visual states while imposing state synchrony at the model
boundaries. Furthermore, the CHMM models the audio and
video state dependency,and therefore preserves the natural
properties of audio-visual speech. The experimental results,
tested on the XM2VTS database, show that our system im-
proves the recognition rate of the audio only speech recogni-
tion system consistently at all SNR levels, achieving a WER
reduction of over 55% at SNR of 0db.
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