The Interactive C Manual
for the Handy Board

Fred G. Martin*
March 29, 1996

Interactive C (IC for short) is a C language consisting of a compiler (with
interactive command-line compilation and debugging) and a run-time machine
language module. 1C implements a subset of C including control structures (f or
while,if, el se), local and global variables, arrays, pointers, 16-bit and 32-bit
integers, and 32-bit floating point numbers.

|C works by compiling into pseudo-code for a custom stack machine, rather
than compiling directly into native code for a particular processor. This pseudo-
code (or p-code) is then interpreted by the run-time machine language program.
This unusual approach to compiler design allows I C to offer the following design
tradeoffs:

¢ Interpreted execution that allows run-time error checking and prevents
crashing. For example, 1C does array bounds checking at run-timeto protect
against programming errors.

e Ease of design. Writing a compiler for a stack machine is significantly
easier thanwriting onefor atypical processor. SincelC’sp-codeismachine-
independent, porting 1C to another processor entails rewriting the p-code
interpreter, rather than changing the compiler.

*The Media Laboratory at the Massachusetts Institute of Technology, 20 Ames Street Room
E15-319, Cambridge, MA 02139. E-mail: f r edm@redi a. m t . edu. Thisdocument is Copy-
right (©) 1991-96 by Fred G. Martin. It may be distributed freely in verbatim form provided that
no feeiscollected for its distribution (other than reasonabl e reproduction costs) and this copyright
notice isincluded. An electronic version of this document and the freely distributable software
described herein are available from the Handy Board home page on the World Wide Web at
http://el.ww. nmedi a. m t. edu/ groups/el/projects/handy-board/.

e Small object code. Stack machine code tends to be smaller than anative
code representation.

e Multi-tasking. Because the pseudo-code is fully stack-based, a process's
state is defined solely by its stack and its program counter. It is thus easy
to task-switch smply by loading a new stack pointer and program counter.
This task-switching is handled by the run-time module, not by the compiler.

Since |C's ultimate performance is limited by the fact that its output p-code
is interpreted, these advantages are taken at the expense of raw execution speed.
Still, IC is no douch.

|C was designed and implemented by Randy Sargent with the assis-
tance of Fred Martin. Thismanual coversthe freeware distribution of
IC (version 2.852).

Contents

Quick Start

6811 Downloaders

21 OvervIiew e
2.2 Putting the Handy Board into Bootstrap Download Mode
23 MSDOS.
24 Windows3.landWindows95
25 Macintosh
26 Unix

Using IC

31 ICCommands
32 LineEditing
33 TheManFunction.

A Quick C Tutorial

Data Types, Operations, and Expressions
51 VariableNames
52 DataTypes e
53 Loca andGlobal Variables
531 \Vaiablelnitidization
53.2 Persstent Global Variables
54 Constants
541 Integers
542 Longlintegerso
54.3 FloatingPoint Numbers
544 Charactersand Character Strings
55 Operators
551 Integers
552 Longlintegerso
553 FHoatingPointNumbers
554 Chaacters
5.6 Assgnment Operatorsand Expressions
5.7 Increment and Decrement Operators..
5.8 Precedence and Order of Evaluation

6 Control Flow
6.1 StatementsandBlocks
6.2 If-Else
6.3 While
6.4 For
6.5 Break

7 LCD Screen Printing
7.1 PrintingExamples
7.2 Formatting Command Summary
7.3 Specia Notes

8 Arrays and Pointers
8.1 Declaringand InitializingArrays
8.2 Passing ArraysasArguments L. L
8.3 Declaring Pointer Variables
84 Passing PointersasArguments. L.

9 Library Functions
9.1 OutputControl
911 DCMotors.
912 ServoMotor
92 Sensorlnput
9.21 UserButtonsandKnob
922 InfraredSubsystem
93 TimeCommands.
94 ToneFunctions.

10 Multi-Tasking
101 Overview L e
10.2 CreatingNew Processes
10.3 DestroyingProcesseso
10.4 ProcessManagement Commands
10.5 Process Management Library Functions

11 Floating Point Functions
12 Memory Access Functions

13 Error Handling
13.1 Compile-TimeErrors
13.2 Run-TimeErrors

16
16
16
16
17
17

18
18
19
19

20
20
21
21
22

23
23
23
24
25
25
26
27
28

29
29
29
30
31
31

32

33

34

14 Binary Programs
14.1 The Binary Source File

14.1.1 Declaring Variablesin Binary Files
14.1.2 Declaring an InitializationProgram
14.2 Interrupt-DrivenBinary Programs

14.3 The Binary Object File .
14.4 Loading an ICB File . .

145 Passing Array Pointersto aBinary Program

15 IC File Formats and Management

151 CPrograms
152 ListFiles.

15.3 Fileand FunctionManagement

15.3.1 Unloading Files

16 Configuring IC

35
35
37
37
38
42
42
42

1 Quick Start

Here are the steps to getting started with the Handy Board and Interactive C:

1. Connect the Handy Board to the serial port of the host computer, using the
separate Seria Interface board. The Serial Interface board connects to the
host computer using a standard modem cable; the Handy Board connects to

the Serial Interface using a standard 4—wire telephone cable.

2. Put the Handy Board into bootstrap download mode, by holding down the
Stop button while turning on system power. The pair of LED’s by the two
push buttons should light up, and then turn off. When power is on and both

of the LED’s are off, the Handy Board isin download mode.

3. Run the appropriate downloader for the host computer platform, and down-

load the file pcode_hb. s19.

4. Turn the Handy Board off and then on, and the Interactive C welcome

message should appear on the Handy Board’'s LCD screen.

5. Run Interactive C.

2 6811 Downloaders

There are two primary componentsto the Interactive C software system:

e The 6811 downloader program, which is used to load the runtime 6811
operating program on the Handy Board. There are a number of different
6811 downloaders for each computer platform.

e The Interactive C application, which is used to compile and download IC
programsto the Handy Board.

This software is available for a variety of computer platforms/operating sys-
tems, including MS-DOS, Windows 3.1/Windows 95, Macintosh, and Unix. The
remainder of this section explains the choicesin the 6811 downloaders.

2.1 Overview

The 6811 downloaders are general purpose applications for downloading a Mo-
torola hex file (also called an S19 record) into the Handy Board's memory. Each
line hex file contains ASCII-encoded binary data indicating what data is to be
|loaded where into the Handy Board’s memory.

For use with Interactive C, the program named “pcode_hb. s19” must be
present in the Handy Board. The task of the downloaders, then, is smply to
initialize the Handy Board’s memory with the contents of thisfile.

An additional purpose of the downloadersisto programthe 6811's* CONFIG”
register. The CONFIG register determines the nature of the 6811 memory map.
For use with Interactive C, the CONFIG register must be set to the value 0xO0c,
which alows the 6811 to access the Handy Board's 32K static RAM memory
in its entirety. Some downloaders automatically program the CONFIG register;
others require a specia procedure to do so. Please note that programming of the
CONFIG register only needs to be done once to factory-fresh 6811’s. It isthen set
in firmware until deliberately reprogrammed to a different value.

Another consideration related to downloadersis the type of 6811 in use. The
Handy Board can use boththe“A” and “E” seriesof 6811. Thesetwo chip varieties
are quite similar, but not all downloaders support the E series’ bootstrap sequence.
(The E series chips have moreflexibility on their Port A input/output pinsand can
run at a higher clock speed.)

2.2 Putting the Handy Board into Bootstrap Download Mode

When using any of the downloaders, the Handy Board must first be put into its
bootstrap download mode. This is done by first turning the board off, and then

2

turning it on while holding down the STOP button (the button closer to the pair
of LEDsto the right of the buttons). When the board is first turned on, these two
LEDs should light for about % of asecond and then both should turn off. The Stop
button must be held down continuously during this sequence. When the board is
powered on and both of these LEDs are off, it is ready for bootstrap download.

2.3 MS-DOS

Two downloaders are available for MS-DOS machines. dl, by Randy Sargent and
dim, by Fred Martin.

dl is compatible only with the A series of 6811, and automatically programs the
CONFIG register. Type“dl pcode_hb. s19” at the MS-DOS prompt.

dim is compatible with both the A and E series of 6811, but does not automati-
cally program the CONFIG register. Type“dl m pcode_hb. s19 -256” to
download to an A series chip and “dl m pcode_hb. s19 -512" to down-
load to an E series chip.

Neither dl nor dimrunsvery well under Windows. It is generally necessary to
run them from afull-screen DOS shell to get them towork at all. Under Windows,
hbdl is recommended instead.

2.4 Windows 3.1 and Windows 95

hbdl, by Vadim Gerasimov, is the recommended Windows 6811 downloader.
hbdl features automatic recognition of both A and E series 6811s and automatic
programming of the CONFIG register.

To use hbdl, run the hbdl . exe application and select the “pcode_hb. s19”
file for download. Make sure the text box for the CONFIG register has the value
“0c.”

2.5 Macintosh

There are two choices available for the Macintosh: Initialize Board, by Randy
Sargent, and 6811 Downloader, by Fred Martin.

Initialize Board features automatic programming of the CONFIG register, but
only works with A series 6811's. It comes in two versions, one using the
modem port and one using the printer port.

In order to get Initialize Board to use the Handy Board’'s pcode_hb. s19
file, one must edit its STR resourcesto namethisfile. Thenusingitisjust a
matter of double-clicking on the application icon.

3

6811 Downloader features automatic recognition of both A and E series 6811's.
In order to program the CONFI G register, one must select the “ download to
EEPROM” option and then download the conf i gOc. s19 file.

6811 Downloader may be run by double-clicking on the application icon
and selecting afile for download, or by dragging the file to be downloaded
onto the appliation icon.

2.6 Unix

The dl downloader, written by Randy Sargent, is available for a number of Unix
platforms, including DECstations, Linux, Sparc Solaris, Sparc Sun OS, SGl,
HPUX, and RS6000.

This downloader only workswith the A series of 6811, and supports automatic
programming of the CONFIG register.

3 Using IC

When IC is booted, it immediately attempts to connect with the Handy Board,
which should be turned on and running the pcode _hb. s19 program.

After synchronizing with the Handy Board, |C compiles and downloads the
default set of library files, and then presents the user with the “C” prompt. At
this prompt, either an IC command or C-Hanguage expression may be entered.

All C expressions must be ended with a semicolon. For example, to evaluate
the arithmetic expression 1 + 2, type the following:

C> 1+ 2

(The underlined portion indicates user input.) When this expression is typed, it
is compiled by 1C and then downloaded to the Handy Board for evaluation. The
Handy Board then evaluates the compiled form and returns the result, which is
printed on the IC console.

To evaluate a series of expressions, create a C block by beginning with an
open curly brace “{” and ending with a close curly brace “} ”. The following
example creates alocal variablei and prints the sumi +7 to the Handy Board's
LCD screen:

C> {int i=3; printf("%", i+7);}

3.1 IC Commands

| C responds to the following commands:

e Load file. Thecommand| oad < filename> compilesand |oadsthe named
file. The Handy Board must be attached for this to work. IC looks first in
the local directory and then in the IC library path for files.

Several filesmay beloaded into IC at once, allowing programsto be defined
in multiplefiles.

e Unload file. Thecommand unl oad < filename> unloadsthe named file,
and re-downloads remaining files.

e List files, functions, or globals. The command | ist files dis
plays the names of al files presently loaded into IC. The command | i st
f unct i ons displaysthe names of presently defined C functions. The com-
mand | i st gl obal s displays the names of all currently defined global
variables.

Keystroke Function
backward-delete-char
CTRL-A beginning-of-line
CTRL-B backward-char
backward-char
CTRL-D delete-char

CTRL-E end-of-line
CTRL-F forward-char
forward-char
CTRL-K kill-line

CTRL-U universal-argument
EscD kill-word

ESC backward-kill-word

Figure 1. 1C Command-Line Keystroke Mappings

Kill all processes. The command ki I | _al | killsal currently running
processes.

Print process status. The command ps prints the status of currently
running processes.

Help. The command hel p displays a help screen of IC commands.

Quit. The command qui t exitsIC. In the MS-DOS version, CTRL-C can
also be used.

3.2 Line Editing

IC has a built-in line editor and command history, allowing editing and re-use of
previoudy typed statements and commands. The mnemonics for these functions
are based on standard Emacs control key assignments.

To scan forward and backward in the command history, typecTrRL-Por | T | for

backward, and cTRL-N or | | | for forward.
Figure 1 shows the keystroke mappings understood by I C.
| C does parenthesis-balance-highlighting as expressions are typed.

3.3 The Main Function

After functions have been downloaded to the Handy Board, they can be invoked
fromthe | C prompt. If oneof thefunctionsisnamed mai n() , it will automatically
be run when the Handy Board is reset.

To reset the Handy Board without running the mai n() function (for instance,
when hooking the board back to the computer), hold down the START button when
turning on the Handy Board. The board will reset without running mai n() .

4 A Quick C Tutorial

Most C programs consist of function definitions and data structures. Hereis a
simple C program that defines a single function, called mai n.

voi d main()

printf("Hello, world!'\n");

All functions must have areturn value; that is, the value that they return when
they finish execution. mai n has a return value type of voi d, which is the “null”
type. Other types include integers (i nt) and floating point numbers (f | oat).
This function declaration information must precede each function definition.

Immediately following the function declaration is the function’s name (in this
case, mai n). Next, in parentheses, are any arguments (or inputs) to the function.
mai n has none, but aempty set of parentheses is till required.

After the function arguments is an open curly-brace “{”. This signifies the
start of the actual function code. Curly-braces signify program blocks, or chunks
of code.

Next comes a series of C statements. Statements demand that some action be
taken. Our demonstration program has a single statement, apri nt f (formatted
print). Thiswill print the message “Hel | o, wor | d!” tothe LCD display. The
\ n indicates end-of-line.

Theprintf statement endswith asemicolon (*;). All C statements must be
ended by a semicolon. Beginning C programmers commonly make the error of
omitting the semicolon that is required at the end of each statement.

The mai n function isended by the close curly-brace“}”.

Let's look at an another example to learn some more features of C. The
following code defines the function square, which returnsthe mathematical square
of a number.

int square(int n)

return n * n;

Thefunctionisdeclared astypei nt , which meansthat it will return an integer
value. Next comes the function name squar e, followed by its argument list
in parenthesis. squar e has one argument, n, which is an integer. Notice how
declaring the type of the argument is done similarly to declaring the type of the
function.

When a function has arguments declared, those argument variables are valid
within the “scope” of the function (i.e., they only have meaning within the func-
tion’sown code). Other functions may use the same variable namesindependently.

The code for squar e is contained within the set of curly braces. In fact, it
consistsof asinglestatement: ther et ur n statement. Ther et ur n statement exits
the function and returns the value of the C expression that follows it (in this case
“n * n”).

Expressions are evaluated according set of precendencerules depending onthe
various operations within the expression. Inthis case, there is only one operation
(multiplication), signified by the “*”, so precedenceis not an issue.

Let's look at an example of a function that performs a function call to the
squar e program.

fl oat hypotenuse(int a, int b)
float h;
h = sqgrt((float)(square(a) + square(b)));

return h;

Thiscodedemonstrates severa morefeaturesof C. First, noticethat thefloating
point variable h is defined at the beginning of the hypot enuse function. In
general, whenever a new program block (indicated by a set of curly braces) is
begun, new local variables may be defined.

The value of h is set to the result of a call to the sqrt function. It turns out
that sqrt isabuilt-in function that takes a floating point number as its argument.

We want to use the squar e function we defined earlier, which returns its
result as an integer. But thesqrt function requiresafloating point argument. We
get around this type incompatibility by coercing the integer sum (square(a) +
squar e(b)) into afloat by preceding it with the desired type, in parentheses.
Thus, the integer sum is made into a floating point number and passed aong to
sqrt.

The hypot enuse function finishes by returning the value of h.

This concludes the brief C tutorial.

5 Data Types, Operations, and Expressions

Variables and constants are the basic dataobjectsin aC program. Declarationslist
the variables to be used, state what type they are, and may set their initial value.
Operators specify what isto be done to them. Expressions combine variables and
constants to create new values.

5.1 Variable Names

Variable names are case-senditive. The underscore character is allowed and is
often used to enhance the readability of long variable names. C keywordslikei f ,
whi | e, etc. may not be used as variable names.

Global variables and functions may not have the same name. In addition, local
variables named the same as functions prevent the use of that function within the
scope of the local variable.

5.2 Data Types
| C supports the following data types:

16-bit Integers 16-bit integers are signified by the type indicator i nt . They
are signed integers, and may be valued from —32,768 to +32,767 decimal.

32-bit Integers 32-bit integers are signified by the type indicator | ong. They
are signed integers, and may be valued from —2,147,483,648 to +2,147,483,647
decimal.

32-bit Floating Point Numbers Floating point numbers are signified by the
typeindicator f | oat . They have approximately seven decimal digits of precision
and are valued from about 10~ to 10%,

8-bit Characters Charactersarean 8-bit number signified by thetypeindicator
char. A character's value typically represents a printable symbol using the
standard ASCI| character code.

Arraysof characters(character strings) are supported, but individual characters
are not.

10

5.3 Local and Global Variables

If avariableisdeclared within afunction, or as an argument to afunction, its bind-
ing islocal, meaning that the variable has existence only that function definition.

If a variable is declared outside of a function, it is a global variable. It is
defined for al functions, including functionsthat are defined in files other than the
one in which the global variable was declared.

5.3.1 Variable Initialization

Local and global variables can beinitialized when they are declared. If noinitial-
ization value is given, the variableisinitialized to zero.

int foo()
int x; /* create |local variable x
with initial value O */
int y= 7, /* create local variable y
with initial value 7 */
}
float z=3.0; /* create global variable z

with initial value 3.0 */

Local variables areinitialized whenever the function containing them runs.
Global variables are initialized whenever a reset condition occurs. Reset
conditions occur when:

1. New code is downloaded;
2. Themai n() procedureisrun;

3. System hardware reset occurs.

5.3.2 Persistent Global Variables

A specia uninitialized form of global variable, called the “persistent” type, has
been implemented for IC. A persistent global isnot initialized upon the conditions
listed for normal global variables.

To makeapersistent global variable, prefix the type specifier with the key word
per si st ent . For example, the statement

persistent int i;

11

creates a global integer calledi . Theinitial value for a persistent variable is
arbitrary; it depends on the contents of RAM that wereassigned toit. Initial values
for persistent variables cannot be specified in their declaration statement.

Persistent variableskeep their state when the Handy Board isturned off and on,
when mai n isrun, and when system reset occurs. Persistent variables, in general,
will losetheir state when anew program is downloaded. However, it ispossibleto
prevent thisfrom occurring. If persistent variables are declared at the beginning of
the code, before any function or non-persistent globals, they will be re-assigned to
the same location in memory when the code is re-compiled, and thus their values
will be preserved over multiple downloads.

If the program is divided into multiple files and it is desired to preserve the
valuesof persistent variables, then al of the persistent variables should be declared
in one particular file and that file should be placed first in the load ordering of the
files.

Persistent variables were created with two applicationsin mind:
e Cadlibration and configuration values that do not need to be re-calculated on
every reset condition.

¢ Robot learning algorithmsthat might occur over a period when the robot is
turned on and off.

5.4 Constants
5.4.1 Integers

Integers may be defined in decimal integer format (e.g., 4053 or - 1), hexadecimal
format using the “0x” prefix (e.g., Ox1f f f), and anon-standard but useful binary
format using the “Ob” prefix (e.g., 0b1001001). Octa constants using the zero
prefix are not supported.

5.4.2 Long Integers

Long integer constants are created by appending the suffix “I ” or “L” (upper- or
lower-case aphabetic L) to a decimal integer. For example, OL is the long zero.
Either the upper or lower-case “L” may be used, but upper-case is the convention
for readability.

5.4.3 Floating Point Numbers

Floating point numbers may use exponential notation (e.g., “10e3” or “10E3")
or must contain the decimal period. For example, the floating point zero can be
givenas“0.”,"0. 0", or “OE1”, but not asjust “0”.

12

5.4.4 Characters and Character Strings

Quoted charactersreturn their ASCII value (e.g.,’ x’).
Character stringsaredefinedwithquotationmarks,e.g.," This is a character
string.".

5.5 Operators

Each of the datatypes hasits own set of operatorsthat determinewhich operations
may be performed on them.

5.5.1 Integers

The following operations are supported on integers.

e Arithmetic. addition +, subtraction - , multiplication*, divison/ .

e Comparison. greater-than >, less-than <, equality ==, greater-than-equal
>=, |less-than-equal <=.

e Bitwise Arithmetic. bitwise-OR |, bitwise-AND &, bitwise-exclusive-
OR ", bitwise-NOT

e Boolean Arithmetic. logical-OR | | , logical-AND &&, logical-NOT ! .

When a C statement uses a boolean value (for example, i f), it takes the
integer zero as meaning false, and any integer other than zero as meaning
true. The boolean operators return zero for false and one for true.

Boolean operators && and | | stop executing as soon as the truth of thefinal
expression is determined. For example, in the expressona && b, if a is
false, then b does not need to be evaluated because the result must be false.
The && operator “knows this’ and does not evaluate b.

5.5.2 Long Integers

A subset of the operations implemented for integers are implemented for long
integers. arithmetic addition +, subtraction - , and multiplication* , and the integer
comparison operations. Bitwise and boolean operations and division are not
supported.

13

5.5.3 Floating Point Numbers

| C usesapackage of public-domain floating point routinesdistributed by Motorola.
This package includes arithmetic, trigonometric, and logarithmic functions.
The following operations are supported on floating point numbers:

e Arithmetic. addition +, subtraction - , multiplication*, divison/ .

e Comparison. greater-than >, less-than <, equality ==, greater-than-equal
>=, |less-than-equal <=.

e Built-in Math Functions. A set of trigonometric, logarithmic, and expo-
nential functionsis supported, as discussed in Section 11 of this document.

5.5.4 Characters

Characters are only allowed in character arrays. When acell of the array isrefer-
enced, it isautomatically coerced into ainteger representation for manipul ation by
the integer operations. When avalue is stored into a character array, it is coerced
from astandard 16-bit integer into an 8-bit character (by truncating the upper eight
bits).

5.6 Assignment Operators and Expressions

The basic assignment operator is =. The following statement adds 2 to the value
of a.

a=a + 2

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & - |

14

5.7 Increment and Decrement Operators

The increment operator “++” increments the named variable. For example, the
statement “a++” isequivalentto “a= a+1” or “a+= 1".

A statement that uses an increment operator has a value. For example, the
statement

a= 3;
printf("a=% a+1=%l\n", a, ++a);

will display the text “a=3 a+1=4."
If the increment operator comes after the named variable, then the value of the
statement is calculated after the increment occurs. So the statement

a= 3,
printf("a=% a+1=%l\n", a, a++);
would display “a=3 a+1=3" but would finish with a set to 4.

The decrement operator “- -” is used in the same fashion as the increment
operator.

5.8 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associativity for the
C operators. Operatorslisted earlier in the table have higher precedence; operators
on the same line of the table have equal precedence.

| Operator | Associativity |
O[] left to right
7 4+ -- - (type) right to left
* % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= I= left to right
& left to right
h left to right
| left to right
&& left to right
[] right to left
= += -=¢€lc. right to left
, left to right

15

6 Control Flow

| C supports most of the standard C control structures. One notable exception is
thecase and swi t ch statement, which is not supported.

6.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be
grouped together into a block using curly braces. Inside a block, local variables
may be defined.

Thereisnever asemicolon after aright brace that ends a block.

6.2 If-Else

Theif el se statement isused to make decisions. The syntax is:

i f (expression)
statement-1

el se
Statement-2

expressionisevaluated; if itisnot equal to zero (e.g., logictrue), then statement-
1lisexecuted.

The el se clauseisoptional. If thei f part of the statement did not execute,
and the el se is present, then statement-2 executes.

6.3 While

The syntax of awhi | e loop isthe following:

whi | e (expression)
Statement

whi | e beginsby evaluating expression. If itisfalse, then statement is skipped.
If it istrue, then statement is evaluated. Then the expression is evaluated again,
and the same check is performed. The loop exits when expression becomes zero.
One can easily create an infiniteloop in C using thewhi | e statement:

while (1)
statement

16

6.4 For

The syntax of af or loop isthe following:

for (expr-1; expr-2; expr-3)
Statement

Thisis equivalent to the following construct using whi | e:

expr-1;

while (expr-2) {
Statement
expr-3;

}

Typically, expr-1isan assignment, expr-2isarelational expression, and expr-3
is an increment or decrement of some manner. For example, the following code
counts from O to 99, printing each number along the way:

int i;
for (i=0; i < 100; i++)
printf("%\n", i);

6.5 Break

Use of the br eak providesan early exit fromawhi | e or af or loop.

17

7 LCD Screen Printing

IC has a version of the C function printf for formatted printing to the LCD
screen.

The syntax of pri nt f isthefollowing:

printf(format-string, [ag-1] , ..., [ag-N])

Thisisbest illustrated by some examples.

7.1 Printing Examples
Example 1: Printing a message. Thefollowing statement prints atext string
to the screen.
printf("Hello, world!'\n");
In this example, the format string is sSsimply printed to the screen.
The character “\ n” at the end of the string signifies end-of-line. When an

end-of-linecharacter isprinted, the LCD screen will be cleared when a subsequent
character isprinted. Thus, most pri nt f statements are terminated by a\ n.

Example 2: Printing a number. The following statement prints the value of
the integer variable x with a brief message.

printf("Value is %\n", x);
The special form % is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints
the value of the integer variablex as a binary number.

printf("Value is %\n", Xx);

The special form % is used to format the printing of an integer in binary format.
Only the low byte of the number is printed.

Example 4: Printing a floating point number. The following statement
prints the value of the floating point variable n as afloating point number.

printf("Value is %\n", n);
The special form % is used to format the printing of floating point number.

Example 5: Printing two numbers in hexadecimal format.
printf("A=% B=%\n", a, b);

The form % formats an integer to print in hexadecimal.

18

7.2 Formatting Command Summary

| Format Command | Data Type | Description |

% i nt decimal number

U i nt hexadecimal number

% i nt low byte as binary number
%e i nt low byte as ASCII character
% f1 oat floating point number

%s char array | char array (string)

7.3 Special Notes

e Thefinal character position of the LCD screen is used as a system “heart-
beat.” This character continuously blinks back and forth when the board
is operating properly. If the character stops blinking, the Handy Board has
crashed.

e Characters that would be printed beyond the final character position are
truncated.

e Theprintf () command treatsthe two-line LCD screen asasingle longer
line.

¢ Printing of long integersis not presently supported.

19

8 Arrays and Pointers

|C supports one-dimensional arrays of characters, integers, long integers, and
floating-point numbers. Pointersto dataitems and arrays are supported.

8.1 Declaring and Initializing Arrays

Arrays are declared using the square brackets. The following statement declares
an array of ten integers:

int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed by
enclosing the index number within square brackets: f oo[4] denotes the fifth
element of the array f oo (sSince counting begins at zero).

Arraysareinitialized by default to contain all zero values; arrays may aso be
initialized at declaration by specifying the array elements, separated by commas,
within curly braces. Using this syntax, the size of the array would not specified
within the square braces; it is determined by the number of elements given in the
declaration. For example,

int foo[]= {0, 4, 5 -8, 17, 301};

creates an array of six integers, with f oo[0] equalling O, f oo[1] equalling 4,
etc.

Character arrays are typically text strings. There is a specia syntax for ini-
tializing arrays of characters. The character values of the array are enclosed in
guotation marks:

char string[]= "Hello there";

This form creates a character array called st ri ng with the ASCII values of the
specified characters. In addition, the character array is terminated by a zero.
Because of this zero-termination, the character array can be treated as a string
for purposes of printing (for example). Character arrays can be initialized using
the curly braces syntax, but they will not be automatically null-terminated in that
case. Ingeneral, printing of character arraysthat arenot null-terminated will cause
problems.

20

8.2 Passing Arrays as Arguments

When an array is passed to afunction asan argument, thearray’spointer isactually
passed, rather than the elements of the array. If the function modifies the array
values, the array will be modified, since there is only one copy of the array in
memory.

In normal C, there are two ways of declaring an array argument: as an array
or as apointer. 1C only alows declaring array arguments as arrays.

As an example, the following function takes an index and an array, and returns
the array element specified by the index:

int retrieve_elenent(int index, int array[])

return array[index];

}

Notice the use of the square brackets to declare the argument ar r ay as an array
of integers.

When passing an array variableto afunction, use of the square bracketsis not
needed:

{
int array[10];

retrieve_elenent (3, array);

}

8.3 Declaring Pointer Variables

Pointers can be passed to functions which then go on to modify the value of the
variable being pointed to. Thisis useful because the same function can be called
to modify different variables, just by giving it a different pointer.

Pointers are declared with the use of the asterisk (*). In the example

int *foo;
fl oat *bar;

f 0o is declared as a pointer to an integer, and bar is declared as a pointer to a
floating point number.

To makeapointer variablepoint at some other variable, the ampersand operator
isused. The ampersand operator returns the address of avariable'svalue; that is,
the place in memory where the variable' svalue is stored. Thus:

int *foo;
int x=5;

f oo= &x;

21

makes the pointer f oo “point at” the value of x (which happensto be 5).

This pointer can now be used to retrieve the value of x using the asterisk
operator. This process is called de-referencing. The pointer, or reference to a
value, isused to fetch the value being pointed at. Thus:

int vy;

y= *foo0;

setsy equal to the value pointed at by f oo. Inthe previous example, f oo was set
to point at x, which had the value 5. Thus, the result of dereferencing f oo yields
5,andy will beset to 5.

8.4 Passing Pointers as Arguments

Pointers can be passed to functions; then, functions can change the values of the
variables that are pointed at. This is termed call-by-reference; the reference, or
pointer, to the variable is given to the function that is being called. Thisisin
contrast to call-by-value, the standard way that functions are called, in which the
value of avariableis given the to function being called.

The following example defines an aver age_sensor function which takes a
port number and a pointer to an integer variable. The function will average the
sensor and store the result in the variable pointed at by r esul t .

In the code, the function argument is specified as a pointer using the asterisk:

voi d average_sensor(int port, int *result)

int sumF O;
int i;

for (i= 0; i< 10; i++) sum += anal og(port);

*result= sunl 10;

}

Notice that the function itself isdeclared asavoi d. It does not need to return
anything, because it instead stores its answer in the pointer variable that is passed
toit.

The pointer variable is used in the last line of the function. In this statement,
the answer sun 10 isstored at the location pointed at by r esul t . Noticethat the
asterisk isused to get the location pointed by r esul t .

22

9 Library Functions

Library files provide standard C functions for interfacing with hardware on the
Handy Board. These functions are written either in C or as assembly language
drivers. Library files provide functions to do things like control motors, make
tones, and input sensors val ues.

|C automatically loads the library file every time it is invoked. The name of
the default library file isis contained as a resource within the I C application. On
command-line versions of IC, this resource may be modified by invoking “i ¢
-confi g”. Onthe Macintosh, the IC application has a STR resource that defines
the name of thelibrary file.

The Handy Board'sroot library fileisnamed | i b_hb. | i s.

9.1 Output Control
9.1.1 DC Motors

DC motor ports are numbered from O to 3.

Motors may be set in a“forward” direction (corresponding to the green motor
LED being lit) and a “backward” direction (corresponding to the motor red LED
being lit).

The functions f d(i nt m) and bk(i nt nm) turn motor mon or off, respec-
tively, at full power. The function of f (i nt n) turns motor moff.

The power level of motors may also be controlled. This is done in software
by a motor on and off rapidly (a technique called pulse-width modulation. The
motor(int m int p) functionalowscontrol of amotor’spower level. Pow-
ers range from 100 (full on in the forward direction) to - 100 (full on the the
backward direction). The system software actually only controls motorsto seven
degrees of power, but argument bounds of —100 and +100 are used.

void fd(int m
Turns motor mon in the forward direction. Example: f d(3) ;

voi d bk(int m
Turns motor mon in the backward direction. Example: bk(1) ;

void off(int m
Turns off motor m Example: of f (1) ;

void allof f ()

23

voi d ao()
Turns off all motors. ao isashort formfor al | of f.

void nmotor(int m int p)
Turns on motor mat power level p. Power levels range from 100 for full on
forward to - 100 for full on backward.

9.1.2 Servo Motor

A library routineallowscontrol of asingle servo motor, usingdigital input 9, which
isactually the 6811's Port A bit 7 (PA7), abidirectional control pin. Loading the
servo library files causes this pin to be employed as a digital output suitable for
driving the control wire of the servo motor.

The servo motor has a three-wire connection: power, ground, and control.
These wires are often color-coded red, black, and white, respectively. The control
wire is connected to PA7; the ground wire, to board ground; the power wire, to a
+5 volt source. The Handy Board's regulated +5v supply may be used, though
thisisnot an ideal solution because it will tax the regulator. A better solution is
a separate battery with a common ground to the Handy Board or atap at the +-6v
position of the Handy Board's battery back.

The position of the servo motor shaft is controlled by a rectangular waveform
that isgenerated onthe PA7 pin. Theduration of the positive pul se of thewaveform
determines the position of the shaft. This pulse repeats every 20 milliseconds.

The length of the pulse is set by the library function ser vo, or by functions
calibrated to set the position of the servo by angle.

voi d servo_on()
Enables PA7 servo output waveform.

voi d servo_on()
Disables PA7 servo output waveform.

int servo(int period)

Sets length of servo control pulse. Value is the time in half-microseconds of
the positive portion of arectangular wave that is generated on the PA7 pin for use
in controlling a servo motor. Minimum allowable value is 1400 (i.e., 700 uSec);
maximum is 4860.

Function return value is actual period set by driver software.

24

int servorad(float angle)
Sets servo anglein radians.

int servo_deg(float angle)

Sets servo angle in degrees.

In order to use the servo motor functions, thefilesser vo. i cb andservo. c
must be loaded.

9.2 Sensor Input

int digital (int p)

Returnsthe value of the sensor in sensor port p, asatrue/fasevalue (1 for true
and O for false).

Sensors are expected to be active low, meaning that they are valued at zero
volts in the active, or true, state. Thus the library function returns the inverse of
the actual reading from the digital hardware: if the reading is zero volts or logic
zero, thedi gi t al () functionwill return true.

If thedi gi tal () functionisapplied to port that isimplemented in hardware
as an analog input, the result is true if the analog measurement is less than 127,
and falseif the reading is greater than or equal to 127.

Ports are numbered as marked on the Handy Board.

i nt anal og(int p)

Returnsvalue of sensor port numbered p. Result isinteger between 0 and 255.

If theanal og() function isapplied to aport that isimplemented digitally in
hardware, then the value O isreturned if the digital reading is 0, and the value 255
isreturned if the digital reading is 1.

Ports are numbered as marked on the Handy Board.

9.2.1 User Buttons and Knob

The Handy Board has two buttons and a knob whose value can be read by user
programs.

int stopbutton()

Returns value of button labelled Stop: 1if pressed and O if released.
Example:

/* wait until stop button pressed */
while (!stop_button()) {}

25

int start _button()
Returns value of button labelled START.

voi d stop_press()
Waits for Stop button to be pressed, then released. Then issues a short beep

and returns. _
The code for st op_pr ess isasfollows:

while (!stop_button());
while (stop_button());
beep();

void start press()
Likest op_pr ess, but for the START button.

i nt knob()
Returns the position of aknob as avalue from 0 to 255.

9.2.2 Infrared Subsystem

The Handy Board provides an on-board infrared receiver (the Sharp 1S1U60),
for infrared input, and a 40 kHz modulation and power drive circuit, for infrared
output. The output circuit requires an external infrared LED.

As of thiswriting, only the infrared receive function is officially supported. On
the Handy Board web site, contributed software to extend theinfrared functionality
isavailable.

To use the infrared reception function, the filesony-i r. i cb must be loaded
into Interactive C. Thisfile may be added to the Handy Board default library file,
l'ib_hb.lis. Please make sure that the filer22.ir.1i s isnot present in the
l'ib_hb.lis file

The sony-ir.icb file adds the capability of receiving infrared codes trans-
mitted by a Sony remote, or a universal remote programmed to transmit Sony
infrared codes.

int sony.init(1)
Enables the infrared driver.

int sony.init(0)
Disables theinfrared driver.

26

int ir_data(int dunmy)

Returns the data byte last received by the driver, or zero if no data has been
received since the last call. A value must be provided for the dunmy argument,
but its value isignored.

The infrared sensor is the dark green component in the Handy Board's lower
right hand corner.

9.3 Time Commands

System code keeps track of time passage in milliseconds. The time variables
are implemented using the long integer data type. Standard functions alow use
floating point variables when using the timing functions.

voi d reset _systemti ne()
Resets the count of system timeto zero milliseconds.

| ong nseconds()

Returns the count of system time in milliseconds. Time count is reset by
hardware reset (i.e.,, pressing reset switch on board) or the function r eset _-
systemtinme(). nseconds() isimplemented asaC primitive (not asalibrary
function).

fl oat seconds()
Returns the count of system time in seconds, as a floating point number.
Resolution is one millisecond.

voi d sl eep(float sec)
Waits for an amount of time equal to or dightly greater than sec seconds.

sec isafloating point number.
Example:

/* wait for 1.5 seconds */
sl eep(1.5);

voi d nsl eep(l ong nsec)

Waitsfor an amount of time equal to or greater than nsec milliseconds. nsec
isalong integer.

Example:

/* wait for 1.5 seconds */
nsl eep(1500L) ;

27

9.4 Tone Functions
Several commands are provided for producing tones on the standard beeper.

voi d beep()
Produces a tone of 500 Hertz for a period of 0.3 seconds.

voi d tone(float frequency, float |ength)
Produces a tone at pitch frequency Hertz for | engt h seconds. Both
frequency and| engt h arefloats.

voi d set _beeper pitch(float frequency)
Sets the beeper tone to be f r equency Hz. The subsequent function is then
used to turn the beeper on.

voi d beeper _on()
Turns on the beeper at last frequency selected by the former function.

voi d beeper _of f ()
Turns off the beeper.

28

10 Multi-Tasking

10.1 Overview

One of the most powerful features of 1Cisits multi-tasking facility. Processes can
be created and destroyed dynamically during run-time.

Any C function can be spawned as a separate task. Multiple tasks running the
same code, but with their own local variables, can be created.

Processes communicate through global variables. one process can set aglobal
to some value, and another process can read the value of that global.

Each time a process runs, it executes for a certain number of ticks, defined in
milliseconds. This value is determined for each process at the time it is created.
The default number of ticks is five; therefore, a default process will run for 5
milliseconds until its “turn” ends and the next processis run. All processes are
kept track of in a process table; each time through the table, each process runs
once (for an amount of time equal to its number of ticks).

Each process has its own program stack. The stack is used to pass arguments
for function calls, store local variables, and store return addresses from function
calls. The size of thisstack is defined at the time aprocessis created. The default
size of aprocess stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrays will
probably require a stack size larger than the default. Each function call requires
two stack bytes (for the return address) plus the number of argument bytes; if the
functionthat is called creates |ocal variables, then they also use up stack space. In
addition, C expressions create intermediate values that are stored on the stack.

It is up to the programmer to determineif a particular process requires a stack
sizelarger thanthe default. A process may al so be created with astack sizesmaller
than thedefault, in order to save stack memory space, if itisknownthat the process
will not require the full default amount.

When aprocessiscreated, itisassigned aunigue processidentification number
or pid. This number can be used to kill a process.

10.2 Creating New Processes

The function to create a new processisst art _pr ocess. st art _process takes
one mandatory argument—the function call to be started as a process. There are
two optional arguments. the process's number of ticks and stack size. (If only one
optional argument is given, it is assumed to be the ticks number, and the default
stack sizeisused.)

start _process hasthefollowing syntax:

int start_process(function-cal(...), [TICKS , [STACK-SIZE])

29

start _process returns an integer, which is the process ID assigned to the new
process.

The function call may be any valid call of the function used. The following
code shows the function mai n creating a process:

voi d check_sensor (int n)

while (1)
printf("Sensor %l is %l\n", n, digital(n));

voi d main()

start _process(check_sensor(2));

Normally when a C functions ends, it exits with a return value or the “void”
value. If afunction invoked as a process ends, it “dies,” letting its return value (if
there was one) disappear. (This is okay, because processes communicate results
by storing them in globals, not by returning them as return values.) Hence in the
above example, the check _sensor function is defined as an infinite loop, so as
to run forever (until the board isreset or aki | | _process isexecuted).

Creating a process with a non-default number of ticks or a non-default stack
sizeissmply amatter of using st art _pr ocess with optional arguments; e.g.

start_process(check_sensor(2), 1, 50);

will create acheck_sensor process that runs for 1 milliseconds per invocation
and has a stack size of 50 bytes (for the given definition of check_sensor, a
small stack space would be sufficient).

10.3 Destroying Processes

Theki | | _pr ocess functionisused to destroy processes. Processes are destroyed
by passing their process D number toki I | _pr ocess, according to the following
syntax:

int kill _process(int pid)

kil | _process returns avalueindicating if the operation was successful. If the
return valueis 0, then the process was destroyed. If thereturnvalueis 1, then the
process was not found.

Thefollowing codeshowsthemai n processcreatingacheck_sensor process,
and then destroying it one second later:

30

voi d main()
int pid;

pi d= start_process(check_sensor(2));
sl eep(1.0);
kill _process(pid);

10.4 Process Management Commands

IC has two commands to help with process management. The commands only
work when used at the IC command line. They are not C functions that can be
used in code.

kill _all
killsal currently running processes.

ps
printsout alist of the process status.
The following information is presented: process ID, status code, program
counter, stack pointer, stack pointer origin, number of ticks, and name of function
that is currently executing.

10.5 Process Management Library Functions

The following functions are implemented in the standard C library.

voi d hog_processor ()

Allocates an additional 256 milliseconds of execution to the currently running
process. If this function is called repeatedly, the system will wedge and only
execute the process that is calling hog_pr ocessor (). Only a system reset will
unwedge from this state. Needless to say, this function should be used with
extreme care, and should not be placed in aloop, unless wedging the machineis
the desired outcome.

voi d defer()

Makes a process swap out immediately after the functioniscalled. Useful if a
process knows that it will not need to do any work until the next time around the
scheduler loop. def er () isimplemented as a C built-in function.

31

11 Floating Point Functions

In addition to basic floating point arithmetic (addition, subtraction, multiplica-
tion, and division) and floating point comparisons, a number of exponential and
transcendental functions are built in to 1C. These are implemented with a public
domain library of routines provided by Motorola.

Keep in mind that al floating point operations are quite slow; each takes one
to severa milliseconds to complete. If Interactive C's speed seems to be poor,
extensive use of floating point operationsis alikely cause.

float sin(float angle)
Returns sine of angl e. Angleis specified in radians; result isin radians.

float cos(float angle)
Returns cosine of angl e. Angleis specified in radians; result isin radians.

float tan(float angle)
Returns tangent of angl e. Angleis specified in radians; result isin radians.

float atan(float angle)
Returns arc tangent of angl e. Angle is specified in radians; result is in
radians.

float sqrt(float num
Returns square root of num

float |10glO(fl oat num
Returnslogarithm of numto the base 10.

float |og(float num
Returns natural logarithm of num

float explO(float num
Returns 10 to the numpower.

float exp(float num
Returns e to the numpower.

(float) a =~ (float) b
Returns a to the b power.

32

12 Memory Access Functions

|C has primitives for directly examining and modifying memory contents. These
should be used with care as it would be easy to corrupt memory and crash the
system using these functions.

Thereshould belittle need to usethese functions. Most interaction with system
memory should be done with arrays and/or globals.

int peek(int |oc)
Returns the byte located at address| oc.

i nt peekword(int |oc)
Returnsthe 16-bit value located at address| oc and | oc+1. | oc hasthe most
significant byte, as per the 6811 16-bit addressing standard.

voi d poke(int loc, int byte)
Stores the 8-bit value byt e at memory address| oc.

voi d pokeword(int [oc, int word)
Storesthe 16-bit valuewor d at memory addresses| oc and | oc+1.

void bit set(int loc, int mask)
Sets bitsthat are set in mask at memory address| oc.

void bit clear(int loc, int mask)
Clears bitsthat are set in mask at memory address| oc.

33

13 Error Handling

There aretwo typesof errorsthat can happen when working with 1C: compile-time
errors and run-time errors.

Compile-time errors occur during the compilation of the sourcefile. They are
indicative of mistakes in the C source code. Typical compile-time errors result
from incorrect syntax or mis-matching of data types.

Run-time errors occur while a programis running on the board. They indicate
problems with a valid C form when it is running. A simple example would be a
divide-by-zero error. Another example might be running out of stack space, if a
recursive procedure goes too deep in recursion.

These types of errors are handled differently, asis explained below.

13.1 Compile-Time Errors

When compiler errorsoccur, an error messageisprintedto thescreen. All compile-
time errors must be fixed before a file can be downloaded to the board.

13.2 Run-Time Errors

When arun-time error occurs, an error message is displayed on the LCD screen
indicating the error number. If the board is hooked up to |Cwhen the error occurs,
amore verbose error message is printed on the terminal.

Hereisalist of the run-time error codes:

| Error Code | Description |

1 no stack spacefor st art _process()

2 No process dots remaining

3 array reference out of bounds

4 stack overflow error in running process

5 operation with invalid pointer

6 floating point underflow

7 floating point overflow

8 floating point divide-by-zero

9 number too small or large to convert to integer
10 tried to take square root of negative number
11 tangent of 90 degrees attempted

12 log or In of negative number or zero

15 floating point format error in printf

16 integer divide-by-zero

14 Binary Programs

With the use of a customized 6811 assembler program, IC alows the use of
machine language programs within the C environment. There are two ways that
machine language programs may be incorporated:

1. Programsmay be called from C asif they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811,
running repetitiously or when invoked due to a hardware or software inter-
rupt.

When operating as a function, the interface between C and a binary program
islimited: a binary program must be given one integer as an argument, and will
return an integer asitsreturnvalue. However, programsinabinary file can declare
any number of global integer variables in the C environment. Also, the binary
program can use its argument as a pointer to a C data structure.

14.1 The Binary Source File

Special keywords in the source assembly language file (or module) are used to
establish the following features of the binary program:

Entry point. Theentry point for callsto each program defined in the binary file.

Initialization entry point. Each file may have one routine that is called auto-
matically upon a reset condition. (The reset conditions are explained in
Section 5.3, which discusses global variable initialization.) This initializa-
tion routine particularly useful for programswhich will function asinterrupt
routines.

C variable definitions. Any number of two-byte C integer variables may be
declared within a binary file. When the module is loaded into I1C, these
variables become defined as globalsin C.

To explain how these features work, let’s look at a sample IC binary source
program, listed in Figure 2.

The first statement of the file (“ORG MAI N.START”) declares the start of the
binary programs. Thisline must precede the code itself itself.

The entry point for a program to be called from C is declared with a special
form beginning with the text subr out i ne_. In this case, the name of the binary
programisdoubl e, sothelabel isnamedsubr out i ne_doubl e. Asthecomment
indicates, thisisa program that will double the value of the argument passed to it.

35

[* Sanple icbh file */

/[* origin for nodul e and variables */
ORG MAI N_START

[* programto return twi ce the argunment passed to us */
subrouti ne_doubl e:

ASLD

RTS

/* declaration for the variable "foo" */
vari abl e_f oo:
FDB 55

/* programto set the C variable "foo" */
subroutine_set foo:

STD vari abl e foo

RTS

/* programto retrieve the variable "foo" */
subroutine_get _foo:

LDD vari abl e foo

RTS

/* code that runs on reset conditions */
subroutine_initialize_nodul e:

LDD #69
STD vari abl e foo
RTS

Figure 2: SamplelC Binary SourceFile: t esti cb. asm

36

When the binary program is called from C, it is passed one integer argument.
This argument is placed in the 6811's D register (also known as the “Double
Accumulator”) before the binary codeis called.

Thedoubl e program doublesthe number in the D register. The ASLD instruc-
tion (“Arithmetic Shift Left Double [Accumulator]”) is equivalent to multiplying
by 2; hence this doubles the number in the D register.

The RTS instruction is “Return from Subroutine.” All binary programs must
exit using thisinstruction. When abinary programexits, the valuein the D register
is the return value to C. Thus, the doubl e program doubles its C argument and
returnsit to C.

14.1.1 Declaring Variables in Binary Files

Thelabel vari abl e_f oo isan example of aspecia form to declare the name and
location of avariable accessable from C. The special label prefix “vari abl e_” is
followed the name of the variable, in thiscase, “f 0o.”

This label must be immediately followed by the statement FDB <nunber >.
This is an assembler directive that creates a two-byte value (which is the initial
value of the variable).

Variables used by binary programs must be declared in the binary file. These
variables then become C globals when the binary fileisloaded into C.

The next binary programinthefileisnamed “set f 0o.” It performstheaction
of setting the value of the variable f oo, which is defined later in the file. It does
this by storing the D register into the memory contents reserved for f oo, and then
returning.

The next binary programisnamed “get _f 00.” Itloadsthe D register fromthe
memory reserved for f oo and then returns.

14.1.2 Declaring an Initialization Program

Thelabel subroutine_initialize_nodul e isaspecial form used to indicate
the entry point for code that should be run to initialize the binary programs. This
codeisrun upon standard reset conditions: program download, hardwarereset, or
running of the mai n() function.

In the example shown, the initialization code stores the value 69 into the
location reserved for the variable f oo. This then overwrites the 55 which would
otherwise be the default value for that variable.

Initialization of globals variables defined in an binary module is done differ-
ently than globals defined in C. In a binary module, the globals are initialized to
the value declared by the FDB statement only when the code is downloaded to the
6811 board (not upon reset or running of main, like normal globals).

37

Before User Program Installation

| i |
IC system _

software —
interrupt driver

6811 interrupt vector
(dedicated RAM position)

!

RTI |

Return from Interrupt |
instruction

Figure 3: Interrupt Structure Before User Program Installation

However, the initialization routine is run upon standard reset conditions, and
can be used to initialize globals, as this example hasillustrated.

14.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary
module to install a piece of code into the interrupt structure of the 6811.

The 6811 has a number of different interrupts, mostly dealing with its on-chip
hardware such as timers and counters. One of these interrupts is used by the
runtime softwareto implement time-keeping and other periodic functions (such as
LCD screen management). Thisinterrupt, dubbed the “ System Interrupt,” runs at
1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional
programs (that need to run at 1000 Hz. or less) may install themselves into the
System Interrupt. User programs would be then become part of the 1000 Hz
interrupt sequence.

Thisisaccomplished by having the user program “intercept” the original 6811
interrupt vector that pointsto runtime interrupt code. This vector is made to point
at the user program. When user program finishes, it jumps to the start of the
runtime interrupt code.

38

After User Program Installation
i

Jump instruction | JWP & |

6811 interrupt vector |
(dedicated RAM position)

User assembly
language program

IC system
software
interrupt driver

Return from Interrupt |
instruction

Figure4: Interrupt Structure After User Program Installation

39

Figure 3 depicts the interrupt structure before user program installation. The
6811 vector location pointsto system software code, which terminatesina*return
from interrupt” instruction.

Figure 4 illustrates the result after the user program is installed. The 6811
vector pointsto the user program, which exits by jumping to the system software
driver. Thisdriver exits as before, with the RTI instruction.

Multiple user programs could be installed in this fashion. Each one would
install itself ahead of the previous one. Some standard library functions, such as
the shaft encoder software, isimplemented in this fashion.

Figure5 showsan example program that instalIsitself into the System I nterrupt.
This program toggles the signal line controlling the piezo beeper every timeitis
run; since the System Interrupt runs at 1000 Hz., this program will create a
continous tone of 500 Hz.

Thefirstlineafter thecomment header includesafilenamed“6811r egs. asnfi.
Thisfile contains equates for all 6811 registers and interrupt vectors, most binary
programs will need at least a few of these. It is smplest to keep them all in one
file that can be easily included.

Thesubroutine_initialize_nodul e declaration beginstheinitialization
portion of the program. Thefile*l dxi base. asni isthenincluded. Thisfilecon-
tainsafew lines of 6811 assembler code that perform the function of determining
the base pointer to the 6811 interrupt vector area, and loading this pointer into the
6811 X register.

The following four lines of codeinstall the interrupt program (beginning with
thelabel i nt er r upt _code_st art') according to the method that was illustrated
in Figure 4.

Firgt, the existing interrupt pointer is fetched. Asindicated by the comment,
the 6811's TOC4 timer is used to implement the System Interrupt. The vector is
poked into the IMP instruction that will conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code.
These two steps compl ete the initialization sequence.

The actual interrupt code is quite short. It toggles bit 3 of the 6811's PORTA
register. The PORTA register controls the eight pins of Port A that connect to
external hardware; bit 3 is connected to the piezo beeper.

The interrupt code exits with a jump instruction. The argument for this jump
is poked in by theinitialization program.

The method allows any number of programs located in separate files to attach
themselves to the System Interrupt. Because these files can be loaded from the
C environment, this system affords maximal flexibility to the user, with small
overhead in terms of code efficiency.

40

*

icb file: "sysibeep.asnt
exanpl e of code installing itself into
System nt 1000 Hz interrupt

Fred Martin
Thu Cct 10 21:12:13 1991

* % ok * ok * *

#i ncl ude <6811regs. asnp
ORG MAI N_START
subroutine_initialize_nodul e:

#i ncl ude <I dxi base. asnp
* X now has base pointer to interrupt vectors ($FFO0 or $BFO0)

* get current vector; poke such that when we finish, we go there

LDD TOCAI NT, X ; Systemint on TOCA
STD i nterrupt_code_exit+1
* install ourself as new vector
LDD #i nterrupt _code_start
STD TOCAI NT, X
RTS

* interrupt program begins here

i nterrupt_code_start:

* frob the beeper every tinme called
LDAA PORTA
EORA #9©0001000 ; beeper bit
STAA PORTA

i nterrupt _code_exit:
JMWP $0000 ; this value poked in by init routine

Figure5: sysi beep. asm Binary Program that Installsinto System Interrupt

41

14.3 The Binary Object File

The source file for a binary program must be named with the . asmsuffix. Once
the . asmfileis created, a specia version of the 6811 assembler program is used
to construct the binary object code. This program creates a file containing the
assembled machine code plus label definitions of entry points and C variables.

S$116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assenbler version 2.1 10-Aug-91
pl ease send bugs to Randy Sargent (rsargent @thena. mt. edu)
original program by Mt orol a.
subrouti ne_doubl e 872b *0007
subroutine_get foo 8733 *0021
subroutine initialize nodule 8737 *0026
subroutine set foo 872f *0016
vari abl e_foo 872d *0012 0017 0022 0028

Figure 6: Sample IC Binary Object File: t esti cb.ichb

The programas11._i ¢ isused to assemble the source code and create a binary
object file. Itisgiventhe filename of the source file as an argument. The resulting
object fileis automatically given the suffix . i cb (for IC Binary). Figure 6 shows
the binary object file that is created from thet est i cb. asmexamplefile.

14.4 Loading an ICB File

Oncethe. i cb fileiscreated, it can be loaded into IC just like any other C file. If
there are C functionsthat are to be used in conjunction with the binary programs,
it is customary to put them into a file with the same name as the . i cb file, and
thenusea. | i s fileto loads the two files together.

14.5 Passing Array Pointers to a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an
integer, use the following form:

array_ptr= (int) array;

wherear ray _ptr isaninteger and ar r ay isan array.
When compiling code that performs this type of pointer conversion, IC must
be used in a specia mode. Normally, IC does not allow certain types of pointer

42

manipulation that may crash the system. To compile this type of code, use the
following invokation:

ic -wzard

Arraysareinternally represented with atwo-bytelength value followed by the
array contents.

43

15 IC File Formats and Management

This section explains how | C deals with multiple sourcefiles.

15.1 C Programs

All files containing C code must be named with the“. c” suffix.

L oading functionsfrom morethan one C file can be done by issuing commands
at the IC prompt to load each of thefiles. For example, to load the C files named
f 0oo.c andbar . c:

C |load foo.c
C l|load bar.c

Alternatively, the files could be loaded with a single command:

C load foo.c bar.c

If the files to be loaded contain dependencies (for example, if one file has
a function that references a variable or function defined in the other file), then
the second method (multiple file names to one load command) or the following
approach must be used.

15.2 List Files

If the program is separated into multiple files that are always loaded together, a
“list file” may becreated. ThisfiletellsICtoload aset of named files. Continuing
the previous example, afilecaled gnu. | i s can be created:

Listingof gnu. | i s:

f 0o.c
bar.c

Then typing the command | oad gnu. | i s from the C prompt would cause
both f 0o. ¢ and bar . ¢ to be loaded.

15.3 File and Function Management
15.3.1 Unloading Files

When files are loaded into I1C, they stay loaded until they are explicitly unloaded.
Thisisusually the functionality that isdesired. If one of the program filesisbeing

44

worked on, the other ones will remain in memory so that they don’'t have to be
explicitly re-loaded each time the one undergoing development is rel oaded.

However, suppose thefilef oo. ¢ isloaded, which contains adefinition for the
function mai n. Then the file bar . ¢ isloaded, which happens to also contain a
definition for mai n. There will be an error message, because both files contain a
mai n. |C will unload bar . ¢, due to the error, and re-download f oo. ¢ and any
other filesthat are presently loaded.

The solution is to first unload the file containing the nmai n that is not desired,
and then load the file that contains the new mai n:

C unload foo.c
C l|load bar.c

45

16 Configuring IC

|C has a multitude of command-line switches that alow control of a number of
things. With command-lineversions of | C, explanations for these switches can be
gotten by issuing the command “i ¢ - hel p”.

| C storesthe search path for and name of thelibrary filesinternally; theses may
be changed by executing the command “i ¢ - confi g”. When this command is
run, 1C will prompt for a new path and library file name, and will create a new
executable copy of itself with these changes.

46

