ﬁﬁ

M6SBHC11

Reference Manual

@ MOTOROLA

Motorola reserves the right to make changes without further notice to
any products herein to improve reliability, function or design. Motorola
does not assume any liability arising out of the application or use of any
product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure
of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for
any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part.

Paragraph TABLE OF CONTENTS

Number
Section 1

GENERAL DESCRIPTION

1.1 General Description of the MC68HC11A8.,
1.2 Programmers Model
1.3 Product Derivatives

Section 2
PINS AND CONNECTIONS

2.1 Packages And PINNamest
2.1.1 MCBBHCLLAS . . .
2.1.2 MCBBHCILID3/711D3. . . . ot
2.1.3 MCBBHCILLIES/TI1EDot
2.1.4 MCBBHCBLLIEZ
2.1.5 MCBBHCLLFL. . ..o
2.1.6 MC68HC24 Port ReplacementUnit

2.2 Pin DeSCIIPLONS . . . o et
2.2.1 Power-Supply Pins (VppandVgg) oo
2.2.2 Mode Select Pins (MODB/Vgrgy and MODA/LIR)
2.2.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL,andE)
2.2.4 Crystal Oscillator Application Information.

2.2.4.1 Crystals for Parallel Resonance.
2.2.4.2 Using Crystal Oscillator Outputs.,
2.2.4.3 Using External Oscillator
2244 AT-stripvs AT-cutCrystals. i
225 Reset Pin (RESET). . ..ttt
2.2.6 Interrupt Pins (XIRQ, IRQ)« oot
2.2.7 A/ID Reference and Port E Pins (VrgrL, Vrepn, PE[70]).ot
2.2.8 TIMer POrt A PINS . . .o
229 Serial POt D PiNS
2.2.10 PortsBand C, STRA,and STRBPIins.

2.3 Termination of Unused Pins.

2.4 Avoidance of PInDamageottt
241 Zapand Latchup.
2.4.2 Protective Interface Circuitsot
2.4.3 Internal Circuitry — Digital Input-Only Pin
2.4.4 Internal Circuitry — Analog Input-Only Pin.
2.4.5 Internal Circuitry — Digital /O Pin
2.4.6 Internal Circuitry — Input/Open-Drain-Output Pin
2.4.7 Internal Circuitry — Digital Output-Only Pin.
2.4.8 Internal Circuitry — MODB/VSTBY Pin i,
2.4.9 Internal Circuitry — IRQ/Vppgy xk PiN.o

2.5 Typical Single-Chip-Mode System Connections

2.6 Typical Expanded-Mode-System Connections

2.7 System Development and Debug Features.
2.7.1 Load Instruction Register (LIR).oouiiriean.
2.7.2 Internal Read Visibility (IRV).o
2.7.3 MC68HC24 Port Replacement Unit

M68HC11 TABLE OF CONTENTS
REFERENCE MANUAL

Page
Number

MOTOROLA
iii

Paragraph Page

Number Number
Section 3
CONFIGURATION AND MODES OF OPERATION

3.1 Hardware Mode Selectiont 3-1
3.1.1 Hardware Mode Select PinS. e 3-2
3.1.2 Mode Control Bits inthe HPRIO Register 3-2

3.2 EEPROM-Based CONFIG RegiSter. i e e e 3-3
3.2.1 Operation of CONFIG Mechanism i, 3-3
3.2.2 The CONFIG RegISterottt e e e e e e e e 3-4

3.3 Protected Control Register BitS 3-6
3.3.1 RAM and I/O Mapping Register (INIT) e 3-6
3.3.2 Protected Control Bitsinthe TMSK2 Register 3-8
3.3.3 Protected Control Bits in the OPTION Register, 3-9

3.4 Normal MCU Operating Modeso e e e e e 3-10
3.4.1 Normal Single-ChipMode e 3-10
3.4.2 Normal Expanded Mode. e e 3-10

3.5 Special MCU Operating MOdeS oottt e e e 3-11
3.5.1 Testing Functions Control Register (TEST1)t 3-12
3.5.2 Test-Related Control Bits in the BAUD Register, 3-14
3.5.3 Special TEStMOdEt e 3-14
3.5.4 Special Bootstrap Mode e 3-15
3.5.4.1 Loading Programs in BootstrapMode 3-16
3.5.4.2 Executing User Programs in BootstrapMode 3-16
3.5.4.3 Using Interrupts in BootstrapMode, 3-17
3.5.4.4 Bootloader Firmware Options. ot e 3-18

3.6 Test and Bootstrap Mode Applications i 3-19

Section 4
ON-CHIP MEMORY

4. L ROM. . . e 4-1
4 2 RAM . L e 4-2
4.2.1 Remapping Using the INIT Register. e 4-2
422 RAM Standbyo 4-3
4.3 EEPROM . . . e e 4-4
4.3.1 Logical and Physical Organization i 4-4
4.3.2 Basic Operation of the EEPROM e 4-5
4.3.3 Systems Operating below 2-MHz Bus Speed (EClock). 4-9
4.3.4 EEPROM Programming Register (PPROG). 4-10
4.3.5 Programming/Erasing Procedures 4-12
4.3.5.1 Programmingttt 4-12
4.35.2 BUIKEISE i 4-12
4353 ROWEIGSE 4-13
4.3.5.4 BYte ErasSeo 4-13
4.3.5.5 CONFIG RegISterttt e e 4-13

4.3.6 Optional EEPROM Security Mode e 4-14

4.4 EEPROM Application Information 4-16
4.4.1 Conditions and Practicesto Avoid e 4-16
4.4.2 Using EEPROM to Select Product Optionst ... 4-18
4.4.3 Using EEPROM for Setpoint and Calibration Information 4-18
4.4.4 Using EEPROM during Product Development. oo, 4-19
445 Logging Dataov i 4-19
4.4.6 Self-Adjusting Systems using EEPROM i, 4-20
4.4.7 Software Methods to Extend Life Expectancy 4-21

MOTOROLA TABLE OF CONTENTS M68HC11

iv REFERENCE MANUAL

Paragraph Page

Number Number
Section 5
RESETS AND INTERRUPTS

5.1 Initial Conditions Established During Reset. i, 5-1
5.1.1 System Initial ConditionNs 5-2
DL L L CPU 5-2
5.1.1.2 MemMOry Map. . .. oo e 5-2
5.1.1.3 Parallel /O . . .o 5-2

B L L TIMeT 5-2
5.1.1.5 Real-Time Interrupt. oo e e 5-3
5.1.1.6 Pulse Accumulatoro 5-3
5.1.1.7 COP Watchdog. e e 5-3
5.1.1.8 Serial Communications Interface (SCI) 5-3
5.1.1.9 Serial Peripheral Interface (SPI). i 5-3
5.1.1.10 Analog-to-Digital (A/D) COnVerter. e 5-3
5.1.1.11 Other System CoNtrolS. e 5-4

5.1.2 CONFIG Register Allows Flexible Configuration 5-4
5.1.3 Mode of Operation Established, 5-5
5.1.4 Program Counter Loaded with ResetVector 5-5

5.2 Causes Of RESELt 5-5
5.2.1 Power-On Reset (POR) i e e e e 5-7
5.2.2 COP Watchdog Timer Resett e e e 5-7
5.2.3 Clock Monitor Reset. 5-9
5.2.4 External Reset 5-10
5.3 INteImUPL PrOCESS . . . oo 5-11
5.3.1 Interrupt Recognition and Stacking Registers, 5-12
5.3.2 Selecting Interrupt VeCtorso 5-12
5.3.3 Returnfrom Interrupt e 5-20
5.4 Non-Maskable Interruptso e 5-20
5.4.1 Non-Maskable Interrupt Request (XIRQ) 5-21
5.4.2 lllegal Opcode Fetch. e e e 5-22
5.4.3 Software Interrupt. e 5-23
5.5 Maskable Interruptso 5-23
5.5.1 I Bitin the Condition Code Register i 5-23
5.5.2 Special Considerations for I-Bit-Related Instructions 5-24

5.6 Interrupt ReqUEST 5-25
5.6.1 Selecting Edge Triggering or Level Triggering. 5-25
5.6.2 Sharing Vector with Handshake I/O Interrupts ot 5-26

5.7 Interrupts from Internal Peripheral Subsystems. 5-26
5.7.1 Inhibiting Individual SOUICES. e 5-27
5.7.2 Clearing Interrupt Status Flag Bits 5-27
5.7.3 Automatic Clearing Mechanismson Some Flags. 5-27

Section 6
CENTRAL PROCESSING UNIT

6.1 Programmer's Model 6-1
6.1.1 Accumulators (A, B,and D) 6-1
6.1.2 Index Registers (X and Y)o 6-2
6.1.3 Stack Pointer (SP)o 6-3
6.1.4 Program Counter (PC)ttt 6-4
6.1.5 Condition Code Register (CCR)ot e 6-4

6.2 AAressing MOES 6-6
6.2.1 Immediate (IMM) 6-6

M68HC11 TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL

\'

Paragraph Page

Number Number
6.2.2 Extended (EXT) . ..ot 6-7
6.2.3 DIreCt (DIR). . . ottt 6-8
6.2.4 Indexed (INDX, INDY) . ..ot e e e e 6-9
6.2.5 Inherent (INH). 6-10
6.2.6 Relative (REL) 6-10

6.3 MB8HCLL INStruction Set. e 6-11
6.3.1 Accumulator and Memory INStructions 6-11
6.3.1.1 Loads, Stores, And Transfers. 6-11
6.3.1.2 Arithmetic Operations. 6-12
6.3.1.3 Multiply and Divideo 6-13
6.3.1.4 Logical Operations 6-14
6.3.1.5 Data Testing and Bit Manipulation 6-14
6.3.1.6 Shiftsand Rotates 6-14

6.3.2 Stack and Index Register Instructions i 6-15
6.3.3 Condition Code Register INStructions. 6-17
6.3.4 Program Control INStructions 6-17
6.3.4.1 BranChes 6-18
B.3.4.2 JUMIPS . ottt 6-19
6.3.4.3 Subroutine Calls And Returns (BSR, JSR, RTS) 6-19
6.3.4.4 Interrupt Handling (RTI, SWI, WAI) 6-19
6.3.4.5 Miscellaneous (NOP, STOP, TEST). oo oottt 6-19

Section 7
PARALLEL INPUT/OUTPUT

7.1 Parallel /O OVEIVIEW o e e 7-1
7.2 Parallel I/0 Register And Control Bit Explanations 7-3
7.2. 1 POrt REQISIEIS. . o oo e 7-4
7.2.2 Data Direction RegiSters.o e 7-5

7.3 Detailed /0 Pin DeSCHPONSttt e 7-6
7.3 L POt A 7-7
7.3.1.1 PA[2:0] (IC[3:A]) PINLOGIC .+« oottt e e e e e et e e e 7-7
7.3.1.2 PA[B:3] (OCI5:2]) PINLOGIC . . ottt e e e e 7-7
7.3.1.3 PA7 (OCL, PAD) PINLOGIC . . oottt e e e e e e i 7-8
7.3.1.4 PortAldealized TIMINGttt e 7-11

7.3.2 POt B .o 7-11
7.3.21 Port BPINLOQICot 7-12
7.3.22 PortBldealized TIMINGttt e 7-13
7.3.2.3 Special Considerations For Port B On MC68HC24 PRU 7-13

7.3.3 RIW (STRB) Pin . ..o e 7-14
7.3.3.1 RIW (STRB) PINLOQICt oot i e e e e 7-14
7.3.3.2 Special Considerations for STRB on MC68HC24PRU 7-16

7.3 4 POt C oL 7-16
7.3.4.1 Port C Pin Logic forExpanded Modes, 7-16
7.3.4.2 Summary of Port C Idealized Expanded-Mode Timing 7-17
7.3.4.3 Port C Single-Chip Mode PinLogiC 7-18
7.3.4.4 Port C Idealized Single-Chip Mode Timing.c.ouuiu... 7-21
7.3.4.5 Special Considerations for Port C on MC68HC24 PRU. 7-23

7.3.5 AS (STRA) PN .. 7-23
7.3.5.1 AS(STRA) PINLOGIC . . o\ttt e e e e e 7-23
7.3.5.2 Special Considerations for STRA on MC68HC24PRU 7-25

7.3.6 POt D .o 7-25
7.3.6.1 PDO (RXD) PINLOQIC . . .\ttt e e e e e 7-25

MOTOROLA TABLE OF CONTENTS M68HC11

Vi REFERENCE MANUAL

Paragraph Page

Number Number
7.3.6.2 PD1 (TXD) PiN LOQIC. . . .ottt e e e e e 7-27
7.3.6.3 PD2 (MISO) PINLOGIC . .« vttt e et e e e e e e 7-29
7.3.6.4 PD3 (MOSI) PINLOGIC . .« vttt e e e e e e e e e 7-31
7.3.6.5 PD4 (SCK) PINLOGIC . . o\ttt et e e e e 7-33
7.3.6.6 PD5 (SS) PINLOGIC. . .« oottt 7-35
7.3.6.7 Idealized Port D TIMINGo oottt e 7-37

7,87 POt E .o 7-39
7.3.7.1 POortEPINLOQIC 7-39
7.3.7.2 Idealized POrt ETIMINGo oottt e 7-40

7.4 Handshake I/O Subsystem 7-41

7.4.1 Simple Strobe Mode 7-42
7.4.1.1 Port B Strobe OUIPUL.o 7-42
7.4.1.2 Port C Simple Latching Input 7-43

7.4.2 Full-input Handshake Mode 7-43

7.4.3 Full-Output Handshake Mode. 7-44
7.4.3.1 Normal Output Handshake. 7-45
7.4.3.2 Three-State Variation of Output Handshake 7-45

7.4.4 Parallel I/0O Control Register (PIOC). e 7-46

7.4.5 Non-Handshake Uses of STRAand STRBPINS 7-48

Section 8
SYNCHRONOUS SERIAL PERIPHERAL INTERFACE
8.1 SPITransfer FOrmats. e 8-1

8.1.1 SPI Clock Phase and Polarity Controls 8-1

8.1.2 CPHA Equals Zero Transfer Format 8-2

8.1.3 CPHA Equals One Transfer Format.c .. 8-2

8.2 SPIBIOCK Diagram. e 8-3
8.3 SPIPIN SIgNals e e 8-4
8.4 SPI REQI SIS . . e e 8-6

8.4.1 Port D Data Direction Control Register (DDRD). i 8-6

8.4.2 SPI Control Register (SPCR) e e 8-7

8.4.3 SPI Status Register (SPSR) e 8-8

8.5 SPI SYS M EITOrSo 8-9
8.5.1 SPIMoOde-Fault ErTOr e 8-9
8.5.2 SPIWIrite-ColliSion Errors.o 8-10
8.6 Beginning and Ending SPI Transfers. i e 8-10
8.6.1 Transfer Beginning Period (Initiation Delay). 8-11
8.6.2 Transfer Ending Period. e 8-12
8.7 Transfers to Peripherals with Odd Word Lengths 8-14
8.7.1 Example 8-1: On-Chip SPI Driving an MC144110D/A it 8-16
8.7.2 Example 8-2: Software SPI Driving an MC144110D/A., 8-16
Section 9
ASYNCHRONOUS SERIAL COMMUNICATIONS INTERFACE
9.1 General DesCriplioN o e e 9-1
9.1.1 Transmitter Block Diagram.ttt e 9-1
9.1.2 Receiver Block Diagram o 9-3
9.2 SCIRegisters and Control BitS e e e 9-5

9.2.1 Port D Related Registers and Control Bits (PORTD, DDRD, SPCR). 9-6

9.2.2 Baud-Rate Control Register (BAUD) 9-7

9.2.3 SCI Control Register 1 (SCCRL)ttt e e e e 9-9

9.2.4 SCI Control Register 2 (SCCR2) e e e e e 9-10

M68HC11 TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL Vii

Paragraph Page

Number Number
9.2.5 SCI Status Register (SCSR). oottt 9-11
9.2.6 SCIData Register (SCDR)o it 9-14

9.3 SCITranSMItter e e e 9-14
9.3.1 Eight- and Nine-Bit Data Modes. e 9-15
9.3.2 Interrupts and Status Flags 9-16
9.3.3 Send BreakK. 9-16
9.3.4 Queued ldle Character. 9-17
9.3.5 Disabling the SCI Transmitter. e 9-18
9.3.6 TXD Pin Buffer LOgIC.ot e 9-18

9.4 SCI RECRIVEI . . .ot 9-20
9.4.1 Data Sampling Technique e 9-20
9.4.2 Worst-Case Baud-Rate Mismatch, 9-26
9.4.3 Double-Buffered Operation. 9-28
9.4.4 Receive Status Flags and Interrupts i 9-28
9.4.5 Receiver Wake-Up Operation. e 9-29

9.5 Baud-Rate GeNErator.ot 9-30
9.5.1 Timing Chain Block Diagram e 9-30
9.5.2 Baud Rates vs. Crystal FreqQUenCy e 9-30

9.6 SCITImINg Detailso 9-30
9.6.1 Operation As Transmitter IsEnabled 9-31
9.6.2 TDRE and Transfers from SCDR to Transmit Shift Register 9-33
9.6.3 TC vs. Character Completion e 9-34
9.6.4 RDRF Flag Setting vs. End of a Received Character. 9-35

Section 10
MAIN TIMER AND REAL-TIME INTERRUPT

10.1 General DesCriptioN . . . e 10-1
10.1.1 Overall Timer Block Diagram e 10-2
10.1.2 Input-Capture CoNCePt. . . v v ittt e 10-2
10.1.3 Output-Compare COoNCePLt . .. oot e 10-4

10.2 Free-Running Counter and Prescaler 10-5
10.2.1 Overall Clock Divider StruCturet e e s 10-5

10.2.1.0 PresCaler ... 10-7
10.2.1.2 OVEIlOW . . . oo 10-10
10.2.1.3 Counter Bypass (TestMode) i 10-11
10.2.2 Real-Time Interrupt (RTI) Function. i 10-11
10.2.3 COP Watchdog FUNCLION e e 10-13
10.2.4 TipsforClearing Timer Flagsot e e 10-14

10.3 Input-Capture FUNCLONS. e e e e e 10-15
10.3.1 Programmable Options. 10-17
10.3.2 Using Input Capture to Measure Period and Frequency 10-18
10.3.3 Using Input Capture to Measure Pulse Width 10-20
10.3.4 Measuring Very Short Time Periods. 10-24
10.3.5 Measuring Long Time Periods with Input Capture and Overflow............. 10-24
10.3.6 Establishing a Relationship between Software andanEvent 10-27
10.3.7 Other Uses for Input-Capture PinS e 10-28

10.4 Output-Compare FUNCLIONS i e e e e e e 10-28
10.4.1 Normal I/O Pin Control Using OC[5:2]t 10-32
10.4.2 Advanced I/O Pin Control Using OC1 10-35

10.4.2.1 One Output Compare ControllinguptoFivePins 10-35
10.4.2.2 Two Output Compares ControlingOnePin......................... 10-36
MOTOROLA TABLE OF CONTENTS M68HC11

Viii REFERENCE MANUAL

Paragraph Page

Number Number

10.4.3 Forced OUtput COMPAIES vttt e et e e e e e 10-38
10.5 Timing Details For The Main Timer System. 10-39
10.6 Listing of Timer EXamples 10-42

Section 11

PULSE ACCUMULATOR

11.1 General DesCriptioN e 11-1
11.1.1 Pulse Accumulator Block Diagramttt 11-2
11.1.2 Pulse Accumulator Control and Status Registers. 11-3
11.2 Event Counting Mode.ottt e 11-6
11.2.1 Interrupting after N EVENtSt 11-6
11.2.2 Counting More Than 256 EVENLS i e e 11-6
11.3 Gated Time Accumulation Mode 11-7
11.3.1 Measuring Times Longer Than the Range of the 8-Bit Counter. 11-8
11.3.2 Configuring for Interrupt after a Specified Time 11-9
11.4 Other Uses forthe PAI PiN. e 11-9
11.5 Timing Details for the Pulse Accumulator 11-9

Section 12

ANALOG-TO-DIGITAL CONVERTER SYSTEM

12.1 Charge-Redistribution A/D 12-1
12.2 A/D Converter Implementation on MC68HCL11A8 i, 12-12
12.2.1 MC68HC11A8 Successive-Approximation A/D Converter. 12-12
12.2.2 A/D Charge Pump and Resistor-Capacitor (RC) Oscillator 12-13
12.2.3 MC68HC11A8 A/D System Control LOgiC, 12-14
12.2.4 A/D Control/Status Register (ADCTL)ot 12-15
12.2.5 A/D Result Registers (ADR[4:1]) ... oo v it e e e 12-17
12.3 A/D Pin Connection Considerations.t 12-17

Appendix A

INSTRUCTION SET DETAILS
AL INrodUCtion . ..o A-1
A2 Nomenclature A-1
Appendix B
BOOTLOADER LISTINGS
INDEX
M68HC11 TABLE OF CONTENTS MOTOROLA

REFERENCE MANUAL

iX

MOTOROLA TABLE OF CONTENTS M68HC11
X REFERENCE MANUAL

Figure

1-1
1-2
1-3

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24

3-1
3-2
4-1

4-3
4-4

4-6
4-7

M68HC11

LIST OF FIGURES

Title

BIOCK DIQQIaIMuuiiiiiiiiiiiiiiiieieee e
M68HC11 Programmer’s Modeloovviviiiiiiiiiiieeeeieeeeeeeeiiiis
Part NUMDEING ...oooeeiiiiiiiieie e

MCB68HC11A8 Pin ASSIGNMENLScceveiiviiiiiiiiiiee e e e e e
MCG68HC11D3/711D3 Pin ASSIGNMENTS ...evvvviiiiiiieeeeeeeeeeeeeeeiiiiiiennn
MC68HC11E9/711E9 Pin Assignments (52-Pin PLCC)
MC68HC811E2 Pin Assignments (48-Pin DIP)ccceevvvvvvvnnnnn
MC68HC11F1 Pin Assignments (68-Pin PLCC)cccevvvvvvnnnns
MCB8HC24 Pin ASSIGNMENTScooviiieiiiiiieiiiiiiie e
Reduced IDD MODA/LIR CONNECHIONScccveevereeeeeiieceeeienenenes
RAM Standby MODB/Vgrgy CONNECLIONScocevveiiiiiiiiciiie,
High-Frequency Crystal Connectionsccccccvvvviiiiiiiieeieeeeeeeenn.
Low-Frequency Crystal CoNNectionScccceeeeeeieeeeeeeieeeeeeiiininnnns
Crystal Layout EXample ...
Reset Circuit EXamPIe ...
Low-Pass Filter for A/D Reference PiNSccccovvvviiiiiiiiiiiiiinnnnnn.
CMOS INVEITEE .t e e e e eeees
Internal Circuitry — Digital Input-Only Pincccccuviiiiiiiiiiinnnnnnn.
Internal Circuitry — Analog Input-Only Pincccooovviiiiiiiinnnnn,
Internal Circuitry — Digital 1/O Pinoooviiiiiiiiiiiieeeeiiiee
Internal Circuitry — Input/Open-Drain-Output Pincccccceveeenn.
Internal Circuitry — Output-Only Pinccccoeiiiiiiiiiiiiiiieeiiie
Internal Circuitry — MODB/Vg1gy PiN oo,
Internal Circuitry — IRQ/VppguLk PIN wevvviiiiiii
Basic Single-Chip-Mode CONNECLIONSccceeeeeiieeeeeeiiieeeeeiiiiinnns
Basic Expanded Mode Connections (Sheet 1 of 2)coevvveeeees
Basic Expanded Mode Connections (Sheet 2 0f 2)ccevvvveeeen.

Schematic for Figure 3-3 (Sheet 1 0f 2) ..o,
Schematic for Figure 3-3 (Sheet 2 0f 2)coooeviiiiiiiiiii
Program to Check/Change CONFIGcccccceeiiiiiiiiiiiiiiieeeiiiie

Topological Arrangement of EEPROM Bytes (MC68HC11A8)

Topological Arrangement of Bits in an EEPROM Byte
Condensed Schematic of EEPROM Arrayccccvvvvivvieiiiinnnnennn.
EEPROM Cell Terminologyccoooeiiiiiiiiiiiiiiiiiiiiieeeeeeeee e
Erasing an EEPROM BYLEccoooiiiiiiiiiiiciiie e
Programming an EEPROM Bytecoooviiiiiiiiiiiiieeeeeeiiiiiee
Reading an EEPROM BYEcoooiiiiiiiiiiiiiiiieeeeee e
Erase-Before-Write Programming Methodccooevviiiiinnnnn,

LIST OF FIGURES

REFERENCE MANUAL

MOTOROLA
Xi

Figure Title Page

4-9 Program-More-Zeros Programming Method ..., 4-24
4-10 Selective-Write Programming Methodooooviiiiiiiiiiee e, 4-25
4-11 Composite Programming Method ... 4-26
5-1 Typical External ReSet CIrCUItccooiiiiiieeiiiiiiiieeeeecr s e e e e e 5-11
5-2 Processing Flow out of Resets (Sheet 1 0f 2)cccooviiiiiiiiiiiiiiiin, 5-16
5-3 Processing Flow out of Resets (Sheet 2 0f 2)ouvvivviviiiie 5-17
5-4 Interrupt Priority Resolution (Sheet 1 0f 2)viiiiiiiiiii, 5-18
5-5 Interrupt Priority Resolution (Sheet 2 0f 2)uviiiiiiiiiien 5-19
5-6 Interrupt Source Resolution Within SCI ... 5-20
6-1 MG68HC11 Programmer’s MOdelcooviiiiiiiiiiiiiiiiee e 6-2
7-1 Parallel I/0 Registers and Control BitScceeiiiiiiiiieeiiieecceeeee e 7-3
7-2 Pin Logic Registers and Control BitSuuuueiiiiiiiiiieeeeieeccceeeeviiii e 7-4
7-3 Special Symbols used in Pin Logic Diagramsccccccvvviiiiiiiiiiiiiiieeeeeeeeenn 7-6
7-4 PA[2:0] (IC[3:1]) PiN LOQIC ..uuiiiiieeee e 7-7
7-5 PA[6:3] (OC[5:2]) PiN LOGIC ...oiieeeeeeeeeieeeeeeee et 7-9
7-6 PA7 (OC1, PAI) PiIN LOGIC .eeieeeeeeeie ettt 7-10
7-7 Idealized POrt A TIMING ..uuoiiiiiiie e 7-11
7-8 o] (o = B 0 T I T [o OU P T 7-12
7-9 [dealized POrt B TIMING ..coooiiiiiiiiiiiiiiiiiii ettt 7-13
7-10 R/W (STRB) PiN LOGQIC ..ooiiiiiiiiiiiiiiiiiie ittt ettt e e eeeaaeaeeas 7-15
7-11 Port C Expanded Mode Pin LOGICoooviiiiiiiiiiiiiiiiieee e 7-17
7-12 Summary of Idealized Port C Expanded-Mode Timingccccccuvvvvvvinnnnen. 7-19
7-13 Port C Single-Chip Mode Pin LOQICuuuuiiiiiiiiiieeeeeceeeeeeeeeeeee e 7-20
7-14 Idealized Port C Single-Chip Mode TimiNgcccooviiiiiiiieiiieieeeeeeiiiiiie 7-22
7-15 AS (STRA) PiN LOGIC ..coiiiiicciiette ettt e e e e e e 7-24
7-16 PDO (RXD) PiN LOGIC ..iiiiiiiiiiiiiiiiiiiiie ittt ettt eneeeaa e e 7-26
7-17 PDI1 (TXD) PiN LOGIC .eeeiiiiieiiiiiiiiiiiiieiee ettt et e e e e e e e e e e e e s s s s sssssssssnaeeeeeeeeeaaeeeeas 7-28
7-18 PD2 (MISQO) PiN LOGIC ...ooioiiiiiiiiiiiiiii ettt 7-30
7-19 PD3 (MOSI) PiN LOGIC ..ooeiiiiiiiiiiiiiiiiiicieee et s s eee e e e 7-32
7-20 PD4 (SCK) PiN LOGIC evtveuuiiiieeeee e e e e e as 7-34
7-21 PD5 (SS) PINLOGIC ..coeiiiiieiiiiiite ettt e e e e e e e e e s 7-36
7-22 I1dealized POrt D TiMING ..ccoooeieeeeeieeeeeeeeeee e 7-38
7-23 o] o = 0 T I T [o U 7-40
7-24 1dealized POrt E TIMING ...cccooiiiiiiiiiiiieiiieee e 7-41
7-25 Idealized Timing for Simple Strobe Operationsccouvviiiiiiieeieeeeeeee, 7-42
7-26 Idealized Timing for Full-Input Handshakecccoooioiiii, 7-44
7-27 ldealized Timing for Full-Output Handshakeccccccoiiiiiiiiiiiiiiiiiiiieee, 7-45
MOTOROLA LIST OF FIGURES M68HC11
Xii REFERENCE MANUAL

Figure

8-2
8-3

8-5
8-6

8-8
8-9
8-10
8-11
8-12

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11

M68HC11

Title Page

CPHA Equals Zero SPI Transfer FOrmatccccooeviiiiiiiiiiiiiiiiiiiiieeeceeeeeeee e 8-2
CPHA Equals One SPI Transfer Formatccccoovvvviiiiiiiiiiiiice e 8-3
SPI System BIOCK DIagramcoeuuuuuuuiiiiiiieee ettt e e e 8-4
Delay from Write SPDR to Transfer Start (Master)ccccccceeeiiiiniiiiiiiiinnns 8-12
Transfer Ending for an SPIMaSEercooooiiiiiiiiiiiiiieiee e 8-13
Transfer Ending for an SPI SIaVve ... 8-14
Hardware Hookup for Examples 8—1 and 8—2cccccccvviiiiiiiiiiniiiiiiiinns 8-15
Register Definitions and RAM Variables for Examples 8-1 and 8-2 8-16
Example 8—1 Software Listing (Sheet 1 0f 2)cccoovviiiiiiiiiiiiin, 8-17
Timing Analysis for Example 8—1 ... 8-19
Example 8—2 Software LiStINGccooiiiiiiiiiiiiicieee e 8-20
Timing Analysis for Example 8—2 (Sheet 1 0f 2)cviiiiiiiiiiiiiie 8-21
SCI Transmitter BIOCK DIiagramccoeeiiiiiiieeeiieeeeeeeeese s e e e e e 9-2
SCIl Receiver BIOCK DIagramuuuuueiiiiiiieeeeee ettt a e 9-4
TXD Pin LOgIC BIOCK DIiagramuueuiiiimiiiiiiiiiiieeee e 9-19
Start Bit — 1d@al CASE ..ottt 9-22
Start Bit — NOISE CaSE ONE ...coeveiiiiiiiiiiiee e e e 9-22
Start Bit — NOISE CaSE TWO ...eevveeiiiiiiiiiiiiiee e eee e et e e e e e e e e e e e e eeees 9-23
Start Bit — NOISE CaS€ THIEEuuviiiiiiiiiiiiiiiee e 9-24
Start Bit — NOISE CaSE FOUNeviiiiiiiiiiiiii e e e 9-24
Start Bit — NOISE CaASE FIVEcovvviiiiiiiiiii e e e e e e e e e e 9-25
Start Bit — NOISE CASE SIX ..uuuuuiiiiiiiiiiiiiiiiiiieee e rea s 9-25
Baud-Rate Frequency Toleranceoooouuuiiiiiiiiiniieeeeeeeeeeeeee 9-27
Baud-Rate Generator BIOCK Diagramccccuvviiiiiiiiiiiiiiiieeeeeeeeee e 9-31
Transmitter Enable Timing DetailScccooviiiiiiiiiiciieie e, 9-33
Write SCDR to Serial Data Startoooooviiiiiiiiiiiieeeeeeeceeeeeee 9-34
Ending Details of TranSmiSSIONccooiiiiiiiiiiiiiiiiiii e 9-35
RDRF Flag-Setting DetailSccooiiiiiiiiiie e 9-36
Main Timer System BIOCK Diagramccccouviiiiiiiiiiiiiieieeeeeee e 10-3
Timing Summary for Oscillator Divider Signalsccceeeevieiiiiieiiiiiiiiiiiiiinn, 10-6
Major Clock Divider Chains in the MC68HCL11A8ccooiiiiiiiiiiiiiiiinnnn 10-9
Measuring a Period with Input Captureccccuvveeieiiiiiiiiieeeeeeeeeee e 10-19
Timing Analysis for Example 10—1 ... 10-19
Measuring a Pulse Width with Input Capturecccceeiiiiiiiiiiiiiieen. 10-22
Timing Analysis for Example 10—2 ... 10-23
Measuring Long Periods with Input Capture and TOF (Sheet 1 of 2) 10-26
Simple Output-Compare EXampleccooooiiiiiiiiiiii e 10-31
Generating a Square Wave with Output Comparecccccvvveeeeeeeeiieeennenn. 10-33
Timing Analysis for Example 10=5 ... 10-34

LIST OF FIGURES MOTOROLA

REFERENCE MANUAL Xiii

Figure Title Page

10-12 Producing Two PWM Outputs with OC1, OC2, and OC3cccccvvvveeennn. 10-37
10-13 Timer Counter as MCU Leaves RESEetcoooviiiiiiiiiiiiiiiiiiiiiiiieeeecee e 10-40
10-14 Timer Counter Read — Cycle-by-Cycle Analysisccccvviiiiiiiiiiiiiinnenn. 10-40
10-15 Input-Capture Timing DEetailScouviiiiiiiiiiiiiiie e 10-41
10-16 Output-Compare Timing Detailsooovvvviiiiiiiiiiiiiee e 10-42
11-1 Pulse Accumulator Operating MOdESccooviiiiiiiiiiiiiiiiee e 11-1
11-2 Block Diagram of Pulse Accumulator Subsystemcccovvriiiicceeennn. 11-3
11-3 Pulse Accumulator Control and Status Register Summarycccccceeeeennn. 11-4
11-4 PAI Pin Edge-Detection TiMINGccouiiiiiiiieieiiiiiiiieiiiiiiiiii e 11-10
11-5 Pin Enable vs. Counting (Gated Accumulation Mode)ccccccceeeeeennnnn. 11-10
11-6 Timing Details for Pulse Accumulator Counter Overflowccccceeeeeennn. 11-11
11-7 PACNT Read and WIEccoiiiieiie e e e e e e 11-12
12-1 Basic Charge-Redistribution A/Dcoooiiiiiiiiiiiiiiiie e 12-2
12-2 Charge-Redistribution A/D with + 1/2 LSB Quantization Error 12-9
12-3 MCG68HC11A8 A/D in Sample MOAEcceeeviiiiiiiiiiiiiieeeeee e 12-12
12-4 Timing Diagram for a Sequence of Four A/D Conversionscccccceeeen... 12-15
12-5 Electrical Model of an A/D Input Pin (Sample Mode)ccccvviveviiiiiinnnnnn. 12-17
12-6 Graphic Estimation of Analog Sample Level (Case 2)ccccccevvvvvvvvieeeennn. 12-21
MOTOROLA LIST OF FIGURES M68HC11

Xiv

REFERENCE MANUAL

LIST OF TABLES

Table Title Page

1-1 MBBHC11 Family MEMDEISuiiiiiiiiiiiiiiieee et 1-6
2-1 Hardware Mode Select SUMMAIYuuuuuuiiiiiiiieee e 2-9
2-2 Ports Band C, STRA, and STRB PiNScuiiiiiiiiiie et e e 2-21
3-1 Hardware Mode SeleCt SUMMAIYuuuuuiiiiiiiieee e 3-2
3-2 Watchdog Rates vs. Crystal FIEQUENCYuuuiiiiiiiiiiiiiiiiiiiieeeeesveeeeee 3-10
3-3 Bootstrap Mode PSEUdO-VECLOIS...........uuuuuiiiiiiiiieeeeeeeeeeeeeee e e e e e e e 3-18
5-1 Hardware Mode Select SUMMATIYccccoiiiiiiiiiiiiiiiieeeeeee e 5-5
5-2 Reset Vector vs. Cause and MCU MOUE...........uuuuiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeieieeee 5-6
5-3 Watchdog Rates vS. Crystal FIEQUENCYuiiiiiiiiieeiiiiiiieeeeeeiii e 5-8
5-4 Highest Priority 1 Interrupt vS. PSEL[3:0]uuuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeiiee 5-14
9-1 Baud-Rate Prescale SeIECES.........coooiiiiiiiiiiiii e 9-8
9-2 BaUU-RALE SEIECES.....uuuiiiiii i e e e e e e e e e e e e e eeeees 9-9
9-3 Baud Rates by Crystal Frequency, SCP[1:0] and SCR[2:0]eeeeeeevvvvevvvinnnns 9-32
10-1 Crystal Frequency vs. PR1, PRO ValUES ...t 10-10
10-2 RTI Rates vs. RTR1, RTRO for Various Crystal Frequencies...............ccc........ 10-13
10-3 COP Time-Out vs. CR1, CRO ValUESccovviiiiiiiiiiiiieee e 10-14
10-4 Instruction Sequences TO Clear TOF ... 10-15
11-1 Pulse Accumulator Timing Periods vs. Crystal Rate ..., 11-2
M68HC11 LIST OF TABLES MOTOROLA

REFERENCE MANUAL XV

SECTION 1
GENERAL DESCRIPTION

This reference manual will be a valuable aid in the development of M6BHC11 applica-
tions. Detailed descriptions of all internal subsystems and functions have been devel-
oped and carefully checked against internal Motorola design documentation, making
this manual the most comprehensive reference available for the M68HC11 Family of
microcontroller units (MCUS).

Practical applications are included to demonstrate the operation of each subsystem.
These applications are treated as complete systems, including hardware/software in-
teractions and trade-offs. Interfacing techniques to prevent component damage are
discussed to aid the hardware designer. For software programmers, SECTION 6
CENTRAL PROCESSING UNIT and APPENDIX A INSTRUCTION SET DETAILS
contain examples demonstrating efficient use of the instruction set.

This manual is intended to complement Motorola’s official data sheet, not replace it.
The information in the data sheet is current and is guaranteed by production testing.
Although the information in this manual was checked against parts and design docu-
mentation, the accuracy is not guaranteed like the data sheet is guaranteed. This man-
ual assumes the reader has some basic knowledge of MCUs and assembly-language
programming; it may not be appropriate as an instruction manual for a first-time MCU
user.

The information in this manual is much more detailed than would usually be required
for normal use of the MCU, but a user who is familiar with the detailed operation of the
part is more likely to find a solution to an unexpected system problem. In many cases,
a trick based on software or on-chip resources can be used rather than building ex-
pensive external circuitry. Data sheets are geared toward customary, straightforward
use of the on-chip peripherals; whereas, an experienced MCU user often uses these
on-chip systems in very unexpected ways. The level of detail in this manual will help
the normal user to better understand the on-chip systems and will allow the more ad-
vanced user to make maximum use of the subtleties of these systems.

In addition to this manual, the data sheet(s) or technical summary is needed for the
specific version(s) of the M68HC11 being used. A pocket reference guide is another
beneficial source.

1.1 General Description of the MC68HC11A8

The HCMOS MC68HC11A8 is an advanced 8-bit MCU with highly sophisticated, on-
chip peripheral capabilities. New design techniques were used to achieve a nominal
bus speed of 2 MHz. In addition, the fully static design allows operation at frequencies
down to dc, further reducing power consumption.

The HCMOS technology used on the MC68HC11A8 combines smaller size and higher

M68HC11 GENERAL DESCRIPTION MOTOROLA
REFERENCE MANUAL 1-1

speeds with the low power and high noise immunity of CMOS. On-chip memory sys-
tems include 8 Kbytes of read-only memory (ROM), 512 bytes of electrically erasable
programmable ROM (EEPROM), and 256 bytes of random-access memory (RAM).

Major peripheral functions are provided on-chip. An eight-channel analog-to-digital (A/
D) converter is included with eight bits of resolution. An asynchronous serial commu-
nications interface (SCI) and a separate synchronous serial peripheral interface (SPI)
are included. The main 16-bit, free-running timer system has three input-capture lines,
five output-compare lines, and a real-time interrupt function. An 8-bit pulse accumula-
tor subsystem can count external events or measure external periods.

Self-monitoring circuitry is included on-chip to protect against system errors. A com-
puter operating properly (COP) watchdog system protects against software failures. A
clock monitor system generates a system reset in case the clock is lost or runs too
slow. An illegal opcode detection circuit provides a non-maskable interrupt if an illegal
opcode is detected.

Two software-controlled power-saving modes, WAIT and STOP, are available to con-
serve additional power. These modes make the M68HC11 Family especially attractive
for automotive and battery-driven applications.

Figure 1-1 is a block diagram of the MC68HC11A8 MCU. This diagram shows the ma-
jor subsystems and how they relate to the pins of the MCU. In the lower right-hand cor-
ner of this diagram, the parallel I/O subsystem is shown inside a dashed box. The
functions of this subsystem are lost when the MCU is operated in expanded modes,
but the MC68HC24 port replacement unit can be used to regain the functions that were
lost. The functions are restored in such a way that the software programmer is unable
to tell any difference between a single-chip system or an expanded system containing
the MC68HC24. By using an expanded system containing an MC68HC24 and an ex-
ternal EPROM, the user can develop software intended for a single-chip application.

1.2 Programmer’s Model

In addition to executing all M6800 and M6801 instructions, the M68HC11 instruction
set includes 91 new opcodes. The nomenclature M68xx is used in conjunction with a
specific CPU architecture and instruction set as opposed to the MC68HC11xx nomen-
clature, which is a reference to a specific member of the M68HC11 Family of MCUs.
Figure 1-2 shows the seven CPU registers available to the programmer. The two 8-
bit accumulators (A and B) can be used by some instructions as a single 16-bit accu-
mulator called the D register, which allows a set of 16-bit operations even though the
CPU is technically an 8-bit processor.

The largest group of instructions added involve the Y index register. Twelve bit manip-
ulation instructions that can operate on any memory or register location were added.
The exchange D with X and exchange D with Y instructions can be used to quickly get
index values into the double accumulator (D) where 16-bit arithmetic can be used. Two
16-bit by 16-bit divide instructions are also included.

MOTOROLA GENERAL DESCRIPTION M68HC11
1-2 REFERENCE MANUAL

MODA/ MODB/ o
LR VsTay XTAL EXTAL E IRQ/ XIRQ RESET
¢ T l T i i ¢ 8 KBYTES ROM { Vo,
MODE OSCILLATOR Vss
CONTROL CLOCK LOGIC INTERRUPT LOGIC L
=
g 512 BYTES EEPROM
o @
Q & CPU
© e VRH
5 256 BYTES RAM Ve,
[o |) Y r
e = BUS EXPANSION
2
; K ADDRESS ADDRESS/DATA %2
s TIMER
S| svetem |, J T T AARRRARE TR [s Il woconverren
Q : YYYVYVYYYY YYYVYVYVYVYY VYV
W , ,
2 X STROBE AND HANDSHAKE ' R
3 . PARALLEL 1/0 g 5802 QL
o ' ' non == =
A AAA AAAAAAAA A, AAAA A AAAAAAAA
X YYYVYYYVYY VYV Yvy Y
YYVYVYY * YYYVYVYVYYY CONTROL X CONTROL
| PORT A |l PORT B | PORT C : PORT D | PORT E |
¢$¢¢¢TTT : AAAAAAAL | titi ¢¢ TIIITTTI
A A A g m : ~NOWWY®MANAO NOOSTMNAO m<(: N X s [ala] ~ oo
§88800CC [EEEE8558 LSLI000E 8 14388 2§ 2522 2Z%g
I0838gsg SINGLE CHIP MODE POl 258 s Dmmo oo
L38O0 e e J = la) aa fcooaoaooaa
8539 5990522 LBB88888 B2 aa
Lraaa CILCL< NenI®nddoe X
< <<I<CIIX
EXPANDED MODE
CIRCUITRY ENCLOSED BY DOTTED LINE IS EQUIVALENT TO MC68HC24.
Figure 1-1 Block Diagram
M68HC11 GENERAL DESCRIPTION MOTOROLA

REFERENCE MANUAL

1-3

| PC

7

|
0

[s X H 1

N z v c |

8-BIT ACCUMULATORS A& B
OR 16-BIT DOUBLE ACCUMULATOR L

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

CONDITION CODES

L CARRY/BORROW FROM MSB

OVERFLOW

ZERO

NEGATIVE

I-INTERRUPT MASK

HALF CARRY (FROM BIT 3)
X-INTERRUPT MASK

STOP DISABLE

Figure 1-2 M68HC11 Programmer’s Model

1.3 Product Derivatives

The M68HC11 Family of MCUs is composed of several members (see Table 1-1), and
new members are being developed. Figure 1-3 explains how the product part num-

bers are constructed.

MOTOROLA
1-4

GENERAL DESCRIPTION

M68HC11
REFERENCE MANUAL

‘z
0
2
T
e}
o

QUALIFICATION LEVEL
MC — FULLY SPECIFIED AND QUALIFIED
XC — PILOT PRODUCTION DEVICE
PC — ENGINEERING SAMPLE

NUMERIC DESIGNATOR (OPTIONAL)

OPERATING VOLTAGE RANGE
HC — HCMOS (Vpp = 5.0 VDC +10%)
L — HCMOS (Vpp =3.0 VDC TO 5.5 VDC)

COP OPTION (ONLY ON A-SERIES DEVICES)
NONE — COP DISABLED
P — COP ENABLED

MEMORY TYPE

BLANK — MASKED ROM OR NO ROM
7 — EPROM/OTPROM
8 — EEPROM

BASE PART NUMBER

11A8, 11D3, 11E9, 11K4, ETC.

11XX

MONITOR MASK

NONE — BLANK
B — BUFFALO

TEMPERATURE RANGE

(@]
2
lw
0
N}

NONE — 0°C TO 70°C

C— —-40°C TO 85°C

V— —40°C TO 105°C

M — —40°C TO 125°C
PACKAGE TYPE

FN — 44/52/68/84-PIN PLCC
FS — 44/52/68/84-PIN CLCC
FU — 64/80-PIN QFP
FB — 44-PIN QFP
PV — 112-PIN TQFP
PU — 80/100-PIN TQFP
PB — 52-PIN TQFP
P — 40/48-PIN DIP
S — 48-PIN SDIP

MAXIMUM SPECIFIED CLOCK SPEED

2— 2.0MHz
3— 3.0MHz
4— 4.0 MHz

TAPE AND REEL OPTION
NONE — STANDARD PACKAGING
R2 — TAPE AND REEL PACKAGING

Figure 1-3 Part Numbering

M68HC11
REFERENCE MANUAL

GENERAL DESCRIPTION

HC11 PART NUMBERING

MOTOROLA
1-5

Table 1-1 M68HC11 Family Members

Part Number |EPROM | ROM PEI(E)_M RAM | CONFIG? Comments

MC68HC11A8 — — 512 256 $OF Family Built Around This Device
MC68HC11A1 — — 512 256 $0D 'A8 with ROM Disabled

MC68HC11A0 — — — 256 $0C '’A8 with ROM and EEPROM Disabled
MC68';C811A — — | 8K+512| 256 $OF EEPROM Emulator for 'A8

MC68HC11E9 — 12K 512 512 $OF Four Input Capture/Bigger RAM 12K ROM
MC68HC11E1l — — 512 512 $0D 'E9 with ROM Disabled

MC68HC11EO — — — 512 $0C 'E9 with ROM and EEPROM Disabled
MC68|;C811E — — ok? 256 $FF3 No ROM Part for Expanded Systems
MC683C711E 12K — 512 512 $OF One-Time Programmable Version of 'E9
MC68HC11D3 — 4K — 192 N/A Low-Cost 40-Pin Version

MC68|_$C711D 4K — — 192 N/A One-Time Programmable Version of 'D3
MC68HC11F1 — — 5121 1K $EF3 High-Performance Non-Multiplexed 6B-Pin
MC68HC11K4 — 24K 640 768 $FF |>1Mbyte memory space, PWM, Cg, 84-Pin
MCGB'ZC?MK 24K — 640 768 $FF One-Time Programmable Version of 'K4
MCB8HC11LE - 16K 512 512 $OF Ie_;iglg(e 'E9 with more ROM and more |/O, 64/
MC68HC711L6 16K — 512 512 $OF One-Time Programmable Version of 'L4

1.The EEPROM is relocatable to the top of any 4 Kbyte memory page. Relocation is done with the upper four bits
of the CONFIG register.

2. CONFIG register values in this table reflect the value programmed prior to shipment from Motorola.

3. At the time of this printing a change was being considered that would make this value $0F.

MOTOROLA GENERAL DESCRIPTION M68HC11
1-6 REFERENCE MANUAL

SECTION 2
PINS AND CONNECTIONS

This section discusses the functions of each pin on the MC68HC11A8. Most pins on
this microcontroller unit (MCU) serve two or more functions. Information about the
practical use of each pin is presented in these pin descriptions. This section also in-
cludes information concerning pins that are exposed to illegal levels or conditions. The
most common source of illegal levels or conditions is transient noise; however, a de-
signer may wish to take precautions against potential misapplication of a product or
failures of other system components such as power supplies. Consideration of these
factors can influence end-product reliability.

The basic connections for single-chip-mode and expanded-mode applications are pre-
sented in 2.5 Typical Single-Chip-Mode System Connections and 2.6 Typical Ex-
panded-Mode-System Connections . These basic systems can be used as the
starting point for any user application and can minimize the time required to achieve a
working prototype system. The explanation of these basic systems includes informa-
tion concerning additions, such as additional memory on the expanded system.

System noise generation and susceptibility primarily depend on each system and its
environment. The MC68HC11A8 is designed for higher bus speeds than earlier
MCUSs; since it is high-density complementary metal-oxide semiconductor (HCMOS),
signals drive from rail to rail, unlike earlier N-channel metal-oxide semiconductor
(NMOS) processors. Since these factors can significantly affect noise issues, the sys-
tem designer should consider these changes.

2.1 Packages And Pin Names

The following figures show pin assignments for several members of the M68HC11
MCU Family. The pin assignments for the MC68HC24 port replacement unit (PRU)
are also presented for reference although the PRU is not discussed in detail in this
manual.

Detailed mechanical data for packages may be found in the data sheets or technical
summaries. Ordering information, which relates part number suffixes to package types
and operating temperature range, are also found in the data sheets or technical sum-
maries.

2.1.1 MC68HC11A8

The MC68HC11A8 is available in either a 52-pin plastic leaded chip carrier (PLCC)
package or a 48-pin dual-in-line package (DIP). The silicon die is identical for both
packages, but four of the analog-to-digital (A/D) converter inputs are not bonded out
to pins in the 48-pin DIP. The MC68HC11A1 and MC68HC11A0 devices also use the
same die as the MC68HC11A8, except that the contents of the nonvolatile CONFIG
register determine whether or not internal read-only memory (ROM) and/or electrically

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-1

erasable programmable ROM (EEPROM) are disabled. These downgraded device

versions have identical pin assignments as the MC68HC11A8.

Figure 2-1 shows the pin assignments for the MC68HC11A8 in the 52-pin PLCC pack-
age and the 48-pin DIP package.

.
m
B, E 5 oo PA7/PAI/OCI 1 N 480 vpp
o d 2 __
25 28 £%%% PA6/OC2/0C1[] 5 47[] PD5/SS
F @ 00 9 I E m ﬁ m
SHhuhssyeroo gyl PAs/oc3/ocil 3 46[] PD4/SCK
o N T e Y e N e Y s Y e Y Y e Y e N s N e N o |
N o Wb Y oNONd 29 2N PA4/0C4/0C1 [] 4 45[] PD3/MOSI
XTALQ 8 - 46] PESIANS pag/ocsioct [5 44[] PD2/MISO
PCO/A0/DO] 9 45[] PE1/AN1 pa2icif] g 43[] PDL/TXD
PC1/A1/D1(] 10 4411 PE4/AN4
. : pAliC20 7 42[] PDO/RXD
Pc2/A2/D2] 11 43[] PEO/ANO o
PAO/IC3[] g 41]] IRQ
PC3/A3/D30 12 42[] PBO/A8] |
PC4/A4/DA[] 13 41[] PB1/A9 PB7/ALS g 40[] XIRQ
pC5/AS/DSI 14 MC68HC11A8 40[] PB2/ALO PB6/A14[] 10 39[] RESET
15 39[] PB3/A11 PB5/A13[] 11 38[] PC7/A7/D7
PC6/A6/DSL] J MC68HC11A8
PC7/A7/D70 16 38[] PB4/A12 PB4/A12[] 12 37 [] PC6/A6/D6
RESET[] 17 37[] PB5/A13 pe3/aL1l] 13 36] PC5/A5/D5
XIRQ [18 36[] PB6/A14 pB2/AL0l] 14 35[] PC4/A4/D4
=L
iRQ [19 35 PB7IALS pe1/A9] 15 34[] PC3/A3D3
20 34[] pao/l
PDO/RXDL o N M T O~ OO dN® H PAO/C3 PBO/A8[] 16 33[] PC2/A2/D2
N N N N N N N NN Mm M M M Y,
5522?2800 C02330 PEO/ANOL] 17 32[] PCU/AL/D1
(2e) Q0 = =
555258>28¢898¢8s83 PEVANL] 18 31[] PCO/AO/DO
0 &3 & o000 0gxg
e 00g £ 5000 pe2/an2l] 19 30 XTAL
o a e B3I ®
o ¥ 38X PE3/AN3[] 20 29[] EXTAL
v [21 28 [] STRB/RW
Vry [22 27]] E
Vss [23 26] STRA/AS
MODBNg gy [24 25[] MODALIR
Figure 2-1 MC68HC11A8 Pin Assignments

2.1.2 MC68HC11D3/711D3

The MC68HC11D3 is available in either a 44-pin PLCC package or a 40-pin DIP pack-
age. The silicon die is identical for both packages, but the PLCC version has two ad-
ditional output compare pins bonded out and an extra Vgg pin named Eygg. The
MC68HC711D3 is functionally equivalent to the MC68HC11D3 but has 4 Kbytes of
EPROM instead of mask programmed ROM. The MC68HC711D3 is available as a
one-time-programmable (OTP) MCU in an opaque plastic package or in a ceramic
windowed package for development applications.

Figure 2-2 shows the pin assignments for the MC68HC11D3/711D3 in the 44-pin
PLCC package and the 40-pin DIP package.

MOTOROLA
2-2

PINS AND CONNECTIONS

M68HC11

REFERENCE MANUAL

m N o9 o % vss [1 40|] xTAL
¥ X x & x5
2 g a8 3 S > PCO/ADDRO [] 5 39 |] EXTAL
. =
SS<f ,.2 Z% d .
® 8538 g9k 8 8 pcu/ADDR1 [3 38
o o a a > U X W w = = o
i e T e e e e e e e e B pc2/ADDR2 [4 37|] MODATIR
°c v T e O3 29§ 38)
pc3/ADDR3 [5 36 |J MODBNVgrgy
PC4/ADDR4 [| 7 - 39 [] PBO/ADDRS
PC4/ADDR4 PBO/ADDRS
PCS/ADDR5 [| 8 38 [] PB1/ADDRY Qs 3]
PC5/ADDRS [34|] PB1/ADDR9
PC6/ADDR6 [] 9 37 [] PB2/ADDR10 7
pce/apDRrs [| g MCBBHC(7)11D3 ;17 pgajappRi0
PC7/ADDR7 [] 10 36 [] PB3/ADDR11
pc7/apDR7 [4 32 [] PB3/ADDR11
XIRQVpp [11 35 [] PB4/ADDR12
XIRQIV, PB4/ADDR12
PD7RW [] 12 MCE8HC(7)11D3 34 [] PBS/ADDR13 vee [10 af]
PD7/RAW [] 30|] PBS/ADDR13
poe/AS [13 33 [] PB6/ADDR14 u
N PDE/AS 29 |] PB6/ADDR14
RESET [| 14 32 [] PB7/ADDR15 012]
RESET PB7/ADDR15
wo 15 a1] Ne reseT [13 28(]
RO 27(] Paonca
PDORXD [| 16 30 [] PAOIC3 SJIEE]
PDO/RXD [] 26| PALIC2
pouTxD [17 29 [] paL/IC2 e
L 222 F8 @I L E&EKRE PD1/TXD [16 25|] PA2/C1
sl po2miso [17 24 |] PA3fica/oCs/OCL
28 518 83 33 3 3 B
s 9 28 >0 99 99§ poamosi [15 23[] PAsiocs/oct
g g a a T 0 9 9 0 g
a o o = 2 2 228 poassck [19 22|] PA7IPAOCL
g 22 33 _
o o o 3 PD5/5S (] 20 21{] Voo
o

Figure 2-2 MC68HC11D3/711D3 Pin Assignments

2.1.3 MC68HC11E9/711E9

The MC68HC11E9 is available in a 52-pin PLCC package only. The MC68HC11E1
and MC68HC11EOQ devices also use the same die as the MC68HC11E9, except that
the contents of the nonvolatiie CONFIG register determine whether or not internal
ROM and/or EEPROM are disabled. These downgraded device versions have identi-
cal pin assignments as the MC68HC11E9.

The MC68HC11E9 is an upgrade of the MC68HC11A8. The MC68HC11E9 has 12
Kbytes of mask ROM, 512 bytes of EEPROM, and 512 bytes of RAM. The timer sys-
tem allows one output-compare channel to be reconfigured as a fourth input-capture
channel.

The MC68HC711E9 is functionally equivalent to the MC68HC11E9 but has 12 Kbytes
of EPROM instead of mask programmed ROM. The MC68HC711ED9 is available as a
one-time programmable (OTP) MCU in an opaque plastic package or in a ceramic win-
dowed package for development applications.

Figure 2-3 shows the pin assignments for the MC68HC11E9 in the 52-pin PLCC pack-
ages. These pin assignments are the same as the MC68HC11A8, except for the pin
name for the PA3/OC5/IC4/0OC1 pin.

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-3

.
= c 5
=)

- EEE

< a < £ Q L < < <

EE EocogZzeFimiaod

w unowon=2=2>>> 000 0

I T e Y e N e Y s Y e Y Y e Y e Y s Y s Y o | N

~NowSs o N OB 32285
XTALO 8 - 46[] PE5/ANS
PCo/A0/Dol] 9 45[] PE1/AN1
PC1/A1/D1[] 10 44[] PE4/AN4
pc2/a2/D2] 11 43[] PEO/ANO
PC3/A3/D3l 12 42[] PBO/A8
PC4/A4/iD4[] 13 41[] PB1/A9
PC5/A5/D5l 14 MC68HC11E9 40[] PB2/A10
PC6/A6/D6[] 15 39[] PB3/AL1
PC7/A7/D7(] 16 38[] PB4/A12
RESET([] 17 37[] PB5/A13
XIRQ [18 36[] PB6/AL4
®ro [1° 35[] PB7/A15
PDO/RxD(] 20 34[] pAo/IC3

— N ™M < W O N~ 0 O o N ™M

N N N N N N N N N O 0 ™M M Y

AR s s

X 0 8 OB 800 00 QDT O

£ = O B> Q29 Q0 05 g

53338 5933823°%

codf®* &£5500%¢"

L2232
Ly a2 a

Figure 2-3 MC68HC11E9/711E9 Pin Assignments (52-Pin PLCC)

2.1.4 MC68HCB811E2

The MC68HCB811E2 is very similar to the MC68HC11E9 version, except in the on-chip
memory. The MC68HC811E?2 includes 2 Kbytes of EEPROM, which can be remapped
to the upper half of any 4 Kbyte page in the 64 Kbyte map. There is no masked ROM
memory in the MC68HC811E2. The MC68HCB811E2 is available in either a 52-pin
PLCC package or a 48-pin DIP. The silicon die used is the same for both packages,
but four of the A/D converter inputs are not bonded out to pins in the 48-pin package.

The MC68HCB811E2 version replaces an earlier version called the MC68HC811A2.
The only significant difference between the MC68HC811E2 and MC68HC811A2 is
that the MC68HCB811E2 has a slightly more flexible timer system, which allows one
output-compare channel to be reconfigured as a fourth input-capture channel.

The 52-pin PLCC package version of the MC68HC811E2 has identical pin assign-
ments to the MC68HC11E9 pin assignments shown in Figure 2-3. Figure 2-4 illus-
trates the pin assignments for the MC68HC811E2 in the 48-pin DIP.

MOTOROLA PINS AND CONNECTIONS M68HC11

2-4

REFERENCE MANUAL

PA7/PAIIOCL [1 ~ 48 Vpp
pA6/OC2/0C1[] 5 471] PD5/SS
PA5/0C3/0C1[] 3 46[] PD4/SCK
PA4/OC4/I0C1 [] 4 45[] PD3/MOSI
PA3/0C5/0C1 [5 44[] PD2/MISO
PA2/IC1 | g 43[] PDL/TXD
pa1ic2 O 7 42[] PDO/RXD
PAO/IC3 [g 410 IRQ
PB7/AL5 [o 40[J XIRQ
PB6/A14 [10 39[] RESET
PB5/A13 [11 38[] Pc7/A7/D7
PB4/A12 [] 12 MC68HC811E2 37 [] PC6/A6/D6
pe3/aLl [13 36 [] PC5/A5/DS5
PB2/A10 [] 14 35[] PC4/A4/D4
pBL/A9 [15 34[] PC3/A3/D3
PB0/A8 (] 16 33[] PC2/A2/D2
PE0/ANO [17 32[] PC1/A1/D1
PEL/ANL [] 18 31[] PCO/A0/DO
pE2/AN2 [19 30[) XTAL
PE3/AN3 [] 20 29 [] EXTAL
Ve 021 28 [] STRB/IRIW
Ver [22 27 E
Ves [23 26[] STRA/AS
MODBNg gy [24 25[] MODALIR

Figure 2-4 MC68HCB811E2 Pin Assignments (48-Pin DIP)

2.1.5 MC68HC11F1

The MC68HC11F1 is available in a 68-pin PLCC package only. The MC68HC11F1 is
the first non-multiplexed address/data bus version of the M68HC11 family. In addition
to the non-multiplexed bus, this MCU includes 1 Kbyte of on-chip RAM and intelligent
chip selects for simple connection to external program memory without the need for
any external logic chips. Other on-chip peripherals are similar to the MC68HC11E9.
Figure 2-5 shows the pin assignments for the MC68HC11F1 in the 68-pin PLCC pack-
age.

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-5

o @
O x B
g J4 2 52 2 2 g
25 . 2 g2 T I 2232
= O < & E w I o~ ® © N |1 o
< X E X QO Q0 w7 # W W W W w w
0O ¥ X W ew=2=2>> >0 0 00 0 a
S e e Y s Y e e N e Y s e Y s Y s Y s S e S e Y e Y s Y o |
O 0O N~ © 1t ™ N O ® N~ © O S M N o)
O O O O © O <] O
DATA1/PC1 [] 10 5 60[] PE4/AN4
DATA2/PC2 [| 11 59[] PEO/ANO
DATA3/PC3 [] 12 58] PFO/ADDRO
DATA4/PC4 [| 13 57[] PFL/ADDR1
DATAS5/PCS5 [| 14 56[] PF2/ADDR2
DATA6/PC6 [| 15 55[] PF3/ADDR3
DATA7/PC7 [] 16 54[] PF4/ADDR4
RESET [| 17 53[] PFS/ADDRS
XIRO] 18 MC68HC11F1 52[] PF6/ADDR6
1RQ [] 19 51[] PF7/ADDR7
CSPROG/PG7 [] 20 50[] PBO/ADDRS
CSGEN/PG6 [| 21 49[] PB1/ADDR9
CSIlo1/PG5 [| 22 48[] PB2/ADDRI10
CSIO2/PG4 [| 23 47[] PB3/ADDR11
PG3 [] 24 46[] PB4/ADDR12
P2 [| 25 45[] PBS/ADDR13
PG1 (] 26 44[] PB6/ADDR14
~ o [} o N (32} <t wn © N~ oo} (2] o - N (32}
N N N « ™ M M Mo o™ M M ™ ™ < < < <)
o © 4 N O I W o > N < O
<4< < < < o
PEEEELEEEFfiaaaciggcae
S9g23%®B 83338832333
g 22 0@ 0 0009 2k
== 239836 g
.5 06 0 0 <
Figure 2-5 MC68HC11F1 Pin Assignments (68-Pin PLCC)

2.1.6 MC68HC24 Port Replacement Unit

The MC68HC24 is available in either a 44-pin PLCC package or a 40-pin DIP. Figure
2-6 shows the pin assignments for the MC68HC24 in the 44-pin PLCC package and
the 40-pin DIP package.

MOTOROLA
2-6

PINS AND CONNECTIONS

M68HC11
REFERENCE MANUAL

-
%]
R — a 1o TEST 0 1 N 40[] TS
" 4 <4 < 0O O ‘U) o o E
< < < < = 202 < w e A15(] 2 39[] MODE
o N Y s e Y e e Y Y e Y e Y e Y |
©w ¥ N OF Q9 de) A14 03 38[] As
STRA 07 — 39[] RESET A13[4 370 E
pco [|8 38[] ADO a2 s 36[] RAW
PC1 [I9 371] AD1 sTRA [6 35[] RESET
pc2 10 36[] AD2 pco [7 MCE8HC24 34[] ADO
pc3 [11 35[] AD3 pci[]g 33[] AD1
NC []12 MC68HC24 34[] NC pc2 [32[) AD2
pca [13 33[] AD4 Pc3 [10 31[] AD3
pcs [14 32[] AD5 pca 11 30[] AD4
pce [15 31[] AD6 pcs [12 29] AD5
PC7 []16 30[] AD7 pce O 13 23] ADG
v 0017 29[v
b [ee] o O — N [s2] < [Te) © N~ ss pC7 E 14 27] AD7
q — - N N N N N N N N N Y,
|y e s gy sy ey e s s Vpp O 15 261 Vss
P hasad B8 3R ‘O’ RO
rP 2EEZLRE IR STRB [16 25[] IRQ
(]
pe7 [17 24[] PBO
PB6 [18 23[] PB1
pes [19 22[] PB2
PB4 [] 20 21[) PB3

Figure 2-6 MC68HC24 Pin Assignments

2.2 Pin Descriptions

This section provides a pin-by-pin description of the MCU. In general, a designer
should consider all possible functions of each pin when designing the MCU into an ap-
plication system. SECTION 7 PARALLEL INPUT/OUTPUT contains transistor-level
schematics of the logic associated with each of the 1/O pins. SECTION 3 CONFIGU-
RATION AND MODES OF OPERATION discusses the pins that operate as a multi-
plexed address/data bus in expanded modes of operation as well as the functions of
other pins related to mode selection and bus control. The reset and interrupt pins are
presented again in SECTION 5 RESETS AND INTERRUPTS. Sections 8 through 12
discuss pins related to the on-chip peripherals presented in those sections.

Figure 2-1 is a pin-function-oriented block diagram of the MC68HC11A8, which is a
good reference for development and verification of application designs.

2.2.1 Power-Supply Pins (V pp and Vgg)

Power is supplied to the MCU by using these pins. Vpp is the positive power input, and
Vgg is ground. The MC68HC11A8 MCU uses a single power supply, but in some ap-
plications, there may also be optional power supplies for A/D reference and/or for bat-
tery backup of on-chip random-access memory (RAM). These additional power
sources are optional, and the MCU, including RAM and A/D, can operate from a single
5-V (nominal) power supply.

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-7

Although the MC68HC11A8 is a CMOS device, very fast signal transitions are present
on many of the pins. Even when the MCU is operating at slow clock rates, short rise
and fall times are present. Depending upon the loading on these fast signals, signifi-
cant short-duration current demands can be placed on the MCU power supply. Special
care must be taken to provide good power-supply bypassing at the MCU.

The faster edge times in the MC68HC11A8 generally place greater demands on by-
passing than earlier NMOS MCU designs. A typical expanded-mode system should in-
clude a 1-pF capacitor and a separate 0.01-uF capacitor. Both these capacitors
should be as close (physically and electrically) as possible to the MC68HC11A8 and
should have good high-frequency characteristics (i.e., not old-technology dipped ce-
ramic disc). The 1-uF capacitor primarily supplies charge for bus switching through a
very low-impedance path (minimum-length runners). Without this bypass, there could
be very large voltage drops in the circuit board runners to the MCU due to the very high
(although very short duration) current spike caused by several MCU pins simulta-
neously switching from one level to the other. The separate 0.01-uF capacitor is in-
cluded because the larger 1-uF capacitor is typically not as good at snubbing very
high-frequency (low energy) noise. These are only general recommendations. Some
lightly loaded single-chip systems may work quite well with a single 0.1-uF bypass ca-
pacitor; whereas, more heavily loaded expanded-mode systems may require more
elaborate bypassing measures.

It is easier and less expensive to approach power-supply layout and bypassing as a
preventive measure from the beginning of a design than to locate and correct a noise
problem in a marginal design. Problems related to inadequate power-supply layout
and bypassing are very difficult to locate and correct, but, if reasonable care is taken
from the start of a design, noise should not arise as a problem.

2.2.2 Mode Select Pins (MODB/V gtgy and MODA/LIR)

The mode B/standby RAM supply (MODB/Vgtgy) pin functions as both a mode select
input pin and a standby power-supply pin. The mode A/load instruction register (MO-
DA/LIR) pin is used to select the MCU operating mode while the MCU is in reset, and
it operates as a diagnostic output signal while the MCU is executing instructions.

The hardware mode select mechanism starts with the logic levels on the MODA and
MODB pins while the MCU is in the reset state. The logic levels on the MODA and
MODB pins are fed into the MCU via a clocked pipeline path. The levels captured are
those that were present part of a clock cycle before the RESET pin rose, which as-
sures there will be a zero hold-time requirement on the mode select pins relative to the
rising edge at the RESET pin. The captured levels determine the logic state of the spe-
cial mode (SMOD) and mode A select (MDA) control bits in the highest priority inter-
rupt (HPRIO) register. These two control bits actually control the logic circuits involved
in hardware mode selection. Mode A selects between single-chip modes and expand-
ed modes; mode B selects between the normal variation and the special variation of
the chosen operating mode. Bootstrap mode is the special variation of single-chip
mode, and special test is the special variation of expanded mode. Table 2-1 summa-
rizes the operation of the mode pins and mode control bits.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-8 REFERENCE MANUAL

Table 2-1 Hardware Mode Select Summary

Inputs o Control Bits in HPRIO (Latched at Reset)
Mode Description
MODB | MODA RBOOT SMOD MDA IRV
1 0 Normal Single Chip 0 0 0 0
1 1 Normal Expanded 0 0 1 0
0 0 Special Bootstrap 1 1 0 1
0 1 Special Test 0 1 1 1

After reset is released, the mode select pins no longer influence the MCU operating
mode. The MODA pin serves the alternate function of load instruction register (LIR)
when the MCU is not in reset. The open-drain active-low LIR output pin drives low dur-
ing the first E cycle of each instruction. The MODB pin serves the alternate function of
a standby power supply (Vgtgy) to maintain RAM contents when Vpp is not present.
The power-saving mode, STOP, is an alternate way to save RAM contents, which
does not require a separate standby power source.

The LIR function is intended for monitoring on a logic analyzer during debug of a sys-
tem. Since this status indicator shows where each instruction begins, programs can
be followed easily. The mode A select levels and the LIR status levels were selected
to prevent interference between the shared functions of the pin. In single-chip applica-
tions, this pin is simply connected to Vgs. Since the LIR output is open-drain, there is
no conflict between the direct Vgg connection and the LIR signal that drives the pin low
during the first E cycle of each instruction. There is no practical reason to monitor LIR
during single-chip modes because there is no visibility to internal data and address
buses. In expanded-mode systems, the MODAV/LIR pin is normally pulled up to Vpp by
a 4.7 kQ resistor. During reset, the pull-up resistor instructs the MODA pin to select
expanded modes. During-program execution, the pin is driven low during the first cycle
of each instruction by the LIR signal and is pulled up between LIR signals by the ex-
ternal 4.7 kQ pull-up.

In expanded-mode systems where it is important to minimize power-supply current,
logic could be used to drive the MODA/LIR pin rather than just using a simple pull-up
(see Figure 2-7). During reset, the MODA pin would be driven high to select expanded
mode. After reset, the LIR pin would be driven low by logic. The logic should not be
operating against a pull-up, but rather it should be a logic-gate-type output with some
series resistance to protect against the unlikely event of a conflict between an active-
low LIR signal and an active-high logic-gate output signal. Such a conflict could only
occur briefly at the falling edge of reset. Since LIR is active for about one out of every
three cycles during normal execution (average instructions take about three cycles),
Ipp could be reduced by about 350 pA (5 V + 4.7 kQ x 33% duty cycle).

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-9

74HC04
Seaes 4.7K TO MODA/LIR
RESET (>0 NV > OF M68HC11

Figure 2-7 Reduced | pp MODA/LIR Connections

The Vgrgy function is accomplished by a transistor switch that connects either Vgrgy
or Vpp to the RAM and reset logic, depending upon the relative levels of Vqrgy and
Vpp. The switch connects Vpp unless Vgrgy is more than a threshold higher than Vpp.
A threshold is approximately a diode drop (0.7 V) but varies from lot to lot due to pro-
cessing variations. During normal operation of the MCU, Vpp, is supplying power to the
RAM. In a standby situation, Vgtgy should be maintained at a valid level, and RESET
should be activated (pulled low) when Vpp drops below legal limits. RESET should al-
ways be held low whenever Vpp is below its operating limit. If the MCU is to be oper-
ated in a special mode (MODB low before applying reset) and the MODB/Vg1gy pin is
being used to back up the RAM, the MODB/Vg1gy pin should not be driven low unless
Vpp is at (has returned to) a legal level. Some logic may be required in systems that
use MODB/Vg1gy as a standby supply and wish to use one of the special modes of
operation. In most applications, the MODB pin would be connected to Vpp through a
4.7 kQ pull-up resistor for normal modes or directly to ground for special modes.

There are two ways to maintain the contents of on-chip RAM with minimal power con-
sumption (as in a battery-based application). The preferred method uses the STOP
mode of operation, and the second method uses the MODB/Vg1gy pin (see Figure 2-
8). Each of these methods has advantages. The STOP method is preferred because
it is much simpler than the separate power-supply method in terms of hardware costs
and complexity. The STOP method saves power by stopping all MCU clocks, which
reduces the Vpp current to a few microamps. No external logic is needed, and the con-
tents of internal registers are maintained in addition to the contents of internal RAM.
The MODB/Vg1gy pin method would be used in cases where there is a significant
amount of external circuitry operating from Vpp so that the added complexity of two
supplies and added logic is justified by the power savings.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-10 REFERENCE MANUAL

DD

MAX
690
V,

DD

4.7K

TO MODB/V
ouTL— AAN—> STBY

OF M68HC11

48V BATT

Figure 2-8 RAM Standby MODB/V gtgy Connections

2.2.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E)

The oscillator pins can be used with an external crystal network or an externally gen-
erated CMOS-compatible clock source. The frequency applied to these pins is four
times higher than the desired bus frequency (E-clock rate). The E clock is the bus fre-
guency clock output, which is used as a basic timing reference signal. When the E
clock is low (address portion of a bus cycle), an internal process is occurring; when E
is high, data is being addressed. The E clock is free running at one-fourth the crystal
frequency as long as the oscillator is active (STOP stops all clocks).

The oscillator in the MC68HC11A8 consists of a large two-input NAND gate. One of
the inputs to this gate is driven by an internal signal that disables the oscillator when
the MCU is in the STOP mode. The other input is the EXTAL input pin of the MCU.
The output of this NAND gate is the XTAL output pin of the MCU.

The XTAL pin is normally left unterminated when using an external CMOS-compatible
clock input to the EXTAL pin. However, a 10 kQ-100 kQ load resistor to ground may
be used to reduce generated radio frequency interference (RFI) noise emission. The
XTAL output is normally intended to drive only a crystal, but XTAL can be used as a 4
x clock output if special care is taken to avoid undesirable loading. The XTAL output
may be buffered with a high-impedance buffer such as the 74HCO04, or it may be used
to drive the EXTAL input of another M68HC11 MCU. In all cases, the circuit-board lay-
out around the oscillator pins is critical. Load capacitances specified in the data sheets
and technical summary include all stray layout capacitances. Thus, the physical ca-
pacitors connected to these pins should always be less than the specified load capac-
itances by the estimated interconnection capacitances.

Figure 2-9 and Figure 2-10 show the internal and external components that form the
crystal oscillator, called a Pierce oscillator (also known as a parallel resonant crystal
oscillator).

Figure 2-9 shows the connections for high-frequency crystals (greater than 1 MHz),
and Figure 2-10 shows connections for low-frequency operation (less than 1 MHz).

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-11

The resistor, R, provides a direct current bias to the input so the NAND operates in its
linear region. In low-frequency designs, Rg and C2 provide a phase shift. Rg also limits
the power into the crystal, which is important for many small crystals because they are
designed for very low drive levels (typically 1-uW maximum). In high-frequency appli-
cations (see Figure 2-9), the output impedance of the NAND driver, combined with the
lower impedance of C1 and C2, provides the same effect as the Rg in low-frequency
designs. Higher frequency AT-cut crystals are designed for much higher drive levels.

STOP

D

M68HC11

EXTAL XTAL

Figure 2-9 High-Frequency Crystal Connections

STOP

M68HC11

EXTAL XTAL

XTAL
1r————+ﬂ+————ﬂ-
—C1 -

—C2

Figure 2-10 Low-Frequency Crystal Connections

Exact values for the external components are a function of wafer processing parame-
ters, package capacitance, printed circuit board (PCB) capacitance and inductance,

MOTOROLA PINS AND CONNECTIONS M68HC11
2-12 REFERENCE MANUAL

socket capacitance, operating voltage, crystal technology, and frequency. Typical val-
ues are as follows:

Higher values are sensitive to humidity; lower values reduce gain and

R =1 MQ-20 MQ
could prevent startup.
Cl =5 pF-25 pF Value is usually fixed.

C2 =5 pF-25 pF Value may be varied to trim frequency.

A tune-up procedure for experimentally determining Rg will be discussed at the con-
clusion of this subsection. Since circuit and layout capacitances effectively add to the
values of C1 and C2, the physical capacitances are usually smaller than the intended
capacitances.

In most high-frequency applications, the values of C1 and C2 are equal. In low-fre-
guency designs, it is often desirable to make C1 smaller than C2, which provides a
higher voltage at the EXTAL input due to an impedance transformation. The wider volt-
age swing at this input will result in lower power-supply current.

As in all crystal oscillator designs, all leads should be kept as short as possible. It is
also good practice to route Vgg paths as shown in Figure 2-11 . These paths isolate
the oscillator input from the output and the oscillator from adjacent circuitry, only add-
ing capacitance in parallel with C1 and C2. Potentially noisy lines should be kept as
far as possible from the oscillator components. Ground loops should be avoided
around oscillator components (note the unterminated Vgg paths ending under C1 and
C2in Figure 2-11).

CRYSTAL
c2 c1
/EQ“TZL
Ry
000000
00000000
PIN 8 00 00
o ol M68HC11 ol
(o X o) MCU (o N o)
(o X o) (o N o)
(o X o) (o N o)
000000000
0000000

Figure 2-11 Crystal Layout Example

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-13

Usually, the operation of the oscillator cannot be observed with an oscilloscope con-
nected to one of the oscillator pins. The oscilloscope adds from 3 to 30 pF and from 1
to 10 MQ to Vgg, which will usually affect oscillator operation. When the oscilloscope
is connected to the EXTAL input, the 10 MQ to Vgg (0scilloscope input) forms a resis-
tive divider with Rs and often disables the oscillator by biasing the circuit out of the lin-
ear region of the EXTAL input. This problem can sometimes be overcome by
capacitively coupling the oscilloscope with a very small capacitor (1-5 pF) between
the oscilloscope probe and the oscillator pin. It is usually better to observe the E-clock
output from the MCU since this does not alter the operation of the oscillator.

In low-frequency designs, it is often possible to observe the XTAL node with an oscil-
loscope because the high-impedance nodes of the oscillator are isolated from XTAL
by Rs. Observe Ipp without the oscilloscope connected and again with the oscillo-
scope connected. If the I5p is unchanged, it is usually safe to assume the oscillator
was unaffected.

Low-frequency crystal circuits tend to be very high impedance. Thus, the PCB must
be clean, dry, and free of conductive material such as solder rosin and excessive mois-
ture from high humidity. If problems occur, the value of R; can be reduced so the con-
taminant impedance is less significant in comparison. Of course, it is still best to
eliminate the contaminants.

Usually, startup time is inversely proportional to the frequency; thus, low-frequency os-
cillators start slower than high-frequency oscillators. There are many exceptions to this
rule because there are many variables affecting startup time. Observation of a few cir-
cuits using the MC68HC11A8 with an 8-MHz crystal reveals startup from STOP takes
approximately two milliseconds, and startup from power-up occurs within a few milli-
seconds of when Vpp reaches approximately one Volt. Power-up performance varies
greatly since power-source turn-on characteristics vary greatly. Since the
MC68HC11A8 is a fully static design, the oscillator is not required to be running full
speed before the processor starts executing instructions (most applications do not re-
guire a stable oscillator within the first few milliseconds after power-up). If the oscillator
is not running at full speed, instructions will take longer to execute, but no unpredict-
able behavior will result as it would in an NMOS processor. An oscillator in the 32-kHz
range could require hundreds of milliseconds or even a few seconds to start and sta-
bilize.

NOTE

The following tune-up procedure is only meaningful for crystal fre-
quencies below 1 MHz. In higher frequency applications, because Rg
is normally 0 Q, this procedure is not needed.

The value of Rg can be determined experimentally by using the final PCB and an MCU
of the exact type that will be used in the final application. The MCU need not have the
final mask program because the MCU will be held in reset throughout the experiment.
Because of the number of variables involved, use components with the exact proper-
ties of those that will be used in production. For example, do not use a ceramic-pack-
aged MCU prototype for the experiment when a plastic-packaged MCU will be used in

MOTOROLA PINS AND CONNECTIONS M68HC11
2-14 REFERENCE MANUAL

production. An emulator version of the part will also have slightly different electrical
properties than the masked ROM version of the same part.

To determine the optimum value for Rg, observe the operating current (Ipp) of the
MCU as a function of Rg. The MCU should be held in reset throughout this procedure
because operating current variations during run modes are much greater than the cur-
rent variations due to varying Rs. Normally, a dip in current will occur. This dip is not
sharp as in many LC circuits but is instead very broad. As the shape of this curve sug-
gests, the exact value of Rg is not critical.

Finally, verify that the maximum-operating supply voltage does not overdrive the crys-
tal. Observe the output frequency as a function of Vpp at the buffered E-clock output.
Under proper operating conditions, the frequency should increase a few parts per mil-
lion as supply voltage increases. If the crystal is overdriven, an increase in supply volt-
age will cause a decrease in frequency, or the frequency will become unstable. If
frequency problems arise, supply voltage must be decreased, or the values of Rg, C1,
and C2 should be increased to reduce the crystal drive.

2.2.4 Crystal Oscillator Application Information

Some crystal oscillator application information is presented in the following para-
graphs.

2.2.4.1 Crystals for Parallel Resonance

Parallel resonance refers to a Pierce oscillator that has the crystal in parallel with an
inverter. Almost all (if not all) CMOS MCUs use this type oscillator. AT-cut crystals are
available as standard devices for both series resonant circuits and Pierce oscillators.
The load capacitance has to be specified for the Pierce version. The series resonant
versions do not require this specification and are more likely to be listed as a standard
product. The type circuit affects the oscillating frequency of the crystal.

Any 4- to 8-MHz AT-cut crystal will normally meet the requirements of an M68HC11.
However, for a very accurate oscillator frequency, use the Pierce version of the crystal
with C1 and C2 values to match the specified load capacitance value for the crystal.
The load capacitance is approximately equal to the series combination of C1 and C2.

2.2.4.2 Using Crystal Oscillator Outputs

The crystal oscillator is actually an RF application. Connecting the crystal pins to other
circuitry is likely to interfere with proper operation of the oscillator. Modern CMOS in-
puts are very high impedance and relatively low capacitance; thus, one of these inputs
can be connected to the oscillator without disturbing the oscillator. The data sheet
shows examples of ways the crystal oscillator can be used to drive other circuits for
crystal frequencies between 4 and 8 MHz.

2.2.4.3 Using External Oscillator

An externally built Pierce oscillator will operate like a crystal connected to the
M68HC11. Use a single inverter and connect the crystal feedback resistor and load

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-15

capacitors as if the external inverter input were the EXTAL pin and the inverter output
were the XTAL pin. Use a 74HCUO04 for this inverter. This device is an unbuffered HC-
MOS hex inverter. Avoid Schmitt-trigger devices because the oscillator may fail to
start. Buffer the output of the external Pierce oscillator to drive additional logic.

2.2.4.4 AT-strip vs AT-cut Crystals

The AT-strip is a new-technology low-power crystal. Connecting one of these crystals
to the M6BHC11 may cause problems due to the NAND gate in the MCU overdriving
the crystal. Use an AT-cut crystal with the M68HC11 to avoid this problem.

2.2.5 Reset Pin (RESET)

This active-low, bidirectional control signal is used as an input to initialize the
MC68HC11A8 to a known startup state and as an open-drain output to indicate that
an internal failure has been detected in either the clock monitor or computer operating
properly (COP) watchdog circuit. This RESET signal is significantly different from the
RESET signal used on earlier MCUs. More detailed information about this pin can be
found in SECTION 5 RESETS AND INTERRUPTS.

The reset circuitry is specifically designed to work with lower levels of Vpp than other
MCU circuitry. Thus, RESET can be used to prevent undesirable performance as Vpp
power is applied or decays, which is important for applications in which the contents
of on-chip RAM must be maintained in the absence of Vpp. In this situation, the RAM
and reset input logic in the MCU would be powered from a standby power source con-
nected to the MODB/Vgtgy pin whenever Vpp is too low to support proper MCU oper-
ation. Secondly, RESET must be controlled when Vp is below legal operating limits
to prevent unintentional corruption of EEPROM data. Even if an application is not us-
ing the 512-byte EEPROM, the CONFIG register is still an EEPROM byte and must be
protected from corruption.

Virtually all MC68HC11A8 systems should include automatic control of RESET to
drive it low whenever Vpp is below legal limits. A simple, inexpensive, low voltage in-
hibit (LVI) device such as the MC34064 or MC34164 can be used. The MC34064 is
available in TO-92 or SOT-8 plastic packages and provides an open-drain output to
directly drive the RESET pin of the MC68HC11A8. This device is connected to Vpp,
Vgg, and the RESET pin of the MCU. A pull-up resistor from RESET to Vpp is the only
other component required for the reset circuit in most applications. Figure 2-12 shows
a typical reset circuit.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-16 REFERENCE MANUAL

Vbp Vbp

Vbp -
TZ 4.7kQ
IN
RESET SWITCH Hre RESET j_l TO RESET

47K MC34064 OF M68HC11
GND
1.0 yF 2 3

3

(3] N I
S -
RESET [—

- - MC34164
GND
3

Figure 2-12 Reset Circuit Example

2.2.6 Interrupt Pins (XIRQ, IRQ)

The XIRQ pin provides a means for requesting non-maskable interrupts after reset ini-
tialization. During reset, the X bit in the condition code register (CCR) is set, and any
interrupts are masked until MCU software enables them. Since the XIRQ input is level
sensitive, it can be connected to a multiple-source wired-OR network with an external
pull-up resistor. XIRQ is often used as a power loss detect interrupt.

The IRQ input provides a means for requesting asynchronous interrupts to the
MC68HC11A8. IRQ is program selectable (OPTION register), having a choice of ei-
ther level-sensitive or falling-edge-sensitive triggering. After reset, IRQ is configured
for level-sensitive operation by default.

Whenever XIRQ or IRQ are used with multiple interrupt sources (IRQ must be config-
ured for level-sensitive operation if there is more than one source of IRQ interrupt),
each source must drive the interrupt input with an open-drain-type driver to avoid con-
tention between outputs. There should be a single pull-up resistor near the MCU inter-
rupt input pin (typically 4.7 kQ). There must also be an interlock mechanism at each
interrupt source so that the source holds the interrupt line low until the MCU recogniz-
es and acknowledges the interrupt request. If one or more other interrupt sources are
still pending after the MCU services a request, the interrupt line will still be low; thus,
the MCU will be interrupted again as soon as the interrupt mask bit in the MCU be-
comes clear (normally upon return from an interrupt).

The IRQ pin is used during factory testing as a bulk Vpp programming voltage source,
which allows for parallel programming of as many as half of the bytes in the EEPROM
in a single programming operation. Since the on-chip charge pump does not have suf-
ficient drive capability to simultaneously program this many EEPROM locations, the
external 20-V power supply is needed to supplement the on-chip charge pump. The

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-17

switchover mechanism, which decides whether EEPROM is powered by the internal
charge pump or the external voltage source, is similar to the Vg1gy logic at the MODB/
Vstgy Pin. When the external voltage is more than the charge-pump voltage, the
switch connects the external high-voltage source to the internal Vpp line. The added
circuitry at this pin has no effect on normal IRQ functions, but it does have some effect
on the way the pin reacts to illegal levels.

In addition to XIRQ and IRQ, five other pins on the MC68HC11A8 can also be used to
generate interrupt requests to the MCU. These pins are associated with other on-chip
peripherals such as the timer or handshake 1/0O systems. The pins are PA0Q/IC3, PA1/
IC2, PA2/IC1, PA7/PAI/OC1, and AS/STRA. The input-capture pins can be configured
to detect rising edges, falling edges, or any edge. The PAI and STRA inputs can be
configured to detect rising edges or falling edges. The STRA input is only available if
the MCU is operating in a single-chip mode because the pin is used as the address
strobe (AS) output when the MCU is in expanded modes. These five pins have advan-
tages over the IRQ and XIRQ pins in that each of these five interrupts is independently
maskable with a local control bit as well as the global I bit in the CCR. Each of these
five interrupts also has a readable status indication, and a pending request can be
cleared without being serviced.

2.2.7 AID Reference and Port E Pins (V rerL, VRerH, PE[7:0])

The Vrepy and Vieg, pins provide the reference voltages for the A/D converter cir-
cuitry. Since the A/D converter is an all-capacitive charge-redistribution converter,
there is essentially no dc current associated with these pins. Very small dynamic cur-
rents are caused by charge-redistribution switching during conversions (see SEC-
TION 12 ANALOG-TO-DIGITAL CONVERTER SYSTEM). These pins are normally
connected to Vpp and Vgg through a low-pass filter network (see Figure 2-13) to iso-
late noise on the logic power supply from the relatively sensitive analog measure-
ments. A low-noise precision reference supply can alternatively be used. There should
be at least 2.5 V between Vrgg and Vrggy for full A/D accuracy. Lower values will
result in more inaccuracy, but the converter will continue to operate. The A/D system
is tested at 4.5 V and 5.5 V across the reference supply pins.

There is an inherent diode from Vyeg to Vgs. If VRepL goes below Vgg by more than
this diode drop, any conversion in progress may be corrupted, but no permanent phys-
ical damage will result until significant current is drawn. The only documented cases
of damage have been caused by blatant misapplication, such as connecting —12 V di-
rectly to the Vgeg, pin. Since no P-channel devices are associated with the Vgggny pin,
there is no diode clamping to Vpp. The gates of analog switches associated with the
A/D reference and input pins are controlled by signals that switch between Vgg and
about 7 V. This higher-than-Vpp supply is the output of a charge pump (separate from
the charge pump used for programming on-chip EEPROM). There is no special re-
quirement to keep Vrepy below Vpp. In fact, the converter will continue to produce
good results up to approximately 6 V on Viggp.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-18 REFERENCE MANUAL

DD

1K
TO VREFH

OF M68HC11
1uF

TO VREFL
OF M68HC11

Figure 2-13 Low-Pass Filter for A/D Reference Pins

The port E input pins are used for general-purpose inputs and/or A/D analog inputs.
These inputs are designed so that the digital input buffers are disabled at all times ex-
cept for part of a cycle during an actual read of port E; thus, analog levels near the
switch point of the digital input buffer do not result in high power-supply current drains
as in a normal CMOS input buffer. The buffers are enabled by an extra N-channel de-
vice in series with the N-channel device in the input inverter. During a digital read of
port E, these extra N-channel devices are turned on for part of the read cycle. Because
of this special circuitry, it is not necessary to terminate unused port E pins.

The analog and digital functions of port E do not normally interfere with each other;
thus, any combination of pins can be used as digital inputs while the remaining port E
pins are used for analog inputs. Turning on the digital buffer during an analog sample
may cause small disturbances on the input line, which may cause small errors in the
sampled analog level. The disturbances would be caused by small gate-to-drain and
gate-to-source capacitances and would have to occur very close to the trailing edge
of a sample period to have any noticeable effect. The disturbances are so small (if they
exist) that they probably would not cause any measurable inaccuracy. Since it is so
easy to arrange software to avoid this condition, it is probably easier to avoid potential
disturbances.

2.2.8 Timer Port A Pins

Port A includes three input-only pins, four output-only pins, and one pin that can be
configured to operate as an input or as an output. The input-only pins (PA0/IC3, PA1/
IC2, and PA2/IC1) also serve as edge-sensitive timer input-capture pins. The four out-
put-only pins (PA3/0OC5/0C1, PA4/0OC4/0C1, PA5/0OC3/0OC1, and PA6/OC2/0C1)
also serve as main timer output-compare pins. Whenever an output-compare function
is enabled, that pin cannot be used for general-purpose output. These four pins can
be controlled by output compare 1 (OC1) and/or another output compare. The PA7/
PAI/OCL1 pin can be used as a general-purpose I/O pin, as a pulse-accumulator input,
or as an OC1 output pin.

2.2.9 Serial Port D Pins

Port D includes six general-purpose, bidirectional 1/0 pins that can be individually con-
figured as inputs or as outputs. When the serial communications interface (SCI) re-

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-19

ceiver is enabled, the PDO/RXD pin becomes an input dedicated to the RxD function.
When the SCI transmitter is enabled, the PD1/TxD pin becomes an output dedicated
to the TxD function. When the serial peripheral interface (SPI) system is enabled, the
PD2/MISO, PD3/MOSI, PD4/SCK, and PD5/SS pins become dedicated to SPI func-
tions. Even while the SPI system is enabled, the PD5/SS pin can be used as a general-
purpose output by setting the corresponding DDRD?5 bit, provided the SPI system is
configured for master mode of operation.

The six port D pins can be configured (port D wired-OR mode (DWOM) control bit in
SPI control register (SPCR)) for wired-OR operation. This option disables the P-chan-
nel device in the output drivers so port D outputs can actively drive low but not high,
allowing two or more such outputs to be connected without contention. Since the P-
channel device is physically present (just turned off), there is an inherent diode from
the output pin to Vpp so the pin cannot be pulled to a level higher than Vpp (unlike a
transistor-transistor logic (TTL) open-collector output). An external pull-up resistor is
required on all port D outputs when the wired-OR option is used. The firmware boot-
loader program configures port D for wired-OR operation when the MCU is reset in
bootstrap mode. If the application is using bootstrap mode, either turn off the wired-
OR option after downloading or supply external pull-up resistors on port D output pins.

2.2.10 Ports B and C, STRA, and STRB Pins

These 18 pins are used for general-purpose 1/0 while the MCU is operating in single-
chip mode. When an expanded mode is used, these 18 pins become a multiplexed ad-
dress/data bus with an address strobe (AS) and a read/write (R/W) control line. Table
2-2 summarizes the functions of these pins related to the MCU operating mode.

In single-chip modes, no external address/data bus is needed; thus, these 18 pins are
available for general-purpose 1/O. Port B is an 8-bit output-only port; port C is an 8-bit
bidirectional 1/0 port. Any combination of bits in port C can be configured as outputs;
the remaining bits are used as inputs. Several automated handshake I/O functions are
associated with ports B and C. These strobe and handshake functions use the STRA
and STRB pins as strobes and handshake controls. The STRA pin is an edge-detect-
ing input that causes port C data to be latched into a special internal latch register. The
active edge for STRA is software selectable, and any port C pin can be used for gen-
eral-purpose static 1/0 while other pins are being used for latched inputs. If strobe and
handshake functions are not being used, STRA can still be used as an edge-detecting
interrupt input but cannot be used as a general-purpose static input. The STRB pin is
an output strobe associated with the handshake 1/O functions of ports B and C. If hand-
shake functions are not being used, STRB can still be used as a general-purpose out-
put, though it is more difficult to control than a normal port output pin. For a detailed
discussion of the handshake 1/0 functions of ports B and C, refer to SECTION 7 PAR-
ALLEL INPUT/OUTPUT .

When the MCU is operating in expanded modes, these 18 pins are used for an ad-
dress/data bus to allow the central processing unit (CPU) to access a 64-Kbyte mem-
ory space. To save pins, the low-order address and 8-bit data are time multiplexed on
eight pins. During the first half of each bus cycle, address output signals, ADDR[7:0],
are present on these eight pins; during the second half of each bus cycle, these eight

MOTOROLA PINS AND CONNECTIONS M68HC11
2-20 REFERENCE MANUAL

pins are used as a bidirectional data bus. The AS signal is used as an active-high latch
enable to an external address latch. Address information is allowed through this exter-
nal transparent latch while AS is high, and the stable address information is latched
when AS is low. The E clock is used to enable external devices to drive data into the
CPU during the second half of a read bus cycle (E clock high). The R/W signal indi-
cates the direction of data — high for read cycles, low for write cycles.

NOTE

The AS/STRA pin is an output in expanded modes and an input in
single-chip modes. Do not forget to terminate this pin as an unused
input in single-chip modes.

Table 2-2 Ports B and C, STRA, and STRB Pins

Port Bit Single-Chip and Bootstrap Mode Expanded-Multiplexed and Special Test Mode

B 0 PBO Output ADDRS8 Address Output

B 1 PB1 Output ADDR9 Address Output

B 2 PB2 Output ADDR10 Address Output

B 3 PB3 Output ADDR11 Address Output

B 4 PB4 Output ADDR12 Address Output

B 5 PB5 Output ADDR13 Address Output

B 6 PB6 Output ADDR14 Address Output

B 7 PB7 Output ADDR15 Address Output

C 0 PCO Input/Output ADO Address/DataMultiplexed

C 1 PC1 Input/Output AD1 Address/DataMultiplexed

C 2 PC2 Input/Output AD2 Address/DataMultiplexed

C 3 PC3 Input/Output AD3 Address/Data Multiplexed

C 4 PC4 Input/Output AD4 Address/DataMultiplexed

C 5 PC5 Input/Output AD5 Address/DataMultiplexed

C 6 PC6 Input/Output AD6 Address/DataMultiplexed

C 7 PC7 Input/Output AD7 Address/Data Multiplexed
STRA Input Strobe (Edge In) AS Address Strobe (Out)
STRB Output Strobe R/W Read/Write Select

2.3 Termination of Unused Pins

Because the MC68HC11A8 is a CMOS device, unused input pins must be terminated
to assure proper operation and reliability. Figure 2-14 shows a CMOS inverter, which
is representative of circuitry found on CMOS input pins. When the input is logic zero,
the P-channel transistor is on (conducting), and the N-channel transistor is off. When
the input is logic one, the P-channel transistor is off, and the N-channel transistor is
on. These transistors are actually linear devices with relatively broad switch points. As
the input passes through midsupply, there is a region where both transistors conduct
to some degree. Under normal circumstances, the input does not remain in this linear
region for very long. Once the inverter has completely switched so that only one of the
two transistors is conducting, there is virtually no current flow. This principle is why the
overall current drain of a CMOS device is directly proportional to the rate of switching.

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-21

Essentially all current is due to gates that are in the linear region during transitions and
for charging and discharging internal capacitances. Because the input is very high im-
pedance, if it is not connected, the input can oscillate or float to a midsupply level. Ei-
ther of these conditions can result in added power-supply current. The oscillation case
can result in coupling of noise to the power supply. In older CMOS designs, the large
currents caused by an input that floated to midsupply could even induce CMOS latch-
up, which could destroy the integrated circuit. Current design techniques on the
MC68HC11A8 have made latchup due to a floating input unlikely, but it is still impor-
tant to terminate unused inputs to avoid oscillation, noise, and added supply current.

Some inputs on the MCU (RESET, EXTAL, MODA, and MODB) cannot be left unter-
minated in any system.

DD

IN——¢ ouT

Figure 2-14 CMOS Inverter

The port E input pins have an extra N-channel device between Vgg and the bottom of
the N-channel device of the input inverter. Since this extra device is only enabled for
half a cycle during a digital read of port E, it is less important to terminate unused port
E pins than other unused inputs. In cases of very slow bus frequencies, even half a
cycle might be a significant length of time, and unused port E pins could be terminated.
In some battery-powered systems where port E is read often, it would be desirable to
eliminate the potential added supply current.

Since the VrggL and VRegn Pins do not connect to the inputs of any CMOS gates with-
in the MC68HC11A8, these pins do not need terminating if they are not used. Although
termination is not required, it may reduce the risk of damage due to high-voltage static
electricity.

Other than A/D pins, there are two basic types of input pins on the MC68HC11A8 —
an input-only pin and an input/output pin. The best method to terminate unused inputs
is with a pull-up or pulldown resistor for each unused pin. Input-only pins can be con-
nected to each other and then to a common termination point. Although this method is
less expensive and takes less space than individual pull-ups, it is much harder to sep-
arate and use one of these pins if it is needed later. Although input-only pins can be
connected directly to Vpp or Vgg, it is better not to because this connection makes it
difficult to change the level at that input. If a pull-up or pulldown resistor is used in-
stead, a signal can easily be connected to the input later. The preferred method of ter-

MOTOROLA PINS AND CONNECTIONS M68HC11
2-22 REFERENCE MANUAL

minating pins that can be configured for input or output is with individual pull-up or
pulldown resistors for each unused pin. Some users leave these pins unconnected
and reconfigure them as outputs during initialization. There is still a brief period during
reset and initialization where these pins are unterminated inputs. There is also a small
risk that a defective system might fail to reconfigure these pins as outputs. A pin ca-
pable of being configured as an output should never be connected to another such pin
or directly to either power-supply rail. If the pin ever became an output, there is a pos-
sibility of high current drain due to an output conflict.

Part of the verification procedure for the design of every MCU system should be a pin-
by-pin review of what is connected to every pin on the MCU to eliminate potential prob-
lems.

2.4 Avoidance of Pin Damage

Any integrated circuit can be damaged or destroyed by exposure to illegal voltages or
conditions. By understanding the failure mechanisms, a designer can protect against
damaging conditions. In some cases, a product can even be designed to tolerate com-
mon end-user errors by designing protective interface circuits.

The data sheets for integrated circuits state conservative limits and conditions that will
definitely protect the integrated circuit. The consequences of violating the specified
limits are not usually discussed because there are too many variables affecting the re-
sults. In some cases, the MCU can tolerate significantly worse conditions than the stat-
ed limits, although it is almost impossible to quantify or guarantee this better
performance for all parts and conditions.

There are several basic types of pin interface circuits on the MC68HC11A8. The exact
devices connected to the pin influence what happens as the voltage level at the pin is
driven above Vpp or below Vgg. Many other factors, including ambient temperature
and lot-to-lot process variations, also influence the reaction of the MCU to illegal volt-
age levels and conditions. The following discussion explains the conditions leading to
actual damage and what that damage might be. This information should be used as a
guideline to help engineers avoid conditions leading to possible MCU damage.

Connected to the substrate of the silicon die, the Vgg pin is the reference point from
which all other voltages are measured. The Vpp pin is the main positive power supply
for the MCU. Data sheet information is tested and guaranteed for Vpp equal to 5 V +
10 percent, but, in limited temperature range applications, the MCU can operate over
a wider range of Vpp (some timing and drive capability specifications may not be met).
Vpp and operating temperature have a significant effect on the speed of CMOS logic.
As Vpp is reduced, the maximum crystal frequency must also be reduced. For Vpp
equal 5V +10 percent, the MC68HC11A8 can operate with a maximum bus frequency
of 2.1 MHz; when Vpp is 3 V, the maximum bus frequency is about 1 MHz. At low tem-
peratures, speed increases and power-supply current decreases. The MCU can typi-
cally operate with Vyp levels up to 7 V without damaging the MCU, but timing and drive
levels will differ from the specified limits. Also, there may be some adverse effects on
gate oxides from long-term exposure to Vpp greater than or equal to 7 V. A battery-
based application could be exposed to Vpp greater than 5 V when batteries are new

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-23

and still be expected to work properly as the battery voltage slowly decays to some
level well below 5 V. Although the MC68HC11A8 could be used in such an application,
published specifications do not cover this range of Vpp.

2.4.1 Zap and Latchup

Zap and latchup are terms familiar to failure analysis engineers that work on CMOS
integrated circuits. Zap refers to damage caused by very high-voltage static-electricity
exposure. Static-electricity (zap) damage usually appears as breakdown of the rela-
tively thin oxide layers that causes leakage or shorts. Often secondary damage occurs
after an initial zap failure causes a short.

Latchup refers to a usually catastrophic condition caused by turning on an unintention-
al, bipolar, silicon-controlled rectifier (SCR). A latchup SCR is formed by N and P re-
gions in the layout of the integrated circuit, which act as the collector, base, and
emitters of unintentional, parasitic transistors. Bulk resistance of silicon in the wells
and substrate act as resistors in the SCR circuit. Application of voltages above Vpp or
below Vgg, in conjunction with enough current to develop voltage drops across the
parasitic resistors in the unintentional SCR circuit, can cause the SCR to turn on. Once
this SCR is turned on, it can normally only be turned off by removing all power from
the integrated circuit. The on-impedance of the SCR can overheat and destroy the in-
tegrated circuit.

Improvements in layout and processing techniques have made newer HCMOS devic-
es, such as the MC68HC11A8, much less likely to suffer damage from zap and latch-
up. Because of the destructive nature of these mechanisms, it is impossible to test
every device for zap and latchup limits the way timing and drive levels are tested. To
assure product reliability, sample groups of devices are destructively tested.

2.4.2 Protective Interface Circuits

In applications where MCU pins might be exposed to detrimental conditions, protective
interfaces may be needed to protect the MCU from damage. The two main goals of
any protective interface are to prevent high currents from flowing and to prevent illegal
voltage levels at a pin. A low-pass filter can often satisfy both goals. In less common
situations, it may also be necessary to provide diode clamps to prevent high voltages
at some pins. All pins on the M68HC11 have internal inherent diode clamps to Vgg,
but only some of the pins include clamps to Vpp. The following subsections discuss
the internal circuits for each type MCU pin and note special considerations for the pro-
tection of these pin types.

Usually, the only pins needing protection are those that are exposed to signals from
outside the system. For example, in an automobile engine controller, the sensors for
air and fuel flow are connected to the engine control module and ultimately to MCU
inputs. These signals are prime candidates for protective interfaces because noise or
illegal levels could accidentally be applied through the interface wiring. On the other
hand, any buses and signals wholly contained within the control module probably do
not require any sort of protective interface because there is little chance that these sig-
nals would be exposed to illegal levels. In a few cases, a protective interface can even

MOTOROLA PINS AND CONNECTIONS M68HC11
2-24 REFERENCE MANUAL

interfere with normal operation of an MCU signal. For example, a low-pass filter on an
address or data line of an expanded MCU system would introduce significant delays
to these signals, dramatically limiting the maximum operating speed of the system.

2.4.3 Internal Circuitry — Digital Input-Only Pin

Figure 2-15 shows the MOS circuitry for a digital input-only pin. The gates of input
buffer [3] are very high impedance for all voltages that would ever be applied to the
pin. The thick-field protection device [2] normally prevents the pin voltage from reach-
ing levels that could damage the gates of the input buffer. The exact circuitry of the
input buffer may be different for different digital inputs (e.g., to provide hysteresis,
etc.), but only device gates will be connected directly to the pin. Allowing a pin to float
(or be driven) to a midsupply level can result in both the N- and P-channel devices in
the input buffer simultaneously being partially on, which causes excess current and
noise on the Vpp/Vgg power supply. Port E inputs are exceptions because they are
specifically designed to be driven by analog levels.

VoD

(1] '—*4 P INPUT
BUFFER

mile

Figure 2-15 Internal Circuitry — Digital Input-Only Pin

THICK FIELD
PROTECTION

If a digital input pin (see Figure 2-15) is driven with voltages below Vgg, the thick-field
protection device [2] forms an inherent diode junction to Vgg, which conducts when the
pin voltage gets more than a diode drop below Vgg. As the pin voltage is driven more
negative with respect to Vgg, current increases. These currents have a tendency to
influence the die substrate in the area around the protection device, thus affecting the
electrical characteristics of devices in the vicinity. When the pin current is increased to
very high levels (typically more than 100 mA, specified limit is 25 mA), physical dam-
age can result.

As voltage at [1] is driven above Vpp, the protection device will begin to conduct and
tend to clamp the input voltage to protect input buffer [3]. The voltage at which this con-
dition will occur varies significantly from lot to lot and over the operating temperature
range. At room temperature, the pin typically does not draw any current until approxi-
mately 20 V; at 125°, the pin may start conducting at a slightly lower level. Up to this
point, the pin appears to function normally and will return a logic one if read. As the pin

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-25

voltage increases, the thick-field protection device begins to conduct more current to
the die substrate, which is Vgg. There should be some external series impedance be-
tween the pin and the input voltage source if the MCU will be used in a detrimental
environment. If the input voltage is increased even further, the protection device [2] will
avalanche, and the pin voltage will eventually fold back (typically to about 7 to 12 V).
Under these conditions, a parasitic bipolar transistor, which is not obvious from the
MOS schematic, is turned on and is holding the pin at the 7-volt level. This avalanche
is still normally not destructive to the pin. Since the foldback clamp level is relatively
low impedance, the pin voltage cannot be raised further without supplying a large cur-
rent. If the offending voltage source is increased to increase the pin current, the pin
circuitry will be damaged (specified limit is 25 mA, typically takes more than 100 mA).
Gate oxides in these inputs are not intended to be exposed to voltages above 7 V for
any significant amount of time. With the HCMOS processing used in the
MC68HC11A8, a latchup failure is unlikely unless legal drive limits are grossly exceed-
ed.

2.4.4 Internal Circuitry — Analog Input-Only Pin

Figure 2-16 shows the MOS circuitry associated with an analog input-only pin. This
MOS logic is similar to that for a digital input-only pin except for the addition of the an-
alog multiplexer [5] and the extra N-channel device below the buffer. The N-channel
device [5] acts as an analog multiplexer and affects the behavior of an analog input pin
when exposed to negative voltages. The N-channel device [4] allows the analog input
pins to be driven by intermediate levels without causing the noise and current normally
associated with the input buffer when its input is at a midsupply level. This device is
only turned on for half an E-clock cycle during a digital read of port E. Since the analog
input pins (including the Vreg pins) are only connected to N-channel devices and high-
impedance gates, these pins can be driven with levels above Vpp without the usual
fear of latchup. This aspect is important because the analog reference supply is typi-
cally independent of the Vpp supply for noise isolation reasons.

An analog input pin (see Figure 2-16) responds very much like a digital input to illegal
levels except that negative levels at the pin can affect A/D operations. The analog
functions associated with these pins also present some special challenges to protec-
tive interface circuits. Although the N-channel devices [4] eliminates the need for ex-
ternal pull-up or pulldown resistors on unused port E pins, a conservative designer
would still terminate these pins to help prevent static damage.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-26 REFERENCE MANUAL

(5]

N
ANALOG
MULTIPLEXER
Vbp
|
—0 _P
[1 INPUT
-1 BUFFER
PIN [3]

T

2] [4] 4| _N

THICK FIELD
PROTECTION

Figure 2-16 Internal Circuitry — Analog Input-Only Pin

If the pin voltage is driven low enough relative to the gate voltage of the analog multi-
plexer device, this N-channel device can turn on. A conductive path between the neg-
ative pin and the A/D capacitor array may discharge the capacitors and disrupt any A/
D conversion in progress. The thick-field protection device and other circuit and layout
measures around the N-channel multiplexer device are intended to prevent the pin
voltage from becoming negative enough to turn on the multiplexer device. Even with
these internal protective measures, a cautious user should avoid negative levels on
any A/D pin because a large negative transient could still disrupt an A/D conversion.
An A/D conversion can be disrupted in this manner if any A/D pin experiences a seri-
ous negative transient; the transient need not be on the pin associated with the con-
version.

External diode clamps to Vpp are not necessarily a good idea on the analog inputs.
Leakage through an external diode would be significant in relationship to the pin leak-
age current; thus, this extra leakage could affect the accuracy of analog conversion
results. Analog input pins can usually be protected by a low-pass filter with enough se-
ries impedance to limit the pin voltage. The amount of series resistance is a trade-off
between a high enough value to limit pin voltage and a low enough value to prevent
pin leakage current from adversely affecting conversion results. Conversion accuracy
is specified for a maximum external series resistance of 10 kQ. The worst-case spec-
ified leakage current at the pin is 400 nA (at room temperature, leakage is typically
much less). The 400 nA acting through 10 kQ causes an absolute conversion error of
minus one-fifth of a least significant bit (LSB) when Vigg is 5.12 V, leaving only about
one-quarter of an LSB for actual A/D circuit errors before the results would be out of
specified limits. Using a larger external resistance in series with an A/D pin may cause
some inaccuracy due to the leakage current acting through this resistance, but the A/
D will still respond in a predictable manner. There may be valid system design reasons
for choosing a high external series resistance (e.g., to minimize power consumption in

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-27

a battery-based system). For additional detailed information concerning the A/D input
pins, see 12.3 A/D Pin Connection Considerations

2.4.5 Internal Circuitry — Digital 1/0 Pin
Figure 2-17 shows the MOS circuitry for an MCU pin capable of operating as an input
or an output. Even when the pin is configured to disable the output driver circuitry, the
MOS transistors still affect the way the pin reacts to illegal levels. The P-channel de-
vice of the output driver [3] forms an inherent diode to Vpp, and the N-channel device
forms an inherent diode to Vgg, which is in parallel with the inherent diode of the thick-
field protection device.

(1]
DD

—O{ p [5]

OUTPUT

o
e g b

Figure 2-17 Internal Circuitry — Digital 1/0 Pin

PIN

INPUT
BUFFER

THICK FIELD
PROTECTION

When the pin is configured as a high-impedance input, input signals are clamped to
within a diode drop of the Vg5 and Vpp power-supply rails. When the pin is configured
as an output, the P- or N-channel device provides a low-impedance path to Vpp or
Vgg, respectively. The current into or out of the pin should be limited to prevent dam-
age. The specified current limit is 25 mA although these pins can typically withstand
transients of more than 100 mA at nominal room temperature.

The port C and port D I/O pins of the M68HC11 can be configured as open-drain-type
outputs. This configuration disables the gate signal to the P-channel device of the out-
put buffer so the pin cannot be driven to an active-high logic level, but the P-channel
device is still physically present and forms an inherent diode to Vpp. In a few applica-
tions, the situation will arise where two or more MCU 1/O pins are tied to the same
point. Software would be arranged so that no more than one of these 1/O pins is con-
figured as an output at any time to avoid output driver contention. In these applications,
the 1/0 pins should be configured for the open-drain mode so the output drivers are
prevented from high-current contention.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-28 REFERENCE MANUAL

2.4.6 Internal Circuitry — Input/Open-Drain-Output Pin

Two pins on the M68HC11 (RESET and MODA/LIR) have high-impedance input func-
tions as well as open-drain output functions (see Figure 2-18). These pins are similar
to I/O pins except that there is no P-channel device in the output driver. Since the P-
channel output device is not present, there is no inherent diode to Vpp. In terms of
negative illegal levels at these pins, there are two diodes clamping the pin to a diode
drop below ground. In terms of positive levels above Vpp, the N-channel output device
starts to conduct before the thick-field protection device; thus, the clamp level for these
pins will typically be lower than that for a digital input-only pin. As for any MCU pin,
current should be limited to prevent damage.

(1]

PIN

P
INPUT

T

(2]

N-CHANNEL ONLY C‘
OUTPUT BUFFER

[

THICK FIELD
PROTECTION

Figure 2-18 Internal Circuitry — Input/Open-Drain-Output Pin

2.4.7 Internal Circuitry — Digital Output-Only Pin

Output-only pins react to illegal levels exactly like I/O pins. Figure 2-19 shows the
MQOS circuitry for a digital output-only pin.

DD
Ao{p

OUTPUT
BUFFER PIN

bk

THICK FIELD
PROTECTION
P

Figure 2-19 Internal Circuitry — Output-Only Pin

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-29

2.4.8 Internal Circuitry — MODB/V g1gy Pin

The MODB/Vgtgy pin is unusual because it serves as a standby voltage source in ad-
dition to acting as a mode select input (see Figure 2-20). A MOS switch automatically
connects the internal RAM power supply to the higher of Vpp or Vgrgy. If an illegal
high level is applied to the MODB/Vg1gy pin, this illegal voltage is passed in to the in-
ternal RAM system. A minor elevation of Vgtgy relative to Vpp can be tolerated during
MCU operation, but any significant elevation can result in incorrect reads of RAM data.

When a battery or other standby voltage source will be used to maintain RAM contents
in the absence of Vpp, the MODB/Vg1gy pin should be driven by Vpp (rather than the
standby source) during normal operation. The MODB/Vgtgy pin should not be driven
by a higher level than Vpp, except during standby periods; during these periods, RE-
SET should be driven low.

P INPUT
BUFFER

(1] _O(

MODB/NgTRY | PIN (3]

NOILO310dd

ai3id MOIHL

=2 Py
L
—

— (5]

5 POWER
~] ~ TO RAM

MOS POWER SWITCH

Figure 2-20 Internal Circuitry — MODB/V g1gy Pin

MOTOROLA PINS AND CONNECTIONS M68HC11
2-30 REFERENCE MANUAL

2.4.9 Internal Circuitry — IRQ/VppgyLk Pin

The IRQ pin is used as a high-voltage (20 V) power source during factory testing. This
high-voltage source supplies power for bulk programming operations because the in-
ternal charge pump is not designed to provide enough current for these bulk program-
ming operations. Figure 2-21 shows the MOS circuitry for the IRQ/Vppgyk pin. The
IRQ/VppguLk Pin essentially reacts like an input-only pin to illegal levels.

LN N PP

[4]

INPUT
BUFFER

IRQV ppgyLK | PIN

4
k

THICK FIELD

PROTECTION

=z Py
L
—/

Figure 2-21 Internal Circuitry — IRQ/VppgyLk PIin

The normal Vpp level used during testing is very near the level where the thick-field
protection device begins to conduct. It is important to limit the current of the Vpp power
supply into the IRQ/VppgyLk PN with an external series resistor (typically 27 kQ) be-
cause noise or overshoot can trigger the low-impedance foldback mechanism of the
protection device. Without a current-limiting resistor, the small metal line connecting
the bonding pad to the pin input circuitry will instantly vaporize. Normal users would
not encounter this potential problem since the Vpp function of the IRQ/VppgyLk PN is
only intended for use by Motorola. The current-limiting resistor has no adverse affect
on the bulk programming process since the current requirements for EEPROM pro-
gramming are very small.

2.5 Typical Single-Chip-Mode System Connections

Figure 2-22 is the schematic for a simple single-chip-mode system, which can be op-
erated in normal single-chip or special bootstrap mode. This circuit can be used as the
basis for any single-chip-mode application. In most cases, the circuitry for the power
supply, oscillator, and mode selects can be used exactly as shown in this system. Only
specialized 1/O circuitry specific to the application needs to be designed from scratch.
All unused inputs are terminated in an appropriate manner.

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-31

MOTOROLA
2-32

Vb
-
SYSTEM |+ 10-1 HF
POWER T
4.7 pF I
10M
*——\/\
8.0 MHz
0—| | l—o
18 pF
oL
Vb Vb
4.7K
IN
RESET .
MC34064
GND
e Vb
AR
*— \\——
4.7K
*— " \\——
CONNECT
JUMPER FOR 47K
BOOTSTRAP MODE
O ®

MC68HC11A8
E

PAO0/IC3
PA1/IC2
PA2/1CO
PA3/0C5/0C1
PA4/0C4/0C1
PA5/0C3/0C1
PA6/0C2/0C1
PA7/PAI/OC1

PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

EXTAL

XTAL

STRB

STRA

PCO
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RESET

PDO/RXD
PD1/TxD
PD2/MISO
PD3/MOSI
PD4/SCK

MODB/Ng gy PD5/SS

MODA/LIR
PEO/ANO

PE1/AN1
PE2/AN2
PE3/AN3
PE4/AN4
PE5/AN5S
PE6/AN6
PE7/AN7

10K TYP
— " \\——9
F—"\\——9
F—"\\——9

Figure 2-22 Basic Single-Chip-Mode Connections

PINS AND CONNECTIONS

REFERENCE MANUAL

2.6 Typical Expanded-Mode-System Connections

The schematic shown in Figure 2-23 is for a fairly straightforward expanded-mode
system, which can be operated in normal expanded mode or special test mode. This
circuitry can be used as the basis for any expanded-mode application. In most cases,
the circuitry for the power supply, oscillator, and mode selects can be used exactly as
shown in this system. If additional memory or peripheral functions are added to the ad-
dress and data buses, the loading should be reviewed to determine whether or not ad-
ditional buffering is required. Loading is generally limited by load capacitance before
the dc drive capabilities of the MCU drivers are reached. At bus frequencies lower than
2 MHz, more capacitance can be driven before buffers are required. In applications
where heavy bus loading occurs, it is necessary to increase power-supply bypass ca-
pacitors to provide for these higher bus switching demands on Vpp.

The address decoding used in this example system is unusual in that the external
EPROM is decoded to appear in either of two memory areas. Some commonly used
terms to describe this type of decoding are partial decode, redundant mapping, and
mirroring. In this system, the external EPROM appears at $E000-$FFFF and at
$A000-$BFFF so that the reset vector can be fetched out of this EPROM whether the
MCU is operating in normal expanded mode or special test mode. This mapping also
allows the MCU to come out of reset in special test mode, check the contents of the
EEPROM-based CONFIG register (change CONFIG if necessary), and then change
the operating mode to normal expanded mode. There are several potential advantag-
es to starting a system this way (see 3.5.3 Special Test Mode).

The 74HC138 decoder provides address-qualified read enable and write enable sig-
nals for two 8-Kbyte by 8 static RAMs. The other four outputs of this 74HC138 provide
additional chip selects for additional RAM or peripheral devices. Since the R/W signal
drives one of the address selects of the 74HC138, there are four active-low read en-
able outputs and four active-low write enable outputs. The timing for these outputs is
controlled by the E clock and the propagation delay through the 74HC138 decoder.
Address and R/W are stable long before the rising edge of the E clock.

The decoding for the EPROM was done with two sections of a quad NAND gate. Ad-
dress valid time controls the chip select access time of the EPROM. This chip select
decode provides for a longer access time than the chip select arrangement on the
RAMs because EPROMs are typically slower than static RAMS. The E clock controls
the output enable of the EPROM, which typically has a much shorter setup time re-
guirement than the chip-select input to the EPROM. Since address line 14 (ADDR14)
is not included in the decode for the EPROM, the EPROM will appear twice in the
memory map: at $A000-$BFFF where ADDR14 is low and at $EO00-$FFFF where
ADDR14 is high.

A few potential address conflicts can occur in this system. The on-chip ROM and/or
on-chip EEPROM can conflict with the external EPROM. For the purposes of this ex-
ample, it is assumed that the internal ROM will not be used and will be disabled by the
ROMON control bit in the CONFIG register. The potential for conflict with the EE-
PROM poses no concern in normal expanded mode because the external MCU data
bus is high impedance and ignored during reads of the internal EEPROM. In special

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-33

test mode, there is a potential for an undesirable conflict if the EEPROM is read while
the IRV function is enabled (see 2.7.2 Internal Read Visibility (IRV) . Although this
conflict would not typically be destructive, it would increase power consumption and
generated noise. In this example system, the special test mode would only be in effect
for a short time after reset, and reads of the internal EEPROM could easily be avoided
during this time.

MOTOROLA PINS AND CONNECTIONS M68HC11
2-34 REFERENCE MANUAL

\|
/

SYSTEM
POWER
[+
— ITGD
=
E

|

IN

RESET
MC34064

GND

CONNECT
JUMPER FOR
TEST MODE

MC68HC11A8

PAO/IC3
PA1/IC2
PA2/ICO
PA3/0OC5/0C1
PA4/OC4/0C1
PA5/0C3/0C1
PA6/OC2/0C1
PA7/PAI/OC1

ADO
AD1
AD2
AD3
AD4
AD5
AD6
AD7

EXTAL

XTAL

AS
RW

A8

A9
Al10
All
Al12
Al13
Al4
Al15

XIRQ
RQ PDO/RXD

PDL/TXD
PD2/MISO
PD3/MOSI

PD4/SCK
PD5/SS

MODAVLI

x|

MODBNg 1Ry

PEO/ANO
PE1/AN1
PE2/AN2
PE3/AN3
PE4/AN4
PE5/AN5
PE6/AN6
PE7/AN7

Figure 2-23 Basic Expanded Mode Connections (Sheet 1 of 2)

M68HC11

REFERENCE MANUAL

PINS AND CONNECTIONS

]
10K TYP
——\V\—@
——\V\—@
——\V\—@
— DATA BUS L
X >
DO
DO Qo A0
D1 Al
D1 Q1
D2 A2
D2 Q2
D3 A3
D3 Q3
D4 Al
D4 Q4
D5 A5
D5 Q5
D6 A6
D6 Q6
D7 A7
D7 Q7
LE OE
AS
R/W 74HC373 —
E
A8
A9
A10
[0
A1l 2
A12 a
L
A13 o
[a]
A14 2
A15
——\V\—@
—W\——@ CONTROL BUS -
——\V\—@
——\V\—@
N\
MOTOROLA
2-35

—— A0 po—20 ——1 A0 po——29
AO D1 A0 _ D1
pad— N D1l——— — Al D1
AL D2 Al D2
— 1A2 D2——= — A2 D2F———
I D3 A2 D3
— A3 D3———— ——— A3 D3——m——
A3 D4 A3 D4
— 1AM D4—— — A4 D4——
Ad D5 Ad D5
— A5 D5———— —— A5 DS———
A5 D6 A5 D6
S\ D6——— ——— A6 D6———
26 D7 A6 D7
—— 1A7 D7—— — A7 D7——
DATA BUS / AT s AT |,
A8 A8
- A9 e A9
0 Al0 210 Al0
e All T All
D Al2 D Al2
A15 o——1+——g-cs J WE
A13 Q OE J RD
8K X 8 EPROM 8K X 8 RAM
E
- ——— A0 po——29
RIW A0 D1
— A1 Dl———
J Al D2
— A2 D2——=
— A0 YOO A2 D3
RIW ——— A3 D3——
3 AL Y10- A3 A4 D4 D4
— A2 Y2[0—— A4
Al4 ——— A5 D5 DS
y3sp—— A5 D6
—— A6 D6———
Y4 (O——m A6 A7 D7 D7
= G Y5 [0—— A7 A8
WC ﬁ Y6[O— A8 A9
G2 Y70— A9 AL0
A10
| 74HC138 AL All
- Al12 Al2
Q WE
J RD
- ADDRESS BUS / / 8K X 8 RAM
CONTROL BUS Vbp
[}
LT oo
——nW— DL
—N— D2
—N— B
o—’\/\/—D4
—N— B
—nN— 0
N\ D7

Figure 2-24 Basic Expanded Mode Connections (Sheet 2 of 2)

MOTOROLA PINS AND CONNECTIONS M68HC11
2-36 REFERENCE MANUAL

2.7 System Development and Debug Features

The designers of the M68HC11 carefully considered the system development needs
of the user. Since smaller users cannot afford thousands of dollars for a development
system, the M68HC11 was specifically designed to accommodate low-cost develop-
ment tools. The M68HC11 EVB evaluation board and M68HC11 EVM evaluation mod-
ule are two examples of such low-cost tools. Several customers have also built small
plug-in modules that emulate the MC68HC11A8 for product development purposes.
The small size of these plug-in emulators is possible because of the development fea-
tures designed into the M68HC11.

2.7.1 Load Instruction Register (LIR)

The LIR signal is intended as a debugging aid. This signal is driven to active low for
the first bus cycle of each new instruction, making it easy to reverse assemble (disas-
semble) instructions from the display of a logic analyzer.

2.7.2 Internal Read Visibility (IRV)

During debugging of an application, it is useful to see what is being read from internal
registers and memory locations. The IRV feature provides this capability. This feature
should usually be disabled during normal operation of the system due to the possibility
of bus conflicts.

The IRV feature is controlled by the IRV bit in the HPRIO register. When the IRV bit is
one, the data from a read of an internal register or memory location is driven out on
the data bus so it can be monitored by a logic analyzer. If the IRV bit is zero, the IRV
function is disabled, and the data bus is undriven during reads of an internal address.
Special restrictions apply to the use of the IRV bit and function. When the MCU is reset
in normal modes, the IRV bit is initially zero. In all but the newest derivatives in the
M68HC11 Family, the IRV bit may not be written to one in the normal modes. In special
test and bootstrap modes, the IRV bit is initially one and may be written to zero after
which it becomes a read-only bit.

Care should be used if the IRV function is enabled. During reads of an internal ad-
dress, the data bus is driven out even though the R/W line indicates that the bus direc-
tion is toward the MCU. Some external device may also be trying to drive the data
lines, which leads to an undesirable bus contention. In a test or debugging situation,
special address decode logic can be used to prevent such contention. It would be ex-
pensive and inappropriate to have this additional decode logic on all normal mode sys-
tems; thus, the IRV function was only provided in the special test and bootstrap
modes. Due to several customer requests for the IRV function in normal modes, the
logic was changed to allow the function to be enabled in normal modes on new ver-
sions of the M68HC11. The default condition in normal modes is still IRV equals zero,
which disables the function. If a user specifically wants the IRV function, IRV may be
written to one, and the user becomes responsible for avoiding bus contentions. IRV
can be written to one at any time unless it has previously been written to zero. If the
IRV bit is written to zero, the function becomes disabled until the next reset sequence.

M68HC11 PINS AND CONNECTIONS MOTOROLA
REFERENCE MANUAL 2-37

2.7.3 MC68HC24 Port Replacement Unit

The MC68HC24 PRU is a gate array that emulates the single-chip mode functions of
ports B and C, which are lost to the expansion bus function when the MCU is operated
in expanded modes. The expanded mode permits program development in an exter-
nal EPROM. A system consisting of an M68HC11 in expanded mode, an MC68HC24,
an HC373 octal latch, and an external EPROM performs like the MC68HC11A8 oper-
ating in single-chip modes, thus allowing an application program to be developed and
tested before a masked ROM pattern is ordered.

The logic in the M68HC11 was specifically designed to permit emulation of single-chip
functions with the MC68HC24. First, the addresses associated with ports B and C and
their handshake 1/O functions are treated as external addresses when the MCU is op-
erating in expanded modes. Next, the interrupts associated with the handshake I/O
system are vectored to the same address as IRQ interrupts. Thus, the interrupt output
of the MC68HC24 can be connected to the IRQ interrupt input of the MCU, and hand-
shake interrupts will be treated the same as internal handshake functions. The
M68HC11 allows registers and/or internal RAM to be remapped to any 4-Kbyte bound-
ary. The MC68HC24 copies this logic so that the registers in the MC68HC24 will au-
tomatically track the internal remapping logic. Software written on an expanded
system, including an MC68HC24, will operate exactly as it would in the internal ROM
of an MC68HC11A8 in single-chip mode.

MOTOROLA PINS AND CONNECTIONS M68HC11

2-38 REFERENCE MANUAL

SECTION 3
CONFIGURATION AND MODES OF OPERATION

This section discusses the mechanisms that allow the MC68HC11A8 to conform to a
wide variety of applications. These mechanisms include hardware mode selection cir-
cuitry, a nonvolatile EEPROM-based configuration register, and protected control reg-
ister bits. The majority of the control bits in the MC68HC11A8 are accessible at any
time by software and will be discussed throughout this manual.

The term mode is used in more than one context in discussing the microcontroller unit
(MCU). For example, the serial peripheral interface (SPI) is said to be in either the
master or slave mode, the parallel 1/O system is said to be in simple strobed mode,
full-input handshake mode, or full-output handshake mode. In most cases, there is no
confusion about what the term mode refers to; however, the use of the term mode in
conjunction with STOP and WAIT is often misunderstood. STOP and WAIT are actu-
ally modes of operation of the central processing unit (CPU) as opposed to single-chip
and expanded modes, which are modes of operation of the MCU integrated circuit. In
this section, the MCU operating modes and other mechanisms controlling the basic
configuration of the MCU are discussed.

Very few MCU functions are influenced by the mode of operation. For example, the
timers, analog-to-digital converter (A/D), and serial 1/0 functions all work the same in
expanded modes as they do in single-chip modes. The parallel I/O functions of 18 pins
are lost in the expanded modes but can be regained with a special, external, port-re-
placement chip called the MC68HC24. In the two special modes of MCU operation,
some special testing functions become accessible, including the ability for software to
change the MCU mode.

3.1 Hardware Mode Selection

There are only two fundamental modes of operation for the MC68HC11A8 MCU: sin-
gle chip and expanded. Each mode has a normal variation and a special variation.
These four mode variations are selected by the levels on the mode A (MODA) and
mode B (MODB) pins during reset. The special variation of single-chip mode is called
special bootstrap mode; the special variation of the expanded mode is called special
test mode. The special bootstrap mode allows programs to be downloaded through
the on-chip serial communications interface (SCI) into internal random-access mem-
ory (RAM) to be executed. The bootloaded program is used for a variety of tasks such
as loading calibration values into internal electrically erasable programmable read-
only memory (EEPROM) or performing diagnostics on a finished module. The boot-
strap mode is a special user's mode, not a factory test mode. The special test mode,
which is intended primarily for factory testing, is seldom used by the user except for
emulation, development, or in other rare circumstances.

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-1

3.1.1 Hardware Mode Select Pins

The hardware mode select mechanism starts with the logic levels on the MODA and
MODB pins while the MCU is in the reset state. The logic levels on the MODA and
MODB pins are fed into the MCU by way of a clocked pipeline path. The levels cap-
tured are those that were present part of a clock cycle before the RESET pin rose,
which assures there will be a zero hold-time requirement on the mode select pins rel-
ative to the rising edge at the RESET pin. The captured levels determine the logic state
of the special mode (SMOD) and mode A select (MDA) control bits in the highest pri-
ority interrupt (HPRIO) register. These two control bits actually control the logic circuits
involved in hardware mode selection. Table 3-1 summarizes the operation of the
mode pins and mode control bits.

Table 3-1 Hardware Mode Select Summary

Inputs o Control Bits in HPRIO (Latched at Reset)
Mode Description
MODB MODA RBOOT SMOD MDA IRV
1 0 Normal Single Chip 0 0 0 0
1 1 Normal Expanded 0 0 1 0
0 0 Special Bootstrap 1 1 0 1
0 1 Special Test 0 1 1 1

After RESET rises, the mode select pins no longer influence the MCU operating mode.
The MODA pin serves the alternate function of load instruction register (LIR) when the
MCU is not in reset. The open-drain active-low LIR output pin drives low during the first
E-clock cycle of each instruction. The MODB pin serves the alternate function of a
standby power supply (Vstgy) to maintain RAM contents when Vpp is not present.
The power-saving mode, STOP, is an alternate way to save RAM contents, which
does not require a separate standby power source.

3.1.2 Mode Control Bits in the HPRIO Register

The following register and paragraphs show the HPRIO register. The four low-order
bits (PSEL[3:0]) are not related to the mode select logic and will be discussed in SEC-
TION 5 RESETS AND INTERRUPTS. The HPRIO register may be read at any time,
but the four high-order bits may only be written under special circumstances. Usually,
control bits for unrelated on-chip systems would not be mixed in the same register.

HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous $103C
BIT 7 6 5 4 3 2 1 BITO
[RBOOT [SMOD | MDA | IRV | PSEL3 | PSEL2 | PSELL | PSELO |

RESET:

(Refer to Table 3-1)

RBOOT — Read Bootstrap ROM

MOTOROLA

3-2

Can be written only while SMOD equals one
1 = Bootstrap ROM enabled at $BF40-$BFFF
0 = Bootstrap ROM disabled and not present in memory map
The RBOOT control bit enables or disables the special bootstrap control ROM. This

CONFIGURATION AND MODES OF OPERATION M68HC11

REFERENCE MANUAL

192-byte, mask-programmed ROM contains the firmware required to load a user’s
program through the SCI into the internal RAM and jump to the loaded program. In all
modes other than the special bootstrap mode, this ROM is disabled and does not oc-
cupy any space in the 64 Kbyte memory map. Although it is zero when the MCU
comes out of reset in test mode, the RBOOT bit may be written to one while in special
test mode.

SMOD — Special Mode
May be written to zero but not back to one
1 = Special mode variation in effect
0 = Normal mode variation in effect

MDA — Mode A Select
Can be written only while SMOD equals one
1 = Normal expanded or special test mode in effect
0 = Normal single-chip or special bootstrap mode in effect

IRV — Internal Read Visibility

Can be written only while SMOD equals one; forced to zero if SMOD equals zero

1 = Data driven onto external bus during internal reads

0 = Data from internal reads not visible on expansion bus (levels on bus ignored)
The IRV control bit is used during factory testing and sometimes during emulation to
allow internal read accesses to be visible on the external data bus. Care is required to
avoid data bus contention while IRV is active because the bidirectional data bus is driv-
en out during reads of internal addresses, even though the R/W line suggests the data
bus is in the high-impedance read mode. In normal modes, this function is disabled;
thus, complex decode logic is not required to protect against accidental bus conflicts.

3.2 EEPROM-Based CONFIG Register

The nonvolatile configuration (CONFIG) register allows additional flexibility in the MCU
that would otherwise be provided by a more complex hardware mode select structure.
By using EEPROM to implement the CONFIG register, these system controls are re-
tained even when no power is applied to the MCU. The functions controlled by this reg-
ister are characteristics that must be inherently known to the MCU system as it comes
out of the reset state. Ordinary software-accessible control bits would not effectively
regulate these controls.

3.2.1 Operation of CONFIG Mechanism

The CONFIG register actually consists of an EEPROM byte (separate from the 512-
byte EEPROM array), a static register that holds the configuration information during
operation, and the associated logic, which controls the transfer of information from the
EEPROM byte to the working static register. Programming and erasure of this register
use the same logic used for programming and erasure of the 512-byte EEPROM ar-
ray. Reads of this register return the contents of the static working register, not the EE-
PROM byte. During any reset, the contents of the EEPROM byte are transferred to the
working static register over the data bus. Due to this mechanism, changes to the EE-
PROM CONFIG location are not visible and do not alter the operation of the MCU until

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-3

after a subsequent reset.

Some versions of the M68HC11 Family allow the CONFIG working register to be writ-
ten directly as a normal control register while operating in the special mode variations.
This capability is included primarily to accelerate product testing but could be useful to
the user in some applications. In versions that have this ability, the MCU could be reset
in one of the special modes. The CONFIG register could be checked or written to any
desired value; then the mode could be written to a normal mode to re-enable system-
protection mechanisms. This procedure is independent of the EEPROM byte and the
transfer during reset. Only some versions of the M68HC11 offer this capability. Risk
factors are associated with operating in a special mode; therefore, keep the time be-
tween reset and writing the mode control bits back to a normal mode as short as pos-
sible to minimize these risks.

3.2.2 The CONFIG Register

The CONFIG register is an unusual control register used to enable or disable ROM,
EEPROM, the computer operating properly (COP) watchdog system, and, optionally,
the EEPROM security feature of the MCU. Unlike ordinary control registers, CONFIG
retains its contents even when there is no power applied to the MCU. The contents are
retained when the MCU is completely removed from a system (e.g., when shipped
from the Motorola factory). In this way, the control bits in the CONFIG register are like
mask-programmed options. Unlike mask options, the contents of this register can be
altered after the MCU is manufactured to meet the customer’s specific requirements.

The CONFIG register is read like any other memory location. The contents of the work-
ing static register are returned on such reads as previously described. The CONFIG
register is erased and programmed like an EEPROM location rather than being written
as other registers. The programming and erase operations alter the EEPROM byte,
which does not alter the operation of the MCU until after a subsequent reset operation.
The programming and erase procedures, which are the same as those used to pro-
gram EEPROM locations, use the PPROG register and are discussed in 4.3 EE-
PROM.

The following register and paragraphs describe the CONFIG register and control bits
of the MC68HC11A8. For specific information about the CONFIG register of other
M68HC11 Family members, refer to the technical summary for that member.

CONFIG — System Configuration $103F
BIT 7 6 5 4 3 2 1 BITO
| 0 | 0 | 0 | 0 | NOSEC | NOCOP | ROMON | EEON |
RESET: 0 0 0 0 See 3.2.1 Operation of CONFIG Mechanism

NOSEC — EEPROM Security Disabled
A special security feature is available on the MC68HC11AS8 if it is requested at the time
a user submits a mask ROM pattern. Once this feature is enabled at the mask-pro-
gramming level, the user activates it by programming the NOSEC bit to zero. While
NOSEC is zero, the MCU can only be reset in single-chip modes (normal single chip

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-4 REFERENCE MANUAL

or special bootstrap). This restriction is accomplished by forcing the MDA control bit to
zero rather than allowing it to follow the MODA pin level at the rising edge of RESET.
By disallowing expanded modes, a software pirate is prevented from seeing the data
in EEPROM or RAM because there is no external address/data bus in single-chip
modes.

The software pirate can see what is in the on-chip ROM by disabling the security op-
tion, which can only be accomplished after the contents of EEPROM and RAM have
been erased. When a secured part is reset in bootstrap mode, the firmware in the
small bootloader program will not proceed with bootloading until the EEPROM, RAM,
and CONFIG register have been successfully erased. When a secured part is operat-
ed in normal single-chip mode, the user’s program in ROM is responsible for keeping
the MCU secured. The CONFIG register in current versions of the MC68HC11A8 can-
not be altered except in special bootstrap and special test modes.

NOCOP — COP Watchdog System Disabled

The default erased state of this bit corresponds to COP system off.

1 = The COP system is disabled and does not generate system resets.

0 = The COP system is enabled as the MCU comes out of reset.
A software service mechanism must be periodically completed prior to COP time-out
to avoid a system reset. This service will only occur at the proper repeating rate if the
software is executing in the expected, orderly fashion. If a software failure occurs, the
watchdog will time out and will generate a system reset to force the MCU to return to
proper operation. The COP watchdog mechanism is discussed in detail in SECTION
5 RESETS AND INTERRUPTS.

ROMON — Enable On-Chip ROM

The default erased state of this bit corresponds to ROM enabled.

1 = The 8-Kbyte on-chip program memory is enabled.

0 = The 8-Kbyte ROM is disabled and takes no space in the memory map.
In the normal single-chip operating mode, this control bit is overridden so that ROM is
always enabled. In expanded modes, turning off the ROM with this bit allows the reset
and interrupt vectors to be fetched from external memories; therefore, the user need
not know where vectors should point at the time the MCU is manufactured.

EEON — Enable On-Chip EEPROM
The default erased state of this bit corresponds to EEPROM enabled.
1 = The 512-byte on-chip EEPROM memory enabled at locations $B600-$B7FF.
0 = The 512-byte EEPROM is disabled and takes no space in the memory map.
Some versions of the M68HC11 Family have additional control bits in this register. For
example, the MC68HC811A2 uses the upper four bits to remap its 2-Kbyte EEPROM
to the upper half of any 4-Kbyte page of memory. This reference manual is based pri-
marily on the MC68HC11AS8; specific information about other family members can be
found in the technical summaries.

The erased state of CONFIG is $0F on an MC68HC11A8. The MC68HC11A1 is the
same die as the MC68HC11A8 but comes from the factory with $0D in CONFIG to dis-
able the internal 8-Kbyte masked ROM. Similarly, the MC68HC11A0 version of the
part comes with $0C in CONFIG to disable both the 8-Kbyte ROM and 512-byte EE-
PROM. The CONFIG byte is not part of the 512-byte EEPROM. If the CONFIG register

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-5

of an MC68HC11A1 or MC68HC11A0 device is erased to $0F, the internal ROM and
EEPROM memories become enabled but are not necessarily useful. The ROM of an
MC68HC11A1 or MC68HC11A0 part may contain a customer’s program (with their
permission) or a defective program. The EEPROM of an MC68HC11A0 part could be
partially/completely broken and should not be used because the error could be related
to temperature or voltage. Therefore, the EEPROM might check as flawless but later
fail when least expected. The upper four bits are not implemented in the working static
register and always read zero. Although the corresponding bits in the EEPROM byte
are implemented, they are not visible to the user.

The erased state of the CONFIG register in the MC68HC811A2 version is $FF, which
means the 2-Kbyte EEPROM is enabled in the area from $F800-$FFFF when the part
comes from the Motorola factory. To use the part, the user must have a meaningful
reset vector at $FFFE,FFFF or must connect the mode pins so the system will come
out of reset in one of the special modes. The reset vector can be programmed into the
internal EEPROM before installing the part into a finished system, or the EEPROM can
be moved out of the way (by programming the CONFIG register) so an external mem-
ory in the end system can provide the reset vector.

3.3 Protected Control Register Bits

In the MC68HC11A8, several sensitive control registers and bits are protected against
writes except under special circumstances. The protect mechanisms include the ability
to write these bits only within the first 64 bus cycles after any reset and/or the ability to
write them only one time after each reset. These bits control the basic configuration of
the MCU where an accidental write could cause serious system problems — that is,
these protections make it practical to include software-controlled features that might
otherwise be excluded. As new members of the M68HC11 Family are developed, ad-
ditional control bits could fall into this category, but in the MC68HC11A8, only three
control registers are involved (INIT, TMSK2, and OPTION). Some users have ex-
pressed concern about being able to write all of these control bits within 64 cycles,
which will not be a problem since only three writes are required.

Because these protect mechanisms are overridden in the special operating modes,
these bits may be changed repeatedly during testing without going through a reset se-
guence. If the MCU is going to be changed to a normal mode variation after being reset
in a special mode, write to the protected registers before writing the SMOD control bit
to zero.

3.3.1 RAM and I/0O Mapping Register (INIT)

INIT — RAM and I/O Mapping Register $103D

BIT7 6 5 4 3 2 1 BITO
| RAM3 | RAM2 | RAM1 | RAMO | REG3 | REG2 | REG1 | REGO |

RESET: 0 0 0 0 0 0 0 1

RAM[3:0] — RAM Map Position

These four bits, which specify the upper hexadecimal digit of the RAM address, control

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11

3-6

REFERENCE MANUAL

the position of the RAM in the memory map. By changing these bits, the RAM can be
repositioned to the beginning of any 4-Kbyte page in the memory map. After reset,
these bits are zeros ($0); thus, the RAM is initially positioned from $0000-$00FF. If
these four bits are written to ones ($F), the RAM moves to $F000-$FOFF. The follow-
ing explanation of the INIT register discusses what happens when RAM or registers
are mapped to the same area of memory as some other internal resource.

REG]3:0] — 64-Byte Register Block Position

These four bits, which specify the upper hexadecimal digit of the address for the 64-
byte block of internal registers, control the position of these registers in the memory
map. By changing these bits, the register block is repositioned to the beginning of any
4-Kbyte page in the memory map. After reset, these bits are 0001 ($1); therefore, the
registers are initially positioned from $1000-$103F. If these four bits are written to
ones ($F), the registers move to $F000-$FO03F. The following explanation discusses
what happens when RAM or registers are mapped to the same area of memory as
some other internal resource.

The INIT register allows software to reposition the internal 256-byte RAM and/or 64-
byte register space to any 4-Kbyte page boundary in the 64-Kbyte memory map.
There are two main reasons a user might want this capability. First, this capability al-
lows the user to position RAM, 1/O registers, or both in the direct addressing mode
range ($0000-$00FF). Instructions that use the direct addressing mode assume the
upper eight bits of the address are $00; thus, these instructions take up less program
memory space and operate faster than the equivalent extended addressing mode in-
structions. The second reason for remapping RAM or registers would be to make the
MCU compatible with the memory map of an existing system. For example, the
MC6801 MCU is not compatible with the Motorola EXORciserd]. The MDOSO disk-
operating system software requires RAM to exist from $0000-$7FFF, ROM routines
to exist from $E800-$EBFF, and system 1/O devices to exist from $EC00-$F000. Be-
cause the MC6801 MCU has internal RAM and registers in $0000—$00FF that cannot
be disabled or moved, it cannot be made compatible with the EXORciser. However,
the MC68HC11A8 can disable its internal ROM with the CONFIG register, and the
RAM and registers can be remapped to $D000 and $C000, respectively, by writing
$DC to the INIT register. This procedure makes the MC68HC11A8 compatible with the
EXORCciser system without requiring changes to the existing MDOS software. A vari-
ation on this second reason for remapping RAM and registers would be to make max-
imum use of an external 32-Kbyte RAM in the lower half of the memory map.

Users not needing this capability can leave the RAM and I/O registers in their default
locations ($0000—$00FF for RAM and $1000-$103F for registers). Since the INIT reg-
ister becomes write protected shortly after reset, the user need not worry about acci-
dental changes due to a software error.

The internal address decode circuitry automatically protects against conflicts among
internal resources or between an internal and external resource. When an internal re-
source is read, the external data bus is ignored (even if some external device tries to
drive the data bus) so the CPU will read valid data. If the internal RAM and/or I/O reg-
ister spaces are remapped so an overlap occurs between RAM, register space, or
ROM, priority logic disables all but the highest priority resource. For example, consider

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-7

the case of an expanded mode system where ROM is enabled and both RAM and reg-
isters have been remapped to $F000. For accesses from $F000-$F03F, ROM and
RAM are disabled, and registers have highest access priority. From $F040-$FOFF,
ROM is disabled, and RAM has access priority.

Some users have questions about the priority of access for unused register locations
in the 64-byte register space or the priority of registers in an external MC68HC24. In
the previous example, $F035 would correspond to an unused location in the 64-byte
register space (the register block was moved from its usual position of $1000-$103F
such that it overlaps RAM and ROM at $F000). Reads of this address access the un-
driven internal data bus, and any data present on the data bus pins is ignored. Six lo-
cations in the 64-byte register space become external accesses when the
MC68HC11A8 is operating in an expanded mode. This process allows the MC68HC24
to properly emulate the internal parallel I/O functions associated with the 18 MCU pins,
which are dedicated to the multiplexed expansion bus. Again referring to the earlier
example, if any of these six addresses are accessed, the internal ROM and RAM are
disabled so the CPU gets valid data from the external MC68HC24, which is consid-
ered a part of the internal register space. The six locations of interest are $x002—-$x007
(PIOC, PORTC, PORTB, PORTCL, one reserved location, and DDRC). Although x is
usually one, it was changed to $F by software in this example.

3.3.2 Protected Control Bits in the TMSK2 Register

The following register diagram and paragraphs describe the time-protected timer pres-
cale select bits (PR[1:0]) in the timer mask register 2 (TMSK2). The upper four bits of
this register, which are related to the timer and pulse accumulator subsystems, will be
discussed in SECTION 10 MAIN TIMER AND REAL-TIME INTERRUPT and SEC-
TION 11 PULSE ACCUMULATOR . Bits 3 and 2 are not implemented and always read
as zeros.

TMSK2 — Timer Mask Register 2 $1024
BIT 7 6 5 4 3 2 1 BIT O
TOI | RMI | PAOVI | PAI | 0 | 0 | PRI PRO |
RESET: 0 0 0 0 0 0 0 0

PR[1:0] — Timer Prescaler Select

These two bits select the prescale rate for the main 16-bit free-running timer system.
The following table shows the relationship between the prescale factor and the value
of these control bits. A prescale factor of one corresponds to a timer count rate of E
clock divided by one; a prescale factor of 16 corresponds to a timer count rate of E
clock divided by 16. In normal modes, this prescale rate can only be changed once
within the first 64 bus cycles after reset, and the resulting count rate stays in effect until
the next reset.

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-8 REFERENCE MANUAL

PR1 PRO Prescale Factor
1
4
8
16

RlFR,|]O|O

RO |O

3.3.3 Protected Control Bits in the OPTION Register

The following register and paragraphs discuss the time-protected control bits on the
option (OPTION) control register. Bit 2 of this register is not implemented and always
reads zero. ADPU, CSEL, and CME are not time-protected bits.

OPTION — System Configuration Options $1039
BIT 7 6 5 4 3 2 1 BITO
[ADPU [CSEL | IRQE | DLY [CME | 0 [CRL | CRO |
RESET: 0 0 0 1 0 0 0 0

IRQE — Configure IRQ for Edge-Sensitive-Only Operation
The default configuration is IRQE equals zero or level-sensitive IRQs. L
1 = IRQ is configured for edge-sensitive-only operation. Falling edges at the IRQ

0

pin are latched until the IRQ is honored.

= IRQ is configured for level-sensitive operation. IRQ interrupts are requested by
a low level on the IRQ pin. The low level must remain until the interrupt service
routine does something to acknowledge the source of the interrupt. Level-sen-
sitive operation allows more than one source to be connected to the IRQ pin in
a wired-OR configuration.

DLY — Enable Oscillator Start-Up Delay
1 = A delay of approximately 4,000 E-clock cycles is imposed as the MCU is started

up from the STOP power-saving mode. This delay is intended to allow the crys-
tal oscillator to stabilize. The actual time required for a crystal oscillator to sta-
bilize depends on external components and physical layout. As far as the MCU
is concerned, it is not necessary for the oscillator to be stable at its operating
frequency because the MC68HC11AS8 is a fully static processor that can oper-
ate at frequencies down to dc. This delay is provided for the convenience of
those applications requiring proper timing measurements soon after restart,
thus requiring a stable oscillator.

0 = The relatively long oscillator startup delay coming out of STOP is bypassed,

and the MCU resumes processing within about four bus cycles.

CR[1:0] — COP Timer Rate Select Bits
The MCU internal E clock is first divided by 21° before it enters the COP watchdog sys-
tem. The CR1 and CRO control bits control a further scaling factor for the watchdog
timer as shown in Table 3-2. The columns at the right of the table show the resulting
watchdog time-out periods for three typical oscillator frequencies. After reset, the time-
out period is configured for the shortest time-out period by default. In normal operating
modes, these bits can only be written once, and that write must be within 64 bus cycles

M68HC11

CONFIGURATION AND MODES OF OPERATION MOTOROLA

REFERENCE MANUAL 3-9

after reset. The COP system is discussed in detail in SECTION 5 RESETS AND IN-
TERRUPTS.

Table 3-2 Watchdog Rates vs. Crystal Frequency

Crystal Frequency
CR1 CRO E + 215 Divided by 28 Hz | 8 MHz | 4 MHz
Nominal Time-Out
0 0 1 15.625 ms 16.384 ms 32.768 ms
0 1 4 62.5 ms 65.536 ms 131.07 ms
1 0 16 250 ms 262.14 ms 524.29 ms
1 1 64 1ls 1.049s 21s
2.1 MHz 2 MHz 1 MHz
Bus Frequency (E Clock)

3.4 Normal MCU Operating Modes

The normal modes of operation are selected by having a logic one on the MODB pin
during reset. The reset vector is fetched from addresses $FFFE,FFFF, and program
execution begins from the address indicated by this vector. In normal single-chip
mode, the internal 8-Kbyte program memory is enabled in this memory space so the
reset vector is fetched from this internal ROM. In normal expanded mode, the internal
8-Kbyte ROM may or may not be enabled, depending on the ROMON bit in the CON-
FIG register. If the internal ROM is on, the reset vector is fetched from within this ROM;
otherwise, it is fetched from external memory addresses $FFFE,FFFF.

3.4.1 Normal Single-Chip Mode

The normal single-chip mode is selected by a logic one on the MODB pin and a logic
zero on the MODA pin during reset. Because the single-chip modes do not require any
external address and data bus functions, port B, port C, strobe A (STRA), and strobe
B (STRB) pins are available for general-purpose parallel I/O. In this mode, all software
needed to control the MCU is contained in internal memories.

The ROMON control bit in the EEPROM-based CONFIG register is overridden in nor-
mal single-chip mode to force the internal 8-Kbyte ROM on. This procedure is required
because there must be a valid reset vector for the MCU to operate in a logical manner.

3.4.2 Normal Expanded Mode

The normal expanded mode is selected by having a logic one on both the MODB pin
and MODA pin during reset. This mode of operation allows external memory and pe-
ripheral devices to be accessed by a time-multiplexed address/data bus. By multiplex-
ing the low-order eight bits of address with data on the port C pins, only 18 pins are
needed to provide an 8-bit data bus, a 16-bit address bus, and two bus control lines.
The low-order address lines are separated from data with an external transparent latch
such as a 74HC373, which is clocked by the address strobe (AS) signal. All bus cycles,
whether internal or external, execute at the E-clock frequency (no throughput penalty
for external devices). The maximum bus frequency for the MC68HC11A8 is 2.1 MHz,
which is comparable to the fastest external EPROMs available at the time the
M68HC11 was introduced. SECTION 2 PINS AND CONNECTIONS gives more de-

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-10 REFERENCE MANUAL

tailed information on the use of the expansion bus, including a discussion of an ex-
panded-system example.

For emulation purposes, there is a special companion chip called the MC68HC24 port
replacement unit (PRU). This device reconstructs the parallel I/O functions that are
lost to the 18 expansion bus lines. Software developed on an expanded system, which
includes an MC68HC24, can later be submitted as a masked ROM pattern. The result-
ing custom-ROM part can then be operated in the single-chip mode, and all parallel I/
O functions will work as they did in the expanded system. Usually, the MC68HC24
companion chip would not be used as a general-purpose, peripheral 1/0 chip because
cheaper ways exist to add general-purpose I/O to an expanded system.

3.5 Special MCU Operating Modes

The special mode variations are selected by having a logic zero on the MODB pin dur-
ing reset. In the special mode variations, the reset and interrupt vectors are located at
$BFCO-$BFFF, and software has access to special test features. One of these special
test features (the disable resets (DISR) control bit in the TEST1 control register) tem-
porarily disables the COP watchdog and clock monitor reset functions. All the special
functions and privileges are available in the special test mode and special bootstrap
mode.

Since the reset vectors are located at $BFFE,BFFF, the internal 8-Kbyte ROM cannot
interfere with the vectors. The expanded special test mode assures that the reset vec-
tor is fetched from external memory even if the internal 8-Kbyte ROM is enabled. In
special bootstrap mode, an on-chip bootloader firmware ROM is enabled at addresses
$BF40-$BFFF so the reset vector is fetched from this internal ROM.

The SMOD control bit is latched as logic one when the MCU is reset in the special
modes. While SMOD is a one, special test functions and privileges are available.
RBOOT and MDA can be turned on or off, and SMOD and IRV can be turned off but
not back on. Thus, the operating mode of the MCU can be changed, but once the
mode is changed to a normal mode (SMOD = 0), the privileges are revoked. An impor-
tant, often overlooked application of this privilege is the ability to reset the MCU in
bootstrap mode, which is a single-chip mode, then change the MDA bit to one to en-
able the multiplexed expansion bus.

On present mask sets of the MC68HC11A8 (B96D and newer), the SMOD bit must be
set to one to allow programming of the EEPROM-based CONFIG register. In some
M68HC11 Family members, the EEPROM-based CONFIG register can be written in
special modes as if it were an ordinary static register. This privilege is not available in
the original MC68HC11A8 but is present in the MC68HC811A2.

Another group of control bits in the MCU have special protection mechanisms to pre-
vent accidental writes while operating in normal modes. These protections include
write permission only within the first 64 E-clock cycles after reset and/or the ability to
write these bits only one time. While in either special mode, these protections are over-
ridden, and these control bits may be written as if they were ordinary control bits. For
a detailed description of these protection mechanisms, see 3.3 Protected Control

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-11

Register Bits .

A special register (TEST1) becomes accessible in the special modes. This register re-
verts to all zeros and cannot be written when SMOD is zero (normal modes). Other
than the DISR control bit in this register, the user should not be interested in the oper-
ation of these bits since they are only useful for factory testing of the MCU. Two other
control bits in the SCI baud-rate control register are similarly enabled only in the spe-
cial modes.

3.5.1 Testing Functions Control Register (TEST1)

The following register and paragraphs discuss the TEST1 control register. Testing
functions are not recommended for use by the user since they may change at any time
to meet the manufacturing requirements of Motorola; however, brief descriptions of
these testing functions will be presented. Occasionally, knowledge of these functions
will help a user understand what is happening if one of these functions is accidentally
invoked during development of an application.

TEST1 — Testing Functions Control Register $103E
BIT 7 6 5 4 3 2 1 BITO
[TOP | 0 [OCCR | CBYP | DISR FCM FCOP | TCON |
RESET: 0 0 0 0 0* 0 0 0

*The DISR control bit resets to one in special modes.

TILOP — Test lllegal Opcode

Can be written only while SMOD equals one

1 = Enable illegal opcode testing function

0 = Function disabled
In factory test equipment, information presented to the data bus pins is independent
of the address coming from the MCU. In normal systems, the address outputs from the
MCU enable a specific location in a memory device so the data presented to the MCU
is specifically related to the address. The TILOP works in conjunction with the LIR pin
to allow testing of illegal opcodes on consecutive bus cycles rather than requiring the
time-consuming interrupt service normally associated with illegal opcodes. One con-
sequence of the implementation of this function is that the address bus begins to dec-
rement after the first illegal opcode is detected at the data bus. Since there is no
cause-effect relationship between address and data on the factory test equipment, this
unusual address bus activity poses no difficulty for factory testing of illegal opcodes.
However, this unusual address bus activity makes the illegal opcode test function un-
usable in a normal system.

OCCR — Output Condition Code Register Status to Timer Port
Can be written only while SMOD equals one
1 = The condition code register bits (H, N, Z, V, and C) are driven out of the five
most significant bits of port A (bits [7:3], respectively), which allows the CPU op-
eration to be verified without the burden of complex branching routines.

NOTE

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-12 REFERENCE MANUAL

While OCCR is set to one, the internal 8-Kbyte ROM is disabled,
regardless of the states of the ROMON bit in the CONFIG register or
the TCON bit in the TEST1 register.

0 = Function disabled; port A operates as in normal modes.

CBYP — Timer Divider Chain Bypass
Can be written only while SMOD equals one
1 = The 16-bit free-running timer is divided into 8-bit halves, and the prescaler is
bypassed. The E clock directly drives both halves of the timer. This function
greatly reduces testing time for the main timer system.
0 = Timer system operates normally.

DISR — Disable Resets from COP and Clock Monitor
Can be written only while SMOD equals one; forced to zero if SMOD equals zero
1 = Regardless of other control bit states, the COP and clock monitor systems do
not generate a system reset. This function assures that testing operations are
not interrupted by the COP or clock monitor protection mechanisms.
0 = COP and clock monitor resets operate normally.

NOTE

Users of the special bootstrap mode often forget that this bit is reset
to a one in the bootstrap mode. If a bootloaded program uses one of
these reset functions, this bit must be explicitly cleared by the loaded
program. This is probably the only test-related control bit that is of
interest to the user.

FCM — Force Clock Monitor Failure
Can be written only while SMOD equals one
1 = Writing a logic one to this location generates an immediate clock monitor failure
reset if the clock monitor enable (CME) bit in the OPTION register is also set.
0 = System operates normally.
The DISR control bit has priority over this bit and inhibits the forced reset functions.

FCOP — Force COP Watchdog Time-Out
Can be written only while SMOD equals one
1 = Writing a logic one to this location generates an immediate COP failure reset if
either the NOCOP bit in the CONFIG register is zero or the TCON bit in the
TEST1 register is one.
0 = System operates normally.
The DISR control bit has priority over this bit and inhibits the forced reset functions.

TCON — Test Configuration
Can be written only while SMOD equals one
1 = Overrides the specifications in the CONFIG register so that COP is enabled
and ROM and EEPROM are in the memory map. If the OCCR bit is set to one,
ROM is removed from the memory map, regardless of other control bits.
0 = Configuration options are controlled by the CONFIG register.

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-13

3.5.2 Test-Related Control Bits in the BAUD Register

The following register and paragraphs describe the two test-related control bits in the
SCI baud-rate (BAUD) control register. These bits, which are only accessible in the
special modes, revert to zeros if the mode is changed to a normal mode. Because no
read path is implemented for these two bits, they always read zero, even after they are
written to one in a special mode.

BAUD — Testing Functions Control Register $102B
BIT 7 6 5 4 3 2 1 BITO
[[TCLR | 0 [SCPL | SCPO | RCKB | SCR2 | SCRI | SCRO |
RESET: 0 0 0 0 0* 0 0 0

TCLR — Clear Baud-Rate Timing Chain
Can be written only while SMOD equals one. Writing a one to this bit triggers a reset
of the baud-rate counter chain. This bit always reads zero.

RCKB — SCI Baud-Rate Clock Test
Can be written only while SMOD equals one. Writing a one to this bit enables a baud-
rate clock test using the PD1 pin. When this baud-rate test function is enabled, the ex-
clusive OR of the SCI receive clock (16 times the baud rate) and the SCI transmit clock
(one times the baud rate) is driven out the PD1 pin so it can be monitored by factory
test equipment. This bit always reads zero.

The other bits in this register are related to the asynchronous SCI and are described
in SECTION 9 ASYNCHRONOUS SERIAL COMMUNICATIONS INTERFACE .

3.5.3 Special Test Mode

The special test mode is primarily intended for Motorola internal production testing;
however, there are a few cases where the user can utilize the test mode. These spe-
cial cases include programming the CONFIG register, programming calibration data
into the EEPROM, and development situations such as emulation and debug. Since
the mode control bits can be written in test mode, it is possible to come out of reset in
special test mode, check the contents of the CONFIG register, and then switch to a
normal operating mode to re-enable the automatic protection mechanisms. This trick
is also useful for a first-time turn-on situation where the contents of the CONFIG reg-
ister might not be known. Except for these few limited cases, the MC68HC11A8
should not be in test mode in a user’s application.

Because the test mode overrides several automatic protection mechanisms or allows
them to be overridden, there are risks associated with these modes of operation. For
example, by default the COP and clock monitor are disabled in special modes. Also in
special modes, the $00 opcode is a legal opcode, which causes the address bus to
become an uninterruptable 16-bit counter (useful for testing but a disaster in a real ap-
plication). Several of the test functions are included in this category. Such risks must
be weighed against whatever benefit is being derived from using special test or boot-
strap operating mode.

One important use of the test mode is to allow programming of the CONFIG register

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-14 REFERENCE MANUAL

and/or EEPROM. Since the reset and interrupt vectors are fetched from the user’s ex-
ternal memory at the $BFCO-$BFFF area, it is not necessary for the user to know if
internal ROM is on or off. Even if the COP watchdog is enabled in the CONFIG regis-
ter, there is no need to service it because COP resets are inhibited in special modes.
The program needed to change EEPROM data could be as simple as the program
shown in Example 3-1 (see 3.6 Test and Bootstrap Mode Applications), which just
reprograms the CONFIG register to a fixed value; it could be as complex as a complete
monitor, similar to the BUFFALO monitor, which would allow interactive examination
and modification of EEPROM data.

The test mode is useful in the debug phase of a project. In test mode, the data from
reads of internal addresses can be seen on the external data bus. This function is
called IRV and is useful for debugging with a logic analyzer or bus state monitor. In
normal operating modes, IRV is disabled since it could interfere with external circuitry.
For example, if an external 32-Kbyte EPROM were mapped at $8000-$FFFF, it would
overlap the internal EEPROM from $B600—$B7FF. The easiest decode logic would be
to select the external EPROM when ADDR15 and R/W are both high, which is perfect-
ly legal and reasonable for the MC68HC11A8 operating in normal expanded mode. Al-
though the external EPROM is selected for reads of the internal EEPROM, the read
data from the external data bus is ignored, and the CPU receives valid, internal EE-
PROM data. If the IRV function were allowed in normal mode, this example would re-
sult in a direct contention between the read data from the internal EEPROM, which is
driven out the data bus for visibility, and the read data from the external EPROM. To
overcome this contention, more complex decoding would be required for the external
devices. A mass-produced product should not bear the cost of a debug feature; the
more complex decoding belongs in the low-volume emulator tool where IRV will be
used.

3.5.4 Special Bootstrap Mode

When the MCU is reset in the special bootstrap mode, a small on-chip ROM is enabled
at address $BF40-$BFFF. The reset vector is fetched from this bootstrap ROM, and
the MCU proceeds to execute the firmware in this ROM. The program in this ROM ini-
tializes the on-chip SCI system, checks for a security option, accepts a 256-byte pro-
gram through the SCI, and then jumps to the loaded program at address $0000 in the
on-chip RAM. There are almost no limitations on the programs that can be loaded and
executed through the bootstrap process.

While the MCU is operating in bootstrap mode, the MDA control bit can be written;
thus, itis possible to turn on the multiplexed expansion bus. This possibility makes the
bootstrap mode useful in both single-chip and expanded systems. In some systems,
it may be necessary to disable the bootstrap ROM by writing a zero to the RBOOT con-
trol bit to allow access to external devices in $BF40-$BFFF. If the bootstrap ROM is
disabled, it is necessary for the user to externally provide reset and interrupt vectors
at $BFCO0-$BFFF or switch the SMOD control bit back to zero so interrupt and reset
vectors return to $FFCO-$FFFF.

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-15

3.5.4.1 Loading Programs in Bootstrap Mode

This section describes the bootloader firmware in the standard MC68HC11A8. When
the security mode is not specifically requested, it is disabled at the mask level so it will
not be invoked accidentally. In these cases, the program steps, which check for secu-
rity and optionally erase the EEPROM and CONFIG register, are not included in the
bootloader program. On some early production units before 1988, the security checks
were included even on parts having the security mode disabled in the mask. Also, the
security feature was enabled in the mask of some parts where the security feature was
not specifically requested.

The bootloader ROM program initializes the SCI so that the receiver and transmitter
are enabled and the baud rate is E clock/16/16 (7812 baud if E = 2 MHz). If the security
feature is present and enabled, $FF is transmitted. The EEPROM is then erased. If the
erasure was unsuccessful, $FF is again transmitted, and erasure is attempted again.
After successful erasure of EEPROM, the RAM is written over with $FF, and the CON-
FIG register is erased. Only after all of these operations are successful can the boot-
loading process continue as if the part were never secured.

If the MCU is not secured (or if the previous erase sequence has been completed), a
break character is transmitted. For normal use of the bootloader, the user then sends
an $FF character at a baud rate of either E clock/16/16 (7812 baud if E =2 MHz) or E
clock/16/13 (1200 baud if E = 2 MHz). This initial character is used to establish the
baud rate for the rest of the transfer and is not echoed to the transmitter as the remain-
ing characters are.

The user next downloads 256 bytes of program data, which will be put into on-chip
RAM beginning at address $0000. If the program to be loaded is less than 256 bytes,
dummy characters must be sent to make a total of 256 bytes. These 256 characters
are echoed out the SCI transmitter for the user to optionally verify that they were re-
ceived correctly. When the bootloader program receives the 256th byte, a jump is ex-
ecuted to location $0000, and the loaded program gains control.

Future M6BHC11 Family derivatives could have additional features in the bootloader
program. One such feature is a variable-length download rather than the fixed-length,
256-byte download on the MC68HC11A8 version. This feature will probably be includ-
ed on M68HC11 members that have more than 256 bytes of on-chip RAM. The
MC68HC11E9 version has 512 bytes of RAM and includes a variable-length down-
load.

3.5.4.2 Executing User Programs in Bootstrap Mode

An often overlooked aspect of the bootstrap mode is that the bootloader firmware in
the bootstrap ROM executes after reset but before the user’s downloaded program be-
gins. Many users make the mistake of assuming all registers and I/O pins are still in
their reset state when their downloaded program starts. Actually, the bootloader firm-
ware has made some significant changes to the reset state of the MCU in the course
of its operation. Because the SCI receiver and transmitter have been enabled, the user
must disable them if the PDO or PD1 pins are to be used as general-purpose I/O pins.
The port D wired-OR mode (DWOM) control bit in the SPCR has been written to one

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-16 REFERENCE MANUAL

so the port D outputs (especially PD1/TxD) would operate as open-drain outputs dur-
ing the download. This DWOM bit must be written back to zero if the user wants any
port D pins to act as push-pull outputs.

Because the bootstrap mode is a special mode, test-related functions are enabled.
The DISR control bit is a one, which disables the COP watchdog and clock monitor
functions. As long as the SMOD control bit is a one, all reset and interrupt vectors are
located in $BFCO-$BFFF rather than $FFxx. A user’s program may have to change
some of these control bits.

Special attention should be paid to the circuitry connected to the PD1/TxD pin if the
bootstrap mode variation is used. Since the bootloader firmware enables the SCI
transmitter, the PD1 pin is forced to operate as an output. To minimize limitations on
external circuitry on the PD1 pin, port D is also configured for wired-OR operation to
make it look like an open-collector-type output during downloading. Most users will use
the PD1/TxD pin as a serial data output line; therefore, no conflict will occur between
the bootstrap use of PD1 and the user’s use of this pin. If the application uses the PD1
pin as an input to detect a switch or contact closure, there is still no conflict, although
the user could not use the verify feature of the bootloader program if the PD1 pin hap-
pened to be driven low during the download.

A downloaded program can jump back to the beginning of the bootstrap ROM, causing
a new program segment to be serially downloaded. The downloaded program might
also contain a routine to read information into the MCU over the SPI interface or from
a parallel I/O port. The loaded program can even turn on the multiplexed expansion
bus to gain access to external memory or peripheral devices. Users are limited only
by their imagination.

3.5.4.3 Using Interrupts in Bootstrap Mode

The reset and interrupt vectors for the bootstrap mode are located in the bootstrap
ROM at $BFCO-$BFFF. Although this ROM is mask programmed, it is impossible to
know in advance where a user’s service routines will be located. To allow users to use
their own service-routine addresses, a system of pseudo-vectors is included for boot-
strap mode. Specific RAM addresses are coded in the actual vector locations of the
bootstrap ROM (see Table 3-3). These RAM locations are called pseudo-vectors be-
cause they can be used like vectors to direct control to interrupt service routines. Each
pseudo-vector is allowed three bytes of space, rather than the two bytes for normal
vectors, because an explicit jump (JMP) opcode is needed to cause the desired jump
to the user’s service-routine address. For example, to use the SWI, a jump instruction
to the user’'s SWI service routine would be placed in RAM at addresses $00F4, $00F5,
and $00F6. When an SWI request is encountered, the registers are stacked, and the
vector in the bootstrap ROM passes control to $00F4, which, in turn, contains a jump
instruction to the user’'s SWI service routine.

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-17

Table 3-3 Bootstrap Mode Pseudo-Vectors

Address Vector Name Address Vector Name
$00C4-$00C6 SCI $00E5-$00E7 Timer Input Capture 2
$00C7-$00C9 SPI $00EB-$00EA Timer Input Capture 1
$00CA-$00CC | Pulse Accumulator Input Edge $00EB-$00ED Real-Time Interrupt
$00CD-$00CF | Pulse Accumulator Overflow $00EE-$00FD IRQ
$00D0-$00D2 Timer Overflow $00F1-$00F3 XIRQ
$00D3-$00D5 Timer Output Compare 5 $00F4—-$00F6 Swi
$00D6-$00D8 Timer Output Compare 4 $O0F7—-$00F9 lllegal Opcode
$00D9-$00DB Timer Output Compare 3 $00FA-$00FC COP Fall
$00DC-$00DE Timer Output Compare 2 $O0FD-$00FF Clock Monitor Fail
$00DF-$00E1 Timer Output Compare 1 $BF40 Reset (Bootloader Start)
$00E2-$00E4 Timer Input Capture 3

3.5.4.4 Bootloader Firmware Options

The designers of the MC68HC11A8 anticipated the need for a practical way to force
the MCU to jump directly into EEPROM after a reset, but they wanted to avoid special
modes that would make the part more difficult to understand. As a compromise, the
bootloader firmware provides for this direct jump to EEPROM. After initializing the SCI
and port D, the bootloader looks for the $FF character that will determine the baud rate
for the download. If a break character is received at this point, instead of the $FF, an
immediate jump to the start of EEPROM ($B600) is executed. Since the bootloader
already transmits a break character, the user can tie the RxD and TxD pins together
and to a pull-up resistor, and then reset the part in special bootstrap mode.

This procedure will cause a direct jump to EEPROM at $B600. Tying the RxD line low
will not accomplish the same result because a high-to-low transition is required to in-
dicate the beginning of a start bit (see SECTION 9 ASYNCHRONOUS SERIAL COM-
MUNICATIONS INTERFACE).

There is a small delay (a few milliseconds) between the reset and the start of the pro-
gram in EEPROM due to the time required for the SCI preamble and break characters.
The user should not be concerned about running out of time to access the time-pro-
tected control bits because bootstrap mode is a special mode and the protections are
overridden until the SMOD control bit is written to zero. Consider the current state of
SCI and port D controls as well as the DISR control bit in the TEST1 control register,
which disables COP and clock monitor resets. It may be necessary for the program in
EEPROM to change these bits. The stack pointer is initialized as one of the first ac-
tions in the EEPROM program (good practice in almost all programs). It is advisable
to initialize the illegal opcode pseudo-vector to help prevent program runaway in the
event of an error in the EEPROM program or a misread opcode.

Another bootloader firmware option allows a direct jump to the start of RAM, but this
feature is probably not very useful to the user since it assumes there is already a
meaningful program in the internal RAM at the time of reset. This option is invoked by
sending a $55 character to the SCI instead of the $FF or break characters previously

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-18 REFERENCE MANUAL

described. This $55 character can only use the E clock/16/16 (7812 baud for E = 2
MHz) rate since it takes the place of the $FF character, which could have changed the
baud rate. This feature allows for testing the MCU for proper single-chip mode opera-
tion when the E-clock frequency is beyond the capability of the multiplexed expansion
bus. Test equipment can reset the MCU in special test mode (at a legal expansion bus
frequency) and parallel load a program into RAM. The tester can then reset the MCU
in bootstrap mode (at a higher clock frequency) and serially send the $55 character to
cause a jump to the start of RAM. This procedure takes significantly less time than us-
ing the normal bootloading procedure to serially load 256 characters. Since the pro-
gram segments are limited in size by the amount of on-chip RAM, the time required to
load enough program segments to fully test the MCU would make such testing too ex-
pensive for all but a very few applications.

3.6 Test and Bootstrap Mode Applications

Most users are familiar with the uses for normal operating modes, but the special test
and special bootstrap modes may be new. In this section, an example is presented to
stimulate the user’s imagination. After examining this example, some users will think
of ways these special mode variations can help in their applications.

Example 3—-1: Programming CONFIG (Uses Special Test Mode)

This example demonstrates how the special test mode can be used to program the
EEPROM-based CONFIG register. Current versions of the M68HC11 Family require
the MCU to be in one of two special modes to program the CONFIG register.

There are several reasons why a user might want to change the CONFIG register.
Suppose the user has an MC68HC811E2 and would like to experiment with it in an
expanded system such as an MC68HC11EVB evaluation board. As shipped from Mo-
torola, the MC68HCB811E2 part is not compatible with the memory map of the EVB.
The EEPROM must be disabled by programming the EEON bit to zero, or the upper
four bits of CONFIG must be changed to relocate the EEPROM away from EVB re-
sources. Suppose the user is finished with initial debugging and wants to enable the
COP watchdog system by programming the NOCOP bit in CONFIG to zero. Perhaps
the CONFIG registers in some of the user’s parts have been corrupted during initial
experimentation. Some users forget to control reset during power transitions; thus, the
CONFIG register could be corrupted due to program runaway when V5 is too low to
allow proper operation. When this runaway happens, the part is not defective; it needs
to have the CONFIG register changed back to the proper value.

The schematic diagram shown in Figure 3-1 is a relatively simple expanded-mode
system that can be operated in special test mode. By removing the jumper that pulls
MODB low, this board can also be used in normal expanded mode. An interesting fea-
ture of this system is that the external EPROM appears in the memory map at $A000—
$BFFF and again at SEO00—$FFFF because address line ADDR14 is left out of the ad-
dress decode. This feature makes reset vectors in the highest locations of the EPROM
appear the same to the MCU whether the MCU is reset in special test mode or normal
expanded mode with the internal ROM disabled. Several subtle benefits to this feature
are evident. First, it means no decode changes are needed to alternate between nor-

M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA
REFERENCE MANUAL 3-19

mal mode and special test operation of the board. In fact, after a reset in special test
mode, software can change to normal expanded mode, and the reset and interrupt
vectors are still available in the external EPROM. If the internal 8 Kbyte ROM has a
useful program in it (and internal ROM is enabled), the external EPROM can be used
for additional program memory. Of course, when the CPU reads an internal ROM ad-
dress, it sees valid internal ROM data even though the external data bus has data from
the external EPROM. As long as the IRV function is not enabled, there is no conflict
between the internal 8 Kbytes ROM and the external EPROM.

In Example 3-1, the program shown in Figure 3-3 is programmed into the external
2764-type EPROM. When the board is turned on, this small program reads the eight-
part switch that is wired to the port E pins. If the CONFIG register is different, it is re-
programmed to match the switches. Because the EEPROM is subject to wear-out (af-
ter thousands of write-erase cycles), it should not be erased and reprogrammed
unless it is incorrect. Since this program is intended to be very simple, it does not
check to see if the change was successful.

This program could be modified to include the ability to check the results. The security
feature offers some challenges. For example, if security mode is being enabled, it is
not possible to verify the CONFIG value in this setup. A reset is required to get the
CONFIG value transferred into the readable working register, and the part can only be
reset in single-chip modes after security is enabled. If the secured part is reset while
MODB is low, it comes up in special bootstrap mode (MODA pin is ignored due to se-
curity). When reset in bootstrap mode, the EEPROM and CONFIG register are auto-
matically erased, which is self-defeating. Presumably, a user has a meaningful
program in internal ROM before the security bit is finally enabled, which provides for
orderly program execution in normal single-chip mode. The user then verifies that se-
curity is enabled by a checking function in that internal software. Another way to check
for security is to attempt to reset the part in normal expanded mode. If security is not
enabled, the AS/STRA pin acts as an address strobe that clocks at the E-clock fre-
guency even while RESET is still low (part does not have to be out of reset to check
for security). If security is not activated, the AS/STRA pin acts as the strobe A high-
impedance input.

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-20 REFERENCE MANUAL

MC68HC11A8
v 10K TYP
DD YA —
- PAO/IC3 3
PAL/IC2——N\——@
* * Vpbp PA2/ICO——"\N\—9
svstem |+ ll HFIO-Ol uF PA3/0C5/0C1——
POWER —— PA4/OC4/0C1——
10 pF I I PA5/0C3/0C1——
? . Vgg PA6/0C2/0C1|——
PA7/PAIIOCI——N\——@
ADO ADO
EXTAL
10M AD1 AD1
— N\ XTAL AD2 AD2
8.0 MHz AD3 AD3
0—| 0 l—o AD4 AD4
18 pF AD5 AD5
— — AD6 AD6
18 pF AD7 AD7
- - AS AS
\Vi DD \Vi DD R/W R/W
E E
4.7K
IN
A8 A8
RESET ° RESET A9 A9
MC34064 ALO ALO
GND
All All
Al2 Al12
- Voo Al3 A13
AR AL4 —
— " \\— XIRQ Al5 A15
4.7K
—"\N— RQ PDO/RxD ——"V\———@
PDL/TXD ———"V\———@
47K PD2IMISO—\\—@
—\—— VT YA —
cuT q A MODA/LIR PD3/MOSI 3
JUMPER FOR : PD4/SCK|—\\———9
NORMAL MODE PDS/SS AN
f@ L MODB/VSTBY 10K TYP
—— PEO/ANO PEO
- PE1/AN1 PE1
Voo PE2/AN2 PE2
1K PE3/AN3 PE3
VRY PE4/AN4 PE4
= 1uF PE5/ANS PE5
VRL PE6/ANG PE6
e PE7/AN7 PE7
Figure 3-1 Schematic for Figure 3-3 (Sheet 1 of 2)
M68HC11 CONFIGURATION AND MODES OF OPERATION MOTOROLA

REFERENCE MANUAL 3-21

ADO
AD1
AD2
AD3
AD4
AD5
AD6
AD7

AS
RIW

A8
A9
Al10
All
Al12
Al3

Al5

PEO
PE1
PE2
PE3
PE4
PE5
PE6
PE7

MOTOROLA

3-22

10K TYP

Figure 3-2 Schematic for

CONFIGURATION AND MODES OF OPERATION

bt

Figure 3-3 (Sheet 2 of 2)

o DATA BUS
/ 1
0o 74HC373
A0
DO Qo
D1 Al
D1 Q1
D2 A2
D2 Q2
D3 A3
D3 Q3
D4 A4
v D4 Q4
A5 DO
D5 Q5 A0 DO
D6 A6 A0 D1
e D6 Q6 1 Al D1
D7 Q7 A7 A2 D2 D2
A2 D3
LE oF A3 A3 b3
v A4 D4 D4
o - A5 D5 DS
— RIW __ A5 D6
E HCO00 A6 A6 Do
7 A7 D7 D7
A8 - A8
A9 - A9
A10 - ALO
All - AL
A12 AL
Al2
A13 (OE
Al5 Hcoo [O J Cs
8K X 8 EPROM
N——
VD ADDRESS BUS
10K TYP
DIP
SWITCH

M68HC11

REFERENCE MANUAL

*

* *
*kkkk

*kkkkkkkk

*% *%

* Example 3—1 65 bytes total
*

*kkkkkkkkkkkkk *% * *kkk

* This example program uses the hardware setup in figure 3-1 in test *
* mode. After reset the CONFIG register is checked against port E. *
* |If it is different, CONFIG is erased and reprogrammed to the port E *

* value. $30 is written to port A and the program ends. *
*kkkk " " " " " "
ORG $A000 Start of external EPROM
EX31A LDS #$00FF Establish top of stack
BSR DLY10 Allow charge pump to stabilize
LDAA $100A Read port E DIP switches
ANDA #$0F Mask off upper 4 bits (not implemented on 'A8)
CMPA $103F See if CONFIG is same
BEQ NOWOK If already OK
* Not OK so first erase CONFIG
LDAB #%06 Bulk Erase, and EELAT on
STAB $103B Write to PPROG register
STAA $103F Write to CONFIG address (any data)
INCB To $07 - turns on EEPGM bit
STAB $103B Write to PPROG register
BSR DLY10 Delay 10 ms for erase to complete
CLR $103B Turn off charge pump (EEPGM to 0)
* Now reprogram CONFIG with data from port E (still in A-reg)
LDAB #%$02 Turn on EELAT
STAB $103B Write to PPROG register
STAA $103F Write port E data to CONFIG address
INCB To $03 - Turns on EEPGM bit
STAB $103B Write to PPROG register
BSR DLY10 Delay 10 ms for erase to complete
CLR $103B Turn off charge pump (EEPGM to 0)
* Programming complete but you can’t check results till next reset
NOWOK LDA #$30
STAA $1000 You are done (check with scope)
BRA * Branch to self (hangs till pwr off or rst)

*

* PROGRAM END

*

*k*k

subroutines follow

* DLY10 - Subroutine to delay I0ms (for E=2MHz)

*kk

DLY10

DLOOP

*

PSHX
LDX
DEX
BNE
PULX
RTS

#$0D06

DLOOP

* Establish a reset vector

*

RESET

ORG
FDB

$BFFE
$A000

Save X (not required in this ex | just do)

3334 6~ * 500nS/~ = 10mS
[3]in [Js is cycles for that instruc

[3] cont. for 3334 times (loop time = 6~)

Recover X value
*RETURN**

Point to start of program

Figure 3-3 Program to Check/Change CONFIG

M68HC11
REFERENCE MANUAL

CONFIGURATION AND MODES OF OPERATION

MOTOROLA
3-23

MOTOROLA CONFIGURATION AND MODES OF OPERATION M68HC11
3-24 REFERENCE MANUAL

SECTION 4
ON-CHIP MEMORY

The MC68HC11A8 includes on-chip random-access memory (RAM), read-only mem-
ory (ROM), and electrically erasable programmable ROM (EEPROM) memories. The
on-chip RAM is a fully static read-write memory used for storage of variable and tem-
porary information. The MC68HC11A8 has 256 bytes of RAM; whereas other mem-
bers of the M68HC11 Family include more or less RAM (MC68HC11E9 has 512 bytes
of RAM and MC68HC11D3 has 192 bytes of RAM). Members of the M6BHC11 Family
include various amounts of on-chip mask-programmed ROM. The MC68HC11A8 has
8 Kbytes of user ROM, the MC68HC11E9 has 12 Kbytes, and the MC68HC11D3 has
4 Kbytes. This ROM is used for storage of user program instructions and fixed data.
Some members of the M68HC11 Family have this internal ROM disabled, and the user
programs reside in external memories. The last major memory system on the
M68HC11 is the EEPROM. The MC68HC11A8 includes 512 bytes of EEPROM,;
whereas other members of the M68HC11 Family include as much as 8.5 Kbytes of EE-
PROM. Data can be programmed into the EEPROM or erased from the EEPROM un-
der software control. No power supplies other than the normal Vpp (5 Vdc) supply are
needed for programming or erasure of the 512 bytes of on-chip EEPROM in the
MC68HC11A8. No power supplies are required to maintain the contents of this mem-
ory. This memory is commonly used for semipermanent information such as calibra-
tion tables, personality data, or product history information. The EEPROM can also be
used for program memory; furthermore, the non-volatile nature of this EEPROM sup-
ports programs that can adapt to changing conditions.

4.1 ROM

The primary use for on-chip ROM is to hold the user’s application program instructions.
Since these instructions are programmed into the microcontroller unit (MCU) when it
is manufactured, they cannot be changed. A user develops the application program
and debugs it before ordering production MCUs. The user places an order for produc-
tion units with the pattern of instructions and data to be programmed into the on-chip
ROM. Motorola then translates this pattern into a photographic mask to be used during
processing of silicon wafers. Motorola then produces a small batch of these parts and
returns them to the customer for verification. These units are called ROM verification
units (RVUSs). After customer approval of these RVUs, Motorola begins full production
of these customized MCUs. The RVUs, processed on a quick turnaround basis, are
not tested to environmental extremes because their sole purpose is to demonstrate
that the customer-requested ROM pattern was properly implemented.

The on-chip program ROM can be disabled by an EEPROM-based control bit in the
configuration control (CONFIG) register. When the program ROM is disabled, it uses
up no space in the 64-Kbyte memory space, and an external memory is used for pro-
gram instructions. ROM-less versions of the M68HC11 Family, such as the
MC68HC11A1, actually have on-chip ROM, but the ROM is disabled by the enable on-

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-1

chip ROM (ROMON) control bit equals zero in the CONFIG register.

The MC68HC11A8 actually has two separate on-chip ROM memories — the 8-Kbyte
user ROM, which is available for user-defined programs, and a separate 192-byte
ROM, called the bootloader ROM. This bootloader ROM controls the bootstrap loading
process of the special bootstrap mode. In normal modes of operation, the bootloader
ROM is disabled and uses no space in the 64-Kbyte address space of the MCU. Dur-
ing expanded test mode, the bootloader ROM can be enabled for testing but is not in
the memory map after a reset until/unless the test program software enables it. In spe-
cial bootstrap mode, the bootloader ROM is enabled at $BF40—-$BFFF by default out
of reset, and the reset Vector in this ROM at $BFFE,BFFF Vectors to the bootloader
program in this ROM.

The bootloader program is also involved with the security feature that allows a user to
protect the contents of EEPROM and RAM from being read by software pirates. When
the security option is enabled, the MCU can only be reset in normal single-chip mode
or special bootstrap mode. In normal single-chip mode, the reset vector is located in
the on-chip 8-Kbyte ROM, and the user’'s program controls all program actions. Since
there are no external address or data buses, a pirate could not see what is in the in-
ternal EEPROM or RAM memories. In special bootstrap mode, the reset vector is lo-
cated in the on-chip bootloader ROM, and the bootloader program is in control. The
bootloader program checks the security enable control bit before proceeding to the
program downloading step. If security is enabled, the entire EEPROM and RAM are
erased before downloading continues. After the EEPROM and RAM have been
erased and verified, the CONFIG register (which contains the security enable control
bit) is erased, and downloading can proceed. For additional information about the
CONFIG register and security option, refer to 3.2 EEPROM-Based CONFIG Regis-
ter. SECTION 3 CONFIGURATION AND MODES OF OPERATION also includes ad-
ditional details about modes of operation.

4.2 RAM

This subsection discusses the on-chip RAM of the MC68HC11A8. This 256-byte RAM
can be mapped to the beginning of any 4-Kbyte block in the 64-Kbyte address space.
The methods and reasons for this remapping are discussed; two methods of RAM
standby are also discussed.

4.2.1 Remapping Using the INIT Register

By default, the on-chip RAM is located in the first 256 locations ($0000-$00FF) of the
64-Kbyte memory map. In many (but not all) cases, this location is good for the on-chip
RAM. The first 256 locations in memory are accessible using the direct addressing
mode, which assumes the upper byte of the 16-bit address is $00. Since the direct ad-
dressing mode can address these locations with a one-byte address rather than a two-
byte address, each such instruction saves a byte of program memory space and a cy-
cle of execution time compared to the same instruction using expanded addressing
mode. Depending upon the application, maximum efficiency can be achieved by hav-
ing RAM, I/O registers, or both in this premium address space.

MOTOROLA ON-CHIP MEMORY M68HC11
4-2 REFERENCE MANUAL

The position of RAM in the 64-Kbyte address space is controlled by the RAM and 1/0O
mapping (INIT) register. The upper four bits of INIT (RAM[3:0]) specify the upper four
bits of the 16-bit RAM addresses. At reset, the RAM[3:0] bits are forced to zero so the
RAM is initially located at $0000—$00FF. By writing some other value to the INIT reg-
ister, the RAM can be relocated to the beginning of any 4-Kbyte page in the 64-Kbyte
address space. In normal operating modes, the INIT resister is protected so that it can
only be changed within the first 64 cycles after reset. For more detailed information
about the INIT register, see 3.3.1 RAM and 1/0O Mapping Register (INIT) .

4.2.2 RAM Standby

There are several purposes for a RAM standby function. In battery operated systems,
the RAM standby function provides a way to conserve limited battery power during
times of MCU inactivity, which increases the effective time the system can operate
without battery charging or replacement. In systems using a municipal electric system
as the primary source of power, operating power is not usually a major issue, but pow-
er interruptions can be. There may be enough energy stored in regulator filter capac-
itors to allow a system to operate for some period of time after primary power is lost.
The system current drain determines how long the stored energy can maintain the sys-
tem. By detecting the loss of primary power and changing to a low-power standby
mode, the MCU system can be maintained through longer power interruptions. After
the interruption, the system can decide whether to continue operation or to perform a
complete reset initialization. In other municipal-powered systems, it may be useful to
maintain a limited amount of information during very long interruptions of primary pow-
er. In such cases, a separate standby power source based on a battery could be used
to maintain the contents of RAM while the system is non-operational.

The on-chip RAM of the M68HC11 Family is fully static; there are two ways RAM con-
tents can be maintained while reducing system power consumption to very low levels.
The easiest method for low-power RAM standby is the software-based STOP mode.
The alternate method uses the MODB/Vg1gy pin for standby power in a mostly hard-
ware approach. Since the entire MCU, including RAM, is fully static, there is no mini-
mum oscillator clock frequency. In complementary metal oxide semiconductor
(CMOS) integrated circuits, power supply current is directly proportional to operating
frequency; thus, only very small leakage currents exist when clocks are stopped. This
is the basis for the STOP method of RAM standby. When the MCU is stopped, all CPU
registers, control and I/O registers, and all RAM contents remain unchanged as long
as Vpp is present. Ipp for the MCU is reduced to a few microamps when MCU clocks
are stopped.

In some systems, there may be other circuitry powered from Vpp that cannot be easily
placed in a low-power standby mode. In these systems, Vpp must be turned off to re-
duce system power drain. The MODB/Vgtgy method of RAM standby allows Vpp to
be removed without losing the contents of on-chip RAM. This method is more hard-
ware intensive because it involves a second power supply and associated problems.
In CMOS systems, it is possible to power an integrated circuit through an 1/0 pin be-
cause, on some I/O pins, there is an inherent diode between the pin and the internal
Vpp- In some CMOS systems, even the sequencing of power supplies is critical, which

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-3

implies using caution whenever there is more than one power supply in a system. Al-
though the sequencing of Vpp relative to MODB/Vgrgy IS not important on the
MC68HC11A8 itself, the sequencing may be important to any other CMOS device in
the system exposed to both Vpp and Vgrgy.

Several I/0 pins on the MCU should not have voltage on them while Vpp is off. Any
pin having the source or drain node of a P-channel device in the on-chip circuitry con-
nected to this pin has an inherent diode to Vpp. If such a pin were connected to a sig-
nal powered by Vgrgy rather than Vpp, the entire Vpp network would be powered by
Vgtgy through the inherent diode. Powering the Vpp network in this way may result in
unexpected operation of the system and definitely results in more load on the Vgrgy
supply than expected.

4.3 EEPROM

The MC68HC11A8 was the first MCU to include CMOS EEPROM. This 512-byte EE-
PROM memory can be used in the same ways ROM would be used, but some inter-
esting possibilities arise that are not possible with ROM or RAM memories. A simple
example is to store a unique serial number in the EEPROM of each finished product.
Once information is programmed into the on-chip EEPROM, it remains unchanged
even if Vpp power is removed indefinitely. Unlike information in ROM, information in
EEPROM can be erased or reprogrammed under software control. Since EEPROM
programming and erasure operations use an on-chip charge pump driven by Vpp, no
special power supplies are needed.

This subsection describes the operation of the EEPROM on the MC68HC11A8 and
explores some of its applications. In addition to the 512 bytes of user EEPROM on the
MC68HC11A8, there is another EEPROM byte (CONFIG register) controlling some
basic features of the MCU. The CONFIG register and mechanism are described in de-
tail in 3.2 EEPROM-Based CONFIG Register , but some aspects of the EEPROM en-
able bit (EEON), and the security mode disable bit (NOSEC) will be discussed in terms
of how they relate to EEPROM.

The M68HC11 Family of MCUs includes members with various amounts of EEPROM.
The MC68HC811A8 (emulator for the basic MC68HC11A8) has 8.5 Kbytes of EE-
PROM. The principles presented here apply specifically to the original MC68HC11A8.
Some details of EEPROM operation may vary slightly for other members of the
M68HC11 Family; however, the basic concepts presented here can be extended to
explain the operation of these other members.

4.3.1 Logical and Physical Organization

The logical organization of the 512-byte EEPROM is important for identification of
rows when using the row-erase feature. The physical organization may be useful in
isolating problems in rare cases.

Although some Family members (e.g., MC68HC811E?2) allow remapping of the on-
chip EEPROM, the 512-byte EEPROM in the MC68HC11A8 is fixed at locations
$B600-$B7FF. This 512-byte block is logically arranged into 32 rows of 16 bytes each.
The first row occupies the locations $B600-$B60F, the second row occupies $B610—

MOTOROLA ON-CHIP MEMORY M68HC11
4-4 REFERENCE MANUAL

$B61F, etc. EEPROM locations can be erased individually (byte erase), in rows of 16
bytes each (row erase), or all 512 bytes at once (bulk erase). The CONFIG byte is sep-
arate from this 512-byte block. Special restrictions apply to erasure of the CONFIG
EEPROM byte. Figure 4-1 shows the topological organization of the 512 bytes of EE-
PROM in the MC68HC11A8. Figure 4-2 shows the topological arrangement of bits
within a byte of EEPROM.

% ROM ARRAY %

BGOF BBOE® * ¢+ ¢+ oo+ BE0L B60D , | B610 B6LL e s oo oo oo s+ BEIE BBIF
B62F B620| & | B630 B63F
B64F B640| > | B650 B65F
B66F B660| @ | B670 B67F
B68F B680 g B690 B69F
B6AF B6AO| = | B6BO B6BF
B6CF ARRAY B6CO ; B6DO ARRAY B6DF
B6EF B6EQ| o° | B6FO B6FF
B70F LEFT HALF B700| U | B710 RIGHT HALF B71F
B72F B720| © | B730 B73F
B74F B740| Q | B750 B75F
B76F B760| o | B770 B77F
B78F B780| = | B790 B79F
B7AF B7AQ g B7B0O B7BF
B7CF B7CO B7DO B7DF
B7EF B7BEs » » o s o000 e s B7E1 B7ED B7F0O B7Fde+ s s e s s 000 e s B7FE B7FF
CONFIG ROW

COLUMN DECODERS AND SENSE AMPS

CHARGE
PUMP

Figure 4-1 Topological Arrangement of EEPROM Bytes (MC68HC11A8)

FOR LEFT HALF FOR RIGHT HALF

e o o 5 6 BIT7 BITO 1 2 3 4 5 6 BIT7 BIT7 6 5 4 3 2 1 BITO BIT7 6 5 o o o

B601 B600 B610 B611

Figure 4-2 Topological Arrangement of Bits in an EEPROM Byte

4.3.2 Basic Operation of the EEPROM

The following paragraphs briefly describe how the EEPROM operates. Figure 4-3, a
condensed schematic of the EEPROM array, provides insight into the operation of the
EEPROM system and illustrates the complexity of a byte-erasable EEPROM. Each
byte in the EEPROM array consists of 17 transistors, eight floating-gate transistors, a
select transistor for each floating-gate transistor, and a byte-select transistor. In com-
parison, an ultraviolet erasable EPROM byte requires only the eight floating-gate tran-

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-5

sistors.

Figure 4-4 shows an EEPROM bit with important features and nodes labeled. These
terms will be used in the following explanation of basic EEPROM operations. Figure
4-5, Figure 4-6 , and Figure 4-7 show an EEPROM byte being erased, programmed,
and read, respectively. The floating-gate transistor is the storage element in the EE-
PROM cell. Since the floating gate is isolated by thin oxide layers, any charge on this
gate remains indefinitely unless a large enough field is created, as in programming
and erase modes. When a large enough field is present, Fowler-Nordheim electron
tunneling allows charge to be transferred to or from the floating gate, depending on the
polarity of the field. In the following discussion, Vpp is nominally 5 V and Vpp is about
20 V. In the MC68HC11A8, Vpp is developed from Vpp with an on-chip charge pump;
thus, no external high voltages are required.

1BYTE
RoW (0 l L l I
_ __— |.j o [_ |.::| o [
[N | [N |
- ﬁ]
ROW (0 l jr S - l jr S
o—J 1 |= - — || —T 1 |= —_—— ||
IL| | II1 |
coL O—f - —
coLm I e
VERASE
"o) ARRAY
- GROUND
1/0 (0)
Figure 4-3 Condensed Schematic of EEPROM Array
MOTOROLA ON-CHIP MEMORY M68HC11

4-6

REFERENCE MANUAL

BIT LINE

ROW BIT-SELECT
SELECT DEVICE

FLOATING GATE
\]
CONTROL G

GATE

FLOATING-GATE
DEVICE

|
S

~ ARRAY GROUND

Figure 4-4 EEPROM Cell Terminology

NOT DRIVEN

SRS U | D S (S U f i

LN I (I (I (N (R (R (N O
SV U S U1 D U1 M U1 W 1Y A V1 e T e U1
PP TN ‘|’I TI TI TI TI TI TI TI

Figure 4-5 Erasing an EEPROM Byte

In erase mode (see Figure 4-5), the array ground is connected to Vgg. The row and
column selects cause the control gates of the byte(s) being erased to be connected to
Vpp. Other bytes in the array that are not being erased would have their control gates
connected to an undriven logic zero. The bit-select devices are all turned on by Vpp
on the word lines; however, the drains of the bit-select devices are high impedance.
Thus, the drains of the floating-gate transistors are effectively floating. The high volt-
age on the control gate of the floating-gate transistor is capacitively coupled onto the
floating gate. The large field between the floating gate and the substrate results in
electron tunneling from the substrate to the floating gate. After erasure, the floating
gate has a negative charge, which keeps the floating-gate transistor turned off during
reads. If leakage in the floating-gate transistor caused the negative charge to leak off
so that there was no charge on the floating gate, the bit would still read back as one.
This fact implies that long-term retention errors cannot cause a logic-one bit to deteri-
orate to a logic zero.

Figure 4-6 shows an EEPROM byte being programmed to the value $55 (0101 0101)

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-7

to demonstrate the effect of programming both ones and zeros. Since the erased state
of an EEPROM bit is one, programming a one is the same as doing nothing. During
programming, the array ground is not driven. The control gates of the byte to be pro-
grammed are driven to zero through the row-select and column-select path. Control
gates for bytes not being programmed will be high impedance because the column-
select and/or row-select device will be off. The bit-select devices are turned on hard
because the row select, for the row containing the byte being programmed, is driven
to Vpp. The bit lines are driven to Vpp for bits not being programmed (ones) and to
Vpp for bits being programmed (zeros).

For bits not being programmed (ones), the drain of the floating-gate transistor is at
Vpp, and the control gate is at Vgg. This configuration does not result in a large
enough field for tunneling to occur; thus, no charge transfer occurs.

——
——
——
——
——
——
——

Vss %{

——
——
—/
——
——
—/
——
——
—/
——

ARRAY GROUND
(NOT DRIVEN)

Figure 4-6 Programming an EEPROM Byte

For bits being programmed (zeros), the drains of the floating-gate transistors are at
Vpp — V1N (because of the drain-to-source threshold voltage drop across the bit-select
device), and the control gate is at Vgg. This configuration results in a large enough field
so electrons can tunnel from the floating gate to the drain region of the floating-gate
transistor. Since the floating gate of a programmed bit has a positive charge, the float-
ing-gate transistor will conduct during reads.

Figure 4-7 shows an EEPROM byte being read. During a read operation, the bit lines
are precharged to one. Column selects enable the bit lines from the byte being read
to the sense amp inputs. The row select for the row containing the byte being read is
driven to Vpp to enable the bit-select devices. The array ground is connected to Vgg.
The floating gate devices of programmed bits conduct and pull the corresponding bit
lines to zero. The floating-gate devices of bits not programmed do not conduct; there-
fore, the corresponding bit lines remain at the precharged level and read as ones. EE-
PROM operations are actually much more complicated than this discussion suggests,
but the following general statements may be useful to designers using the EEPROM.

1) Since no high voltages are present during read operations, no degradation of data

MOTOROLA ON-CHIP MEMORY M68HC11
4-8 REFERENCE MANUAL

can result from repeated read operations. 2) Erase operations normally take less time
than programming operations. 3) The most common EEPROM failure (write ones) is
an unintended bit change from one to zero during programming of $FF data. This fail-
ure occurs during endurance testing as the part approaches wear-out (typically after
tens of thousands of write-erase cycles). 4) Retention failures result in programmed
zeros reverting to ones due to leakage of the floating-gate charge. 5) Ones never re-
vert to zeros without an explicit programming operation (though the programming op-
eration need not involve any zeros in the pattern being programmed).

PRECHARGE THEN SENSE

7 6 5 4 3 2 1 0

<
8
——
——
——
——
——
——
——
——

——
]
——

——
]
——

——
]
——

——
]
——

ARRAY GROUND

Figure 4-7 Reading an EEPROM Byte

EEPROM programming and erasure involve the movement of charge through a thin
oxide layer. This charge movement requires a relatively large field to be present for a
significant length of time (milliseconds). Noise is not likely to cause individual bits to
change state. Most failures of the EEPROM involve breakdowns due to the relatively
high voltages or to an oxide degradation phenomenon (trapped charge). After many
cycles of programming and erasure, charge may become trapped in the thin oxide lay-
ers isolating the floating gate. This trapped charge causes programming and erase op-
erations to take longer as the amount of trapped charge increases. When the cell fails
to program to zero in the allotted time, it is worn out. In many cases, these bits can still
be programmed and erased provided the program and erase times are increased. The
useful life of an EEPROM byte cannot be extended very far by extending the program-
ming time because a worn bit exhibits a reduced ability to retain valid zeros for very
long time periods.

4.3.3 Systems Operating below 2-MHz Bus Speed (E Clock)

The on-chip charge pump that generates Vpp from Vpp uses MOS capacitors, which
are relatively small in value. The efficiency of this charge pump and its drive capability
are affected by the level of Vpp and the frequency of the driving clock. The load de-
pends on the number of bits being programmed or erased and capacitances in the EE-
PROM array. Effective array load capacitances are influenced to some degree by the
data in the array.

The clock source driving the charge pump is software selectable. When the clock se-

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-9

lect (CSEL) control bit in the OPTION register is zero, the E clock is used; when CSEL
is one, an on-chip resistor-capacitor (RC) oscillator is used. The frequency of this on-
chip RC oscillator is about 2.5 MHz but varies with processing.

The recommended programming and erase time is 10 ms when Vpp is 5 Vdc + 10 per-
cent and the E clock is 2 MHz. If the E clock is 1 MHz or less, the CSEL bit should be
written to one to enable the on-chip RC oscillator to drive the Vpp charge pump. For
an E clock between 1 and 2 MHz, the programming and erase times can be increased
to 20 ms, or the RC oscillator can be selected. Experimentation has shown the EE-
PROM is programmable with Vpp equal to 3 Vdc and CSEL equals one to enable the
on-chip RC clock.

CSEL also enables a separate RC oscillator associated with the A/D converter sys-
tem. The E-clock frequency (where switchover to CSEL equals one is recommended)
is lower for the A/D than it is for EEPROM operations. In the A/D system, switching to
CSEL equals one can increase conversion errors; thus, it is better to perform A/D con-
versions with CSEL equals zero. In some applications, it is worthwhile to switch CSEL
on and off, depending on whether A/D or EEPROM programming/erase operations are
occurring. Refer to 12.2.2 A/D Charge Pump and Resistor-Capacitor (RC) Oscilla-
tor for additional information.

4.3.4 EEPROM Programming Register (PPROG)

The PPROG register controls programming and erasure of the on-chip EEPROM. The
PPROG register may be read or written at any time, but programming and erase se-
guences are strictly controlled by logic to prevent unintentional changes to EEPROM
data. In the MC68HC11A8, the CONFIG register EEPROM location cannot be pro-
grammed or erased unless the MCU is operating in special test or special bootstrap
mode. The Vpp power supply voltage is not enabled to the EEPROM array until all se-
guence requirements are met for a programming or erase operation. The required se-
guence consists of the following steps: 1) write to PPROG with EEPROM latch control
(EELAT) bit equals one and EEPROM programming voltage enable (EEPGM) bit
equals zero; 2) write to a valid EEPROM location or the CONFIG address; 3) write to
PPROG with EELAT and EEPGM bits equal one. Hardware logic enforces this se-
guence by imposing the following restrictions. If an attempt is made to change both
EELAT and EEPGM to ones with the same write operation, neither bit is set (enforces
step 1). Writes to EEPROM addresses are inhibited while EEPGM is one, which pre-
vents two kinds of errors. First, step 2 must be performed before step 3, or no EE-
PROM changes will occur. Second, a write to a different EEPROM location is
prevented while a programming or erase operation is in progress.

In some members of the M6BHC11 Family, there is a block protection mechanism that
can inhibit programming and erasure of the CONFIG register or selected areas of EE-
PROM. After reset, these block protect control bits (in a block protect (BPROT) regis-
ter) are set to inhibit EEPROM changes. A user can write these bits to zero to enable
programming and erase operations, but this write must be performed within 64 cycles
after reset. The user may write these bits back to one at any time to inhibit further EE-
PROM changes. Once this protection is re-enabled, it remains in effect until another
reset. There is no BPROT register in the MC68HC11A8.

MOTOROLA ON-CHIP MEMORY M68HC11
4-10 REFERENCE MANUAL

The following register and paragraphs describe the bits in the PPROG control register.

PPROG — EEPROM Programming Register $103B
BIT 7 6 5 4 3 2 1 BIT O
[ODD | EVEN [0 | BYTE | ROW | ERASE | EELAT | EEPGM |
RESET: 0 0 0 0 0 0 0 0

ODD — Program odd rows in half the EEPROM array

EVEN — Program even rows in half the EEPROM array

These two bits are used only during factory testing of the EEPROM. To program all
bytes in the odd (even) rows on one side of the EEPROM array with the same data in
a single programming operation, set the ODD (EVEN) and EELAT bits to ones, write
to an EEPROM location in an odd (even) row, and then set the EEPGM bit. Since the
onchip Vpp charge pump does not have enough drive to perform this bulk program-
ming operation, an external 20-V current-limited supply must be connected to the ex-
ternal EEPROM voltage source (IRQ/Vppgy k) Pin. The intended purpose of this
function is to allow the entire EEPROM array to be filled with a checkerboard pattern
in only four programming operations. This feature is not intended for customer use
since the function serves no practical purpose other than product testing.

BYTE — Byte/Other EEPROM Erase Mode

ROW — Row/All EEPROM Erase Mode
These two bits specify the type of erase operation that is to be performed. These bits
have no meaning when the ERASE bit is clear. The following table shows the relation-
ship between the state of these bits and the type of erase operation that will be per-
formed:

BYTE ROW Type of Erase
0 0 Bulk Erase (All 512 Bytes)
0 1 Row Erase (16-Byte Row)
1 0 Byte Erase
1 1 Byte Erase

ERASE — Erase/Normal Control of EEPROM
0 = Normal read or program mode
1 = Erase mode

EELAT — EEPROM Latch Control

When this bit is zero, the EEPROM acts as a ROM in the MCU memory map. When
EELAT is one, the EEPROM acts as if it has been removed from the memory map and
placed into a programming socket. Latches on the address and data lines to the
EEPROM array are enabled to capture data and address information needed during
program or erase operations. While EELAT is one, the EEPROM cannot be read,
which implies a software routine that programs or erases EEPROM cannot be execut-
ed from that same EEPROM. The operation of EELAT also implies that programs that
access data from the EEPROM must not be executed while an EEPROM location is
being programmed or erased.

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-11

EEPGM — EEPROM Programming Voltage Enable
This control bit enables the Vpp power supply to the EEPROM logic for programming
and erase operations. When EEPGM is zero, Vpp is off, when EEPGM is one, Vpp is
on. A logic interlock mechanism prevents setting this bit unless EELAT was earlier
written to one.

4.3.5 Programming/Erasing Procedures

The following discussion and program segments demonstrate the various program-
ming and erase operations that can be performed on EEPROM locations. These pro-
gram segments are intended to be simple, straightforward examples of the sequences
needed for basic program and erase operations. There are no special restrictions on
the addressing modes used, and bit manipulation instructions may be used. Other op-
erations can be performed during programming and erasure provided these opera-
tions do not include reads from the EEPROM (the EEPROM is disconnected from the
read data bus during program and erase operations). The subroutine (DLY10) used in
these program segments is not shown but can be any set of instructions that takes 10
ms.

If several bytes of EEPROM are to be programmed, the EELAT bit can be left at one
for the entire block. After each byte is programmed, EEPGM is written to zero and EE-
LAT is left at one. The next EEPROM location is then written, and the EEPGM bit is
written back to one to execute the programming request.

4.3.5.1 Programming

During EEPROM programming, the ROW and BYTE bits are not used. If the E-clock
frequency is less than 2 MHz, the programming time may need to be increased, or the
CSEL bitin the OPTION register may have to be set to enable an on-chip RC oscillator
to drive the Vpp charge pump. Since programming can only change ones to zeros in
the EEPROM, it is sometimes necessary to erase a byte to $FF in a separate opera-
tion before programming it to a new value. The following programming segment dem-
onstrates how to program an EEPROM byte:

* On entry, A = data to be programmed and X = an EEPROM address

PROG LDAB #$02

STAB $103B Set EELAT bit (EEPGM=0)
STAA 0,X Store data to EEPROM address
LDAB #3$03

STAB $103B Set EEPGM bit (EELAT=1)
JSR DLY10 Delay 10 mS

CLR $103B Turn off high voltage & set to read mode

4.3.5.2 Bulk Erase

The following program segment demonstrates how to bulk erase the 512-byte
EEPROM. The CONFIG register is not affected in this example.

MOTOROLA ON-CHIP MEMORY M68HC11
4-12 REFERENCE MANUAL

BULKE LDAB
STAB
STAB
LDAB
STAB
JSR
CLR

4.3.5.3 Row Erase

#$06
$103B
$B600
#$07
$103B
DLY10
$103B

Set to BULK erase mode
Write any data to any EEPROM address

Turn on programming voltage
Delay 10 mS
Turn off high voltage & set to read mode

The following example demonstrates the row-erase function. A row is 16 bytes
($B600-B60F, $B610-B61F ... $B7FO0-B7FF). When large sections of EEPROM are
to be erased, this type erase operation saves time compared to byte erase.

* On entry, X=any address in ROW to be erased

ROWE LDAB
STAB
STAB
LDAB
STAB
JSR
CLR

4.3.5.4 Byte Erase

#$0E
$103B
0,X
#$OF
$103B
DLY10
$103B

Set to ROW erase mode
Write any data to any address in ROW

Turn on high voltage
Delay 10 mS
Turn off high voltage & set to read mode

The following program segment demonstrates how to erase a single byte of EEPROM.

* On entry, X=any address of BYTE to be erased

BYTEE LDAB
STAB
STAB
LDAB
STAB
JSR
CLR

4.3.5.5 CONFIG Register

#$16
$103B
0,X
#$17
$103B
DLY10
$103B

Set to BYTE erase mode
Write any data to address to be erased

Turn on high voltage
Delay 10 mS
Turn off high voltage & set to read mode

The following program segment shows how to program the CONFIG register in the
MC68HC11A8 to a new value. The CONFIG byte can only be erased with the bulk-
erase method on the original MC68HC11A8; however, some new members of the
M68HC11 Family allow the CONFIG byte to be byte erased. If any question arises
about which members can use byte erase, refer to the technical summary for that
member. It is possible to program additional bits in CONFIG to zero without erasing

M68HC11
REFERENCE MANUAL

ON-CHIP MEMORY MOTOROLA
4-13

the location first; however, it is better to perform an erase first as shown in this example
and explained in 4.4 EEPROM Application Information

* On entry, A-data to be programmed into CONFIG

CNFCH LDAB #$06

STAB $103B Set to BULK erase mode

STAB $103F Write any data to CONFIG address
LDAB #3$07

STAB $103B Turn on programming voltage

JSR DLY10 Delay 10 mS

LDAB #3$02

STAB $103B Turn off EEPGM, leave EELAT on
STAA $103F Store new CONFIG data

LDAB #$03

STAB $103B Set EEPGM bit (EELAT-1)

JSR DLY10 Delay 10 mS

CLR $103B Turn off high voltage & set to read mode

4.3.6 Optional EEPROM Security Mode

There is an optional security mode feature that can be used to protect the EEPROM
and RAM contents from unauthorized access. Most MCU products are of little or no
use without the software programs that control them. By protecting the secrecy of the
program or a key part of the program, a product can be protected against unauthorized
duplication. The MC68HC11A8 solves the dilemma of protecting against unauthorized
access while permitting testing and recovery of protected parts for reuse.

The protection mechanism operates on the principle of restricting protected devices to
the single-chip modes of operation. Since single-chip modes do not allow visibility of
the internal address and data buses, the contents of memory locations cannot be mon-
itored externally. Since the user’s program has unlimited access to the internal EE-
PROM and RAM, it is still possible for the application program to read information out
of these memories, write new information into them, or even report the contents of
these memories via MCU 1/O ports. The user can develop a program to enter secret
information into the MCU or to read secret information out of the MCU by some secret
access procedure. All or part of this secret access procedure should be programmed
in the EEPROM so that a software pirate could not decode the secret procedure by
disassembling the ROM program, which can be read after turning off the security
mode. Although the security mode can be turned off easily by anyone at any time, this
can only be done after the information in EEPROM and internal RAM have been com-
pletely erased.

Two conditions are required to engage the security option. First, the option must be
enabled by a mask option. This option is normally requested at the time the customer
submits the mask program for the internal 8-Kbyte ROM. Since this option is enabled
or disabled during physical manufacturing of the silicon die, the choice must be made
prior to manufacturing. Although this first level of enable makes the MCU capable of
being secured, it does not activate the security mode. The second requirement to en-

MOTOROLA ON-CHIP MEMORY M68HC11
4-14 REFERENCE MANUAL

gage the security option is that the NOSEC bit in the CONFIG register be programmed
to zero. Programming NOSEC to zero does not engage the security mode unless the
MCU was manufactured with the capability to recognize the security option. The rea-
son for a two-level enable is to prevent accidental activation of the security option in
applications that never intend to use it.

Bootloader firmware is used to disengage the security option. Bootloader firmware
checks the NOSEC bit in CONFIG to determine whether or not the security option is
on. If security is on, the entire EEPROM is erased, and the entire RAM is written with
$FF to overwrite anything that was in RAM before. The EEPROM and RAM are then
rechecked to make sure the erase operations were successful. If the operations were
not successful, they are repeated until successful. Once the EEPROM and RAM have
been verified as erased, the CONFIG register is erased to disengage the security op-
tion, and the downloading operation is started. It is not necessary to actually download
a program via the bootstrap mode to disengage security. All that is required is to come
out of reset in the bootstrap mode. The security option is disengaged regardless of
whether anything is downloaded.

The presence of the security option can be detected while the MCU is in reset by forc-
ing the mode A (MODA) and mode B (MODB) pins to one and monitoring the strobe
Aladdress strobe (STRA/AS) pin. When MODA and MODB are ones, the normal ex-
panded mode is requested. If security is engaged, the STRA/AS pin will act as a high-
impedance input because the security option causes the MODA pin to be interpreted
as a zero even if it is a one. In single-chip modes, the STRA/AS pin is configured for
the strobe A input function. If the security mode is not engaged, the STRA/AS pin will
be acting as the address strobe output, which can easily be recognized on an oscillo-
scope. This checking procedure allows the security mode to be detected without dis-
engaging it. If the MODB pin were low in this experiment, the bootstrap mode would
be requested rather than the normal single-chip mode. In the case of MODB low, care
is required not to release reset because doing so would cause the security option to
be disengaged.

When developing a security strategy, the user should remember ROM contents are
not protected. A software pirate can disengage the security option, read the contents
of the internal ROM, and disassemble the programs and subroutines in that ROM.
Some measures to protect an application program intentionally make the program
more difficult to understand. Programs that are difficult to understand are also difficult
to develop and maintain. Careful documentation of the function and intent of every
written program is essential.

A key can be stored in EEPROM. A user can then be required to supply a matching
key value before the program will operate. This approach is somewhat weak because
all of the operational programs are intact in the ROM,; thus, a software pirate could find
and bypass the key-checking routine. However, if the key-checking routine is repeated
in more than one way and place, this approach can make unauthorized access diffi-
cult.

Another approach would be to program a vital subroutine entirely within the EEPROM.
This approach is better than the previous key-checking approach because the ROM

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-15

does not contain all of the programs needed to make the product function. The weak-
ness of this approach is that a software pirate can still duplicate the product after solv-
ing that one routine. The pirate also gains a development cost advantage over the
original manufacturer, because only part of the application program has to be devel-
oped.

Many application programs are modularly organized as a major loop consisting of calls
to submodules. The application relies on both the routines that are called and the order
in which they are called. A degree of security can be achieved by putting the major
loop (which calls all the subprograms) in the EEPROM. In this case, a software pirate
can decode the submodules, but the order of execution is not known. To make the pro-
gram more difficult to decipher, extra incorrect programs could be included in ROM.
The software pirate could not distinguish real routines from fake routines. There is a
useful side-effect of this approach. Since the major loop is resident in the EEPROM, it
can be changed to call a replacement or patch routine if one of the subprograms is
defective. Rather than throwing away the entire MCU, the EEPROM can be repro-
grammed to correct or replace the defective subprogram.

Another approach to software secrecy involves accessing variables indirectly through
a pointer stored in the EEPROM. The program in ROM could execute a sequence
such as loading X with the pointer value from EEPROM (LDX addr; LDAA 0,X). Since
the software pirate does not know what X points to, there is no way of knowing what
is being loaded into accumulator A. By mixing direct accesses and indirect accesses
to the same variables, the software pirate is unable to recognize that two accesses are
to the same variable.

4.4 EEPROM Application Information

Since EEPROM is a relatively new technology, very little published application infor-
mation exists. This subsection presents practices that could cause application prob-
lems and discusses several practical uses for EEPROM on an MCU. Next, there is a
discussion of the use of EEPROM in programs that adjust themselves to accommo-
date variable conditions. Many applications can benefit from this type of programming,
which is presently becoming practical because of the inclusion of EEPROM on an
MCU. The subsection concludes with a detailed look at some proposed methods to
extend the useful write-erase lifetime of the EEPROM.

4.4.1 Conditions and Practices to Avoid

When programming a new value over an old value in EEPROM without first erasing
the EEPROM location, it is very important to avoid certain data patterns. The most
common method for programming a new non-FF value to an EEPROM location con-
taining a non-FF value is to erase the location before programming the new value. This
procedure works for any combination of old and new data values. In less common sit-
uations in which an EEPROM location endures many write-erase cycles, it may be de-
sirable to program a new value over an old value without erasing the location first. This
procedure is only possible when the new value has no ones where the EEPROM lo-
cation already has a zero. A method called ‘write-more-zeros’ can be used to program
additional bits in an EEPROM location without erasing the location first, which elimi-

MOTOROLA ON-CHIP MEMORY M68HC11
4-16 REFERENCE MANUAL

nates a write-erase cycle. Another method called ‘selective-write’ has been proposed
but has not been tested and characterized enough to be sure it will work in all cases.
In this method, the data pattern used in the programming operation would have ones
in all positions except the bits that are zeros in the new value but were ones in the pre-
vious value. The idea in this method is to avoid reprogramming bits already pro-
grammed. The benefits are theoretical and have not been proven. Although both of
these methods (write-more-zeros and selective-write) appear to work correctly in lab-
oratory experimentation, the combination of the two methods is known to fail. An ex-
ample of a failing combination would be to attempt to program $FC to a location that
previously contained the value $0D in an attempt to change the location to the value
$0C. In this case, bit 1 follows the write-more-zeros method; whereas, bits [4:7] follow
the selective-write method. A detailed explanation of this case is given in 4.4.7 Soft-
ware Methods to Extend Life Expectancy

System software should be partitioned so that data and programs in EEPROM wiill
never be used while an EEPROM programming or erase operation is in progress.
When the EELAT control bit is set to one at the beginning of a program or erase oper-
ation, the EEPROM is electronically removed from the MCU memory map; thus, it is
not accessible during the programming or erase operation. Since it is possible to per-
form other tasks while the 10-ms EEPROM operation is in progress, it is fairly common
to start the operation and return to the main program until the 10 ms is completed. If a
routine in the main program or an interrupt tries to access a value in EEPROM while
a programming operation is in progress, that operation will fail since the EEPROM is
temporarily inaccessible.

In an interrupt-driven system, it may be possible for an asynchronous interrupt to occur
in the middle of an EEPROM programming or erase operation. Such an interrupt can
cause the programming or erase operation to extend beyond the normal 10-ms period.
A small extension of the programming or erase time will not damage the EEPROM or
compromise the intended operation. Repeated extension or long extensions may in-
volve a slight acceleration of write-erase wear-out because wear-out is related to the
length of time high voltages are present in the EEPROM array. The most significant
effects of wear-out occur near the beginning of a program or erase operation because
the charge tunneling activity follows an exponential decay curve, which implies that ex-
tensions of programming time should have very little effect on the EEPROM cell. An-
other risk, which is difficult to quantify, is the possibility of high-voltage breakdown of
row and column devices due to the presence of programming voltage. If programming
and erase times are extended, these devices are exposed to high voltages for a longer
time; thus, there is increased risk that a breakdown might occur.

In some systems, an EEPROM programming or erase operation could be in progress
when a power failure or reset occurs, which presents the possibility that an EEPROM
location might be corrupt or unreliable due to an incomplete programming operation.
A way to avoid this problem is to design the system so power failures generate a non-
maskable interrupt prior to complete loss of power. This interrupt would allow EE-
PROM operations to be completed prior to system shutdown. Other systems may
have battery backup of RAM so programming status could be maintained in this mem-
ory. Upon reset, this status (in RAM) could be checked, and any operation that was in

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-17

progress could be redone to assure reliability.

Avoid unnecessary erasures of the CONFIG register EEPROM location. In a normal
system, the CONFIG register is established during the design of an end product and
does not change. In rare cases, the CONFIG register may be repro-grammed after a
gross system failure accidentally corrupts the intended value. One suggested tech-
nique for tolerating such errors involves starting the MCU in special test or special
bootstrap mode after any reset. The CONFIG register can then be evaluated and
changed if necessary. In this scheme, it is not appropriate to routinely erase and re-
program the CONFIG register. Changes should only be made when an error is detect-
ed, which minimizes the possibility of wearing out the CONFIG EEPROM location.

4.4.2 Using EEPROM to Select Product Options

In many applications, it is possible to provide for several product variations with a sin-
gle MCU ROM pattern. This variation allows a user to pay for a single ROM mask
charge and amortize the cost over a higher volume of end products. This variation also
reduces the customer’s inventory requirements by reducing the number of unique cus-
tomized MCUs that have to be stocked. Before the availability of on-chip EEPROM, it
was possible to include multiple program variations in a single ROM pattern. The ROM
program would determine the specific program variation to execute by reading some
unique value on an I/O port or by looking for unique devices in the memory map of the
finished system. An ideal place to store such optional identifiers is in the on-chip EE-
PROM. The on-chip EEPROM has some advantages over the previous methods. The
EEPROM method requires no I/O pins for option selection. The EEPROM method can
accommodate upgrades in the options after the end product is manufactured, and no
hardware changes are necessary. A common software technique is to program the
various tasks for an application as a series of subroutines, which are called in the de-
sired order by a main program loop. The main program loop is usually quite small, con-
sisting of little more than a series of jump to subroutine (JSR) instructions. If this main
loop is programmed into the on-chip EEPROM, it is relatively easy to modify the num-
ber and order of ROM routines to be executed.

4.4.3 Using EEPROM for Setpoint and Calibration Information

Another ideal use for EEPROM is for storage of setpoints or calibration information
that will not change often. In some older systems, this information had to be entered
each time a system was activated. By storing this information in EEPROM, the product
configuration and setup requirements can be simplified for the end user, and this data
can be maintained indefinitely without power.

An example of setpoint data would be the temperature setting of a home thermostat
or the setback schedule for a more sophisticated thermostat. The two alternatives to
storing this information in EEPROM are to require that the information be re-entered
after a power interruption or to provide relatively expensive batteries and power se-
guencing logic. The home thermostat example can also benefit from a calibration table
in EEPROM. There are many types of temperature sensors with various degrees of
accuracy and linearity; however, the most accurate and most linear devices also tend
to be the most expensive. Since the application dictates a minimum degree of accura-

MOTOROLA ON-CHIP MEMORY M68HC11
4-18 REFERENCE MANUAL

cy, the designer must decide how to arrive at this accuracy. One approach is to use a
very inexpensive sensor and calibrate it at the factory. The combination of on-chip EE-
PROM and an on-chip analog-to-digital (A/D) converter is ideally suited to this task
without requiring any expensive external circuitry. The thermostat could be completely
assembled, and calibration information could be determined and stored in the EE-
PROM during final test of the assembled unit. The software required for this calibration
could be part of the on-chip ROM program, or it could be loaded from a test fixture via
the special bootstrap mode. The bootstrap mode approach offers the advantage that
the calibration routines need not occupy any space in the limited internal ROM.

There are two main approaches to calibration of inexpensive sensors. The choice of
the best approach depends primarily on the characteristics of the sensor but also de-
pends upon the degree of system accuracy required in the end application. If a sensor
is basically linear but has wide variation in absolute offset, a gain-offset approach may
be a good choice. This technique requires calibration at two standard levels from
which a gain (slope) and offset are determined. The gain and offset values are then
stored in EEPROM. An actual level is calculated by applying these values algebraical-
ly to an A/D input level. Although this technique requires some calculations during cal-
ibration and during use, it uses very little EEPROM space. If a sensor is non-linear, a
table-lookup approach may be required. An actual level is determined by using the A/
D reading as an index into the calibration lookup table. During use, this method is very
simple and fast, but the lookup table requires more EEPROM, and the calibration pro-
cess requires more calibration points than the gain-offset method.

4.4.4 Using EEPROM during Product Development

During product development, the EEPROM can be used for storage of data and limit-
ed-sized programs. If errors are discovered, they can be corrected even more easily
than a program in an EPROM. In cases in which there is external memory, such as an
EPROM in a system under development, it would be a good idea to store the main pro-
gram loop in the on-chip EEPROM. This approach allows routines in the external
EPROM to be checked one at a time without reprogramming the external EPROM. If
errors are discovered, a substitute corrected routine could be programmed into the
EEPROM to check the corrections before erasing and reprogramming the external
EPROM.

4.4.5 Logging Data

Data logging can involve several types of data. One traditional data type could be tem-
peratures measured at specific times of day over a period of weeks or months. Other
data types could include historical data, such as the number of times a device has
been exposed to illegal operating conditions or the total accumulated time a device
has been used. This type information can be useful for monitoring product reliability.
When such a device is returned to the factory for repair, the historical data can be read
out of the EEPROM. Even if batteries and other power sources failed, this information
could be valid.

In this context, logging means to make a semi-permanent record of data not requiring
power or other normal operating conditions to remain valid. In many cases, there is

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-19

also an implication that the data is not accessible to the end user for modification (i.e.,
the end user cannot erase the data by simply removing a battery or unplugging the
unit). The on-chip EEPROM of the MC68HC11A8 provides a convenient electronic
medium for nonvolatile storage of logged data.

4.4.6 Self-Adjusting Systems using EEPROM

One of the most interesting uses for EEPROM in an MCU system is to implement self-
adjusting or self-adapting systems. A fairly simple form of self-adaptation would be a
system that can calibrate or recalibrate a sensor as it ages. A more sophisticated form
of self-adaptation would be a system that can modify its behavior to perform a desired
task more efficiently as operating conditions change. The adaptation would be semi-
permanent so the modified behavior would be in effect the next time the system was
activated (as if the system had originally been programmed that way).

Any process-control algorithm that includes a feedback mechanism for monitoring re-
sults could potentially be programmed to improve itself through self-adaptation. Tradi-
tionally, process-control programs followed a fixed procedure, which was the result of
experimentation and development by engineers. The MCU is an excellent tool for such
work because it can quickly repeat complex sets of instructions, including precise tim-
ing, with flawless accuracy. Unfortunately, this type system often requires tight toler-
ances on other system components such as sensors and valves. Cheaper (less
precise) components could be used if the system provides for calibration, but calibra-
tion is often time-consuming and expensive. As technology advanced, some systems
were designed to automate the calibration process, thus making it practical to use less
precise system components. For these automated systems, the calibration step was
still performed outside the context of actual system use. With the M68HCL11, it is prac-
tical to consider systems that systematically make small adjustments while monitoring
end results. Depending upon the application, the MCU could either suggest changes
to a human operator or directly modify process-control parameters to maintain opti-
mum end results. The nonvolatie EEPROM is a critical element in such adaptive al-
gorithms because it can save what has been learned over a period of time, even if
power is lost.

Consider using an adaptive algorithm in a system consisting of many tasks. High-pri-
ority tasks are executed quickly; whereas, low-priority tasks are delayed. One problem
is to decide which tasks are most important, which can be accomplished by noting how
many times a task was actually needed over some period of time. A second problem
is to find some nonvolatile way to maintain the list of high- and low-priority tasks. The
main loop could be programmed into EEPROM, or the main program could call tasks
indirectly through a list of task addresses in the EEPROM. A background program
could monitor the activity and demands of various tasks and rearrange the priorities to
match real application demands. As a task requests more frequent service, it could be
elevated in priority, and as a high-priority task reduces its frequency of requests, it
could be lowered in priority. In this manner, the tasks requiring the most frequent ser-
vice would become the set of tasks that are serviced on every main loop pass. Al-
though both the fixed priority and the dynamically adaptive priority schemes would
accomplish the same amount of work, the adaptive scheme is more responsive. Be-

MOTOROLA ON-CHIP MEMORY M68HC11
4-20 REFERENCE MANUAL

cause the learned priorities would remain in effect through power-off periods, the sys-
tem would begin with these learned priorities. As system demands change, priorities
would change to match system requirements.

4.4.7 Software Methods to Extend Life Expectancy

EEPROM memory is subject to a long-term wear-out mechanism. Though the detailed
mechanics of the failure mechanism are still the subject of much research, the current
understanding is that charge is trapped in the thin oxide layers isolating the floating
gate of the EEPROM storage transistor. The charge is trapped during tunneling, which
only occurs while programming or erasing an EEPROM bit. The life expectancy of an
EEPROM bit is expressed as a number of write-erase cycles (such as 10,000 write-
erase cycles). Changing a bit from one to zero (write) followed by a change from zero
back to one (erase) is considered one write-erase cycle. As a bit accumulates trapped
charge and approaches wear-out, the time required to program or erase the location
gets longer until the allotted time is no longer enough to program or erase the location,
which implies that some extension of life expectancy might be achieved by using long-
er programming and erase times. However, the same wear-out mechanism that caus-
es longer programming time also causes reduced retention capability. Limited data
has been collected to support the use of as much as 20 ms for program and erase
times rather than the 10 ms suggested in the data sheets. A new MC68HC11A8 oper-
ating at 5 V and 2 MHz can typically program an EEPROM location in about 2 ms.

Many factors affect the useful life expectancy of an EEPROM location. Programming
or erasing an EEPROM location at high ambient temperature accelerates wear-out.
The Motorola reliability figures are based on all program and erase operations occur-
ring at worst-case ambient temperature, but no realistic application would experience
such harsh conditions. Temperature has a dramatic effect on write-erase endurance.
An EEPROM having a life expectancy of 5,000 write-erase cycles at 125°C typically
has a life expectancy of 100,000 write-erase cycles at 55°C. Motorola publishes a
quarterly reliability report which includes the latest life-expectancy data for this rapidly
changing technology. The quality of the thin oxides (processing) is maintained at a
very high level, but there is still some lot-to-lot variation affecting write-erase endur-
ance. The belief is that charge is more easily trapped at sites where the oxide lattice
structure is imperfect.

The method recommended in Motorola data sheets for changing an EEPROM byte
from one data value (other than $FF) to another is to erase the location before pro-
gramming the new value. In this manual, this method will be called ‘erase-before-
write’. When the new data value contains no ones where there is currently a zero in
the EEPROM location (no bits need to be erased), there are two additional methods
of arriving at the desired value without first erasing the EEPROM location. The first of
these methods is called ‘program-more-zeros’. To program more zeros, the new value
would be programmed into the EEPROM location. Bits previously not programmed will
be programmed to zero, and bits already zero remain programmed. The second meth-
od, which does not involve erasure of the location before reprogramming, is called ‘se-
lective-write’. In the selective-write method, a value is calculated that contains zeros
in bits needing to change from one to zero and contains ones in all other bits. This cal-

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-21

culated value is programmed to the EEPROM location. The bits corresponding to ze-
ros in the calculated pattern become programmed to zeros. The bits already
programmed are not reprogrammed but remain zeros. The bits that were not zeros in
the old or new data values are not programmed and remain ones. The theoretical ob-
jective of the selective-write method is to avoid programming some bits longer than
others.

The erase-before-write method is used in production testing and for ongoing reliability
monitoring. Every part that Motorola ships is exposed to a significant number of write-
erase cycles at high temperature to eliminate parts having infant mortality problems
and to identify any lots having processing problems. In addition, sample batches of
parts are endurance tested to monitor processing quality. Data sheet and reliability fig-
ures are based on the erase-before-write method.

A problem in production testing was traced to an unsuccessful attempt to program an
EEPROM location, which unintentionally employed a composite of the program-more-
zeros and the selective-write methods. An attempt was made to program an EEPROM
location with $FC when the location previously contained the value $0D. From what
has been said about EEPROM programming and the program-more-zeros and selec-
tive-write methods, one would expect that the location would change to $0C. In prac-
tice, the operation fails if the location was previously $0D but passes if the location was
previously $FF. The following table shows the situation more clearly:

Value Case A - Fail Case B - Pass
Original Value 0000 1101 11111111
Value Written 1111 1100 1111 1100

Expected Result 0000 1100 1111 1100
Tester Read 0000 1101 0000 1100

The expected value shows the value one should expect to get as a result of an attempt
to program the value written to an EEPROM location already containing the original
value. The tester-read value shows what the tester read from the location after the at-
tempted programming operation. Case B looks odd because the upper four bits are
zeros where ones are expected because the location involved was the CONFIG reg-
ister. Reads of the CONFIG register of an MC68HC11A8 return zeros in the upper four
bits, regardless of what is in the upper four bits of the physical EEPROM location.
Parts that failed (case A) were initially thought to have a defective bit 0 in the CONFIG
register EEPROM location; however, the real problem was finally discovered to be the
unintentional combination of the program-more-zeros and selective-write methods. Bit
1 is a zero in the original value and the value written (like the program-more-zeros
method). The upper four bits are zeros in the original value and ones in the value writ-
ten (like the selective-write method). Case B, which always works, is equivalent to the
erase-before-write method.

MOTOROLA ON-CHIP MEMORY M68HC11
4-22 REFERENCE MANUAL

NOTE

Because the user has no way of knowing what is in the upper four
bits of the CONFIG register EEPROM location, the calculated value
for the selective-write method cannot be determined. Thus, the
selective-write method cannot be used for the CONFIG location.
Since the CONFIG location is only changed a few times in the lifetime
of a product, there is no motivation to use any method other than
erase-before-write to change the CONFIG location.

An examination of the electrical conditions during each of the programming methods
explains why the combination of write-more-zeros method and selective-write method
fails as it did in case A. This analysis also presents possible advantages and disad-
vantages of these programming methods. The basic operation of the floating-gate EE-
PROM is discussed in 4.3.2 Basic Operation of the EEPROM . Figure 4-8
demonstrates the erase-before-write method. One disadvantage of this method is that
it requires a time-consuming erase step prior to the programming step. One advantage
of this method is that it can be used to change any data pattern to any other data pat-
tern. Another advantage is that this method is the same as that used for rating the
write-erase life expectancy; thus, much characterization data exists to validate this
method.

The goal of the other two methods is to achieve a longer life expectancy without com-
promising data retention or programming integrity. The program-more-zeros method
appears to have no risks, and some experimental evidence shows that data retention
and program integrity are not compromised. The selective-write method appears to
have some theoretical problems, but experimental data has not confirmed any practi-
cal problem. Due to the theoretical risks of the selective-write method, that method
should probably not be used without a complete understanding of the risks.

Figure 4-9 shows the program-more-zeros method being used to change an EE-
PROM location from $FO0 to $CO. In this example, the low-order four bits were previ-
ously programmed, and the current programming operation will change bits 4 and 5 to
zeros.

It has been suggested that it might be undesirable to program some bits longer than
other bits. Since charge transfer during programming occurs at an exponentially de-
caying rate, it seems unlikely that the additional programming time would result in any
significant difference in floating-gate charge. Only considerable characterization data
can prove or disprove these theories, but preliminary data supports the suggestion
that the extra programming time on some bits has no detrimental effects.

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-23

Vss

NOT DRIVEN

y I (Ul e el
PP L TL TL TL L TL TL TL
v N Lt Ll
ss H RGN e T'LoTip 1

ARRAY GROUND

(NOT DRIVEN)
THEN PROGRAM $55

Figure 4-8 Erase-Before-Write Programming Method

1
Vb

1
Vb
6

0 0

Vep Vep Vep Vep
e o

N
I
A U U Y SN W G W7

Figure 4-9 Program-More-Zeros Programming Method

0
Vep

Js

0 0 0

Vep

——
——
——
——
——

Figure 4-10 shows the selective-write method being used to change an EEPROM lo-

MOTOROLA
4-24

ON-CHIP MEMORY M68HC11

REFERENCE MANUAL

cation from $FO0 to $CO. The calculated data pattern, $CF, was written to the location
during this programming operation (note the data pattern and voltage levels across the
top of the diagram). The floating gates are highlighted for the bits that should be pro-
grammed to zero after the operation. The floating gates of the programmed bits are
positively charged so these floating-gate transistors conduct, which introduces an in-
teresting question. For bits [3:0], there is a conductive path from Vpp to the array
ground node. After programming, bits 4 and 5 have a conductive path from Vpp to the
array ground node. Since there is effectively a conductive path from Vpp to Vpp, how
does the selective-write method work? Experimental results for this method are good,;
however, additional study is required.

A LA A (LT
LN § F § N (IS (N (IS NS I
vso —

ARRAY GROUND
(NOT DRIVEN)
Figure 4-10 Selective-Write Programming Method

The production testing failure provides some additional information about the selec-
tive-write method but does not answer all the questions. Figure 4-11 shows the volt-
ages driving the EEPROM bits during the production test failure. The location was
previously programmed to $0D, as indicated by the highlighted floating gates. The bit
pattern and voltages across the top of Figure 4-11 reflect the $FC value that was writ-
ten to the location during this programming operation. This programming operation
was expected to cause bit 0 to be programmed, but the operation failed (indicated by
the bit O floating gate not highlighted). This operation fails because there is already a
conductive path from Vpp to Vpp at the start of the programming operation. Since the
weak Vpp supply is shunted to Vpp, N0 programming can occur.

The failure of the composite programming case verifies that the conductive paths exist
from Vpp to the array ground and from Vpp to the array ground. The failure also shows
that these conductive paths are capable of shunting Vpp to a low enough level to pre-
vent programming.

Vpp comes from a charge pump having very little drive-current capability. It is not very
surprising that Vpp could be effectively shorted to Vpp without producing any notice-
able load to Vpp. In the selective-write method (see Figure 4-10), the path from Vpp
to the array ground is conductive from the beginning of the operation. The path from
Vpp to the array ground (through the bits being programmed) does not become con-
ductive until these floating gates are charged to a high enough positive level for the

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-25

floating-gate transistor to become conductive. It may be that the shunting path does
not develop until the bits have already finished programming. If two or more new bits
are being programmed and one were to become programmed (conductive) before the
other(s), Vpp might become shunted before the other bit(s) could finish being pro-
grammed. One possible reason this unequal programming problem does not arise is
because the bits in a byte are so physically close to each other that they should have
nearly identical properties.

Vbp Vbp Vbp Vbp Vbp Vbp Vpp Vpp
7 Je Js J4 Js Jz Jl Jo

——
>—
>—
>—

——

——
>—

——

Figure 4-11 Composite Programming Method

The selective-write method may result in soft programming. The shunt path may de-
velop so late in the programming process that the bits are programmed well enough
to be read back as ones but not well enough to provide reliable data retention. On the
other hand, soft programming might be beneficial by limiting the stress on the thin ox-
ides. The selective-write strategy should be viewed with skepticism until additional
study can prove it has merit.

In most cases, EEPROM locations are only exposed to a few write-erase cycles in the
lifetime of a product. In some applications, a few variables need to endure several hun-
dred thousand write-erase cycles (e.g., the odometer reading in an automobile). Since
only a few variables require these extended write-erase cycle lifetimes, it is practical
to consider solutions involving the use of multiple EEPROM locations for the storage
of each such variable. Using an EEPROM location as an ordinary binary counter is
perhaps the worst case for EEPROM wear-out because the least significant bit toggles
at every count; thus, the EEPROM location must be erased and reprogrammed at
each count and is exposed to one write-erase cycle for every two counts.

A count value could be encoded so that an EEPROM location could be programmed
eight times by the program-more-zeros method before it has to be erased. In such a
scheme, the EEPROM location would only experience one write-erase cycle every
eight counts. This scheme of bit-position coding would only be needed for the low-or-
der bits of a counter since the high-order bits change much less frequently.

To extend the write-erase lifetime of a variable even further, using multiple EEPROM
locations would allow switching to a different location when the current location ap-
proached wear-out. The problem is to decide when a location is approaching wear-out.

MOTOROLA ON-CHIP MEMORY M68HC11
4-26 REFERENCE MANUAL

Counting the number of times the location has been changed has two problems. First,
there is no good way of storing the usage count in EEPROM without wearing out the
usage count location in the same way as the location being monitored. Second, if
10,000 is used as the nominal life-expectancy number, the user may actually wear out
the location sooner than expected and fail, or he may not actually be using the location
to its potential. The life expectancy is approximately 100,000 write-erase cycles at
55°C even though it is only 5,000 at 125°C.

M68HC11 ON-CHIP MEMORY MOTOROLA
REFERENCE MANUAL 4-27

MOTOROLA ON-CHIP MEMORY M68HC11
4-28 REFERENCE MANUAL

SECTION 5
RESETS AND INTERRUPTS

Reset and interrupt operations are often discussed together because they share the
common concept of vector fetching to force a new starting point for further central pro-
cessing unit (CPU) operations. The reset structure in the MC68HC11A8, which is quite
different from other MCUSs, is presented in this section. This reset system can generate
a reset output if reset-causing conditions are detected by internal systems. The on-
chip electrically erasable programmable read-only memory (EEPROM) also places
extra demands on external circuitry connected to the RESET pin.

The MC68HC11A8 includes 18 separate interrupt sources. On-chip peripheral sys-
tems generate maskable interrupts, which are recognized only if the global interrupt
mask bit (I) in the condition code register (CCR) is clear. Three interrupt sources con-
sidered non-maskable will be discussed in detail in this section.

Maskable interrupts are prioritized according to a default arrangement; however, any
one source may be elevated to the highest maskable priority position by a software-
accessible control register. This highest priority interrupt (HPRIO) register may be writ-
ten at any time provided the | bit in the CCR is set.

When interrupt conditions occur in an on-chip peripheral system, an interrupt status
flag is set to indicate the condition. When the user’s program has properly responded
to this interrupt request, the status flag must be cleared. The method of clearing varies
from one system to another, depending on the requirements of the system. The vari-
ous flag clearing methods and considerations are discussed in 5.7 Interrupts from In-
ternal Peripheral Subsystems

5.1 Initial Conditions Established During Reset

Reset is used to force the microcontroller unit (MCU) to assume a set of initial condi-
tions and to begin executing instructions from a predetermined starting address. For
most practical applications, the initial conditions take effect almost immediately after
applying an active-low level to the RESET pin. Some reset conditions cannot take ef-
fect until/unless a clock is applied to the external clock input (EXTAL) pin. One exam-
ple is port B, which acts as an address output port in the expanded modes and as a
general-purpose output port in the single-chip modes. During reset in expanded mode,
these pins would be $FF because this is the high-order half of $FFFE. During reset in
single-chip mode, these pins would be $00. Since the mode pins are pipelined into the
MCU, a clock is needed for the MCU to recognize the mode selected.

If no clock is present, the port B pins could be in the wrong state due to the inability of
the MCU to recognize the correct mode of operation. If no clock is present, the MCU
cannot advance out of the reset condition since internal reset is a clocked sequence;
thus, the MCU cannot advance past the first step of this sequence. Even with no clock
present, a RESET signal will cause some changes. Most important, an unclocked RE-

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-1

SET signal resets the clock divider circuitry so the on-chip oscillator will start. If an ap-
plication includes external clock circuitry driving the EXTAL pin, the RESET signal
should force this external clock to resume oscillation.

5.1.1 System Initial Conditions

Once the reset condition is recognized, internal registers and control bits are forced to
an initial state. These initial states, in turn, control on-chip peripheral systems to force
them to known start-up states. Most of the initial conditions are independent of the op-
erating mode. The following paragraphs summarize the initial conditions of the MCU
as it leaves reset.

5.1.1.1 CPU

After reset, the CPU fetches the restart vector from locations $FFFE,FFFF
($BFFE,BFFF if in special test or bootstrap mode) during the first three cycles and be-
gins executing instructions. The stack pointer and other CPU registers are indetermi-
nate immediately after reset; however, the X and | interrupt mask bits in the CCR are
set to mask any interrupt requests. Also, the S bit in the CCR is set to disable the
STOP mode.

5.1.1.2 Memory Map

After reset, the RAM and I/0 mapping (INIT) register is initialized to $01, putting the
256 bytes of random-access memory (RAM) at locations $0000-$00FF and the con-
trol registers at locations $1000-$103F. The 8-Kbyte read-only memory (ROM) and/
or the 512-byte EEPROM may or may not be present in the memory map because the
two bits that enable them in the configuration control (CONFIG) register are EEPROM
cells not affected by reset or power-down.

5.1.1.3 Parallel /0O

When a reset occurs in expanded-multiplexed operating mode, the 18 pins used for
parallel I/O are dedicated to the expansion bus. If a reset occurs in the single-chip op-
erating mode, the strobe A flag (STAF), strobe A interrupt (STAI), and handshake
(HNDS) control bits in the parallel input/output control (PIOC) register are cleared so
that no interrupt is pending or enabled, and the simple strobed mode (rather than full-
handshake mode) of parallel 1/O is selected. The port C wired-OR mode (CWOM) bit
in PIOC is cleared. Port C is initialized as an input port (data direction register for port
C, DDRC $00); port B is a general-purpose output port with all bits cleared. STRA is
the edge-sensitive strobe A input, and the active edge is initially configured to detect
rising edges (edge select for strobe A (EGA) bit in PIOC is set). Port C, port D (bits
[5:0]), port A (bits O, 1, 2, and 7), and port E are configured as general-purpose high-
impedance inputs. Port B and bits [6:3] of port A have their directions fixed as outputs,
and their reset state is logic zero.

5.1.1.4 Timer

During reset, the timer system is initialized to a count of $0000. The prescaler bits are
cleared, and all output-compare registers are initialized to $FFFF. All input-capture

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-2 REFERENCE MANUAL

registers are indeterminate after reset. The output-compare 1 (OC1M) mask register
is cleared so that successful OC1 compares do not affect any I/O pins. The other four
output compares are configured to not affect any I/O pins on successful compares. All
three input-capture edge-detector circuits are configured for capture-disabled opera-
tion. The timer overflow interrupt flag and all eight timer function interrupt flags are
cleared. All nine timer interrupts are disabled since their mask bits are cleared.

5.1.1.5 Real-Time Interrupt

The real-time interrupt flag is cleared, and automatic hardware interrupts are masked.
The rate control bits are cleared after reset and may be initialized by software before
the real-time interrupt system is used.

5.1.1.6 Pulse Accumulator

The pulse accumulator system is disabled at reset so that the pulse accumulator input
(PAI) pin defaults to being a general-purpose input pin.

5.1.1.7 COP Watchdog

The computer operating properly (COP) watchdog system is enabled if the NOCOP
control bit in the CONFIG register (EEPROM cell) is clear and disabled if NOCOP is
set. The COP rate is set for the shortest duration time-out.

5.1.1.8 Serial Communications Interface (SCI)

The reset condition of the SCI system is independent of the operating mode. At reset,
the SCI baud rate is indeterminate and must be established by a software write to the
BAUD register. All transmit and receive interrupts are masked, and both the transmit-
ter and receiver are disabled so the port pins default to being general-purpose 1/0
lines. The SCI frame format is initialized to an 8-bit character size. The send break and
receiver wake-up functions are disabled. The transmit data register empty (TDRE) and
transmit complete (TC) status bits in the SCI status register are both set, indicating that
there is no transmit data in either the transmit data register or the transmit serial shift
register. The receive data register full (RDRF), IDLE, overrun (OR), and framing error
(FE) receive-related status bits are all cleared. Upon reset in special bootstrap mode,
execution begins in the 192-byte bootstrap ROM, which changes some of the initial
conditions by the time the bootloading process is finished. This firmware sets port D
to wired-OR mode, establishes a baud rate, and enables the SCI receiver and trans-
mitter.

5.1.1.9 Serial Peripheral Interface (SPI)

The SPI system is disabled by reset. The port pins associated with this function default
to being general-purpose I/0 lines.

5.1.1.10 Analog-to-Digital (A/D) Converter

The A/D converter system configuration is indeterminate after reset. The conversion
complete flag is cleared by reset. The A/D power-up (ADPU) bit is cleared by reset,
disabling the A/D system.

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-3

5.1.1.11 Other System Controls

The EEPROM programming controls are all disabled so the memory system is config-
ured for normal read operation. The highest priority | bit interrupt defaults to being the
external interrupt request (IRQ) pin by PSEL[3:0] equal to 0:1:0:1. The IRQ pin is con-
figured for level-sensitive operation (for wired-OR systems). The read bootstrap ROM
(RBOOQOT), special mode (SMOD), and mode A (MDA) bits in the HPRIO register reflect
the status of the mode B (MODB) and MODA inputs at the rising edge of reset. The
enable oscillator start-up delay (DLY) control bit is set to specify that an oscillator start-
up delay is imposed upon recovery from STOP mode. The clock monitor system is dis-
abled by clock monitor enable (CME) equals zero.

The MC68HC11A8 has three internal sources that can cause reset as well as the ex-
ternal application of a low level to the RESET pin. No matter which of these sources
causes reset, the entire MCU is reset. The RESET pin is driven low as a result of any
of the reset sources. The only distinction that is made between the causes of reset is
the reset vector, which is used to tell the CPU the starting address for execution when
reset is released.

A few registers are not forced to a start-up condition as a result of reset. Since these
registers do not affect the starting conditions at MCU pins, it is not important to force
them to a start-up state during reset. One such example is the main-timer input-cap-
ture registers. Since these registers are not useful until after an input capture occurs,
it is not important to force them to a start-up state during reset.

5.1.2 CONFIG Register Allows Flexible Configuration

The M68HC11 includes a nonvolatile CONFIG register, which controls a number of
options typically controlled by mask options or by additional mode selection choices in
other MCUSs. By using a nonvolatile EEPROM-based register, it is possible to achieve
the same effects as if the options were mask programmed and, at the same time, allow
users to change these features after the MCU is manufactured. The most important
aspect of this method of selecting options is that the selections automatically take ef-
fect on any power-up or reset without any software intervention. Two classes of fea-
tures can be controlled in this manner. First, there are configuration choices that must
inherently be made before the reset vector is even fetched. For example, the ROM en-
able must be decided so that the reset vector can be fetched out of the correct memory
as the MCU comes out of reset. The COP watchdog timer enable is an example of the
second class of features that can be controlled by an EEPROM bit. The COP watch-
dog timer is intended to detect software failures; thus, it is important to enable or dis-
able this feature without any software intervention. If software could disable or was
required to enable the COP watchdog, the COP watchdog timer could not detect a fail-
ure of that software.

The CONFIG register controls the presence or absence of ROM and/or EEPROM, en-
ables/disables the COP watchdog timer, and engages/disengages the security option.
The CONFIG register and mechanism are described in greater detail in 3.2.1 Opera-
tion of CONFIG Mechanism . The features enabled by the CONFIG register can be
thought of as mask-programmed options that do not require software service.

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-4 REFERENCE MANUAL

5.1.3 Mode of Operation Established

During reset, the basic mode of operation is established, which determines whether
the MCU will operate as a self-contained single-chip system or as an expanded sys-
tem that includes external memory resources. There are also special variations of
these two basic modes of operation. The bootstrap mode is the special variation of the
normal single-chip mode, and the special test mode is the special variation of the nor-
mal expanded mode. The levels on the two mode select pins during reset determine
which of these four modes of operation will be selected.

The hardware mode select mechanism begins with the logic levels on the MODA and
MODB pins while the MCU is in the reset state. The logic levels on the MODA and
MODB pins are fed into the MCU via a clocked pipeline path. The captured levels will
be those that were present part of a clock cycle before the RESET pin rose. This fact
assures a zero hold-time requirement on the mode select pins relative to the rising
edge at the RESET pin. The captured levels determine the logic state of the SMOD
and MDA control bits in the HPRIO register. These two control bits actually control the
logic circuits involved in hardware mode selection. Table 5-1 summarizes the opera-
tion of the mode pins and mode control bits.

Table 5-1 Hardware Mode Select Summary

Inputs o Control Bits in HPRIO (Latched at Reset)
Mode Description
MODB MODA RBOOT SMOD MDA Inputs
Normal Single

1 0 Chip 0 0 0 0
Normal Expanded 0 0 0

0 0 Special Bootstrap

0 1 Special Test 0 1 1

5.1.4 Program Counter Loaded with Reset Vector

As reset is released, the CPU program counter is loaded with the reset vector that
points to the first instruction in the user’s program. Depending on the cause of reset
and the mode of operation, the reset vector may be fetched from any of six possible
locations. In older Motorola MCUSs, there was only one reset vector at $FFFE,FFFF.

5.2 Causes Of Reset

In the MC68HC11A8, there are on-chip systems that can detect MCU system failures
and generate a low level out the RESET pin to reinitialize other peripherals in the sys-
tem. To distinguish between these causes, separate reset Vectors are used. The pri-
mary reset vector is used when the cause of reset is the internal power-on reset circuit
or application of a low level to the RESET pin. In normal expanded and normal single-
chip modes, this vector is located at $FFFE,FFFF. If the oscillator input stops or is run-
ning too slow, the clock monitor circuit will generate a reset (provided the clock monitor
is enabled). Time-out of the internal COP watchdog timer will generate a reset (provid-
ed the COP system is enabled). Table 5-2 summarizes the reset-vector locations ver-
sus the cause of reset and mode of operation.

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-5

Table 5-2 Reset Vector vs. Cause and MCU Mode

Cause of Reset Normal Mode Vector Special Test or Bootstrap Vector
POR or RESET Pin $FFFE,FFFF $BFFE,BFFF
Clock Monitor Fail $FFFC,FFFD $BFFC,BFFD
COP Watchdog Time-Out $FFFA FFFB $BFFA,BFFB

In special test and bootstrap modes, MCU vectors are located at $BFC0-$BFFF rath-
er than the normal $FFCO-$FFFF area. The primary reason for this change is to be
sure the reset vector can be supplied from an external source in special test mode.
The normal reset vector is located at $FFFE,FFFF, which can be internal ROM or ex-
ternal memory space (depending on whether the internal ROM is enabled). The spe-
cial test mode reset vector is at $BFFE,BFFF, which is always an external access
independent of other system conditions.

This alternate mapping is important to the operation of bootstrap mode because it al-
lows reset and other vectors to be located within the 192-byte bootloader ROM. As the
MCU comes out of reset in special bootstrap mode, the reset vector is fetched out of
the bootloader ROM, and execution begins at the start of the bootloader program.
While in bootstrap mode, interrupts can be vectored to locations in the bootloaded pro-
gram in RAM rather than vectoring to the routines specified in the internal ROM pro-
gram.

The M68HC11 MCU is capable of distinguishing between an external reset and resets
from the internal COP and clock monitor systems. When the COP watchdog timer
times out or the clock monitor detects a clock failure, the COP and clock monitor status
is temporarily saved. The RESET pin is then driven low for about four E-clock cycles
and is released. Two E-clock cycles later, the RESET input is sampled. If RESET is
high (has risen to logic one within the two cycles since it was released), the source of
reset is presumed to be either the COP or clock monitor system. If RESET is still low,
the source is presumed to be an external reset request, and the temporarily saved sta-
tus from the COP and clock monitor systems is erased. Although there would rarely
be more than one cause for a particular reset sequence, the three reset vectors are
prioritized. If an external reset request drives the RESET pin low for less than four E-
clock cycles, the differentiation logic could assume the source of reset was the internal
COP or clock monitor system; however, as long as neither of these causes was indi-
cated by the temporarily latched status, the normal reset vector would still be used by
default. Although this MCU can differentiate between different reset causes, the most
common implementation would direct all reset vectors to the same initialization soft-
ware, regardless of the cause of reset.

There are four possible sources of reset in the MC68HC11A8. An internal circuit de-
tects the rising edge on Vpp and initiates a power-on reset. An on-chip COP watchdog
timer monitors proper software execution; if software does not service this timer within
its time-out period, a system reset is generated. Another on-chip circuit monitors the
MCU clock frequency. If the MCU clock stops or is running too slow, a system reset is
generated. Finally, a user can initiate an external reset by momentarily driving the RE-
SET pin low. The COP and clock monitor features can be disabled. The power-on re-

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-6 REFERENCE MANUAL

set and external reset share the normal reset vector; whereas, the COP and clock
monitor reset each have their own vector. The four causes of reset are described in
greater detail in the following paragraphs.

5.2.1 Power-On Reset (POR)

The POR is only intended to initialize internal MCU circuits. As Vpp is applied to the
MCU, the POR circuit triggers and initiates a reset sequence. POR triggers an internal
timing circuit that holds the RESET pin low for 4064 cycles of the internal PH2 clock.
The MCU does not advance past this reset condition until a clock is present at the EX-
TAL pin long enough for these 4064-cycle PH2 clocks to be detected. The internal
POR circuit will not retrigger unless Vpp has discharged to 0 V; therefore, the internal
POR circuit is not suitable as a power-loss detector.

In almost all M6BHC11 systems, there will be an external circuit to hold the RESET pin
low whenever Vpp is below normal operating level. This external voltage-level detec-
tor or other external reset circuits are the normal source of reset in a system; the inter-
nal POR circuit only serves to initialize internal control circuitry during cold starts.

In some unusual applications, it may be desirable to hold RESET low long enough for
the oscillator to reach stable operating frequency. This stable operating frequency is
not a requirement of the MCU because the M68HC11 is a fully static design, which can
operate correctly even when the oscillator has not reached stable operating frequency.
If the oscillator has not reached stable operating frequency by the time RESET is re-
leased, software and timed delays will be longer than expected since these delays are
based on the oscillator frequency. In most applications, such errors within the first few
milliseconds of operation are of no concern, and no external power-on delay is neces-
sary. In cases where timing is critical immediately out of RESET, an external POR cir-
cuit must be provided. The required amount of delay depends upon the oscillator
startup time, which varies with the frequency and design of the oscillator as well as
such things as Vpp rise time. In a typical M68HC11 design with an E-clock frequency
of 2 MHz, the internal POR will only hold RESET low for about 2 ms after oscillator
start. With an 8-MHz crystal, the M68HC11 oscillator will typically start when Vpp
reaches about 1 V. For a typical Vpp rise time, the internal POR times out well before
Vpp reaches an acceptable level. Thus, POR alone is rarely able to provide for all re-
set needs, and some external reset circuitry will be required.

5.2.2 COP Watchdog Timer Reset

The COP watchdog timer system is intended to detect software processing errors.
When the COP is being used, software is responsible for keeping a free-running
watchdog timer from timing out. If the watchdog timer times out, it is an indication that
software is no longer being executed in the intended sequence; thus, a system reset
is initiated.

The COP system is enabled or disabled, depending on the state of the NOCOP bit in
the CONFIG register. This enable is like a mask option in that it is effective immediate-

ly out of reset and is not dependent on any software action. Unlike a programmed
mask option, the COP enable may be changed by the end user. The requirements for

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-7

changing the enable bit are designed so the NOCOP bit is very unlikely to be changed
by accident in the end system. The only way to change the enable status of the COP
system is to change the contents of the EEPROM-based CONFIG register. Even after
the NOCOP bit is changed, the MCU must be reset before the new status becomes
effective. In the special test and bootstrap operating modes, the COP system is initially
inhibited by the disable resets (DISR) control bit in the TEST1 register. The DISR bit
can be written to zero to enable COP resets while the MCU is in special test or boot-
strap operating mode.

The COP time-out period is set by the COP timer rate control bits (CR1 and CRO) in
the configuration options (OPTION) register. After reset, these bits are both zero,
which selects the fastest time-out period. The MCU internal E clock is first divided by
215 pefore it enters the COP watchdog system. The CR1 and CRO bits control a further
scaling factor for the watchdog timer (see Table 5-3). The columns at the right of the
table show the resulting watchdog time-out periods for three typical oscillator frequen-
cies. In normal operating modes, these bits can only be written once, and that write
must be within 64 bus cycles after reset.

Table 5-3 Watchdog Rates vs. Crystal Frequency

Crystal Frequency
CR1 CRO E+215 Divided By 223z | 8 MHz | 4 MHz
Nominal Time-Out
0 0 15.625 ms 16.384 ms 32.768 ms
0 1 4 62.5 ms 65.536 ms 131.07 ms
1 0 16 250 ms 262.14 ms 524.29 ms
1 1 64 1s 1.049s 21s
2.1 MHz 2 MHz 1 MHz
Bus Frequency (E clock)

The COP timer must be reset by a software sequence prior to time-out to avoid a COP
reset. The software COP reset is a two-step sequence. The first step is to write $55 to
the COPRST register to arm the COP timer-clearing mechanism. The second step is
to write $AA to the COPRST register, which clears the COP timer. Any number of in-
structions can be performed between these two steps as long as both steps are per-
formed in the correct sequence before the timer times out. This reset sequence is
sometimes referred to as servicing the COP timer.

Since the COP timer is based on the MCU clock, the COP watchdog cannot detect er-
rors that cause the MCU clock to stop. The clock monitor system (see 5.2.3 Clock
Monitor Reset) can be used as a backup for COP to force a system reset if the MCU
clocks stop.

Placing the COP service instructions in an interrupt service routine is bad practice. In
such a case, the interrupt could occur often enough to keep the COP system satisfied
even if the main-line program was no longer functioning.

The implementation of the COP timer causes a tolerance on the time-out period. The

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-8 REFERENCE MANUAL

E divided by 21 clock into the COP system is free-running and, for practical purposes,
is asynchronous to the COP service software. All additional divider stages in the COP
timer are reset each time the COP service sequence is performed. There is an uncer-
tainty about when the first E divided by 21° clock will reach the COP timer stages. This
uncertainty causes the specified time-out period to have a tolerance of minus zero to
plus one cycle of the E divided by 215 clock. This tolerance varies with E-clock frequen-
cy but does not change with respect to the COP rate selected by the CR1 and CRO
bits. Figure 10-3 and 10.2.3 COP Watchdog Function contain additional information
about this clocking structure.

5.2.3 Clock Monitor Reset

The clock monitor circuit is based on an internal resistor-capacitor (RC) time delay. If
no MCU clock edges are detected within this RC time delay, the clock monitor can op-
tionally generate a system reset. The clock monitor function is enabled/disabled by the
CME control bit in the OPTION register. This time-out is based on an RC delay so that
the clock monitor can operate without any MCU clocks.

Processing variations cause the RC time-out to vary somewhat from lot to lot and part
to part. An E-clock frequency below 10 kHz will definitely be detected as a clock mon-
itor error. An E-clock frequency of 200 kHz or more will prevent clock monitor errors.
Any system operating below 200 kHz E-clock frequency should not use the clock mon-
itor function.

When the clock monitor is enabled and the MCU clocks slow down or stop, a system
reset is generated. The bidirectional RESET pin is driven low to reset the external sys-
tem and the MCU. Clock monitor has a separate reset vector from COP reset and ex-
ternal reset to enable software to determine the cause of reset. While the MCU is in
special test or bootstrap mode, resets from the COP and clock monitor systems are
initially disabled by a one in the DISR bitin the TEST1 register. While still in the special
operating modes, COP and clock monitor resets can be re-enabled by writing the
DISR control bit to zero. In normal operating modes, the DISR bit is forced to zero and
cannot be set to one.

Clock monitor is often used as a backup for the COP watchdog system. Since the COP
needs a clock to function, it is unable to function if the clocks stop. In such a case, the
clock monitor system could detect clock failures not detected by the COP system.

Another use for the clock monitor is to protect against the unintentional execution of
the STOP instruction. Some applications view the STOP instruction as a serious prob-
lem because it causes MCU clocks to stop, thus disabling all software execution and
on-chip peripheral functions. A stop disable bit (S) in the CCR is the first line of defense
against unwanted STOP instructions. While the S bit is one, the STOP instruction acts
as a no-operation (NOP) instruction, which does not interfere with MCU clock opera-
tion. Clock monitor can provide an additional level of protection by generating a sys-
tem reset if the MCU clocks are accidentally stopped.

It is possible to use the clock monitor in systems that also use the STOP instruction.
In such a system, the CME control bit would be written to zero to disable the clock

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-9

monitor prior to executing an intentional STOP instruction. After recovery from STOP,
the CME bit would be written to one to enable the clock monitor during normal execu-
tion.

The reset sequence is a clocked operation; whereas, clock monitor resets are gener-
ated when the clocks stop. In many cases, the low level on RESET will correct the
cause of the stopped MCU clocks, and recovery can proceed much as in the COP re-
set case. In cases where the MCU clocks do not resume as a result of the clock mon-
itor reset, the driven low level at the RESET pin will remain indefinitely.

5.2.4 External Reset

In addition to the internal sources, reset can be forced by applying a low level to the
RESET pin. The resulting reset sequence is identical to the internal causes. Upon rec-
ognition of the reset request, internal logic turns on an internal N-channel device,
which actively holds the RESET pin low for about four cycles. In a normal system, the
external source of RESET would be redundantly driving the pin low during this time
and would continue to hold the pin low longer than this four cycles. Two E-clock cycles
after the internal N-channel driver releases the pin, the RESET pin is sampled. A low
level at this time indicates the reset was caused by some external source. When the
RESET pin is eventually released, the normal reset vector is fetched and processing
begins.

In all cases of reset, the internal N-channel device holds the RESET pin low for at least
four E-clock cycles. All resets cause internal registers and on-chip peripherals to be
re-initialized. The only difference between causes of reset is the vector locations used.

In the abnormal case where the RESET pin is not held low long enough to be detected
as the cause, the reset is tentatively assumed to have come from the COP or clock
monitor systems. Priority logic assigns highest priority to the clock monitor and second
highest priority to the COP watchdog. If neither of these sources is pending, the normal
reset vector is selected by default. In another abnormal case where the RESET line is
loaded by too much capacitance to rise within two cycles after the internal N-channel
turns off, there will be no way for the internal logic to discriminate between an internal
or external reset source; thus, all resets are interpreted as external requests.

Figure 5-1 shows an example of an external reset circuit. The low voltage inhibit (LVI)
device [1] holds RESET low whenever Vpp is below operating level. The LVI device
[2] and the RC on its input provide an external POR delay. The switch [3] provides for
manual reset. Voltage detectors [1] and [2] have open-drain outputs, and the pull-up
resistor holds the RESET pin high unless either voltage detector or the internal MCU
reset circuitry drives the RESET pin low. The LVI circuit [1] (or some equivalent circuit)
is required for virtually all M6BHC11 systems. The external POR delay and manual re-
set switch are optional. For many applications, the voltage detector [1] and the pull-up
resistor [4] are the only external components needed for reset.

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-10 REFERENCE MANUAL

Vbp Vbp

-
Y
DD
(4
2 4.7kQ
IN j
MANUAL R1 1
RESET SWITCH £A] RESET TO RESET

R2 MC34064 OF M68HC11
GND

C 2 3

=) IN p—
|1 -
2] RESET

- - MC34164
GND
3

Figure 5-1 Typical External Reset Circuit

5.3 Interrupt Process

The CPU in a microcontroller sequentially executes instructions. In many applications,
it is necessary to execute sets of instructions in response to requests from various pe-
ripheral devices. These requests are often asynchronous to the execution of the main
program. Interrupts provide a way to temporarily suspend normal program execution
so the CPU can be freed to service these requests. After an interrupt has been ser-
viced, the main program resumes as if there had been no interruption.

The instructions executed in response to an interrupt are called the interrupt service
routine. These routines are much like subroutines except that they are called through
the automatic hardware interrupt mechanism rather than by a subroutine call instruc-
tion, and all CPU registers are saved on the stack rather than just saving the program
counter. An interrupt (provided it is enabled) causes normal program flow to be sus-
pended as soon as the currently executing instruction finishes. The interrupt logic then
pushes the contents of all CPU registers onto the stack so the CPU context can be
restored after the interrupt is finished. After stacking the CPU registers, the vector for
the highest priority pending interrupt source is loaded into the program counter, and
execution continues with the first instruction of the interrupt service routine. An inter-
rupt is concluded with a return from interrupt (RTI) instruction, which causes all CPU
registers and the return address to be recovered from the stack so that the interrupted
program can resume as if there had been no interruption.

Interrupts can be enabled or disabled by mask bits (X and I) in the CCR and by local
enable mask bits in the on-chip peripheral control registers. A few important interrupt
sources that are always enabled are called non-maskable interrupts. The non-
maskable interrupt request (XIRQ) pin is effectively a non-maskable interrupt source
except that it is disabled immediately after reset. Very special logic is associated with
the interrupt mask bit (X) for XIRQ in the CCR to overcome classic problems associ-
ated with a non-maskable interrupt while allowing all of the benefits of such an inter-
rupt. The remaining interrupt sources are maskable by the interrupt mask bit (I) in the

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-11

CCR.

The interrupt mask bits in the CCR provide a means of controlling the nesting of inter-
rupts. In rare cases, it may be useful to allow an interrupt routine to be interrupted
(nesting of interrupts). Nesting of interrupts is discouraged because it greatly compli-
cates a system and rarely improves system performance. By default, the interrupt
structure inhibits interrupts during the interrupt entry sequence by setting the interrupt
mask bit(s) in the CCR. As the CCR is recovered from the stack during the RTI instruc-
tion, the CCR bits return to the enabled state so additional interrupts can be serviced.
If nesting of interrupts is desired, it must be specifically allowed by clearing the inter-
rupt mask bit(s) after entering the interrupt service routine. Care must be taken to spe-
cifically mask (disable) the present interrupt with a local enable mask bit or to clear the
interrupt source flag before clearing the mask bit in the CCR; otherwise, the same
source would immediately interrupt, and an infinite loop could result.

Upon reset, both the X and | bit are set to inhibit all maskable interrupts and XIRQ.
After minimum system initialization, software may clear the X bit by a transfer accumu-
lator A to CCR (TAP) instruction, thus enabling XIRQ. Thereafter, software cannot set
the X bit; thus, an XIRQ is effectively a non-maskable interrupt. Since the operation of
the I-bit-related interrupt structure has no effect on the X bit, the external XIRQ pin re-
mains effectively non-maskable. In the interrupt priority logic, XIRQ is a higher priority
than any source that is maskable by the I bit. All I-bit-related interrupts operate normal-
ly with their own priority relationship. When an I-bit-related interrupt occurs, the | bit is
automatically set by hardware after stacking the CCR byte, but the X bit is not affected.
When an XIRQ occurs, both the X and | bits are automatically set by hardware after
stacking the CCR. An RTI instruction restores the X and | bits to their pre-interrupt re-
guest state.

5.3.1 Interrupt Recognition and Stacking Registers

An interrupt can be recognized at any time provided it is enabled by its local mask (if
any) and by the global mask bit in the CCR. Once any interrupt source is recognized,
the CPU will respond at the completion of the currently executing instruction. Instruc-
tions cannot be interrupted; rather, the CPU decides whether to fetch another instruc-
tion or process an interrupt. In calculating the latency time from the actual interrupt
request to the CPU response to that request, the user must consider the possibility that
the CPU had just started a long instruction as the interrupt was requested. Most in-
structions are two to four cycles long, but the multiply (MUL) and integer divide (IDIV)
or fractional divide (FDIV) instructions are 10 and 41 cycles, respectively.

When the CPU decides to service an interrupt, the contents of CPU registers are
pushed (stored) on the stack in the order PCL, PCH, IYL, IYH, IXL, IXH, ACCA, ACCB,
CCR. After the CCR value is stacked, the | bit in the CCR (and the X bit if XIRQ is
pending) is set to inhibit further interrupts. The interrupt sequence then proceeds to
the priority resolution step.

5.3.2 Selecting Interrupt Vectors
After the CCR has been stacked, the CPU evaluates all pending interrupt requests to

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-12 REFERENCE MANUAL

determine which source has the highest priority. Since the priority resolution step oc-
curs several cycles after the original decision to service an interrupt, a higher priority
source could become pending after the stacking operation started but before the pri-
ority is resolved. In such a case, the interrupt that is serviced can be different from the
source that initiated the interrupt sequence. This subtle aspect means that the latency
from an interrupt request to when it is serviced can be shorter than expected.

Interrupts obey a fixed hardware-priority circuit to resolve simultaneous requests; how-
ever, one I-bit-related interrupt source may be elevated to the highest | bit priority po-
sition in the resolution circuit. The first six interrupt sources are not masked by the | bit
in the CCR and have the fixed priority interrupt relationship: reset, clock monitor fail,
CORP fall, illegal opcode, and XIRQ. Each of these sources is an input to the priority
resolution circuit. Software interrupt (SWI) is actually an instruction and has the high-
est priority other than reset because, once the SWI opcode is fetched, no other inter-
rupt can be honored until the SWI vector has been fetched. The highest I-bit-related
priority input is assigned under software control (of the HPRIO register) to be connect-
ed to any one of the remaining I-bit-related interrupt sources. To avoid timing races,
the HPRIO register may only be written while the I-bit-related interrupts are inhibited
(I bit in CCR = 1). An interrupt that is assigned to this highest priority position is still
subject to masking by any associated control bits or by the | bit in the CCR. The inter-
rupt vector address is not affected by assigning a source to this highest priority posi-
tion.

The following figure shows the HPRIO register. The HPRIO register may be read at
any time but may only be written under special circumstances. The high-order four bits
of HPRIO may only be written while the MCU is operating in one of the special modes
(SMOD = 1). The low-order four bits may only be written while the | bit in the CCR is
one.

HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous $103C
BIT 7 6 5 4 3 2 1 BITO
[RBOOT [SMOD | MDA | IRV | PSEL3 | PSEL2 | PSEL1 | PSELO |
RESET: (Refer to Table 5-1)

RBOOT — Read Bootstrap ROM

Can be written only while SMOD equals one

1 = Bootstrap ROM enabled and located from $BF40-$BFFF

0 = Bootstrap ROM disabled and not present in memory map
The RBOOT control bit enables or disables the special bootstrap control ROM. This
192-byte mask-programmed ROM contains the firmware required to load a user’s pro-
gram through the SCI into the internal RAM and jump to the loaded program. In all
modes other than the special bootstrap mode, this ROM is disabled and does not oc-
cupy any space in the 64-Kbyte memory map. Although it is zero when the MCU
comes out of reset in test mode, the RBOOT bit may be written to one while in special
test mode.

SMOD — Special Mode
May be written to zero but not back to one

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-13

1 = Special mode variation in effect
0 = Normal mode variation in effect

MDA — Mode A Select
Can be written only while SMOD equals one
1 = Normal expanded or special test mode in effect
0 = Normal single-chip or special bootstrap mode in effect

IRV — Internal Read Visibility

Can be written only while SMOD equals one; forced to zero if SMOD equals zero

1 = Data driven onto external bus during internal reads

0 = Data from internal reads not visible on expansion bus (levels on bus ignored)
The IRV control bit is used during factory testing and sometimes during emulation to
allow internal read accesses to be visible on the external data bus. Care is required to
avoid data bus contention while IRV is active because the bidirectional data bus is driv-
en out during reads of internal addresses, even though the R/W line suggests the data
bus is in the high-impedance read mode. In normal modes, this function is disabled;
thus, complex decode logic is not required to protect against accidental bus conflicts.

PSEL[3:0] — Priority Select Bits 3:0
Can be written only while 1 bit in CCR equals one. These four bits allow any one
maskable interrupt source to be elevated to the highest priority position. Non-
maskable interrupts still take priority over all maskable interrupts. The following table
shows the relationship between the PSEL[3:0] bit values and the interrupt source that
is promoted. The priority can only be changed while interrupts are masked (I bitin CCR
= 1) to avoid race conditions.

Table 5-4 Highest Priority 1 Interrupt vs. PSEL[3:0]

PSEL3 | PSEL2 | PSEL1 | PSELO Interrupt Source Promoted
0 0 0 0 Timer Overflow
0 0 0 1 Pulse Accumulator Overflow
0 0 1 0 Pulse, Accumulator Input Edge
0 0 1 1 SPI Transfer Complete
0 1 0 0 SCI Serial System
0 1 0 1 Reserved (Default to IRQ)
0 1 1 0 IRQ (External Pin or Parallel 1/0)
0 1 1 1 Real-Time Interrupt
1 0 0 0 Timer Input Capture 1
1 0 1 0 Timer Input Capture 2
1 0 1 0 Timer Input Capture 3
1 0 1 1 Timer Output Compare 1
1 1 0 0 Timer Output Compare 2
1 1 0 1 Timer Output Compare 3
1 1 1 0 Timer Output Compare 4
1 1 1 1 Timer Output Compare 5

Figure 5-2, Figure 5-4 , and Figure 5-6 illustrate the interrupt process as it relates to

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-14 REFERENCE MANUAL

normal processing. Figure 5-2 shows how the CPU begins from a reset and how in-
terrupt detection relates to normal opcode fetches. Figure 5-4, an expansion of a
block in Figure 5-2 , shows how interrupt priority is resolved. Figure 5-6 , an expansion
of the SCl interrupt block in Figure 5-4 , shows the resolution of interrupt sources within
the SCI subsystem.

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-15

POWER-ON RESET
(POR)

HIGHEST
PRIORITY

DELAY 4064 E CYCLES

EXTERNAL RESET

MOTOROLA
5-16

CLOCK MONITOR FAIL
(WITH CME = 1)

LOAD PROGRAM COUNTER
WITH CONTENTS OF
$FFFE, $FFFF
(VECTOR FETCH)

A

LOWEST
PRIORITY

COP WATCHDOG
TIMEOUT

(WITH NOCOP = 0)

LOAD PROGRAM COUNTER
WITH CONTENTS OF
$FFFC, $FFFD
(VECTOR FETCH)

LOAD PROGRAM COUNTER
WITH CONTENTS OF
SFFFA, $FFFB
(VECTOR FETCH)

4

SET BITS S, I, AND X

1

RESET MCU
HARDWARE

BEGIN INSTRUCTION
SEQUENCE

BIT X IN
CCR=1?

XIRQ
PIN LOW?

STACK CPU
REGISTERS

SET BITS AND X

FETCH VECTOR

$FFF4, SFFF5

Figure 5-2 Processing Flow out of Resets (Sheet 1 of 2)

RESETS AND INTERRUPTS

M68HC11
REFERENCE MANUAL

STACK CPU

BIT IIN
CCR=17?

ANY I-BIT

INTERRUPT
PENDING?

FETCH OPCODE

REGISTERS

SET BIT 1IN CCR

]

FETCH VECTOR
$FFF8, $FFF9

STACK CPU
REGISTERS

SET BIT I IN CCR

¥

FETCH VECTOR
$FFF6, $FFF7

RESTORE CPU
REGISTERS
FROM STACK

ILLEGAL
OPCODE?

RTI
INSTRUCTION?

EXECUTE THIS
INSTRUCTION

A

STACK CPU
REGISTERS

STACK CPU
REGISTERS

ANY
INTERRUPT
PENDING?

SETBITIIN CCR

!

RESOLVE INTERRUPT
PRIORITY AND FETCH
VECTOR FOR HIGHEST
PENDING SOURCE
SEE FIGURE 5-3

aa]

Figure 5-3 Processing Flow out of Resets (Sheet 2 of 2)

M68HC11

REFERENCE MANUAL

RESETS AND INTERRUPTS

MOTOROLA
5-17

BEGIN

XIRQ PIN

LOW 2 SET X BIT IN CCR

FETCH VECTOR
$FFF4, FFF5

I

HIGHES

PRIORITY

INTERRUP.
2

YES

Y

FETCH VECTOR

\

YES FETCH VECTOR
$FFF2, FFF3

Y
Y

YES REAL-TIME

INTERRUPT

FETCH VECTOR
$FFFO, FFFL

FETCH VECTOR
$FFEE, FFEF

Y

FETCH VECTOR
$FFEC, FFED

YES YES FETCH VECTOR
$FFEA, FFEB

FETCH VECTOR
$FFES8, FFE9

Y

Y

Y

Y

@

Figure 5-4 Interrupt Priority Resolution (Sheet 1 of 2)

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-18 REFERENCE MANUAL

FETCH VECTOR
$FFEG6, $FFE7

)

FETCH VECTOR
$FFE4, $FFE5

FETCH VECTOR
$FFE2, $FFE3

FETCH VECTOR
$FFEOQ, $FFE1

FETCH VECTOR
$FFDE, $FFDF

FETCH VECTOR
$FFDC, $FFDD

FETCH VECTOR
$FFDA, $FFDB

FETCH VECTOR
$FFD8, $FFD9

FETCH VECTOR
$FFD6, $FFD7

FETCH VECTOR
$FFF2, $FFF3

Figure 5-5 Interrupt Priority Resolution (Sheet 2 of 2)

M68HC11
REFERENCE MANUAL

RESETS AND INTERRUPTS

MOTOROLA
5-19

BEGIN

FLAG
RDRF = 1?

<

VAAAY

<

TDRE =17

<

TC=1?

<
<

IDLE = 1?

<

NO
VALID SCI REQUEST

VALID SCI REQUEST

Figure 5-6 Interrupt Source Resolution within SCI

5.3.3 Return from Interrupt

When an interrupt has been serviced as needed, the RTI instruction terminates inter-
rupt processing and returns to the program that was running at the time of the inter-
ruption. During servicing of the interrupt, some or all of the CPU registers will have
changed. To continue the former program as if it had not been interrupted, the regis-
ters must be restored to the values present at the time the former program was inter-
rupted. The RTI instruction accomplishes this by pulling (loading) the saved register
values from the stack memory. The last value to be pulled from the stack is the pro-
gram counter, which causes processing to resume where it was interrupted.

5.4 Non-Maskable Interrupts

This subsection discusses the illegal opcode fetch interrupt, the SWI instruction, and

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-20 REFERENCE MANUAL

the XIRQ input pin. The illegal opcode fetch interrupt is a non-maskable interrupt
source intended to improve system integrity. Although it performs like an interrupt,
SWI is an instruction rather than an asynchronous interrupt. The XIRQ input is an up-
dated version of the non-maskable interrupt (NMI) input of earlier MCUs.

5.4.1 Non-Maskable Interrupt Request (XIRQ)

Non-maskable interrupts are useful because they can always interrupt CPU operation.
The most common use for such an interrupt is for very serious system problems, such
as program runaway or power failure. The XIRQ mechanism over-comes two signifi-
cant problems with an NMI input while retaining the important capabilities associated
with a non-maskable source.

The first NMI problem is as follows: What if an NMI is requested before the stack point-
er has been initialized? If this request happens, the register stacking operation causes
register values to be written to a random area of memory. If the stack pointer is point-
ing to some unimplemented memory area or to a read-only area, there will be no way
to return to the program in progress at the time of the interrupt. If the stack pointer is
pointing at a data area in memory, the register values will be written over the data (thus
corrupting it). Since this situation is not desirable, the NMI had to be externally inhibit-
ed after reset until the stack pointer could be initialized.

The second NMI problem is as follows: What if the NMI signal bounces so that NMI is
nested? If nesting occurs, the stack can be filled with several copies of the register val-
ues, possibly filling the stack beyond its allotted space. Nesting in this way would also
cause excessive latency from the request until the resulting program actions are exe-
cuted.

The M68HC11 solves both these problems with the X bit in the CCR. The X bit is very
similar to the | bit except that there are special restrictions on setting and clearing of
the X bit. Since X can only be cleared by a software instruction, the programmer has
control over when the XIRQ input becomes enabled. The two software instructions
that can clear the X bit are TAP and RTI (provided the stacked CCR value has a zero
in the X bit position). The two hardware conditions that can set the X bit are system
reset and the recognition of an XIRQ.

Immediately after any reset, the X bit is set; thus, XIRQ is inhibited. When software
has established initial conditions, including setting the stack pointer, the X bit may be
cleared with a TAP instruction to enable XIRQ. These two steps overcome the first
NMI problem. Since software cannot set the X bit, the XIRQ can be considered a non-
maskable source at this point. When an XIRQ occurs, the CCR value is stacked (with
the X bit clear); the X bit is then automatically set to inhibit additional interrupts. This
step overcomes the second NMI problem. When an RTI instruction is executed, the
CCR is restored to the stacked value (which had the X bit clear). A common miscon-
ception is that the X bit can be set by executing an RTI instruction with a one in the X
bit position of the stacked CCR value. In reality, the X bit is implemented as a set-reset
flip-flop rather than a D-type flip-flop. The set input is connected to the OR of reset and
XIRQ acknowledge. The reset input is connected to the AND of a CCR write and data
bit 6 equals zero. If an attempt is made to TAP or unstack a one to the X bit, neither

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-21

the set nor the clear input to the X bit flip-flop will be activated, and the X bit will remain
unchanged.

The M68HC11 supports a STOP mode where all clocks are stopped to reduce power
consumption to a few microamps. Recovery to active mode is accomplished by a reset
or an interrupt (IRQ or XIRQ). Depending upon the state of the X bit in the CCR, the
XIRQ input offers a choice of two recovery methods. If X is zero, XIRQ interrupts are
enabled, and recovery leads to register stacking and normal interrupt service. If X is
one, XIRQ interrupts are inhibited, but the XIRQ pin can still be used for recovery from
the STOP mode. Rather than resuming operation with service of an interrupt (XIRQ),
the clocks start and processing resumes with the next opcode after the STOP opcode.
This technique can be thought of as a STOP-continue mechanism.

Some M68HC11 MCUs were manufactured with a subtle defect that can cause failure
to properly recover from STOP with an interrupt input (IRQ or XIRQ). If the opcode im-
mediately preceding the STOP opcode came from column 4 or 5 of the opcode map,
recovery was incorrect. Column 4 and 5 opcodes are accumulator instructions, such
as negate A (NEGA) or decrement B (DECB), which seldom appear immediately be-
fore a STOP instruction; therefore, a long time elapsed before the problem was dis-
covered. A simple NOP instruction before the STOP opcode assures proper recovery
from STOP in all cases.

5.4.2 lllegal Opcode Fetch

Since not all possible opcodes or opcode sequences are defined, an illegal opcode de-
tection circuit has been included. When an illegal opcode is detected, an interrupt is
requested to the illegal opcode vector. The illegal opcode vector should never be left
uninitialized. The stack pointer should be re-initialized as a result of an illegal opcode
interrupt so repeated execution of illegal opcodes does not cause stack overruns. If
the illegal opcode vector were left uninitialized, it could point to a memory location that
contained an illegal opcode. In such a case, there would be an infinite loop of repeated
illegal opcodes and an infinite stack overflow, which would cause the register contents
to be stored to all memory addresses in a very short time.

The illegal opcode trap mechanism works for all unimplemented opcodes on all four
opcode-map pages. The address stacked as the return address for the illegal opcode
interrupt is the address of the first byte of the illegal opcode. Otherwise, it would be
almost impossible to determine whether the illegal opcode had been one or two bytes.
The stacked return address can be used as a pointer to the illegal opcode so the illegal
opcode service routine can evaluate the offending opcode.

The illegal opcode mechanism can be used to create a number of special-purpose in-
structions that use otherwise illegal opcodes. When one of these opcodes is encoun-
tered, the interrupt service routine can look up the special opcocde and perform some
special task. The return address would need to be manually changed since it points to
the illegal opcode rather than to the instruction that follows the illegal opcode.

The TEST Instruction (opcode $00) is a legal opcode in special test and bootstrap
modes, but it is an especially offensive illegal opcode in normal operating modes. The

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-22 REFERENCE MANUAL

illegal opcode detection logic treats the TEST opcode as illegal when the MCU is in
normal operating modes and as legal in special test and bootstrap modes.

5.4.3 Software Interrupt

The SWI is executed in the same manner as other instructions and takes precedence
over pending interrupts only if the other interrupts are masked (I and X bits in the CCR
set). The SWI instruction is executed in a manner similar to other maskable interrupts
in that it sets the | bit, CPU registers are stacked, etc. SWI is not inhibited by the global
interrupt mask bits (X or I) in the CCR.

NOTE

The SWI instruction will not be fetched if any other interrupt is pend-
ing. However, once an SWI instruction begins, no other interrupt can
be honored until the SWI vector has been fetched.

SWI instructions are commonly used in debug monitors to transfer control from a user
program to the debug monitor. For example, while operating under monitor control, a
designer can specify a breakpoint at some address in the user program being de-
bugged. The monitor will replace the user’s opcode at this address with the opcode for
an SWI instruction. When the user’s program is running and this SWI opcode is en-
countered, the monitor, recognizing that this is a breakpoint, will take control. The SWI
opcodes are usually placed into the user’s program just before the program is run, and
these locations are restored to the original opcode when the debug monitor regains
control.

5.5 Maskable Interrupts

The remaining twenty interrupt sources in the MC68HC11A8 are subject to masking
by a global interrupt mask bit (I bit in CCR). In addition to the global I bit, all of these
sources except the external interrupt (IRQ pin) are subject to local enable bits in con-
trol registers. Most interrupt sources in the M68HC11 have separate interrupt vectors;
thus, there is usually no need for software to poll control registers to determine the
cause of an interrupt. The maskable interrupt sources respond to a fixed-priority rela-
tionship except that any one source can be dynamically elevated to the highest priority
position of any maskable source.

This subsection discusses the maskable interrupt structure rather than the specific in-
terrupts from individual internal peripheral subsystems. The interrupts associated with
the internal subsystems are discussed throughout this manual during the discussion
of each peripheral system.

5.5.1 | Bit in the Condition Code Register

The | bit in the CCR acts as a primary enable control for all maskable interrupts. When
the | bit is set, interrupts can become pending but will not be honored. When the | bit
is clear, interrupts are enabled to interrupt normal program flow when an interrupt
source requests service.

The | bitis set during reset to prevent interrupts from being honored until minimum sys-

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-23

tem initialization has been performed. Part of this minimum initialization would be to
load the stack pointer so it points to an appropriate area of RAM. The | bit is also au-
tomatically set during entry into any interrupt service routine to prevent an infinite
source of interrupts from overwhelming the CPU. Software can also set the interrupt
mask bit to inhibit interrupts during sensitive operations.

The | bit can be cleared by software instructions or during the execution of an RTI in-
struction. In most applications, the | bit remains set during interrupt service routines so
other interrupts will not be honored until a current interrupt service routine finishes (i.e.,
nesting is not permitted). In more unusual applications, it is possible to allow nesting
of interrupts by clearing the | bit during an interrupt service routine. Since this proce-
dure requires much expertise, it should not be attempted by a novice programmer. In
some cases, worst-case interrupt latency can be reduced by allowing interrupt nesting,
but usually the best procedure is to minimize the execution time of interrupt service
routines. Since the overhead associated with interrupt nesting usually violates this pro-
cedure, nesting is not recommended.

The operation of the | bit during service of an interrupt proceeds as follows. When an
enabled interrupt occurs and the | bit is clear, the CPU completes the current instruc-
tion and begins the interrupt response sequence. The current contents of the CPU reg-
isters are pushed onto the stack (stored in stack RAM). The register values are saved
one byte at a time in the following order: PCL, PCH, IYL, IYH, IXL, IXH, ACCA, ACCB,
and CCR. After the CCR value is stacked, the | bit in the CCR is set to inhibit further
interrupts. Next, the vector for the highest priority pending interrupt is fetched, and pro-
cessing continues with execution of the first instruction in the interrupt service routine.
The last instruction in the interrupt service routine is the RTI instruction. This instruc-
tion causes the previously stacked register values to be loaded back into the registers
in reverse order. Since the program counter is restored to its pre-interrupt value, the
next instruction executed will be the instruction that would have been executed if the
interrupt had not occurred.

A common error for new users is to put a set interrupt mask (SEI) instruction at the
beginning of an interrupt service routine and a clear interrupt mask (CLI) instruction
just before the RTI instruction. These instructions should not be used in this way be-
cause they are redundant. The automatic interrupt logic already sets the | bit on the
way into an interrupt and clears the | bit during normal execution of the RTI instruction.

5.5.2 Special Considerations for I-Bit-Related Instructions

There are some special conditions associated with the | bit that require additional con-
sideration. The | bit is actually a sequential logic circuit rather than a simple flip-flop.
When the | bit is set by an SEI or a TAP instruction, interrupts are inhibited immediate-
ly. An interrupt occurring while an SEI instruction is executing will not be honored until
unless the | bit is later cleared. When the | bit is cleared by a CLI or TAP instruction,
the actual clear operation is delayed for one bus cycle so the instruction following the
CLI or TAP will always be executed. This procedure implies that the following loop can
never be interrupted by a maskable interrupt:

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-24 REFERENCE MANUAL

LOOP CLI Enable Interrupts
SEI Disable Interrupts
BRA LOOP Repeat

The reason for this delayed clear operation can be seen in the next instruction se-
quence:

CLI Enable Interrupts
WAI Wait for an Interrupt

If there were not a delay in clearing the | bit, it is possible the interrupt could be recog-
nized between the CLI and WAI instructions. Upon return from the interrupt service
routine, the WAL instruction would be executed, and the CPU would erroneously wait
for the interrupt that was just serviced.

During execution of an RTI instruction, the first register to be restored from the stack
is the CCR. In this situation, the one-cycle delay in clearing the | bit expires long before
the RTI instruction is finished; thus, a new interrupt sequence can be started even be-
fore a single instruction of the interrupted program is executed.

5.6 Interrupt Request

The maskable interrupt structure in the M68HC11 can be extended to additional exter-
nal interrupting sources through the IRQ input. This subsection discusses the IRQ in-
put as it relates to the interrupt structure. The alternate use of the IRQ pin as an
EEPROM programming voltage source during factory testing is discussed in 2.2.6 In-
terrupt Pins (XIRQ, IRQ) .

Although this subsection is primarily concerned with the IRQ pin, there are several ad-
ditional MCU pins that can be used as interrupt inputs. The XIRQ pin provides for non-
maskable interrupts. The main-timer input-capture pins (IC[3:1]) can be used as edge-
sensitive interrupt inputs with separate controls for selecting the significant edge and
separate interrupt vectors. The pulse accumulator input pin can also be used as an
additional edge-sensitive interrupt. If the MCU is operating in single-chip mode, the
strobe A (STRA/AS) pin is available as an edge-triggered interrupt input. Though there
is only one IRQ pin, these other pins allow an MC68HC11A8 to have up to seven in-
terrupt pins.

5.6.1 Selecting Edge Triggering or Level Triggering

The default (most common) configuration for the IRQ pin in an M68HC11 application
is a low-level-sensitive wired-OR network. In less common applications, IRQ can be a
low-going edge-sensitive input. The edge-sensitive configuration is less common be-
cause it only allows a single interrupt source to use the IRQ pin; whereas, the level-
sensitive configuration can accommodate many sources on the single IRQ pin. The
IRQ select edge-sensitive only IRQE bit in the OPTION control register is used to se-
lect the IRQ pin configuration (IRQE = 0 for low level sensitive and IRQE = 1 for low-
going edge sensitive). The IRQE control bit is time-protected, which means it can only

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-25

be written once within the first 64 E-clock cycles after reset. IRQE is cleared by default
during reset.

The interrupt sources within the MCU all operate as a wired-OR level-sensitive net-
work. When an event triggers an interrupt, a software-accessible interrupt flag is set,
which (if enabled) causes a constant request for interrupt service. When software has
recognized the interrupt, this flag is cleared, thus releasing the request for service. The
flag bit acts as a static indication that service is required. If more than one interrupt
source is connected to a single level-sensitive line, the line may remain asserted for
several overlapping events from different sources, and the flag bits assure that all re-
quests will be serviced.

In an edge-sensitive network, the MCU is responsible for latching a request upon rec-
ognition of a low-going edge at the interrupt input. This configuration is only capable
of recognizing that an edge occurred (there is no software-accessible record to identify
the requesting source); thus, the edge-sensitive configuration is appropriate only
where a single source could have made the request.

5.6.2 Sharing Vector with Handshake 1/O Interrupts

Because the IRQ vector is shared by the handshake I/0 subsystem and the IRQ input
pin, the handshake 1/0O functions can be rebuilt externally when the MCU is operating
in expanded modes. While the MCU is in an expanded mode, 18 pins, which were
used for the handshake I/0 subsystem, become dedicated to the expansion bus. The
MC68HC24 is a port replacement unit (PRU) that rebuilds the handshake 1/0 func-
tions. The MCU is specifically designed to treat the associated addresses as external
locations while in expanded modes so that software sees no difference between an
expanded system with a PRU and an M68HC11 operating in single-chip mode. Since
the handshake 1/0 system uses the same vector as the IRQ pin, the PRU can drive
the IRQ pin of the MCU. Even the interrupts for the handshake 1/0O system are faithfully
emulated.

The shared interrupt with IRQ solves most emulation problems for the PRU; however,
there are some difficulties in applications where IRQ is configured for edge-sensitive
operation. In such a system, the PRU is connected to the IRQ pin and to the user’s
external interrupt source. The edge-sensitive configuration is not able to distinguish
which source caused an interrupt. Also, if an edge-triggered interrupt is generated by
the external source while an interrupt is pending from the PRU, the low level on the
IRQ line prevents any new-edge from being detected. Since the level-sensitive config-
uration is more common for IRQ and since so many other pins can act as edge-sensi-
tive interrupt inputs, this limitation should not be serious.

5.7 Interrupts from Internal Peripheral Subsystems

The following paragraphs discuss common aspects of the interrupts generated by on-
chip peripheral systems. The interrupt sources for on-chip peripheral systems are dis-
cussed in greater detail in the sections for each peripheral system.

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-26 REFERENCE MANUAL

5.7.1 Inhibiting Individual Sources

All on-chip interrupt sources have software-accessible control bits to enable the inter-
rupt sources on an individual basis. Each source has a flag bit, which indicates service
is required, and an interrupt enable bit, which enables the flag to generate hardware
interrupt requests. The programmer decides which sources will be used to generate
interrupts and which will be handled by software polling rather than by interrupts. The
global interrupt mask (I bit in CCR) can be used to inhibit all maskable interrupts.

5.7.2 Clearing Interrupt Status Flag Bits

The method for clearing the interrupt status flags varies from one system to another.
Detailed explanations of the clearing requirements for each flag are provided in the
sections for each on-chip peripheral system.

Timer system interrupt flags are cleared by writing a logic one to the flag bit positions
to be cleared. This action is explicit and is intended to prevent these flags from being
cleared unintentionally. The most straightforward way to accomplish clearing is to load
an accumulator with an immediate value (with ones in the bit positions corresponding
to a flag bit(s) to be cleared) and then write this value to the status register. Other in-
struction sequences can be used to clear these timer flag bits, including bit manipula-
tion instructions. Several instruction sequences for clearing timer flags are discussed
in detail in 10.2.4 Tips for Clearing Timer Flags

5.7.3 Automatic Clearing Mechanisms on Some Flags

For some of the interrupt sources, such as the parallel I/O interrupt and the SCI inter-
rupts, the flags are automatically cleared during the normal course of responding to
the interrupt requests. For example, the RDRF flag in the SCI system is cleared by the
automatic clearing mechanism consisting of a read of the SCI status register while
RDREF is set, followed by a read of the SCI data register. The normal response to an
RDRF interrupt request would be to read the SCI status register to check for receive
errors, then read the received data from the SCI data register. These two steps satisfy
the automatic clearing mechanism without requiring any special instructions.

In unusual cases, a programmer must take special care not to unintentionally trigger
the automatic clearing mechanisms. The following guidelines help to avoid such prob-
lems. Reads of registers containing status flags should be minimized. Ideally, the sta-
tus register should be read only during the course of servicing the interrupt, and the
status flag should be read only once for each time the interrupt is requested. If more
than one part of the service routine uses different bits in the status register, the register
should be read only once, and a copy should be kept in RAM or in a CPU register for
further use. The cycle-by-cycle operation of instructions that access status registers
may also present another problem. Some instructions are read-modify-write instruc-
tions even though the read information is not actually needed for the instruction. For
example, the clear (CLR) instruction performs a read of the operand address even
though the value read is irrelevant. A situation could arise where the SCI data register
is cleared to transmit a $00 value via the SCI transmitter. Though it is not obvious, this
action can satisfy the second step of the automatic clearing mechanism for the RDRF
flag because clearing of the SCI transmit data register involves a read of the SCI data

M68HC11 RESETS AND INTERRUPTS MOTOROLA
REFERENCE MANUAL 5-27

register prior to the write of $00.

MOTOROLA RESETS AND INTERRUPTS M68HC11
5-28 REFERENCE MANUAL

SECTION 6
CENTRAL PROCESSING UNIT

This section discusses the M68HC11 central processing unit (CPU), which is respon-
sible for executing all software instructions in their programmed sequence. The
M68HC11 CPU can execute all M6800 and M6801 instructions (source and object-
code compatible) and more than 90 new instruction opcodes. Since more than 256 in-
struction opcodes exist, a multiple-page opcode map is used in which some new in-
structions are specified by a page-select prebyte before the opcode byte.

The architecture of the M6BHC11 CPU causes all peripheral, I/0, and memory loca-
tions to be treated identically as locations in the 64-Kbyte memory map. Thus, there
are no special instructions for I/O that are separate from those used for memory. This
technique is sometimes called "memory-mapped I/0O". In addition, there is no execu-
tion-time penalty for accessing an operand from an external memory location as op-
posed to a location within the MCU.

The M68HC11 CPU offers several new capabilities when compared to the earlier
M6801 and M6800 CPUs. The biggest change is the addition of a second 16-bit index
register (Y). Powerful, new bit-manipulation instructions are now included, allowing
manipulation of any bit or combination of bits in any memory location in the 64-Kbyte
address space. Two new 16-bit by 16-bit divide instructions are included. Exchange
instructions allow the contents of either index register to be exchanged with the con-
tents of the 16-bit double accumulator. Finally, several instructions have been upgrad-
ed to make full 16-bit arithmetic operations even easier than before.

This section discusses the CPU architecture, addressing modes, and the instruction
set (by instruction types). Examples are included to show efficient ways of using this
architecture and instruction set. To condense this section, detailed explanations of
each instruction are included in APPENDIX A INSTRUCTION SET DETAILS . These
explanations include detailed cycle-by-cycle bus activity and boolean expressions for
condition code bits. This section should be used to gain a general understanding of
the CPU and instruction set.

6.1 Programmer’s Model

Figure 6-1 shows the programmer’s model of the M68HC11 CPU. The CPU registers
are an integral part of the CPU and are not addressed as if they were memory loca-
tions. Each of these registers is discussed in the subsequent paragraphs.

6.1.1 Accumulators (A, B, and D)

Accumulators A and B are general-purpose 8-bit accumulators used to hold operands
and results of arithmetic calculations or data manipulations. Some instructions treat
the combination of these two 8-bit accumulators as a 16-bit double accumulator (ac-
cumulator D).

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-1

7 A 0 | 7 B 0 8-BIT ACCUMULATORS A &B
15 D 0 OR 16-BIT DOUBLE ACCUMULATOR D

| IX | INDEX REGISTER X

| Y | INDEX REGISTERY

| SP | STACKPOINTER

| PC | PROGRAM COUNTER
7 0
[S X H I N Z V C | CONDITIONCODES

LCARRY/BORROW FROM MSB
OVERFLOW

ZERO

NEGATIVE

I-INTERRUPT MASK

HALF CARRY (FROM BIT 3)
X-INTERRUPT MASK

STOP DISABLE

Figure 6-1 M68HC11 Programmer’s Model

Most operations can use accumulator A or B interchangeably; however, there are a
few notable exceptions. The ABX and ABY instructions add the contents of the 8-bit
accumulator B to the contents of the 16-bit index register X or Y, and there are no
equivalent instructions that use A instead of B. The TAP and TPA instructions are used
to transfer data from accumulator A to the condition code register or from the condition
code register to accumulator A; however, there are no equivalent instructions that use
B rather than A. The decimal adjust accumulator A (DAA) instruction is used after bi-
nary-coded decimal (BCD) arithmetic operations, and there is no equivalent BCD in-
struction to adjust B. Finally, the add, subtract, and compare instructions involving
both A and B (ABA, SBA, and CBA) only operate in one direction; therefore, it is im-
portant to plan ahead so the correct operand will be in the correct accumulator.

6.1.2 Index Registers (X and Y)

The 16-bit index registers X and Y are used for indexed addressing mode. In the in-
dexed addressing mode, the contents of a 16-bit index register are added to an 8-bit
offset, which is included as part of the instruction, to form the effective address of the
operand to be used in the instruction. In most cases, instructions involving index reg-
ister Y take one extra byte of object code and one extra cycle of execution time com-
pared to the equivalent instruction using index register X. The second index register is
especially useful for moves and in cases where operands from two separate tables are
involved in a calculation. In the earlier M6800 and M6801, the programmer had to
store the index to some temporary location so the second index value could be loaded
into the index register.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-2 REFERENCE MANUAL

The ABX and ABY instructions along with increment and decrement instructions allow
some arithmetic operations on the index registers, but, in some cases, more powerful
calculations are needed. The exchange instructions, XGDX and XGDY, offer a very
simple way to load an index value into the 16-bit double accumulator, which has more
powerful arithmetic capabilities than the index registers themselves.

It is very common to load one of the index registers with the beginning address of the
internal register space (usually $1000), which allows the indexed addressing mode to
be used to access any of the internal I/O and control registers. Indexed addressing re-
quires fewer bytes of object code than the corresponding instruction using extended
addressing. Perhaps a more important argument for using indexed addressing to ac-
cess register space is that bit-manipulation instructions are available for indexed ad-
dressing but not for extended addressing.

6.1.3 Stack Pointer (SP)

The M68HC11 CPU automatically supports a program stack. This stack may be locat-
ed anywhere in the 64-Kbyte address space and may be any size up to the amount of
memory available in the system. Normally, the stack pointer register is initialized by
one of the very first instructions in an application program. Each time a byte is pushed
onto the stack, the stack pointer is automatically decremented, and each time a byte
is pulled off the stack, the stack pointer is automatically incremented. At any given
time, the stack pointer register holds the 16-bit address of the next free location on the
stack. The stack is used for subroutine calls, interrupts, and for temporary storage of
data values.

When a subroutine is called by a jump to subroutine (JSR) or branch to subroutine
(BSR) instruction, the address of the next instruction after the JSR or BSR is automat-
ically pushed onto the stack (low half first). When the subroutine is finished, a return
from subroutine (RTS) instruction is executed. The RTS causes the previously stacked
return address to be pulled off the stack, and execution continues at this recovered re-
turn address.

Whenever an interrupt occurs (provided it is not masked), the current instruction fin-
ishes normally, the address of the next instruction (the current value in the program
counter) is pushed onto the stack, all of the CPU registers are pushed onto the stack,
and execution continues at the address specified by the vector for the highest priority
pending interrupt. After completing the interrupt service routine, a return from interrupt
(RTI) instruction is executed. The RTI instruction causes the saved registers to be
pulled off the stack in reverse order, and program execution resumes as if there had
been no interruption.

Another common use for the stack is for temporary storage of register values. A simple
example would be a subroutine using accumulator A. The user could push accumula-
tor A onto the stack when entering the subroutine and pull it off the stack just before
leaving the subroutine. This method is a simple way to assure a register(s) will be the
same after returning from the subroutine as it was before starting the subroutine.

The most important aspect of the stack is that it is completely automatic. A program-

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-3

mer does not normally have to be concerned about the stack other than to be sure that
it is pointing at usable random-access memory (RAM) and that there is sufficient
space. To assure sufficient space, the user would need to know the maximum depth
of subroutine or interrupt nesting possible in the particular application.

There are a few less common uses for the stack. The stack can be used to pass pa-
rameters to a subprogram, which is fairly common in high-level language compilers
but is often overlooked by assembly-language programmers. There are two advantag-
es of this technique over specific assignment of temporary or variable locations. First,
the memory locations are only needed for the time the subprogram is being executed;
they can be used for something else when the subprogram is completed. Second, this
feature makes the subprogram re-entrant so that an interrupting program could call the
same subprogram with a different set of values without disturbing the interrupted use
of the subprogram.

In unusual cases, a programmer may want to look at or even manipulate something
that is on the stack, which should only be attempted by an experienced programmer
because it requires a detailed understanding of how the stack operates. Monitor pro-
grams like BUFFALO sometimes place items on a stack manually and then perform
an RTI instruction to go to a user program. This technique is an odd use of the stack
and RTI instruction because an RTI would normally correspond to a previous interrupt.

6.1.4 Program Counter (PC)

The program counter is a 16-bit register that holds the address of the next instruction
to be executed.

6.1.5 Condition Code Register (CCR)

This register contains five status indicators, two interrupt masking bits, and a STOP
disable bit. The register is named for the five status bits since that is the major use of
the register. In the earlier M6800 and M6801 CPUs, there was no X interrupt mask and
no STOP disable control in this register.

The five status flags reflect the results of arithmetic and other operations of the CPU
as it performs instructions. The five flags are half carry (H), negative (N), zero (2),
overflow (V), and carry/borrow (C). The half-carry flag, which is used only for BCD
arithmetic operations (see 6.3.1.2 Arithmetic Operations), is only affected by the add
accumulators A and B (ABA), ADD, and add with carry (ADC) addition instructions (21
opcodes total). The N, Z, V, and C status bits allow for branching based on the results
of a previous operation. Simple branches are included for either state of any of these
four bits. Both signed and unsigned versions of branches are provided for the condi-
tions <, <, =, #, 2, or >,

The H bit indicates a carry from bit 3 during an addition operation. This status indicator
allows the CPU to adjust the result of an 8-bit BCD addition so it is in correct BCD for-
mat, even though the add was a binary operation. This H bit, which is only updated by
the ABA, ADD, and ADC instructions, is used by the DAA instruction to compensate
the result in accumulator A to correct BCD format.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-4 REFERENCE MANUAL

The N bit reflects the state of the most significant bit (MSB) of a result. For two’s com-
plement, a number is negative when the MSB is set and positive when the MSB is ze-
ro. The N bit has uses other than in two’s-complement operations. By assigning an
often tested flag bit to the MSB of a register or memory location, the user can test this
bit by loading an accumulator.

The Z bit is set when all bits of the result are zeros. Compare instructions do an internal
implied subtraction, and the condition codes, including Z, reflect the results of that sub-
traction. A few operations (INX, DEX, INY, and DEY) affect the Z bit and no other con-
dition flags. For these operations, the user can only determine = and #.

The V bit is used to indicate if a two’s-complement overflow has occurred as a result
of the operation.

The C bit is normally used to indicate if a carry from an addition or a borrow has oc-
curred as a result of a subtraction. The C bit also acts as an error flag for multiply and
divide operations. Shift and rotate instructions operate with and through the carry bit
to facilitate multiple-word shift operations.

Inthe M6BHC11 CPU, condition codes are automatically updated by almost all instruc-
tions; thus, it is rare to execute any extra instructions to specifically update the condi-
tion codes. For example, the load accumulator A (LDAA) and store accumulator A
(STAA) instructions automatically set or clear the N, Z, and V condition code flags. (In
some other architectures, very few instructions affect the condition code bits; thus, it
takes two instructions to load and test a variable.) The challenge in a Motorola proces-
sor lies in finding instructions that specifically do not alter the condition codes in rare
cases where that is desirable. The most important instructions that do not alter condi-
tions codes are the pushes, pulls, add B to X (ABX), add Bto Y (ABY), and 16-bit trans-
fers and exchanges. It is always a good idea to refer to an instruction set summary
such as the pocket guide (MC68HC11A8RG/AD) to check which condition codes are
affected by a particular instruction.

The STOP disable (S) bit is used to allow or disallow the STOP instruction. Some us-
ers consider the STOP instruction dangerous because it causes the oscillator to stop;
however, the user can set the S bit in the CCR to disallow the STOP instruction. If the
STOP instruction is encountered by the CPU while the S bit is set, it will be treated like
a no-operation (NOP) instruction, and processing continues to the next instruction.

The interrupt request (IRQ) mask (I bit) is a global mask that disables all maskable in-
terrupt sources. While the | bit is set, interrupts can become pending and are remem-
bered, but CPU operation continues uninterrupted until the | bit is cleared. After any
reset, the | bit is set by default and can only be cleared by a software instruction. When
any interrupt occurs, the I bit is automatically set after the registers are stacked but be-
fore the interrupt vector is fetched. After the interrupt has been serviced, an RTI in-
struction is normally executed, restoring the registers to the values that were present
before the interrupt occurred. Normally, the | bit would be zero after an RTI was exe-
cuted. Although interrupts can be re-enabled within an interrupt service routine, to do
So is unusual because nesting of interrupts becomes possible, which requires much
more programming care than single-level interrupts and seldom improves system per-

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-5

formance.

The XIRQ mask (X bit) is used to disable interrupts from the XIRQ pin. After any reset,
X is set by default and can only be cleared by a software instruction. When XIRQ is
recognized, the X bit (and I bit) are automatically set after the registers are stacked but
before the interrupt vector is fetched. After the interrupt has been serviced, an RTI in-
struction is normally executed, causing the registers to be restored to the values that
were present before the interrupt occurred. It is logical to assume the X bit was clear
before the interrupt; thus, the X bit would be zero after the RTI was executed. Although
XIRQ can be re-enabled within an interrupt service routine, to do so is unusual be-
cause nesting of interrupts becomes possible, which requires much more program-
ming care than single-level interrupts.

6.2 Addressing Modes

In the M68HC11 CPU, six addressing modes can be used to reference memory: im-
mediate, direct, extended, indexed (with either of two 16-bit index registers and an 8-
bit offset), inherent, and relative. Some instructions require an additional byte (a pre-
byte) before the opcode to accommodate a multiple-page opcode map.

Each of the addressing modes (except inherent) results in an internally generated,
double-byte value referred to as the effective address. This value, which is the result
of a statement operand field, is the value that appears on the address bus during the
memory reference portion of the instruction. The addressing mode is an implicit part
of every M6BHC11 instruction.

Bit-manipulation instructions actually employ two or three addressing modes during
execution but are classified by the addressing mode used to access the primary oper-
and. All bit-manipulation instructions use immediate addressing to fetch a bit mask,
and branch variations use relative addressing mode to determine a branch destina-
tion.

The following paragraphs provide a description of each addressing mode. In these de-
scriptions, effective address is used to indicate the memory address from which the
argument is fetched or stored or from which execution is to proceed.

6.2.1 Immediate (IMM)

In the immediate addressing mode, the actual argument is contained in the byte(s) im-
mediately following the instruction in which the number of bytes matches the size of
the register. These instructions are two, three, or four (if prebyte is required) bytes.

Machine-code byte(s) that follow the opcode are the value of the statement rather than
the address of a value. In this case, the effective address of the instruction is specified
by the character # sign and implicitly points to the byte following the opcode. The im-
mediate value is limited to either one or two bytes, depending on the size of the regis-
ter involved in the instruction. Examples of several assembly-language statements
using the immediate addressing mode are shown. Symbols and expression used in
these statements are defined immediately after the examples.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-6 REFERENCE MANUAL

The first three statements are assembler directives that set up values to be used in the
remaining statements. The remaining nine statements are examples of immediate ad-
dressing. The value of each statement operand field appears in byte(s) immediately
following the opcode. The operand field for immediate addressing begins with the
character # sign. The character # sign is used by the assembler to detect the immedi-
ate mode of addressing. A very common programming error is to forget this character
sign.

Machine Code Label Operation Operand Comments
CAT EQU 7 CAT SAME AS 7
ORG $1000 SET LOCATION COUNTER
REGS EQU * ADDR(REGS) IS $1000
86 16 LDAA #22 DECIMAL 22 [ACCA ($16)
C8 34 EORB #$34 XOR ($34,ACCB) 0O ACCB
8124 CMPA #%100100 RIGHT ALIGNED BINARY
86 07 LDAA #CAT 7 0O ACCA
CC1234 LDD #$1234
CC 00 07 LDD #7 7 O ACCA:ACCB
86 12 LDAA #@22 OCTAL
86 41 LDAA #A ASCII
CE 10 00 LDX #REGS ADDR(REGS) O X

A variety of symbols and expressions can be used following the character # sign.
Since not all assemblers use the same rules of syntax and special characters, the user
should refer to the documentation for the particular assembler that will be used. Char-
acter prefixes used in the previous example statements are defined as follows:

Prefix Definition
None Decimal

$ Hexadecimal

@ Octal

% Binary

Single ASCII Character

6.2.2 Extended (EXT)

In the extended addressing mode, the effective address of the instruction appears ex-
plicitly in the two bytes following the opcode. Therefore, the length of most instructions
using the extended addressing mode is three bytes: one for the opcode and two for
the effective address. The last two bytes of the instruction contain the absolute ad-
dress of the operand. These instructions are three or four (if prebyte is required) bytes:
one or two for the opcode and two for the effective address. Instructions from the sec-
ond, third, and fourth opcode map pages require a page-select prebyte prior to the op-
code byte. Only four extended addressing mode instructions involving index register
Y require this extra prebyte.

Examples of assembly-language statements that use extended addressing mode are
grouped with direct addressing mode examples and appear after the discussion of the
direct addressing mode.

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-7

6.2.3 Direct (DIR)

In the direct addressing mode, the least significant byte of the effective address of the
instruction appears in the byte following the opcode. The high-order byte of the effec-
tive address is assumed to be $00 and is not included as an instruction byte (saves
program memory space and execution time). This fact limits the use of direct address-
ing mode to operands in the $0000—-$00FF area of memory (called the direct page).
The direct addressing mode is sometimes called zero-page addressing mode. The
length of most instructions using the direct addressing mode is two bytes: one for the
opcode and one for the effective address. Instructions from the second, third, and
fourth opcode-map pages require a page-select prebyte prior to the opcode byte. Only
four direct addressing mode instructions involving index register Y require this extra
prebyte.

Direct addressing allows the user to access $0000-$00FF, using instructions that take
one less byte of program memory space than the equivalent instructions using extend-
ed addressing. By eliminating the additional memory access, execution time is re-
duced by one cycle. In the course of a large program, this savings can be substantial.
For most applications, the default memory map of the microcontroller unit (MCU),
which places internal random-access memory (RAM) in the $0000—-$00FF area, is a
good choice because the designer can assign these locations to frequently referenced
data variables. In some MCU applications, it is desirable to locate the internal registers
in this premium memory space. This arrangement might be desirable in an 1/O-inten-
sive application in which the program space savings are important or in the case of
some very critical timing requirement in which the extra cycle for extended addressing
mode is undesirable. In the M68BHC11 MCU, software can configure the memory map
so that internal RAM, and/or internal registers, or external memory space can occupy
these addresses (see 3.3.1 RAM and I/O Mapping Register (INIT) .

There are some instructions that provide for extended addressing mode but not direct
addressing mode. These instructions, which are members of a group called read-mod-
ify-write instructions, operate directly on memory (opcodes $40-$7F except jump
(JMP) and test for zero or minus (TST) on all opcode pages) and have the following
form:

<operation>M 1 M

The increment memory byte (INC), decrement memory byte (DEC), clear memory
byte (CLR), and one’s complement memory byte (COM) instructions are members of
this group, and each supports extended addressing mode but not direct addressing
mode. The following example shows the direct and extended addressing modes.

Machine Code Label Operation Operand Comments

B3 00 12 SUBD CAT FWD REF TO CAT
CAT EQU $12 DEFINE CAT=$12

9312 SUBD CAT BKWD REF TO CAT

7F 00 12 CLR CAT EXTENDED ONLY

In the previous example, the first reference to the CAT label is a forward reference,
and the assembler selected the extended addressing mode. The second reference,

MOTOROLA CENTRAL PROCESSING UNIT M68HC11

6-8

REFERENCE MANUAL

which is a backward reference, enabled the assembler to know the symbol value when
processing the statement, and the assembler selected the direct addressing mode.
The last reference to CAT is also a backward reference to a symbol in the direct ad-
dressing area, but the extended addressing mode was selected because there is no
direct addressing mode variation of that particular instruction. Some assemblers allow
the direct or extended addressing modes to be forced (by preceding the operand field
with < or >, respectively), even when other conditions would suggest the other mode.

6.2.4 Indexed (INDX, INDY)

In the indexed addressing mode, either index register X or Y is used in calculating the
effective address. In this case, the effective address is variable and depends on the
current contents of index register X or Y and a fixed, 8-bit, unsigned offset contained
in the instruction. This addressing mode can be used to reference any memory loca-
tion in the 64-Kbyte address space. These instructions are usually two or three bytes
(if prebyte is required) — the opcode and the 8-bit offset.

In microprocessor-based systems, instructions usually reside in read-only memory
(ROM). Therefore, the offset in the instruction should be considered a fixed value that
is determined at assembly time rather than during program execution. The use of dy-
namic single-byte offsets is facilitated with the use of the add accumulator B to index
register X (ABX) instruction. More complex address calculations are aided by the arith-
metic capability of the 16-bit accumulator D and the XGDX and XGDY instructions.

If no offset is specified or desired, the machine code will contain $00 in the offset byte.
The offset is an unsigned single-byte value that, when added to the current value in
the index register, yields the effective address of the operand, leaving the index regis-
ter unchanged. Because the offset byte is unsigned, only positive offsets in the range
0—-255 can be specified. To use the indexed addressing mode to access on-chip reg-
isters in the MC68HC11A8, it is best to initialize the index register to the starting ad-
dress of the register block (usually $1000) and use an 8-bit offset ($00—$3F) in the
instructions that access registers. This method is preferred over loading the index reg-
ister with the 16-bit address of a register and then specifying a zero offset in the in-
struction. This latter method requires modification of the index register for each
register access; whereas, the former method does not.

Examples of the indexed addressing mode are shown (EA indicates effective ad-
dress):

Machine Code Label Operation Operand Comments
E3 00 ADDD X EA=(X)
E3 00 ADDD X EA=(X)
E3 00 ADDD 0,X EA=(X)
E3 04 ADDD 4,X EA=(X)+4
CAT EQU 7 DEFINE CAT=7
E3 07 ADDD CAT,X EA=(X)+7
E3 22 ADDD $22,X EA=(X)+$22
E3 22 ADDD CAT*8/2+6,X EA=(X)+(CAT*8 +2+6)

Bit-manipulation instructions support direct and indexed addressing modes but not ex-

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-9

tended addressing mode. The indexed addressing mode becomes very important for
these instructions because the direct addressing mode only permits access to the first
256 memory locations; whereas, the indexed addressing mode allows access to any
memory location in the 64-Kbyte memory map.

The second index register (Y) improves the efficiency of move operations and opera-
tions involving data from more than one table. Most instructions involving index regis-
ter Y require two-byte opcodes, thus requiring one extra byte of program memory
space and one extra cycle of execution time compared to the equivalent index register
X instruction.

6.2.5 Inherent (INH)

In the inherent addressing mode, everything needed to execute the instruction is in-
herently known by the CPU. The operands (if any) are CPU registers and thus are not
fetched from memory. These instructions are usually one or two bytes.

Many M68HC11 MCU instructions use one or more registers as operands. For in-
stance, the ABA instruction causes the CPU to add the contents of accumulators A
and B and place the result in accumulator A. The INCB instruction causes the contents
of accumulator B to be incremented by one. Similarly, the INX instruction causes the
index register X to be incremented by one. These three assembly-language state-
ments are examples of the inherent addressing mode:

Machine Code Label Operation Operand Comments
1B ABA A+B]A
5C INCB B+100 B
08 INX X+10X

6.2.6 Relative (REL)

The relative addressing mode is used only for branch instructions. Branch instructions,
other than the branching versions of bit-manipulation instructions, generate two ma-
chine code bytes: one for the opcode and one for the relative offset. Because it is de-
sirable to branch in either direction, the offset byte is a signed two’s-complement offset
with a range of —128 to +127 bytes (with respect to the address of the instruction im-
mediately following the branch instruction). If the branch condition is true, the contents
of the 8-bit signed byte following the opcode (offset) are added to the contents of the
program counter to form the effective branch address; otherwise, control proceeds to
the instruction immediately following the branch instruction.

The offset byte is always the last byte of a branch instruction. If the offset byte is zero,
execution will proceed to the instruction immediately following the branch instruction,
regardless of the test involved. A branch always (BRA) instruction with an offset of $FE
will result in an infinite loop back to itself. Direct or indexed X addressing mode branch
if bit clear (BRCLR) and branch if bit set (BRSET) instructions are four-byte instruc-
tions; therefore, an offset byte of $FC will cause the instruction to execute repeatedly
until the bit test becomes false. Indexed Y addressing mode BRCLR and BRSET in-
structions are five-byte instructions; thus, an offset byte of $FB will cause the instruc-
tion to execute repeatedly until the bit test becomes false.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-10 REFERENCE MANUAL

Examples of the relative addressing mode are shown in the following assembly-lan-
guage statements:

Machine Code Label Operation Operand Comments

20 00 THERE BRA WHERE FORWARD BRANCH
22 FC WHERE BHI THERE BACKWARD BRANCH
24 04 BCC LBCC L-O-N-G BCC

27 FE HANG BEQ HANG BRANCH TO SELF
27 FE BEQ * "*" MEANS "HERE"

7E 10 00 LBCC JMP $1000

8D F7 BSR HANG

6.3 M68HC11 Instruction Set

This section is intended to explain the basic capabilities and organization of the in-
struction set. For this discussion, the instruction set is divided into functional groups of
instructions. Some instructions will appear in more than one functional group. For ex-
ample, transfer accumulator A to CCR (TAP) appears in the CCR group and in the
load/store/transfer subgroup of accumulator/memory instructions. Detailed explana-
tions of each instruction are given in APPENDIX A INSTRUCTION SET DETAILS .

To expand the number of instructions used in the M68HC11 CPU, a prebyte mecha-
nism that affects certain instructions has been added. Most of the instructions affected
are associated with index register Y. Instructions that do not require a prebyte reside
in page 1 of the opcode map. Instructions requiring a prebyte reside in pages 2, 3, and
4 of the opcode map. The opcode-map prebyte codes are $18 for page 2, $1A for page
3, and $CD for page 4. A prebyte code applies only to the opcode immediately follow-
ing it. That is, all instructions are assumed to be single-byte opcodes unless the first
byte of the instruction happens to correspond to one of the three prebyte codes rather
than a page 1 opcode.

6.3.1 Accumulator and Memory Instructions

Most of these instructions use two operands. One operand is either an accumulator or
an index register; whereas, the second operand is usually obtained from memory us-
ing one of the addressing modes discussed earlier. These accumulator memory in-
structions can be divided into six subgroups: 1) loads, stores, and transfers, 2)
arithmetic operations, 3) multiply and divide, 4) logical operations, 5) data testing and
bit manipulation, and 6) shifts and rotates. These instructions are discussed in the fol-
lowing tables and paragraphs.

6.3.1.1 Loads, Stores, And Transfers

Almost all MCU activities involve transferring data from memories or peripherals into
the CPU or transferring results from the CPU into memory or I/O devices. The load,
store, and transfer instructions associated with the accumulators are summarized in
the following table. There are additional load, store, push, and pull instructions asso-
ciated with the index registers and stack pointer register (see 6.3.2 Stack and Index

Register Instructions).

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-11

Function Mnemonic IMM DIR EXT INDX INDY INH
Clear Memory Byte CLR X X X
Clear Accumulator A CLRA X
Clear Accumulator B CLRB X
Load Accumulator A LDAA X X X X X
Load Accumulator B LDAB X X X X X
Load Double Accumulator D LDD X X X X X
Pull A from Stack PULA X
Pull B from Stack PULB X
Push A onto Stack PSHA X
Push B onto Stack PSHB X
Store Accumulator A STAA X X X X X
Store Accumulator B STAB X X X X X
Store Double Accumulator D STD X X X X X
Transfer A to B TAB X
Transfer A to CCR TAP X
Transfer B to A TBA X
Transfer CCR to A TPA X
Exchange D with X XGDX X
Exchange D with Y EGDY X

6.3.1.2 Arithmetic Operations

This group of instructions supports arithmetic operations on a variety of operands; 8-
and 16-bit operations are supported directly and can easily be extended to support
multiple-word operands. Two’s-complement (signed) and binary (unsigned) opera-
tions are supported directly. BCD arithmetic is supported by following normal arith-
metic instruction sequences, using the DAA instruction, which restores results to BCD
format. Compare instructions perform a subtract within the CPU to update the condi-
tion code bits without altering either operand. Although test instructions are provided,
they are seldom needed since almost all other operations automatically update the
condition code bits.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-12 REFERENCE MANUAL

Function Mnemonic IMM DIR EXT INDX INDY INH
Add Accumulators ABA X
Add Accumulator B to X ABX X
Add Accumulator B to Y ABY X
Add with Carry to A ADCA X X X X X
Add with Carry to B ADCB X X X X X
Add Memory to A ADDA X X X X X
Add Memory to B ADDB X X X X X
Add Memory to D (16 Bit) ADDD X X X X X
Compare Ato B CBA X
Compare A to Memory CMPA X X X X X
Compare B to Memory CMPB X X X X X
Compare D to Memory (16 Bit) CPD X X X X X
Decimal Adjust A (for BCD) DAA X
Decrement Memory Byte DEC X X X
Decrement Accumulator A DECA X
Decrement Accumulator B DECB X
Increment Memory Byte INC X X X
Increment Accumulator A INCA X
Increment Accumulator B INCB X
Two’s Complement Memory Byte NEG X X X
Two’s Complement Accumulator A NEGA
Two’s Complement Accumulator B NEGB
Subtract with Carry from A SBCA X X X X X
Subtract with Carry from B SBCB X X X X X
Subtract Memory from A SUBA X X X X X
Subtract Memory from B SUBB X X X X X
Subtract Memory from D (16 Bit) SUBD X X X X X
Test for Zero or Minus TST X X X
Test for Zero or Minus A TSTA X
Test for Zero or Minus B TSTB X

6.3.1.3 Multiply and Divide

One multiply and two divide instructions are provided. The 8-bit by 8-bit multiply pro-
duces a 16-bit result. The integer divide (IDIV) performs a 16-bit by 16-bit divide, pro-
ducing a 16-bit result and a 16-bit remainder. The fractional divide (FDIV) divides a 16-
bit numerator by a larger 16-bit denominator, producing a 16bit result (a binary weight-
ed fraction between 0 and 0.99998) and a 16-bit remainder. FDIV can be used to fur-

ther resolve the remainder from an IDIV or FDIV operation.

M68HC11

Function Mnemonic INH

Multiply (A X B O D) MUL X
Fractional Divide (D + X O X;r O D) FDIV X
Integer Divide (D+ X O X;r O D) IDIV X

CENTRAL PROCESSING UNIT

REFERENCE MANUAL

MOTOROLA
6-13

6.3.1.4 Logical Operations

This group of instructions is used to perform the boolean logical operations AND, in-
clusive OR, exclusive OR, and one’s complement.

Function M”ei'(‘jo”' IMM | DIR | EXT | INDX | INDY | INH
AND A with Memory ANDA X X X X X
AND B with Memory ANDB X X X X X
Bit(s) Test A with Memory BITA X X X X X
Bit(s) Test B with Memory BITB X X X X X
One’s Complement Memory Byte COM X X X
One’s Complement A COMA X
One’s Complement B COMB X
OR A with Memory (Exclusive) EORA X X X X X
OR B with Memory (Exclusive) EORB X X X X X
OR A with Memory (Inclusive) ORAA X X X X X
OR B with Memory (Inclusive) ORAB X X X X X

6.3.1.5 Data Testing and Bit Manipulation

This group of instructions is used to operate on operands as small as a single bit, but
these instructions can also operate on any combination of bits within any 8-bit location
in the 64-Kbyte memory space. The bit test (BITA or BITB) instructions perform an
AND operation within the CPU to update condition code bits without altering either op-
erand. The BSET and BCLR instructions read the operand, manipulate selected bits
within the operand, and write the result back to the operand address. Some care is re-
quired when read-modify-write instructions such as BSET and BCLR are used on I/O
and control register locations because the physical location read is not always the
same as the location written.

Function Mnemonic IMM DIR EXT INDX INDY

Bit(s) Test A with Memory BITA X X X X X
Bit(s) Test B with Memory BITB X X X X X
Clear Bit(s) in Memory BCLR X X X
Set Bit(s) in Memory BSET X X X
Branch if Bit(s) Clear BRCLR X X X
Branch if Bit(s) Set BRSET X X X

6.3.1.6 Shifts and Rotates

All the shift and rotate functions in the M68HC11 CPU involve the carry bit in the CCR
in addition to the 8- or 16-bit operand in the instruction, which permits easy extension
to multiple-word operands. Also, by setting or clearing the carry bit before a shift or ro-
tate instruction, the programmer can easily control what will be shifted into the opened
end of an operand. The arithmetic shift right (ASR) instruction maintains the original
value of the MSB of the operand, which facilitates manipulation of two’s-complement
(signed) numbers.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-14 REFERENCE MANUAL

Function Mnemonic IMM DM EXT INDX INDY INH
Arithmetic Shift Left Memory ASL X X X
Arithmetic Shift Left A ASLA X
Arithmetic Shift Left B ASLB X
Arithmetic Shift Left Double ASLD X
Arithmetic Shift Right Memory ASR X X X
Arithmetic Shift Right A ASRA X
Arithmetic Shift Right B ASRB X
(Logical Shift Left Memory) (LSL) X X X
(Logical Shift Left A) (LSLA) X
(Logical Shift Left B) (LSLB) X
(Logical Shift Left Double) (LSLD) X
Logical Shift Right Memory LSR X X X
Logical Shift Right A LSRA X
Logical Shift Right B LSRB X
Logical Shift Right D LSRD X
Rotate Left Memory ROL X X X
Rotate Left A ROLA X
Rotate Left B ROLB X
Rotate Right Memory ROR X X X
Rotate Right A RORA X
Rotate Right B RORB X

The logical-left-shift instructions are shown in parentheses because there is no differ-
ence between an arithmetic and a logical left shift. Both mnemonics are recognized by
the assembler as equivalent, but having both instruction mnemonics makes some pro-
grams easier to read.

6.3.2 Stack and Index Register Instructions

The following table summarizes the instructions available for the 16-bit index registers
(X and Y) and the 16-bit stack pointer.

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-15

Function Mnemonic IMM DIR EXT INDX INDY INH
Add Accumulator B to X ABX X
Add Accumulator B to Y ABY X
Compare X to Memory (16 Bit) CPX X X X X X
Compare Y to Memory (16 Bit) CPY X X X X X
Decrement Stack Pointer DES X
Decrement Index Register X DEX X
Decrement Index Register Y DEY X
Increment Stack Pointer INS X
Increment Index Register X INX X
Increment Index Register Y INY X
Load Index Register X LDX X X X X X
Load Index Register Y LDY X X X X X
Load Stack Pointer LDS X X X X X
Pull X from Stack PULX X
Pull' Y from Stack PULY X
Push X onto Stack PSHX X
Push Y onto Stack PSHY X
Store Index Register X STX X X X X X
Store Index Register Y STY X X X X X
Store Stack Pointer STS X X X X X
Transfer SP to X TSX X
Transfer SP to Y TSY X
Transfer X to SP TXS X
Transfer Y to SP TYS X
Exchange D with X XGDX X
Exchange D with Y XGDY X

The exchange D with X (XGDX) and exchange D with Y (XGDY) provide a simple way
of transferring a pointer value from a 16-bit index register to accumulator D, which has
more powerful 16-bit arithmetic capabilities than the 16-bit index registers. Since these
are bidirectional exchanges, the original value of accumulator D is automatically pre-
served in the index register while the pointer is being manipulated in accumulator D.
When pointer calculations are finished, another exchange simultaneously updates the
index register and restores accumulator D to its former value.

The transfers between an index register and the stack pointer deserve additional com-
ment. The stack pointer always points at the next free location on the stack as opposed
to the last item that was pushed onto the stack. The usual reason for transferring the
stack pointer value into an index register is to allow indexed addressing access to in-
formation that was formerly pushed onto the stack. In such cases, the address pointed
to by the stack pointer is of no value since nothing has yet been stored at that location.
This fact explains why the value in the stack pointer is incremented during transfers to
an index register. There is a corresponding decrement of a 16-bit value as it is trans-
ferred from an index register to the stack pointer.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-16 REFERENCE MANUAL

6.3.3 Condition Code Register Instructions
These instructions allow a programmer to manipulate bits in the CCR.

Function Mnemonic INH

Clear Carry Bit CLC X
Clear Interrupt Mask Bit CLI X
Clear Overflow Bit CLV X
Set Carry Bit SEC X

Set Interrupt Mask Bit SEI X
Set Overflow Bit SEV X
Transfer A to CCR TAP X
Transfer CCR to A TPA X

Initially, it may appear that there should be a set and a clear instruction for each of the
eight bits in the CCR; however, these instructions are present for only three of the eight
bits (C, I, and V). Upon closer consideration, good reasons exist for not including the
set and clear instructions for the other five bits. The stop disable (S) bit is an unusual
case because this bit is intended to lock out the STOP instruction for those who view
it as an undesirable function in their application. Providing set and clear instructions
for this bit would make it easier to enable STOP when it was not wanted or disable
STOP when it was wanted. The TAP instruction provides a way to change the S bit but
reduces the chance of an undesirable change to S because the value of accumulator
A at the time the TAP instruction is executed determines whether the S bit will actually
change.

The XIRQ mask (X bit) is another unusual case. The definition of this bit specifically
states that software shall not be allowed to change X from zero to one; in fact, this
change is even prohibited by hardware logic. This feature immediately eliminates a
need for a set X instruction. For arguments similar to those used for the S bit, the TAP
instruction is preferred over a clear X instruction to clear X because TAP makes it a
little less likely that X will become cleared before the programmer intended.

The half-carry (H) bit needs no set or clear instructions because this condition code bit
is only used by the DAA instruction to adjust the result of a BCD add or subtract. Since
the H bit is not used as a test condition for any branches, it would not be useful to be
able to set or clear this bit.

This leaves only the negative (N) and zero (Z) condition code bits. In contrast to S, X,
and H, it is often useful to be able to easily set or clear these flag bits. A clear accu-
mulator instruction, such as CLRB, will clear the N and set the Z condition code bits.
The load instruction, ;LDAA#$80, causes N to be set and Z to be cleared. Since there
are so many simple instructions that can set or clear N and Z, it is not necessary to
provide specific set and clear instructions for N and Z in this group.

6.3.4 Program Control Instructions

This group of instructions, which is used to control the flow of a program rather than to

M68HC11 CENTRAL PROCESSING UNIT MOTOROLA
REFERENCE MANUAL 6-17

manipulate data, has been divided into five subgroups: 1) branches, 2) jumps, 3) sub-
routine calls and returns, 4) interrupt handling, and 5) miscellaneous,

6.3.4.1 Branches

These instructions allow the CPU to make decisions based on the contents of the con-
dition code bits. All decision blocks in a flow chart would correspond to one of the con-
ditional branch instructions summarized in the following table.

Function Mnemonic | REL DIR INDX |INDY Comments
Branch if Carry Clear BCC X CcC=07?
Branch if Carry Set BCS X c=17?
Branch if Equal Zero BEQ X zZ=17
Branch if Greater Than or Equal BGE X Signed 2
Branch if Greater Than BGT X Signed >
Branch if Higher BHI X Unsigned >
Branch if Higher or Same (same as BCC) BHS X Unsigned =
Branch if Less Than or Equal BLE X Signed <
Branch if Lower (same as BCS) BLO X Unsigned <
Branch if Lower or Same BLS X Unsigned <
Branch if Less Than BLT X Signed <
Branch if Minus BMI X N=17?
Branch if Not Equal BNE X Z=07
Branch if Plus BPL X N=07?
Branch if Bit(s) Clear in Memory Byte BRCLR X X X Bit Manipulation
Branch Never BRN X 3-cycle NOP
Branch if Bit(s) Set in Memory Byte BRSET X X X Bit Manipulation
Branch if Overflow Clear BVC X V=07
Branch if Overflow Set BVS X vV=1?

The limited range of branches (—128/+127 locations) is more than adequate for most
(but not all) situations. In cases where this range is too short, a jump instruction must
be used. For every branch, there is a branch for the opposite condition; thus, it is sim-
ple to replace a branch having an out-of-range destination with a sequence consisting
of the opposite branch around a jump to the out-of-range destination. For example, if
a program contained the following instruction

BHI TINBUK?2 Unsigned >

where TINBUK2 was out of the —128/+127 location range, the following instruction se-
guence could be substituted:

BLS AROUND Unsigned <
JMP TINBUK2 Still go to TINBUK?2 if >
AROUND EQU *

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-18 REFERENCE MANUAL

6.3.4.2 Jumps

The jump instruction allows control to be passed to any address in the 64-Kbyte mem-

ory map.

Function

Mnemonic

DIR

EXT

INDX

INDY

INH

Jump

JMP

X

X

6.3.4.3 Subroutine Calls And Returns (BSR, JSR, RTS)

These instructions provide an easy way to divide a programming task into manageable
blocks called subroutines. The CPU automates the process of remembering the ad-
dress in the main program where processing should resume after the subroutine is fin-
ished. This address is automatically pushed onto the stack when the subroutine is
called and is pulled off the stack during the RTS instruction that ends the subroutine.

Function Mnemonic REL DIR EXT INDX INDY INH
Branch to Subroutine BSR X
Jump to Subroutine JSR X X X X
Return from Subroutine RTS X

6.3.4.4 Interrupt Handling (RTI, SWI, WAI)

This group of instructions is related to interrupt operations.

Function Mnemonic INH
Return from Interrupt RTI X
Software Interrupt SWI X
Wait for Interrupt WAI X

The software interrupt (SWI) instruction is similar to a JSR instruction, except the con-
tents of all working CPU registers are saved on the stack rather than just the return
address. SWI is unusual in that it is requested by the software program as opposed to
other interrupts that are requested asynchronously to the executing program.

Wait for interrupt (WAI) has two main purposes. WAI is executed to place the MCU in
a reduced power-consumption standby state (WAIT mode) until some interrupt occurs.
It is also used to reduce the latency time to some important interrupt. The reduction of
latency occurs because the time-consuming task of storing the CPU registers on the
stack is performed as soon as the WAI instruction begins executing. When the inter-
rupt finally occurs, the CPU is ready to fetch the appropriate vector so the delay asso-
ciated with register stacking is eliminated from latency calculations.

6.3.4.5 Miscellaneous (NOP, STOP, TEST)

M68HC11
REFERENCE MANUAL

NOP, which can be used to introduce a small time delay into the flow of a program, is
often useful in meeting the timing requirements of slow peripherals. By incorporating
NOP instructions into loops, longer delays can be produced.

CENTRAL PROCESSING UNIT MOTOROLA

6-19

Function Mnemonic INH

No Operation (2-cycle delay) NOP X
Stop Clocks STOP X

Test TEST X

During debugging, it is common to replace various instructions with NOP opcodes to
effectively remove an unwanted instruction without having to rearrange the rest of the
program. By using the memory modify function of a debug monitor, the instruction can
easily be removed and restored to see the effect.

Occasionally, a programmer is faced with the problem of fine-tuning the delays
through various paths in his program. In such cases, it is sometimes useful to use a
branch never (BRN) instruction as a three-cycle NOP. It is also possible to fine-tune
execution time by choosing alternate addressing-mode variations of instructions to
change the execution time of an instruction sequence without changing the program’s
function.

STOP is an unusual instruction because it causes the oscillator and all MCU clocks to
freeze. This frozen state is called STOP mode, and power consumption is dramatically
reduced in this mode. The operation of this instruction is also dependent upon the S
condition code bit because the STOP mode is not appropriate for all applications. If S
is one, the STOP instruction is treated as a NOP instruction, and processing continues
to the next instruction.

The TEST instruction is used only during factory testing and is treated as an illegal op-
code in normal operating modes of the MCU. This instruction causes unusual behavior
on the address bus (counts backwards), which prevents its use in any normal system.

MOTOROLA CENTRAL PROCESSING UNIT M68HC11
6-20 REFERENCE MANUAL

SECTION 7
PARALLEL INPUT/OUTPUT

This section describes parallel 1/0 operations in the MC68HC11A8, which includes
port reads and writes as well as strobe and handshake operations on ports B and C.
The section begins with an overview, followed by detailed descriptions of each port
and the handshake 1/0 subsystem. A number of schemes for efficient use of parallel
I/0 on the MC68HC11A8 are included.

7.1 Parallel I/O Overview

The MC68HC11A8 has a total of 40 1/O pins, which will be discussed in 7.3 Detailed
I/O Pin Descriptions . All these pins are shared between general-purpose 1/0 usage
and at least one other on-chip peripheral function. Although the following paragraphs
are primarily concerned with the general-purpose 1/0O capabilities of these pins, some
important interactions with the alternate functions will be discussed.

Shared functions of port A include general-purpose 1/O, the main timer system, and
the pulse accumulator system. Port A has three fixed-direction input pins, four fixed-
direction output pins, and one bidirectional pin. The direction of the PA7 pin is con-
trolled by the data direction register A bit 7 control bit (DDRA7) in the pulse accumu-
lator control (PACTL) register. Port A data is read from and written to the PORTA
register. Meaningful data may be read from port A even when the pins are configured
for an alternate timer or pulse accumulator function. Data written to port A does not
directly affect port A pins configured for an alternate timer output function, but the data
is remembered in an internal latch so that, if the alternate function is disabled later, the
last data written to port A will be driven out of the associated output pin.

Ports B and C and the strobe A (STRA) and strobe B (STRB) pins should be consid-
ered together because their function depends on the basic operating mode of the
MC68HC11A8. When the microcontroller unit (MCU) is operating in a single-chip
mode, these 18 pins are used for general-purpose I/O and for the handshake 1/0O sub-
system. When the MCU is operating in an expanded mode, these pins are used for a
multiplexed address/data bus. The handshake and general-purpose 1/O functions,
which are lost in the expanded mode, can be regained by use of the MC68HC24 port
replacement unit. Special care was taken in designing both these parts so that soft-
ware could be developed on an expanded system using these two parts and then later
be mask programmed into the read-only memory (ROM) of an MC68HC11A8, which
will be used in single-chip mode. Although care was taken to assure that the expanded
system with an MC68HC24 would work exactly like the MC68HC11A8 in single-chip
mode, there are a few subtle differences. For the vast majority of applications, these
differences are irrelevant. For the benefit of those rare cases where a problem could
arise, the differences will be explained in the detailed descriptions of these ports and
pins in 7.3 Detailed I/O Pin Descriptions

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-1

Port B is a general-purpose, 8-bit, fixed-direction output port. Writes to the port B reg-
ister (PORTB) cause data to be latched and driven out of the port B pins. Reads of
PORTB return the last data that was written to port B. When the handshake 1/0O sub-
system is operating in simple strobed mode, writes to PORTB automatically cause a
pulse on the STRB output pin. The simple strobe mode is selected by the handshake
(HNDS) control bit equal to zero in the parallel I/O control (PIOC) register.

Port C is a general-purpose, 8-bit, bidirectional I/O port. The primary direction of data
flow at each port C pin is independently controlled by a corresponding bit in the data
direction control register for port C (DDRC). In addition to normal 1/0 functions at port
C, there is an independent, 8-bit, parallel latch that captures port C data whenever a
selected active edge is detected on the STRA input pin. Reads of PORTCL return the
contents of this port C latch; whereas, reads of PORTC return the current data from
port C. Writes to either PORTC or PORTCL cause the written data to be driven out of
port C output pins; however, PORTCL writes also trigger output handshake sequenc-
es; PORTC writes do not. Writes to port C pins not configured as outputs do not cause
data to be driven out of those pins, but the data is remembered in internal latches;
thus, if the pins later become outputs, the last data written to PORTC or PORTCL will
be driven out the port C pins.

Port C can be configured for wired-OR operation by setting the port C wired-OR mode
(CWOM) control bit in the PIOC register. This procedure disables the P-channel pull-
up drivers of port C output pins and allows port C pins to be directly connected to each
other or to other open-drain-type pins. In this configuration, there is no danger of de-
structive conflicts if two output drivers try to drive the same node at the same time. As
with any open-drain line, an external pull-up resistor is required.

Whenever the handshake 1/0 subsystem is configured for a full-handshake mode, port
C is used for parallel data input or output. STRA is a strobe input pin that causes port
C data to be captured when a selected edge is detected. In the three-state variation of
full-output handshake, the STRA pin also acts as an output enable control to force port
C pins to be driven outputs while STRA is in its selected state. STRB is a strobe output
pin that can be used in a pulsed or interlocked configuration. In the pulsed configura-
tion, some action in the handshake I/O subsystem initiates STRB, which then stays
active for two E-clock cycles before reverting to its inactive state. In the interlocked
configuration, STRB is initiated by one action in the handshake subsystem and termi-
nated by a separate action. The final major element of the handshake subsystem is
the strobe A flag (STAF) status bit. STAF is always set upon recognition of the select-
ed edge at the STRA pin, but the action that clears STAF depends on the handshake
mode. There is a more detailed description of the handshake 1/0 subsystem in 7.4
Handshake 1/0O Subsystem .

Port D is a general-purpose, 6-bit, bidirectional data port. Two port D pins are alter-
nately used by the asynchronous serial communications interface (SCI) subsystem.
The remaining four port D pins are alternately used by the synchronous serial periph-
eral interface (SPI) subsystem. The primary direction of data flow at each of the port
D pins is selected by a corresponding bit in the data direction register for port D
(DDRD). Port D can be configured for wired-OR operation by setting the port D wired-

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-2 REFERENCE MANUAL

OR mode control bit (DWOM) in the SPI control register (SPCR).

Port E is an 8-bit, fixed-direction input port. Port E pins alternately function as analog-
to-digital (A/D) converter channel inputs. Port E input buffers are specially designed
so they will not draw excessive power-supply currents when their inputs are driven by
intermediate levels.

7.2 Parallel I/0O Register And Control Bit Explanations

Figure 7-1 shows all the registers and control bits concerned with the discussion of
parallel /0 in the following paragraphs. The registers are shown in the order they ap-
pear in the memory map of the MC68HC11A8 because this order is significant in the
case of double-byte reads and writes. Figure 7-2 shows a number of registers and
control bits mentioned in 7.3 Detailed I/O Pin Descriptions . These control bits are
used to enable other on-chip peripheral subsystems to use the 1/0O pins. These regis-
ters, which are shown here for reference, are discussed throughout this manual. Bit
positions labeled with a zero rather than a name indicate unimplemented bits that al-
ways read as zeros.

Bit 7 6 5 4 3 2 1 Bit 0
$1000 Bit 7 — — — — — — Bit 0 PORTA
$1002 | STAF | STAI | CWOM | HNDS | OIN | PLS | EGA | INVB | PIOC
$1003 | Bit 7 | — | — | — | — | — | — | Bit 0 | PORTC
$1004 | Bit 7 | — | — | — | — | — | — | Bit 0 | PORTB
$1009 | 0 | 0 | Bit5 | — | — | — | — | Bit 0 | DDRD
$1026 | DDRA7 | PAEN | PAMOD | PEDGE | 0 | 0 | RTR1 | RTRO | PACTL
$1028 | SPIE | SPE | DWOM | MSTR | CPOL | CPHA | SPR1 | SPRO | SPCR

Figure 7-1 Parallel /0 Registers and Control Bits

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-3

Bit 7 6 5 4 3 2 1 Bit 0

$100B FOC1 FOC2 FOC3 FOC4 FOC5 0 0 0 CFORC
$100C | OC1M7 | OC1M6 | OC1M5 | OC1M4 | OC1M3 | 0 | 0 | 0 | OC1M
$100D | OC1D7 | OC1D6 | OC1D5 | OC1D4 | OC1D3 | 0 | 0 | 0 | OC1D
$1020 | oM2 | oL2 | OoM3 | oL3 | OoM4 | oL4 | OM5 | OoL5 | TCTL1
$103D | RAM3 | RAM2 | RAM1 | RAMO | REG3 | REG2 | REG1 | REGO INIT

Figure 7-2 Pin Logic Registers and Control Bits

The addresses for the registers in Figure 7-1 and Figure 7-2 are in the form "$10xx"
where xx is a hexadecimal number between 00 and 3F. The "1" indicates that the most
significant hexadecimal digit is a variable controlled by user software. The RAM and I/
O mapping (INIT) register is used to specify the location of internal registers and RAM.
By default, RAM is located from $0000 to $00FF, and registers are located from $1000
to $103F at reset. The user can elect to move either one or both of these resources by
writing a new value into the INIT register within 64 bus cycles after reset. The INIT reg-
ister is discussed in greater detail in SECTION 4 ON-CHIP MEMORY.

The bit-manipulation instructions in the MC68HC11A8 can only be used in zero-page
or indexed addressing modes. To use indexed addressing mode to access internal
registers, the user would first set either the X or Y index register equal to the base ad-
dress of the registers (usually $1000). To use the zero-page addressing mode, the
user would first remap the internal registers by writing to the INIT register during reset
initialization.

7.2.1 Port Registers

Reads of port registers will return either the level at the pin itself or the logic state at a
point inside the output pin buffer. Usually, the state of the corresponding DDR bit will
determine which of these points will be used for a read if a choice exists. Refer to 7.3
Detailed 1/0 Pin Descriptions for more specific information. Writes to port registers
cause the written data to be latched and driven out of the corresponding port output
pins.

If a port pin is capable of being an output, this written information is latched even if the
pin is not configured as a port output at the time of the write. If the pin is subsequently
reconfigured to be a port output, the output pin will be driven with the last data that was
written to that port. Writes to port bits that are fixed-direction input pins have no mean-
ing or effect.

PORTCL, a special port register associated with port C, is part of the handshake 1/0
subsystem. Reads of this address return data from an 8-bit port C latch. The inputs to

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-4 REFERENCE MANUAL

this port C latch are connected to the port C pins, and the latches are clocked when a
selected edge is recognized at the STRA pin. Contrary to first impressions, writes to
PORTCL do not change the data in the port C latch register. Instead, writes to
PORTCL are used as an alternate way to write data to port C. In addition to writing
data to the port C output latches, writes to PORTCL also trigger special handshake
sequences in the handshake I/O subsystem, which allows some port C pins to be
treated as general-purpose outputs while others are being used for full-handshake
outputs. A user would write data to PORTC to change the non-handshake pins in port
C. To change the data on a full-handshake pin of port C, the user would write to
PORTCL.

7.2.2 Data Direction Registers

These registers and control bits are used to specify the primary direction of data flow
at each bidirectional port pin. A zero in a data direction register (DDR) bit disables the
output buffer for that pin so the pin is configured as an input. When a DDR bit is set to
one, it enables the output driver for the associated port pin so the pin is configured as
an output. During reset, internal logic in the MC68HC11A8 forces all DDR bits to zero;
thus, all bidirectional 1/0 pins are configured as high-impedance inputs until they are
reconfigured by software.

In some cases, an enabled on-chip subsystem can override the DDR bit and force a
pin to be an input or an output. For example, it is illogical for the TxD pin to be config-
ured as an input while the SCI transmitter is using this pin. Whenever the SCI trans-
mitter subsystem is enabled, the TxD pin is configured as an output, regardless of
what the corresponding DDRD bit is. There is a subtle benefit to this override besides
the obvious savings gained by not having to write to the DDR. Depending on the over-
all system attached to the TxD pin, it may be desirable for this pin to revert to a specific
driven logic level or to a high-impedance condition. If the DDR bit is zero, the TxD pin
will revert to a general-purpose, high-impedance input pin when not being used by the
transmitter. If the DDR bit is one, the TxD pin will revert to a general-purpose output
pin, and the driven logic level will reflect what was last written to bit 1 of port D.

In other cases, the DDR bits continue to affect the configuration of a port pin even after
an on-chip subsystem has been enabled to use the pin. Consider the SPI bidirectional
data pins master in/slave out (MISO) and master out/slave in (MOSI). Although the
MC68HC11A8 SPI system is capable of full-duplex operation, some synchronous se-
rial protocols are configured for half-duplex operation with a single, bidirectional data
line. For the MC68HC11A8 to operate in such a system, it must be able to selectively
disable its MOSI and MISO outputs.

The state of a DDR bit influences the source of data when the corresponding port bit
is read. In general, when a pin is configured as an input, reads return the logic level
from the pin itself. When a pin is configured as an output, reads return a value corre-
sponding to the level at the inside of the output buffer for that pin. This fact is especially
important in the case of pins configured for wired-OR operation or for the three-state
variation of full-output handshake at port C. In these cases, the value at the pin itself
does not necessarily reflect the value last written to the port; therefore, it is important
to read the level inside the output buffer rather than the level at the pin.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-5

7.3 Detailed 1/0O Pin Descriptions

The logic associated with each of the 1/0O pins is described in detail in the following
paragraphs. All circuitry directly connected to a pin is shown exactly as it is implement-
ed in the MC68HC11A8. Logic not directly connected to a pin is functionally accurate,
but the drawings have been simplified. Figure 7-3 shows some of the symbols used
in the logic drawings, which may not be familiar to all readers. The protection devices,
which are intended to protect the MC68HC11A8 from high-voltage transients, have no
effect while pins are within the Vgg to Vpp range. Although transmission gates are ac-
tually full CMOS bidirectional switches, they are shown in simplified form in the logic
diagrams. Half flip-flops (HFFS) are latches that are transparent while the clock input
is high and are latched while the clock input is low. Set and reset inputs are optional
on HFFS. Any name enclosed in a rectangle indicates a control bit within the
MC68HC11A8. Numbers in square brackets are references for the text descriptions.

[3] — REFERENCE NUMBER
THICK-FIELD

PROTECTION
DEVICE DDRA7| — CONTROL BIT

PROTECTION
—

.......................

TRANSMISSION GATE

i
oo —
FF

H

HALF FLIP-FLOP

Figure 7-3 Special Symbols used in Pin Logic Diagrams

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-6 REFERENCE MANUAL

7.3.1 Port A

The eight port A pins can be independently configured for general-purpose 1/O or for
timer or pulse accumulator functions. The following paragraphs describe the pin logic
for port A pins. The idealized timing for critical port A signals is presented in 7.3.1.4
Port A Idealized Timing

7.3.1.1 PA[2:0] (IC[3:1]) Pin Logic
Refer to Figure 7-4 for the following discussion. The cross-coupled NAND circuit with
four associated inverters is a hysteresis buffer. Hysteresis is provided by sizing invert-
er [1] so its switch point is higher than normal and by sizing inverter [2] so its switch
point is lower than normal.

. 5 R [2 pin| PA2-PAO
D2-DO ﬁ—‘ (IC1-IC3)

RPORTA

PROTECTION

O
(%]
=)
|

INPUTI'”\(/‘,lilR?TURE -, lc17cs
EDGE DETECT TRIGGER

Figure 7-4 PA[2:0] (IC[3:1]) Pin Logic

Starting with zero on the pin, a slowly rising signal causes inverter [2] to switch so that
the R signal goes to an inactive-high state. As the input continues to rise, inverter [1]
switches, causing a low S, which causes the cross-coupled NAND latch to set Q high
and clear Q low. The low Q reinforces the S signal so that, even if noise causes invert-
er [1] to switch back to S equals one, the cross-coupled latch will not reset.

Conversely, starting with one on the pin, a slowly failing signal causes inverter [1] to
switch, causing the S signal to be placed in an inactive-high state. As the input contin-
ues to fall, inverter [2] switches, causing a low R. This low R resets the cross-coupled
NAND latch, setting Q high and clearing Q low. The low Q reinforces the R signal so
that, even if noise causes inverter [2] to switch back to R equals one, the cross-cou-
pled latch will not become set.

For bits 0, 1, and 2, port A reads return the buffered states of the corresponding pins.
Port A reads are completely independent of timer input-capture functions.

7.3.1.2 PA[6:3] (OCJ5:2]) Pin Logic

Refer to Figure 7-5 for the following discussion. For bits 3, 4, 5, and 6, port A reads
return the logic state from a point inside the output pin buffer. During a port A read,
transmission gate [1] is enabled to couple logic state [2] to the internal data bus.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-7

Inverter [2] is driven by a head-to-tail cheater latch. The feedback inverter [3] in this
cheater latch is sized to be overridden by transmission gate [4], [5], or [6]. These three
transmission gates correspond to the three possible sources of data for these port A
pins as follows. General-purpose port A outputs come through transmission gate [4]
from HFF latch [7]. Output compares 5 through 2 (OC[5:2]) affect their corresponding
port A pin via transmission gate [6]; output compare 1 (OC1) can affect these port A
pins via transmission gate [5].

Control gate [8] enables general-purpose port A outputs during PTACLK when no tim-
er function is enabled to control this pin. PTACLK is an internal clock signal that syn-
chronizes port A pin changes to the falling edge of E. OC1 is enabled when the
corresponding OC1Mx bit is one, which disables control gate [8] and enables control
gate [9]. The OCJ5:2] functions are enabled to control their corresponding port A pin
by the OMx:OLXx bits not equal to 0:0. When OMx:OLx are not 0:0, control gate [8] is
disabled and control gate [10] is enabled.

Control gate [9] allows OC1 to affect this port A pin. When the corresponding OC1Mx
control bit is one, control gate [9] is enabled. The PTACLK clock signal acts as a
strobe. When there is a successful OC1 compare (OC1CMP) or when OC1 is forced
by FOC1 equals one, control gate [9] enables transmission gate [5], which causes the
corresponding OC1Dx state to be transferred to cheater latch [3]. NAND gate [11] pro-
vides a disable to control gate [10] so that if OC1 and another output compare simul-
taneously attempt to change the same port A pin, OC1 will override.

Control gate [10] is enabled by the corresponding OMx:OLx control bits not equal to
0:0. When there is a successful output compare x (OCxCMP) or when OCXx is forced
by FOCx equals one, control gate [10] enables transmission gate [6] and momentarily
disables transmission gate [12]. Transmission gate [12] transfers the previous port A
pin state to cheater latch [14]. Cheater latch [14] holds the previous pin state stable for
logic [13] while transmission gate [12] is disabled and transmission gate [6] is enabled.
Set-reset (S/R) latch [13] and associated logic is used to determine the next timer out-
put state that would result from a successful OCx compare. This next timer output
state is determined by the states of the associated OMx and OLx control bits and the
previous port A pin state.

7.3.1.3 PA7 (OC1, PAI) Pin Logic

Refer to Figure 7-6 for the following discussion. Hysteresis buffer [1] was previously
described in 7.3.1.1 PA[2:0] (IC[3:1]) Pin Logic . Reads of port A bit 7 always return
the buffered state of the PA7 pin. For this bidirectional 1/0O pin, the state of the corre-
sponding DDR control bit has no effect on the source of the data for the read. During
a port A read, transmission gate [2] is enabled so the buffered state of the PA7 pin is
driven onto the internal data bus.

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-8 REFERENCE MANUAL

[2

PAG-PA3

P4
PROTECTION
L
—3

PIN

(0C2-0C5)

RPORTA
[1]
D6-D3 * N O<>
[3]
HFFR
(71 ;i >
D Q
WPORTA —— | C Q- 4
RST
PTACLK
[8]
[ociu—p{ >o
x=5,4,3,2 *— >7
[11]
i r}
— :) .

OC1CMP
FOC1

OC1Dx

o e

L [10]

._>OI

PREVIOUS
TIMER OUT
STATE

*—
<
[14]

x=5,4,3,2
OCxXCMP
x=5,4,3,2
FOCx [
x=5,4,3,2
OLx | OLx
o o DISABLE
o 1 TOGGLE
1 o CLEAR
1 1 SET
OM5| OL5
OM4| OL4
OM3| OL3
OM2| OL2
M68HC11

REFERENCE MANUAL

Figure 7-5 PA[6:3] (OCJ[5:2]) Pin Logic

PARALLEL INPUT/OUTPUT

[5]

NEXT TIMER
OUT STATE

MOTOROLA
7-9

» 10 PULSE

v

ACCUMULATOR

£

i ﬁél_{
RPORTA [2]

HFFR 5]

WPORTA——————— ¢ _ 0[O~ <

| TR on] 25
[
= OHI
N

PTACLK

o1 o

OC1CMP]
FOC1

OC1D7

Comor}— >o— >o—K3

Figure 7-6 PA7 (OC1, PAI) Pin Logic

Y2
:

PROTECTION

Output buffer [3] is enabled when DDRA7 is one. When DDRAY is zero, the N- and P-
channel drivers are disabled so the PA7 pin acts as a high-impedance input. Data for
the PAY pin is held in cheater latch [4]. Transmission gates [5] and [6] correspond to
the two possible sources of output data for the PA7 pin.

When the OC1M7 control bit is zero, control gate [9] is disabled and control gate [8] is
enabled. Control gate [8] enables transmission gate [5] so general-purpose output
data from HFF [7] is transferred to cheater latch [4]. A write to port A causes data to
be written into HFF [7], which is cleared to zero during reset.

When the OC1M7 control bit is one, control gate [8] is disabled and control gate [9] is
enabled. While control gate [9] is enabled, a successful OC1 compare (OC1CMP) or
a force OC1 (FOC1) will enable transmission gate [6]. Transmission gate [6] causes
the OC1D7 state to be transferred to cheater latch [4].

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-10 REFERENCE MANUAL

7.3.1.4 Port A ldealized Timing

Figure 7-7 shows the idealized timing for important port A control signals. This timing
diagram, which does not consider any propagation delays, cannot be used as a sub-
stitute for data-sheet timing specifications. This information is useful for understanding
the basis for data-sheet timing specifications so timing information can be extrapolated
for bus frequencies other than that used for the data sheet.

1]
PH2 (INTERNAL) | [| |
]]]
EXTAL 4 =4 - 4 5 =4
1 1
AS | | | | |
] 1 1]
E | | |
[
PTACLK | |
| |
PORT A INPUT READ FROM PORT A
I
RPORTA
] 1]
VALID DATA REQUIRED AT CPU:>
PORT A OUTPUT WRITE TO PORT A
WPORTA |
1 1 1
PORT A OUTPUT PINS XXX NEW PORT A DATA
]]

CONTROL BIT CHANGES
FOR BITS: OC1Mx, OC1Dx, [
OMx, OLx, DDRA7, FOCx

Figure 7-7 Idealized Port A Timing

On a port A read, the RPORTA signal enables transmission gates driving port A data
onto the internal data bus. After the RPORTA signal is negated, data is held stable on
the self-latching internal data bus. The central processing unit (CPU) actually requires
this data to be valid for a setup and hold time around the rising edge of the internal
PH2 clock signal.

All operations that can cause changes to the port A output pins (except DDRA7 control
bit changes) are synchronized to the falling edge of the E clock. Changes to DDRA7
cause port A pins to change state at the falling edge of the internal PH2 clock.

7.3.2 Port B

The eight port B pins are fixed-direction output pins. When the MC68HC11A8 is oper-
ating in an expanded mode, port B is used for high-order address outputs. In single-
chip modes, port B is used for general-purpose output or for simple strobe output. The
following paragraphs describe the port B pin logic and the idealized timing for selected
port B signals.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-11

When the MC68HC11A8 is operating in an expanded mode, reads and writes to the
port B address are treated as external accesses to allow port B functions to be emu-
lated with external logic. The MC68HC24 port replacement unit (PRU) duplicates the
general-purpose and handshake 1/0O functions of ports B and C and the STRA and
STRB pins. The MC68HC24 connects to the multiplexed address/data bus of the
MC68HC11A8.

7.3.2.1 Port B Pin Logic

B

Refer to Figure 7-8 for the following discussion. Reads of port B return the logic state
from a point inside the output pin buffer. During reads of port B, transmission gate [1]
is enabled by the RPORTB signal to couple logic state [2] to the internal data bus. The
RPORTB signal is not asserted for port B reads in expanded modes since port B is an
external address in that case.

RST

\ [6]
[4]
A15-A8 -
S)
S PIN| PB7-PBO
MDA >—‘>O
] —Cc QL
3l HFFS *{ |:N :| |:|
D7-DO > O< - =

[

&

PROTECTION

RPORTB

EXPANDED —AS—I
INGLE CHIP — WPORTIﬂ

Figure 7-8 Port B Pin Logic

In single-chip modes, the mode A (MDA) control bit is zero, which enables AND gate
[3] and disables AND gate [4]. The internal data bus is coupled through AND gate [3]
and clocked into HFF [5] by the write port B (WPORTB) signal. The output of HFF [5]
is buffered and driven out the port B pins. In single-chip modes, HFF [5] is set to one
by AND gate [6] during reset, which results in logic zero at the port B pins.

In expanded modes, the MDA control bit is one, enabling AND gate [4] and disabling
AND gate [3], which couples high-order addresses to HFF [5]. In expanded modes,
HFF [5] is transparent while address strobe (AS) is high and latched while AS is low.
The output of HFF [5] is buffered and driven out the port B pins.

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-12 REFERENCE MANUAL

7.3.2.2 Port B Idealized Timing

Figure 7-9 shows the idealized timing for important port B control signals. This timing
diagram, which does not consider any propagation delays, cannot be used as a sub-
stitute for data-sheet timing specifications. This information is useful for understanding
the basis for data-sheet timing specifications so timing information can be extrapolated
for bus frequencies other than that used for the data sheet.

I]
PH2 (INTERNAL) | [| |
]]]
EXTAL - J -—J -—J -4 J 1 L[]
1 1
as | | | | |
] 1 1
e | | |
PORT B INPUT (SINGLE-CHIP MODE) READ FROM PORT B
I
RPORTB |
1 1
vALD DATAREQUREDATCPW >
PORT B OUTPUT (SINGLE-CHIP MODE) WRITE TO PORT B
WPORTB |
1 1 1
PORT B PINS XXX NEw PORT B DATA
1 1 1
PORT B PINS XXX NEw PORT B DATA
(MCB8HC24 ONLY)
EXPANDED MODE
1 1
PORT B PINS X HIGH ORDER ADDRESS X
I I
AS (REPEATED) | | | | | |
1 1

Figure 7-9 Idealized Port B Timing

On a port B read, the RPORTB signal enables transmission gates, which drive port B
data onto the internal data bus. There is no case where port B data can change in the
same cycle in which a port B read is occurring. Port B writes cause changes to the port
B output pins at the falling edge of the internal PH2 clock. This edge corresponds to
the middle of the E-clock high time.

Although this section is not specifically concerned with expanded-mode operation of
port B, it is included here for reference. A more detailed discussion of the expansion
bus is included in 2.6 Typical Expanded-Mode-System Connections . Port B logic
provides a full one-eight-cycle hold time on the high-order addresses relative to the
falling edge of E.

7.3.2.3 Special Considerations For Port B On MC68HC24 PRU
The external PRU does not have access to the internal PH2 clock of the

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-13

MC68HC11A8; therefore, slight differences exist in the timing of port B, port C, STRA,
and STRB activities. See Figure 7-9 for differences in timing for writes to port B of the
MCG68HC11A8 in single-chip mode as compared to writes to port B of the MC68HC24.

7.3.3 R/W (STRB) Pin

When the MC68HC11A8 is operating in an expanded mode, this pin acts as the read/
write (R/W) bus control signal. When the MC68HC11A8 is operating in a single-chip
mode, this pin acts as the STRB output signal for the handshake 1/0 subsystem. The
MC68HC24 can be used to regain the STRB functions when the MCU is operating in
an expanded mode.

7.3.3.1 R/W (STRB) Pin Logic

Refer to Figure 7-10 for the following discussion. When the MC68HC11A8 is operat-
ing in an expanded mode, the MDA control bit is one. A one on MDA disables trans-
mission gate [2] and enables transmission gate [1], which, in turn, couples the output
of HFF [3] to the pin output buffer. HFF [3] is transparent when AS is high and latched
when AS is low, which gives R/W the same timing as a high-order address line at port
B and assures a long hold time on R/W relative to the falling edge of E. R/W and the
expansion bus are described more fully in 2.6 Typical Expanded-Mode-System
Connections .

When the MC68HC11A8 is operating in a single-chip mode, MDA is low, disabling
transmission gate [1] and enabling transmission gate [2]. Transmission gates [4] and
[5] further select whether the Q or Q of cross-coupled latch [6] will be coupled to the
STRB pin. When the invert strobe B (INVB) control bit in the PIOC register is zero, the
Q of cross-coupled latch [6] is coupled to the STRB pin, and STRB signals are active
low. When the INVB control bit is one, the Q of cross-coupled latch [6] is coupled to
the STRB pin and STRB signals are active high.

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-14 REFERENCE MANUAL

o

R/W (INTERNAL) D Qr—

[3] Dq ‘(3{
AS c O
HFF [
L 1 pIN| RW

> > (STRB)
MDA
Dc BIAN _{ [N

INVB
[4] — —
STARTSTRB Q - -

[6]
ENDSTRB o)
[5]
INVB <>C

Figure 7-10 R/ W (STRB) Pin Logic

Ol

PROTECTION
I ¢
—/

The start strobe B (STARTSTRB) is an active-low signal from the handshake 1/0 sub-
system. The conditions that enable strobe B depend on the strobe or handshake mode
in effect. The strobe and handshake modes are controlled by the state of the HNDS
and output/input (OIN) control bits in the PIOC register. When HNDS is zero, the sim-
ple strobe mode is selected, and the state of the OIN control bit is ignored. In simple
strobe mode, STARTSTRB is asserted at the rising edge of the internal PH2 clock fol-
lowing a write to the PORTB register. This time corresponds to the center of the E low
time following the write to port B. When HNDS is one and OIN is zero, full-input hand-
shake is selected. In full-input handshake mode, STARTSTRB is asserted at the rising
edge of the internal PH2 clock following a read of the PORTCL register. This time cor-
responds to the center of the E low time following the read of port C latched data.
When HNDS and OIN are one, full-output handshake is selected. In full-output hand-
shake mode, STARTSTRB is asserted at the rising edge of the internal PH2 clock fol-
lowing a write to the PORTCL register. This time corresponds to the center of the E
low time following the write to port C at PORTCL address.

The end strobe B (ENDSTRB) is an active-low signal from the handshake 1/0 sub-
system. Three possible conditions can cause the ENDSTRB to be asserted. If the
HNDS bit is zero or if the pulse (PLS) control bit is one, ENDSTRB is asserted exactly
two full E-clock periods after STARTSTRB was asserted. This configuration corre-
sponds to the simple strobe mode or a full-handshake mode where strobe B is config-
ured for pulsed-mode operation. The second condition causing ENDSTRB to be
asserted corresponds to the full-handshake modes where strobe B has been config-

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-15

ured for interlocked operation by PLS equal zero. In this case, the ENDSTRB signal is
asserted at the next PH2 rising edge after the selected active edge is detected at the
STRA input pin. The internal PH2 rising edge corresponds to the center of the E low
time. The third condition that can cause ENDSTRB to be asserted is included to avoid
a problem if strobe B is changed from interlocked operation to pulsed operation while
strobe B is active. If PLS is written to one while HNDS is a one, the ENDSTRB signal
is asserted so the strobe B signal will be terminated at the next PH2 rising edge, which
corresponds to the center of the E low time following the cycle where PIOC was written
with HNDS and PLS equal to one.

7.3.3.2 Special Considerations for STRB on MC68HC24 PRU

Because the external PRU does not have access to the internal PH2 clock of the
MC68HC11AS8, slight differences exist in the timing of port B, port C, STRA, and STRB
activities. In the MC68HC24, edges on strobe B occur one-quarter E cycle later than
they would in the MC68HC11A8 in single-chip mode. In the case of full-handshake in-
terlocked mode, strobe B will be terminated on the next rising edge of E after a strobe
A edge is detected. The MC68HC24 has a synchronizer on the strobe A input, which
is clocked by AS; thus, the worst-case delay from an edge on strobe A to a response
on strobe B is one and one-eighth E cycles rather than one E cycle (MC68HC11A8).

Because the implementation of the strobe B logic in the MC68HC24 is slightly different
than that in the MC68HC11AS8, the third condition that could terminate a strobe B sig-
nal was not included in the MC68HC24. Since changing from interlocked operation to
pulsed operation in the middle of a transaction is not normal, this subtle difference
should not concern most users.

7.3.4 Port C

Port C is the most complex port on the MC68HC11A8 because it can act as general-
purpose bidirectional 1/O, full-input or full-output handshake 1/O, or as a time-multi-
plexed address/data bus port. Due to the complexity of the port C pin logic, expanded
and single-chip modes of operation will be discussed separately. The following para-
graphs explain the logic associated with port C pins and the idealized timing of select-
ed signals.

Although this section is not specifically concerned with expanded-mode operation of
port C, it is included for reference. A more detailed discussion of the expansion bus is
included in 2.6 Typical Expanded-Mode-System Connections

7.3.4.1 Port C Pin Logic for Expanded Modes

In expanded modes, port C is a time-multiplexed address/data bus. During the first half
of a cycle, addresses are driven out of port C. During the second half of the cycle, data
is either written out of port C or read into port C. Refer to Figure 7-11 for the following
discussion.

Pin output buffer [1] can be enabled or disabled by the PTCTSC signal. This signal is
driven to zero when address or data information needs to be driven out of port C.
When PTCTSC is one, the output buffer is disabled so port C pins become high-im-

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-16 REFERENCE MANUAL

pedance input pins (e.g., while data is being read into port C).

Vbp

v

PTCTSC) > >
A7-A0
2]
[PIN| PC7-PCO

XX

ADDREN

WDATEN

PROTECTION
I I ¢
—/

XX

[5]

D7-DO O<}

RDATEN 1 _do c 6]
<
HFF “
E

STOPWAIT

XX

Figure 7-11 Port C Expanded Mode Pin Logic

Information to be driven out of port C can come from either transmission gate [2] or [3].
When the address enable (ADDREN) signal is one, transmission gate [2] is enabled
to couple address lines ADDR][7:0] to the output buffer of their associated port C pin.
When the write data enable (WDATEN) signal is one, transmission gate [3] is enabled
to couple data lines DATA[7:0] to the output buffer of their associated port C pin.

In the read direction, data comes from the port C pins to strobe input buffers [6]. Data
from buffers [6] is then clocked into HFF [5] during the E high time. Data is coupled to
the CPU through transmission gate [4] when the read data enable (RDATEN) signal
is one. Since the CPU actually uses the read data during the one-quarter cycle after E
goes low, HFF [5] also provides a level of synchronization for the incoming data.

In normal operation, the stop/wait (STOPWAIT) signal is logic one, which enables buff-
ers [6]. When the MCU is in the stop/wait low-power modes, the STOPWAIT is zero,
and buffers [6] are disabled. While buffers [6] are disabled, intermediate or switching
levels on the port C pins will not cause the relatively high currents normally expected
for CMOS inputs.

7.3.4.2 Summary of Port C Idealized Expanded-Mode Timing
Port C expanded-mode timing includes four types of bus cycles. Write cycles look

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-17

identical at port C regardless of the address written to. The second type cycle is a read
from an external address. The last two cycle types are reads of internal addresses —
that is, reads of a memory location or register inside the MC68HC11A8. For debug-
ging, the data read from the internal location is driven out of port C to be monitored
with a logic analyzer. For normal use of the MCU, the data from the internal reads is
not driven out of port C because it could conflict with some external device. There is
an internal read visibility (IRV) control bit in the MC68HC11A8 determining whether or
not internal read data will be driven out of port C. The IRV bit and the expansion bus
are described in greater detail in 2.6 Typical Expanded-Mode-System Connec-
tions .

Logic in the MC68HC11A8 generates the signals PTCTSC, ADDREN, WDATEN, and
RDATEN to control the activity of port C, depending on the type bus cycle to be per-
formed. The operation of these signals is explained in 7.3.4.1 Port C Pin Logic for
Expanded Modes . Figure 7-12 summarizes the idealized timing of these signals for
the four types of bus cycles.

7.3.4.3 Port C Single-Chip Mode Pin Logic

Refer to Figure 7-13 for the following discussion. During a write to DDRC, data is
clocked into HFF [1] by the write DDRC (WDDRC) signal. During a read of DDRC,
transmission gate [2] is enabled by the read DDRC (RDDRC) signal, which couples
the output of the DDRC HFF onto the internal data bus. During reset, HFF [1] is forced
to zero, which configures port C pins as high-impedance inputs. The state of DDRC at
the output of HFF [1] controls port C output buffer [3] via NOR gate [4]. The state of
DDRC also influences the source of data for reads of the PORTC register via NAND
gate [6].

The CWOM control bit allows the user to disable the P-channel driver of output buffer
[3]. CWOM simultaneously affects all eight bits of port C. Since the N-channel driver
is not affected by CWOM, CWOM equal one causes port C to become an open-drain-
type output port. When a port C bit is logic zero, it is actively driven low by the N-chan-
nel driver. When a port C bit is logic one, it becomes high impedance since neither the
N- nor P-channel devices are active. It is customary to have an external pull-up resistor
on lines that are driven by open-drain devices. Port C can only be configured for wired-
OR operation when the MCU is in a single-chip mode of operation.

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-18 REFERENCE MANUAL

|

EXTAL | [

AS

|

PTCTSC | ‘ |
I !
WRITE ADDREN | | |
TO ANY 1
ADDRESS WDATEN |_| | | | |
| !
PORTC ~ —=< __ADDR) — (DATA < NEXT ADDR

pTCTSC | ‘ |
1]
READ FROM ADDREN I | |
EXTERNAL . .
ADDRESS RDATEN | | | | [| |
1
PORT C ADDR > DATA > —<_ NEXT ADDR

PTCTSC | ‘ |
1 |
READ FROM I—l |
INTERNAL ADDREN .
ADDRESS |
(IRV=0) RDATEN | |
| | |
PORT C ADDR ‘

prcTsC | ‘ |
1]
ADDREN | |
READ FROM ,
INTERNAL]
ADDRESS RDATEN .

(IRV=1)

WDATEN

porTe —<_ADDR D >—< < DATA D—

oscck || | | I L

n 1 1 1]

P | Ll | |

0] 1 1 1

@ PH2 | [| | | |

% ADDRESS, RIW X < VALID X <

w 1 1 1 1

Z DATAFROMCPU < < VALID >
DATA TO CPU < MUSTBEVALD >
Figure 7-12 Summary of ldealized Port C Expanded-Mode Timing

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA

REFERENCE MANUAL 7-19

EGA

STRA PIN

[5]

RDDRC

)
HNDS
J
2]

WDDRC

RST

WPORTC

WPORTCL

D7-DO

PIN

CWOM VbD
[4]
HFFR
D Q
c QLo
R © [16]
| HFF 3]
b Ql— 5
'_
T—-\\\ . L k) :XD [N @
7 ¢ [12] 2
17) .

RPORTC

ClT

[15]
(6] J—O<>—

HNDS

OIN

[20]

RPORTCL

STRAEDGE

—Q p—C

Ol
)

HFF
(18]

(13]

STOPWAIT

Figure 7-13 Port C Single-Chip Mode Pin Logic

PC7-PCO

AND gate [5] provides an override to DDRC during the three-state variation of full-out-
put handshake. In this handshake mode, the HNDS and OIN control bits are ones, en-
abling AND gate [5]. While AND gate [5] is enabled, a one from exclusive-OR gate [7]
will force output buffer [3] to be enabled, regardless of the state of the DDRC bit from
HFF [1]. The EGA control bit specifies the level required at the STRA pin to force port
C pins to be outputs.

MOTOROLA
7-20

PARALLEL INPUT/OUTPUT

M68HC11
REFERENCE MANUAL

While the output-handshake mode is specified, any of the port C bits having their cor-
responding DDRC bits set to zero are configured for the three-state variation of full-
output handshake. For those bits, the corresponding port C pins will appear as high-
impedance inputs while the STRA pin is at its selected inactive level. When the STRA
pin goes to its active level, AND gate [5] will force all port C pins to the output mode.
Any port C bits having their corresponding DDRC bits set to one will be driven outputs,
regardless of the logic at AND gate [5].

While the MCU is operating in output-handshake mode, NAND gate [14] outputs zero
and NAND gate [6] outputs one. When PORTC is read in this case, AND gate [10] en-
ables transmission gate [11] to couple the logic state from point [12] inside the output
buffer onto the internal data bus. When a port C pin is configured for output by its cor-
responding DDRC bit equal one at HFF [1], inverter [15] outputs zero and NAND gate
[6] outputs one. Again, when PORTC is read, AND gate [10] enables transmission
gate [11] to couple the logic state from point [12] inside the output buffer onto the in-
ternal data bus. When neither of the previous conditions are true, the port C pin is con-
figured for input and NAND gate [6] outputs a zero. In this case, when PORTC is read,
AND gate [8] enables transmission gate [9] to couple the buffered state of the corre-
sponding port C pin from the strobed buffers [13] onto the internal data bus.

On writes to port C, data is clocked into the HFF [16] by the output of OR gate [17]. A
write to either the PORTC register or the PORTCL register will enable HFF [16] via OR
gate [17]. The output of HFF [16] drives the port C pins through buffer [3] subject to
the controls on the buffer described in the previous paragraphs.

The port C latch register (PORTCL) is composed of HFFs [18] and [19]. Normally, the
strobe A edge signal (STRAEDGE) is low so HFF [19] is latched and HFF [18] is trans-
parent. When a selected edge is asynchronously detected at the strobe A pin, a short
active-high pulse is issued on STRAEDGE. While STRAEDGE is high, HFF [18] is
temporarily latched so stable data is transferred into HFF [19]. When the PORTCL reg-
ister is read, the RPORTCL signal enables transmission gate [20] to couple the output
of HFF [19] onto the internal data bus.

The STOPWAIT signal is normally high, enabling strobe buffers [13]. When the MCU
is in the stop or wait power-saving modes, STOPWAIT is low, and strobe buffers [13]
are disabled. This function was included to reduce power consumption mainly in the
expanded modes where port C is a multiplexed address/data bus, but there is a side
effect that can influence strobe and handshake input at port C in a very special case.

The wait mode definition states that any enabled interrupt source can be used to force
the MCU to return to normal operation. An active edge at the STRA pin is a possible
source of the interrupt that will wake the MCU from the wait standby mode. Although
the edge at STRA will wake the MCU from the wait mode, valid data will not be latched
into PORTCL because strobe input buffers [13] were disabled at the time of the asyn-
chronous edge at STRA.

7.3.4.4 Port C Idealized Single-Chip Mode Timing
Figure 7-14 shows the idealized timing for important port C control signals. Because

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-21

this timing diagram does not reflect any propagation delays, it cannot be used as a
substitute for data-sheet timing specifications. This information is useful for under-
standing the basis for data-sheet timing specifications so timing information can be ex-
trapolated for bus frequencies other than that used for the data sheet.

I 1}
PH2 (INTERNAL) | [| |
1} 1} 1}
EXTAL - -J =-—J 45 -+ 7 |
1} 1}
AS | | | | |
1} I 1} 1}
: | I | I
PORT C INPUT (SINGLE-CHIP MODE) READ FROM PORT C
T I
RPORTC
| ! !
vaup pATAREQUREDATCPU >
PORT C OUTPUT (SINGLE-CHIP MODE) WRITE TO PORT C
WPORTC OR WPORTCL |
1} 1} 1} 1}
PORT C OUTPUT PINS XXX NEW PORT C DATA
1} 1} 1} 1} 1}
PORT C OUTPUT PINS XXX NEW PORT C DATA

(MC68HC24 ONLY) | |

READ PORTCL OR DDRC
| I

RPORTCL OR RDDRC |

WRITE TO DDRC

WDDRC

Figure 7-14 Idealized Port C Single-Chip Mode Timing

During a read of port C, the RPORTC signal enables transmission gates that drive port
C data onto the internal data bus. After the RPORTC signal is negated, data is held
stable on the self-latching internal data bus. The CPU actually requires data to be sta-
ble for a setup time before and a hold time after the rising edge of the internal PH2
clock. The RPORTC signal is negated one-quarter cycle before this time so data will
be stable while the CPU is actually reading it.

During a DDRC read, the RDDRC signal enables a transmission gate to couple the
state of the DDRC bit to the internal data bus. In contrast to the RPORTC signal, RD-
DRC is active while the CPU is actually reading the data from the internal data bus,
which does not pose potential problems because it is not possible for the DDRC value
to change in the same cycle it is being read.

The timing for the RPORTCL signal is the same as that for the RDDRC signal. Unlike

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-22 REFERENCE MANUAL

DDRC data, data in the PORTCL register can change at any time since the strobe A
latching edge is asynchronous. Since it is undesirable for data to be changing at the
instant the CPU is latching in this data, the user should avoid this synchronization haz-
ard. Usually, the system design automatically solves the problem because an edge on
STRA cannot normally occur during a read of PORTCL. For example, in a full-input
handshake, PORTCL is only read in response to recognizing that the STAF has been
set. In such a case, the edge that caused STAF to be set and data to be latched into
PORTCL will have occurred several cycles before the PORTCL read could possibly
occur. Also, in the full-handshake protocol, the external device is inhibited from latch-
ing new data into PORTCL until the previous data is read from PORTCL. This inhibit
is accomplished by the STRB handshake output.

Writes to port C at PORTC or PORTCL and writes to DDRC are controlled by
WPORTC, WPORTCL, and WDDRC, respectively. All three signals are synchronized
to the falling edge of the internal PH2 clock, which corresponds to the center of the E
high time.

7.3.4.5 Special Considerations for Port C on MC68HC24 PRU

Since the external PRU does not have access to the internal PH2 clock of the
MC68HC11A8, there are slight differences in the timing of port B, port C, STRA, and
STRB activities. Figure 7-14 shows the differences between internal MC68HC11A8
writes to port C and MC68HC24 writes to port C.

7.3.5 AS (STRA) Pin

In expanded modes, this pin acts as the AS control signal, which is used to demultiplex
low-order addresses from data at port C. In single-chip modes, this pin acts as the
STRA input, which serves the handshake 1/0O subsystem on the MC68HC11A8. The
MC68HC?24 can be used to regain the STRA functions when the MCU is operating in
an expanded mode.

7.3.5.1 AS (STRA) Pin Logic
Refer to Figure 7-15 for the following discussion. When the MC68HC11A8 is operat-
ing in a single-chip mode, the MDA control bit is zero; thus, both the P- and N-channel
output drivers are disabled. While the MCU is operating in an expanded mode, the
MDA control bit enables the output driver logic. As long as the MCU is not in stop
mode, the AS signal is buffered and driven out the AS pin.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-23

[Vbp

MDA 2]
ik
AS

AS
(STRA)

PIN

[4]

LS =) [

P4
PROTECTION
L
—

[7] [8]
ACQE/TEE‘E:SGE SYNCHRONIZE |-/ L USED TO SET STAF FLAG
— —
ON STRA TO PH2 AND TO TERMINATE STRB
A
n SHORT ASYNCHRONOUS

PULSE USED TO TRIGGER
PORTCL LATCHES

\

EGA

Figure 7-15 AS (STRA) Pin Logic

When the MC68HC11A8 is in stop mode, the STOP signal goes high, which forces the
AS pin to logic zero. A one on STOP forces a zero on one input of NAND gate [1],
which forces a zero on one input of NAND gate [2], which disables the P-channel driv-
er. The one on STOP also forces a one at the output of NAND gate [3], which places
a zero on the lower input of NOR gate [4]. Since the one on MDA forces the other input
of NOR gate [4] to zero, the output of this NOR gate will be one, which enables the N-
channel driver and forces the pin to zero.

Hysteresis buffer [5] is described in 7.3.1.1 PA[2:0] (IC[3:1]) Pin Logic . EGA controls
the block of logic [7], which detects asynchronous edges on the signal from inverter
[6], the buffered signal from the strobe A pin. The output from the block of logic [7] is
a short high-going asynchronous pulse, which is used to asynchronously latch data
from the port C pins into the PORTCL register.

In response to the asynchronous pulse from block [7], the block of logic [8] produces
a pulse that is synchronized to the internal PH2 clock. Provided the asynchronous
pulse meets a setup time before the rising edge of PH2, the output of block [8] will go

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-24 REFERENCE MANUAL

high at that PH2 rising edge and stay high until PH2 goes low. If the setup time is not
met, the pulse will appear at the next PH2, causing a delay from when an edge is pre-
sented at the STRA pin until it is recognized by the logic of block [8]. The delay could
be from a few nanoseconds to a full E-clock cycle, depending on where the edge oc-
curs relative to the clocks. The rising edge of the internal PH2 clock corresponds to
the center of the E-clock low time. A significant number of internal logic-gate delays
exists between the STRA pin and the block of logic [8].

The synchronized pulse from block [8] is used for several functions in the handshake
I/O subsystem. STAF is set by this pulse. The arming mechanism for automatically
clearing STAF is cleared by this pulse. This pulse can terminate the STRB output in
some handshake modes. These functions and their timing are discussed in greater de-
tail in 7.4 Handshake 1/0 Subsystem .

7.3.5.2 Special Considerations for STRA on MC68HC24 PRU

Because the external PRU does not have access to the internal PH2 clock of the
MC68HC11A8, slight differences exist in the timing of port B, port C, STRA, and STRB
activities. The differences for strobe A are associated with the block of logic [8] in Fig-
ure 7-15. Although Figure 7-15 depicts the MC68HC11A8, there is a similar block of
logic in the MC68HC24. In the MC68HC24, AS and E are used to synchronize the
strobe A pulse to the E clock. Any strobe A edge meeting a setup time to the falling
edge of AS results in a synchronized pulse that is high for the next E-clock high time.
This pulse is used for the same purposes as the PH2 synchronized pulse in the
MC68HC11A8.

7.3.6 Port D

Port D is a six-bit bidirectional data port. Two port D pins alternately serve as the re-
ceive and transmit data pins for the on-chip asynchronous SCI system. The other four
port D pins alternately serve the on-chip synchronous SPI system. Although the pin
logic for all six port D pins is essentially identical, each pin is described separately to
note subtle differences. The following paragraphs explain the detailed logic associated
with port D pins and the idealized timing of important port D control signals.

7.3.6.1 PDO (RxD) Pin Logic

Refer to Figure 7-16 for the following discussion. The data direction specification for
this pin is held in HFF [1]. During a write to the DDRD register, the WDDRD signal is
asserted, which causes data to be transferred into HFF [1] from the internal data bus.
A read of DDRD causes the RDDRD signal to be asserted, which enables transmis-
sion gate [2] to couple the output of HFF [1] onto the internal data bus. During reset,
HFF [1] is cleared to zero, configuring this pin as a high-impedance input.

The state of DDRD controls the pin output buffer via AND gate [3], and DDRD affects
the source of data for port D reads via transmission gates [4] and [5]. When the DDRD
bit from HFF [1] is zero, AND gate [3] outputs a zero, which disables output driver [9].
When the DDRD bit from HFF [1] is zero, transmission gate [5] is enabled. In this case,
reads of port D enable transmission gate [6], coupling the buffered pin state from in-
verters [7] to the internal data bus. When the DDRD bit from HFF [1] is one, transmis-

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-25

sion gate [4] is enabled. In this case, reads of port D enable transmission gate [6],
coupling the level from the output of HFF [8] to the internal data bus, which corre-
sponds to the output level for the pin before output driver [9]. Since output driver [9]
can be configured for wired-OR operation, some external source can force the pin low,
even if the logic for this pin is trying to output a one. In this case, a read of port D will
return the intended logic one from inside the output buffer rather than the zero from
the pin.

HFF

8l
—1b 0 b_C<

WPORTD c

v

?

PDO
[9] PIN| (RxD)

[3]
RCVON <>O :>—<>—‘>O—4[>O_{ |:N
RDDRD — | (2]
) % - -

[1] <>O

PROTECTION
L |
—a

1

?

WDDRD c _Q

AT g

RPORTD _
P TO SCI RECEIVER

Figure 7-16 PDO (RxD) Pin Logic

During a write to port D, the WPORTD signal is asserted, causing data from the inter-
nal data bus to be latched into HFF [8]. Written data is then buffered to the pin by out-
put driver [9] subject to data direction control from AND gate [3] and wired-OR control
from the DWOM control bit. When the DWOM control bit is one, the P-channel driver
is disabled so port D outputs act as open-drain drivers. The DWOM control bit simul-
taneously affects all port D pins.

When the output of AND gate [3] is zero, the output driver is completely disabled; thus,
this pin is configured as a high-impedance input. AND gate [3] will output a zero to dis-
able the output driver whenever the corresponding DDRD bit is zero from HFF [1].

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-26 REFERENCE MANUAL

AND gate [3] will also disable the output driver when the SCI receiver is enabled by
the receiver-on signal (RCVON). The state of the DDRD bit still influences the source
of read data when the RCVON signal is forcing the pin to a high-impedance state.

This pin alternately serves as the receive data (RxD) input pin for the asynchronous
SCI system. The SCI receiver is enabled by the receive enable (RE) control bit in an
SCI control register, which forces the RCVON signal to one, disabling pin output driver
[9], regardless of the state of the DDRD bit from HFF [1]. The state of the DDRD bit
allows the programmer to read the RxD pin (DDRD = 0) or the value in port D latch [8]
(when DDRD = 1). Data from the pin is buffered by inverters [7] and driven to the SCI
receive logic. The data path from the pin to the SCI receive logic is not affected by the
state of DDRD.

7.3.6.2 PD1 (TxD) Pin Logic

Refer to Figure 7-17 for the following discussion. The data direction specification for
this pin is held in HFF [1]. During a write to the DDRD register, the WDDRD signal is
asserted, causing data to be transferred into HFF [1] from the internal data bus. A read
of DDRD causes the RDDRD signal to be asserted, which enables transmission gate
[2] to couple the output of HFF [1] onto the internal data bus. During reset, HFF [1] is
cleared to zero, which configures this pin as a high-impedance input.

The state of DDRD controls the pin output buffer via OR gate [3], and DDRD affects
the source of data for port D reads via transmission gates [4] and [5]. When the DDRD
bit from HFF [1] is one, OR gate [3] outputs a one, which enables output driver [9]. Al-
so, when the DDRD bit from HFF [1] is one, transmission gate [4] is enabled. In this
case, reads of port D enable transmission gate [6], which couples the level from the
output of HFF [8] to the internal data bus. The value returned on such a read corre-
sponds to the last value written to the corresponding bit of port D. Since output driver
[9] can be configured for wired-OR operation, some external source can force the pin
low even if the pin logic for this pin is attempting to output a one. If the DDRD bit did
not affect the source of the read data, an erroneous zero could be read when the pin
logic is actually trying to output a one. When the DDRD bit from HFF [1] is zero, OR
gate [3] outputs a zero, which disables output driver [9]. Also, when the DDRD bit is
zero, transmission gate [5] is enabled. In this case, reads of port D enable transmis-
sion gate [6], which couples the buffered pin state from inverters [7] to the internal data
bus.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-27

XMITON

Vbop
[

10]

XMITDATA

L

PD1

1>—|>o—
11
HFF 8] [11] .
[PIN| (TxD)

WPORTD c QP
o) [
RDDRD — (21
‘:E %—4

[3]
(1]
&— D Q <>O

WDDRD c _ QP

] [4]

RPORTD

PROTECTION
L
—/

RST —

Figure 7-17 PD1 (TxD) Pin Logic

During a write to port D, the WPORTD signal is asserted, causing data from the inter-
nal data bus to be latched into HFF [8]. When the SCI transmitter is enabled, the trans-
mit-on (XMITON) signal is one and transmission gate [10] is enabled, which couples
serial transmit data (XMITDATA) to pin driver [9]. When the SCI transmitter is disabled,
the XMITON signal is zero, and transmission gate [11] is enabled, which couples port
D data from HFF [8] to pin driver [9]. Pin output driver [9] is enabled by data direction
logic from OR gate [3]. The DWOM control bit can optionally disable the P-channel
driver of output buffer [9].

When the DWOM control bit is one, the P-channel driver is disabled, causing port D
outputs to act as open-drain drivers. The DWOM control bit concurrently affects all port
D pins. When the output of OR gate [3] is zero, the output driver is completely disabled;
thus, this pin is configured as a high-impedance input. OR gate [3] will output a zero
to disable the output driver whenever the corresponding DDRD bit is zero from HFF
[1] and the SCI transmitter is disabled by the XMITON signal. The state of the DDRD
bit still influences the source of read data when the XMITON signal is forcing the pin
to the output configuration.

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-28 REFERENCE MANUAL

This pin alternately serves as the transmit data (TxD) output pin for the asynchronous
SCI system. The SCI transmitter is enabled by the TE control bit in an SCI control reg-
ister. Enabling the transmitter forces the pin driver to be configured as an output by
forcing a one at the output of OR gate [3]. The state of the DDRD bit allows the pro-
grammer to read the TxD pin (DDRD = 0) or the value in port D latch [8] (when DDRD
equals one). The SCI transmitter retains control of the port D pin by keeping XMITON
equal to one as long as any information is being transmitted (even after the TE bit is
written to zero). This control assures that a transmission will not be cut off in the middle
of a serial character.

The user can control what happens to the TxD pin when the transmitter is finished.
When the transmitter is finished using the TxD pin, the XMITON signal switches from
one to zero, which causes the data direction to be controlled by the DDRD bit from
HFF [1] instead of the XMITON input to OR gate [3]. Disabling XMITON also causes
transmission gate [10] to be disabled and transmission gate [11] to be enabled. If the
corresponding DDRD bit is zero, the pin will revert to being a high-impedance input
when the transmitter is finished. If the DDRD bit is one and the last data written to the
corresponding bit of port D was a zero, the pin will revert to a driven logic zero when
the transmitter is finished. If the DDRD bit is one and the last data written to the corre-
sponding bit of port D was a one, the pin will revert to a driven logic one when the trans-
mitter is finished.

7.3.6.3 PD2 (MISO) Pin Logic

This pin alternately functions as the MISO pin when the synchronous SPI system is
enabled. Refer to Figure 7-18 for the following discussion. The data direction specifi-
cation for this pin is held in HFF [1], During a write to the DDRD register, the WDDRD
signal is asserted, which causes data to be transferred into HFF [1] from the internal
data bus. A read of DDRD causes the RDDRD signal to be asserted, enabling trans-
mission gate [2] to couple the output of HFF [1] onto the internal data bus.

When HFF [1] is cleared to zero, this pin is configured as a high-impedance input. OR
gate [13] causes HFF [1] to be cleared to zero during reset. OR gate [13] also causes
HFF [1] to be cleared if an SPI mode fault (MFAULT) occurs. An SPI mode fault is
caused when a device configured as a master SPI device is selected as if it were a
slave. This condition could indicate that more than one SPI device is attempting to
drive the common SPI lines, which could cause a bus conflict. To avoid the possibility
of latchup, the port D pins associated with the SPI are immediately forced to their input
configuration.

The actual data direction for this port D pin is determined by the logic output of NAND
gate [3]. When the SPI system is disabled, the DDRD bit from HFF [1] controls direc-
tion. When the SPI system is enabled in master mode, this pin is forced to a high-im-
pedance input. When the SPI system is enabled in slave mode, the DDRD bit from
HFF [1] controls direction. This last condition means that the user must set the corre-
sponding DDRD bit to one to enable slave data output from this pin when the SPI sys-
tem is enabled for slave operation. The uses and implications of this logic are
discussed in greater detail in SECTION 8 SYNCHRONOUS SERIAL PERIPHERAL
INTERFACE.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-29

Cowou}—| >0

[8]

[11]

WPORTD c QP

SLAVDO L H

° [10]
PD2
? [l PIN| (\wis0)
12
ey sl
RDDRD @ [2] —— ——
‘

HFFR

WDDRD S Q0 [>:
5
[5]]
: L
MFAULT 2
RST . TOSPI

[13] » MASTER DATA IN

o

SPE

SLAVON

2
PROTECTION
I I ¢
—/

Y

RPORTD

Figure 7-18 PD2 (MISO) Pin Logic

When the output of NAND gate [3] is one, driver [9] is disabled so the pin is configured
as a high-impedance input. To enable pin driver [9], both inputs to NAND gate [3] must
be ones. When the SPI system is disabled, SPE is zero, which makes the output of
NAND gate [12] a one. A logic one enables NAND gate [3] so that the DDRD bit from
HFF [1] can enable or disable driver [9]. When the SPI system is operating as a mas-
ter, SPE will be one and slave on (SLAVON) will be zero. This configuration causes
NAND gate [12] to output a zero, which disables output driver [9], regardless of the
state of the DDRD bit at HFF [1]. When the SPI system is enabled as a slave, SPE is
one and SLAVON is one. This configuration causes NAND gate [12] to output a one,
which enables NAND gate [3] to control the direction of output buffer [9] based on the
state of the DDRD bit from HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the DWOM control bit.
This control bit simultaneously affects all six port D pins. When DWOM is one, the P-

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-30 REFERENCE MANUAL

channel device in the output driver is disabled so the pin cannot be actively driven
high. When the pin attempts to output a logic one, the N-channel device is disabled;
thus, the pin appears as a high-impedance input. An external pull-up is used to pas-
sively pull the pin high.

The data for output driver [9] comes from transmission gate [10] or [11]. When the SPI
system is enabled, the SPE bit is one; thus, transmission gate [10] is enabled, and
data for the output driver comes from the SPI slave data output signal (SLAVDO).
When the SPI system is disabled, the SPE control bit is zero; thus, transmission gate
[10] is disabled and transmission gate [11] is enabled. In this case, port D data is cou-
pled from the output of HFF [8] to the input of output driver [9]. During a write to port
D, the WPORTD signal is asserted, which causes data to be latched into HFF [8] from
the internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD signal to cou-
ple data to the internal data bus. The source of data for port D reads depends on the
direction control for the output driver. If the output of NAND gate [3] is zero, output driv-
er [9] is enabled and transmission gate [4] is enabled. In this case, port D reads return
the data from a point inside the output driver. If the output of NAND gate [3] is one,
transmission gate [5] is enabled. In this case, reads of port D return the buffered state
from the pin through inverters [7].

The output of inverters [7] drives the serial master data input to the SPI system logic.
The source of this data is always from the MISO pin and is not affected by the data
direction logic.

7.3.6.4 PD3 (MOSI) Pin Logic

This pin alternately functions as the MOSI pin when the synchronous SPI system is
enabled. Refer to Figure 7-19 for the following discussion. The data direction specifi-
cation for this pin is held in HFF [1]. During a write to the DDRD register, the WDDRD
signal is asserted, causing data to be transferred into HFF [1] from the internal data
bus. A read of DDRD causes the RDDRD signal to be asserted, which enables trans-
mission gate [2] to couple the output of HFF [1] onto the internal data bus.

When HFF [1] is cleared to zero, this pin is configured as a high-impedance input. OR
gate [13] causes HFF [1] to be cleared to zero during reset. OR gate [13] also causes
HFF [1] to be cleared if an SPI mode fault occurs. An SPI mode fault is caused when
a device configured as a master SPI is selected as if it were a slave. This condition
could indicate that more than one SPI device is attempting to drive the common SPI
lines, which could cause a bus conflict. To avoid the possibility of latchup, the port D
pins associated with the SPI are immediately forced to their input configuration.

The actual data direction for this port D pin is determined by the logic output of NAND
gate [3]. When the SPI system is disabled, the DDRD bit from HFF [1] controls direc-
tion. When the SPI system is enabled in slave mode, this pin is configured as a high-
impedance input. When the SPI system is enabled in master mode, the DDRD bit from
HFF [1] controls direction. This last condition means that the user must set the corre-
sponding DDRD bit to one to enable master data output from this pin when the SPI

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-31

system is configured for master operation. The uses and implications of this logic are
discussed in greater detail in SECTION 8 SYNCHRONOUS SERIAL PERIPHERAL
INTERFACE.

WPORTD

MSTRDO

SPE

MSTRON

RDDRD

WDDRD

D3

MFAULT
RST

RPORTD

8]

o]

Ql

[11]

o

[10]

el
i

HFFR

[12]

L

(3]

[

PD3

(1

!

D

C
R

Q

Q

PROTECTION

PIN

(MOSI)

>

[13]

(6]

5]

-

Figure 7-19 PD3 (MOSI) Pin Logic

Y

TO SPI
SLAVE DATA IN

When the output of NAND gate [3] is one, driver [9] is disabled; thus, the pin is config-
ured as a high-impedance input. To enable pin driver [9], both inputs to NAND gate [3]
must be ones. When the SPI system is disabled, SPE is zero, making the output of
NAND gate [12] a one. This configuration enables NAND gate [3] so that the DDRD
bit from HFF [1] can enable or disable driver [9]. When the SPI system is enabled as
a slave, SPE is one and master on (MSTRON) is zero. This configuration causes
NAND gate [12] to output zero, which disables output driver [9], regardless of the state
of the DDRD bit at HFF [1]. When the SPI system is enabled as a master, SPE is one
and MSTRON is one. This configuration causes NAND gate [12] to output a one, which
enables NAND gate [3] to control the direction of output buffer [9] based on the state

MOTOROLA

7-32

PARALLEL INPUT/OUTPUT

M68HC11

REFERENCE MANUAL

of the DDRD bit from HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the DWOM control bit.
This control bit simultaneously affects all six port D pins. When DWOM is one, the P-
channel device in the output driver is disabled so the pin cannot be actively driven
high. When the pin attempts to output logic one, the N-channel device is disabled;
thus, the pin appears as high-impedance input. An external pull-up is used to passively
pull the pin high.

The data for output driver [9] comes from transmission gate [10] or [11]. When the SPI
system is enabled, the SPE bit is one; transmission gate [10] is enabled, and data for
the output driver comes from the SPI master data output signal (MSTRDO). When the
SPI system is disabled, the SPE control bit is zero; transmission gate [10] is disabled
and transmission gate [11] is enabled. In this case, port D data is coupled from the out-
put of HFF [8] to the input of output driver [9]. During a write to port D, the WPORTD
signal is asserted, which causes data to be latched into HFF [8] from the internal data
bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD signal to cou-
ple data to the internal data bus. The source of data for port D reads depends on the
direction control for the output driver. If the output of NAND gate [3] is zero, output driv-
er [9] is enabled and transmission gate [4] is enabled. In this case, port D reads return
the data from a point inside the output driver. If the output of NAND gate [3] is one,
transmission gate [5] is enabled. In this case, reads of port D return the buffered state
from the pin through inverters [7].

The output of inverters [7] drives the serial slave data input to the SPI system logic.
Because the source of this data is always from the MOSI pin, it is not affected by the
data direction logic.

7.3.6.5 PD4 (SCK) Pin Logic

This pin alternately functions as the SPI SCK output pin when the synchronous SPI
system is enabled. Refer to Figure 7-20 for the following discussion. The data direc-
tion specification for this pin is held in HFF [1]. During a write to the DDRD register,
the WDDRD signal is asserted, causing data to be transferred into HFF [1] from the
internal data bus. A read of DDRD causes the RDDRD signal to be asserted, which
enables transmission gate [2] to couple the output of HFF [1] onto the internal data
bus.

When HFF [1] is cleared to zero, this pin is configured as a high-impedance input. OR
gate [13] causes HFF [1] to be cleared to zero during reset. OR gate [13] also causes
HFF [1] to be cleared if there is an SPI mode fault. An SPI mode fault is caused when
a device configured as a master SPI device is selected as if it were a slave. This con-
dition could indicate that more than one SPI device is attempting to drive the common
SPI lines, which could cause a bus conflict. To avoid the possibility of latchup, the port
D pins associated with the SPI are immediately forced to their input configuration.

The actual data direction for this port D pin is determined by the logic output of NAND
gate [3]. When the SPI system is disabled, the DDRD bit from HFF [1] controls direc-

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-33

tion. When the SPI system is enabled in slave mode, this pin is forced to a high-im-
pedance input. When the SPI system is enabled in master mode, the DDRD bit from
HFF [1] controls direction. This last condition means that the user must set the corre-
sponding DDRD bit to one to enable the master clock output from this pin when the
SPI system is configured for master operation. The uses and implications of this logic
are discussed in greater detail in SECTION 8 SYNCHRONOUS SERIAL PERIPHER-
AL INTERFACE.

Cowon}—| >0

8]

WPORTD C =

SPISCK * H

SPE . 10l
PD4
? [PIN| (sck)
12
[12] 3l
<
ol P)) o[
RDDRD @ (2] — —
‘

HFFR

Ol
Y

T

MSTRON

PROTECTION
L
—

(1

e— D Q

WDDRD S QP [>
5
(5] 7]
m B
MFAULT ¢l
RST __ TOSPI

[13] " SLAVE CLOCK

RPORTD

Figure 7-20 PD4 (SCK) Pin Logic

When the output of NAND gate [3] is one, driver [9] is disabled so the pin is configured
as a high-impedance input. To enable pin driver [9], both inputs to NAND gate [3] must
be ones. When the SPI system is disabled, SPE is zero, which makes the output of
NAND gate [12] a one. This enables NAND gate [3] so that the DDRD bit from HFF [1]
can enable or disable driver [9]. When the SPI system is enabled as a slave, SPE is

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-34 REFERENCE MANUAL

one and MSTRON is zero. This configuration causes NAND gate [12] to output a zero,
which disables output driver [9], regardless of the state of the DDRD bit at HFF [1].
When the SPI system is enabled as a master, SPE is one and MSTRON is one. This
configuration causes NAND gate [12] to output a one, which enables NAND gate [3]
to control the direction of output buffer [9] based on the state of the DDRD bit from HFF

[1].

Output driver [9] can be placed in a wired-OR configuration by the DWOM control bit.
This control bit simultaneously affects all six port D pins. When DWOM is one, the P-
channel device in the output driver is disabled so the pin cannot be actively driven
high. When the pin attempts to output a logic one, the N-channel device is off; thus,
the pin appears as a high-impedance input. An external pull-up is used to passively
pull the pin high.

The data for output driver [9] comes from transmission gate [10] or [11]. When the SPI
system is enabled, the SPE bit is one; thus, transmission gate [10] is enabled, and
data for the output driver comes from the SPI master clock output signal (SPISCK).
When the SPI system is disabled, the SPE control bit is zero; transmission gate [10]
is disabled and transmission gate [11] is enabled. In this case, port D data is coupled
from the output of HFF [8] to the input of output driver [9]. During a write to port D, the
WPORTD signal is asserted, which causes data to be latched into HFF [8] from the
internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD signal to cou-
ple data to the internal data bus. The source of data for port D reads depends on the
direction control for the output driver. If the output of NAND gate [3] is zero, output driv-
er [9] is enabled and transmission gate [4] is enabled. In this case, port D reads return
the data from a point inside the output driver. If the output of NAND gate [3] is one,
transmission gate [5] is enabled. In this case, reads of port D return the buffered state
from the pin through inverters [7].

The output of inverters [7] drives the SPI slave clock input to the SPI system logic. Be-
cause the source of this clock is always from the SCK pin, it is not affected by the data
direction logic. When the SPI system is operating in master mode, the SPI clock is
generated by the SPI system logic, and the slave clock input from inverters [7] is ig-
nored.

7.3.6.6 PD5 (SS) Pin Logic

This pin alternately functions as the (SS) pin when the synchronous SPI system is en-
abled. Refer to Figure 7-21 for the following discussion. The data direction specifica-
tion for this pin is held in HFF [1]. During a write to the DDRD register, the WDDRD
signal is asserted, causing data to be transferred into HFF [1] from the internal data
bus. A read of DDRD causes the RDDRD signal to be asserted, which enables trans-
mission gate [2] to couple the output of HFF [1] onto the internal data bus. When HFF
[1] is cleared to zero during reset, this pin is configured as a high-impedance input. Un-
like the other three pins associated with the SPI system, the direction of this pin is not
affected by mode faults.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-35

WPORTD c QP

ﬁ [PIN | PD5
[

MSTR

RDDRD [2] —— ——
c:E %—4
_ (4]
WDDRD c " [} O

RST

(6]

RPORTD
SLAVE ENABLE
TO SPI
SPE

' [11]

@_
g

Figure 7-21 PD5 (SS) Pin Logic

The actual data direction for this port D pin is determined by the logic output of NAND
gate [3]. When the SPI system is disabled, the DDRD bit from HFF [1] controls direc-
tion. When the SPI system is enabled in slave mode, this pin is configured as a high-
impedance input. When the SPI system is enabled in master mode, the DDRD bit from
HFF [1] controls direction. This last condition allows a user to decide how this pin will
be used when the SPI system is configured for master mode. If the DDRD bit is cleared
to zero, this SS pin is used as an input to detect mode faults. If the SPI system is con-
figured so that mode faults would not occur, as in a single-master system, the user can
set the DDRD bit corresponding to the SS pin. In this case, the pin becomes a general-
purpose output pin not associated with the SPI system. The uses and implications of
this logic are discussed in greater detail in SECTION 8 SYNCHRONOUS SERIAL PE-
RIPHERAL INTERFACE.

When the output of NAND gate [3] is one, driver [9] is disabled; thus, the pin is config-
ured as a high-impedance input. To enable pin driver [9], both inputs to NAND gate [3]
must be ones. When the SPI system is disabled, SPE is zero, making the output of
NAND gate [10] a one. This configuration enables NAND gate [3] so that the DDRD

MOTOROLA PARALLEL INPUT/OUTPUT M68HC11
7-36 REFERENCE MANUAL

bit from HFF [1] can enable or disable driver [9]. When the SPI system is enabled as
a slave, SPE is one, and the master/slave control bit (MSTR) is zero. This configura-
tion causes NAND gate [10] to output zero, which disables output driver [9], regardless
of the state of the DDRD bit at HFF [1]. When the SPI system is enabled as a master,
SPE is one and MSTR is one. This causes NAND gate [10] to output one, which en-
ables NAND gate [3] to control the direction of output buffer [9] based on the state of
the DDRD bit from HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the DWOM control bit.
This control bit simultaneously affects all six port D pins. When DWOM is one, the P-
channel device in the output driver is disabled so the pin cannot be actively driven
high. When the pin attempts to output logic one, the N-channel device is disabled;
thus, the pin appears as a high-impedance input. An external pull-up is used to pas-
sively pull the pin high. The data for output driver [9] comes from the output of HFF [8].
During a write to port D, the WPORTD signal is asserted, which causes data to be
latched into HFF [8] from the internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD signal to cou-
ple data to the internal data bus. The source of data for port D reads depends on the
direction control for the output driver. If the output of NAND gate [3] is zero, output driv-
er [9] is enabled and transmission gate [4] is enabled. In this case, port D reads return
the data from a point inside the output driver. If the output of NAND gate [3] is one,
transmission gate [5] is enabled. In this case, reads of port D return the buffered state
from the pin through inverters [7].

The slave enable signal to the SPI logic is developed by NOR gate [11]. The active-
low SS signal from the pin is buffered by inverters [7] and drives one input of NOR gate
[11]. The other two inputs to this NOR gate act as enables, and the output of the NOR
gate is an active-high slave select signal to the main SPI logic. When the SPI system
is disabled, SPE is zero, disabling NOR gate [11] by forcing its output to zero. When
pin output driver [9] is enabled by a zero at the output of NAND gate [3], NOR gate [11]
is also disabled by the output of inverter [12]. This disabled condition corresponds to
SPI being enabled as a master and the DDRD bit associated with the SS pin being set
to one. In this case, the PD5 pin is being used as a general-purpose output and has
nothing to do with the SPI system. To avoid an erroneous mode fault condition due to
a zero at this pin, the SS signal is disabled to the SPI logic.

7.3.6.7 ldealized Port D Timing

Figure 7-22 shows the idealized timing for important port D control signals. Since this
timing diagram does not consider any propagation delays, it cannot be used as a sub-
stitute for data-sheet timing specifications. This information is useful for understanding
the basis for data-sheet timing specifications so timing information can be extrapolated
for bus frequencies other than that used for the data sheet. Timing information con-
cerning the SPI system is included in SECTION 8 SYNCHRONOUS SERIAL PE-
RIPHERAL INTERFACE.

M68HC11 PARALLEL INPUT/OUTPUT MOTOROLA
REFERENCE MANUAL 7-37

PH2 (INTERNAL) |
et | [| | L | L |
1 1
as] |]

E

PORT D INPUT READ FROM PORT D

RPORTD

VALID DATA REQUIRED AT CPU :>

PORT D OUTPUT WRITE TO PORT D

WPORTD

!
PORT D OUTPUT PINS XXX NEW PORT D DATA

READ DDRD

RDDRD

WRITE TO DDRD

WDDRD

Figure 7-22 Idealized Port D Timing

On a port D read, the RPORTD signal enables transmission gates that drive port D
data onto the internal data bus. After the RPORTD signal is negated, data is held sta-
ble on the self-latching internal data bus. The CPU actually requires this data to be val-
id for a setup before and hold time after the rising edge of the internal PH2 clock.

Port D writes cause changes to the port D output pins at the falling edge of the internal
PH2 clock. This edge corresponds to the center of the E-clock high time.

During a DDRD read, the RDDRD signal enables a transmission gate to couple the
state of the DDRD bit to the internal data bus. In contrast to the RPORTD signal, RD-
DRD is active while the CPU is actually reading the data from the internal data bus.
Although it should pose no problems to the user, there is a remote chance that the
state of the DDRD bits associated with three of the SPI pins (MISO, MOSI, and SCK)
could change asynchronously with respect to a