CS-280

Laboratory 1
Due 3/18/99
10 points

In this lab, you will enter, assemble, link, download, run, and simulate a program.
The program you will be entering is shown in Appendix A. Enter the program with
a text editor, and save it with the name | ab1l. s Remember, .s files signify the
human-readable assembly language.

Next, assemble the program from a DOS box with the command (replace X: by the
drive letter and path by the path to the assembler). In S-307 it will be K:\apps\

X: | pat hlas6811 -1osz |abl.s

The letters - | 0sz are command line options for the assembler. The | command
causes the assembler to generate a listing file (in this case named | abl. | st). The
0 option tells the assembler to generate an object file (I abl. rel). The s option
causes a symbol file to be generated (I abl. sym). The last option z causes the
assembler to make the labels case sensitive. Examine each of these files.

Next, run the linker. The linker needs you to create the file called | abl. | nk shown
in Appendix B. This file should be in the same directory as your other lab1 files.
The command to run the linker is:

X Ipathlaslink -f [abl

Looking at the | abl. | nk file, the first line is the linker options. The options mean:

m - create a map file (labl. map)

S - create a Motorola conpatible .s19 executable file
(labl. sl 9)

z - make the | abels case sensitive

u - create a relocated list file (labl.rst)

The next lines starting with - b tell the linker where to place each of the areas in
the assembly file. We will have the CODE area placed at 0xC000 (the start of
memory in the briefcase), STACK at 0xF000 (Question: Where does the DATA area
end up? Hint: Look in the .rst or .map file). The lines following the - b lines are a
list of files to link. The - e at the end tells the linker it has reached the end of the
Ink file.

Now you are ready to use the executable (I abl. s19). The executable can be run on
either a software simulator (Wookie) or in the actual briefcase hardware. The two
methods are outlined below.

Wookie (simulation)

Start the Wookie executable (version 1.5 or greater). You will see a dialog box, pick
briefcase and enter the starting address (in our case it is C000). Next you can bring
in a listing file, which will show the line in the code which is the current line
highlighted. Press the view code button on the left. Next pick Load LST file, and
load the | abl. r st file (file type GCC, offset 0). You can move the window after the
file loads. Next press the M68HC11 CPU button. This will let you examine the
registers. Now, press the 7 segment button. This brings up the four character
display. You can now single step through the program by repeatedly pressing the
icon of the person walking. Run at full simulator speed by pressing the red dot (it
turns green while running). Watch the registers and character display change.

Briefcase (hardware)

Start up WinBugl1 (version 1.33 or greater). Boot the talker by pressing the icon
on the far left (or a menu pick under the File menu). The talker should be

wi nt al k. boo, also pick the COM port (1 or 2) you are using. Next pick special test
mode. Press the reset button on the briefcase, and you should get a message that
the talker initialized successfully. If the talker does not initialize, try again. You
will not be able to do anything else until the talker initializes. Next open an .s19
file (file open). Once the file is loaded, you can execute by choosing program-
execute.

The report for this lab will consist of your .rst file, and a narrative of any problems
you had. Comment on the files generated, and also comment on your experiences.

Appendix A: labl.s

;Lab 1

; written by S. Barnicki

; Writes a string to the 4 character display
; March 1999

’

.globl write_string ;declare routine external

.globl wait

.area ports (abs)
ddrc = 0x1007 ;data direction register for C
pioc = 0x1002 ;for strobe B assertion change
portcl = 0x1005 ;port C latched
portb =0x1004 ;port B

; set area for stack
.area STACK (rel,con)
.blkb 256 ;stack area
stckhi:: ;initial stack pointer value

; set area for code
.area CODE (rel,con)
write_string::
lds #stckhi ;set initial stack pointer value
ldaa #0xFF ;set for output
staa ddrc ;C output

Idaa pioc ;get current value
anda #0OxFE ;reset bit 0 to O
staa pioc ;send it out

ldx #string ;get the string address
Idab #0x4 ;position value

print:
Idaa 0,x ;get a value
cmpa #0 ;is it a null?
beq end ;done
cmpb #0 ;off the end?
bne ok
Idab #0x4 ;reset to 4
dex
dex
dex ;move pointer back
jsr wait
bra print ;keep going
ok: decb ;position = position - 1

stab portcl ;set the position
staa portb ;set the character

inx ;point to next one
bra print ;keep going

.area CODE (rel,con)
; subroutine wait
; waits 250 ms
; modifies nothing
wait::
psha ;save A
tpa ;save condition codes
psha
pshx
ldx #250 ;wait 250 milliseconds
1$: jsr waitlms ;local label
dex
bne 1%
pulx
pula
tap
pula
rts

waitlms:
psha ;1 ms wait
tpa
psha
pshx
1dx #200
2$: dex
nop
nop
bne 2%
pulx
pula
tap
pula
rts

end:: braend

;data here

’

.area DATA (rel,con)
string: .asciz "HELLO, IT WORKS!" ;null terminated string

Appendix B: | abl. | nk

-nsZUu

- bCODE=0xC000
- bSTACK=0xF000
| abl

-e

