

Qué es la Geometría Proyectiva

- Geometría Euclídea: Invarianza de longitudes y áreas. Se define el círculo. Transformaciones: rotación, traslación. Coordenadas cartesianas
- Geometría Afín: Invarianza del paralelismo, relación de distancias. Se define el paralelogramo, las parábolas, elipses e hipérbolas. Coordenadas cartesianas oblicuas.
- Geometría Proyectiva: Invarianza de la relación doble o "cross-ratio". Se define la cónica, cuádricas. Coordenadas proyectivas u homogéneas

Visión 3D: Geometría Proyectiva

Qué es la Geometría Proyectiva

Transformación

Euclídea AD = cteAfín AB = cteProyectiva AB = cte AC / AD = cteVisión 3D: Geometría Proyectiva

Qué es la Geometría Proyectiva

- Qué aporta la Geometría Proyectiva a la Visión Artificial
 - El proceso de proyección central (modelo pinhole) es básicamente proyectivo: no es ni euclídeo (no conserva las distancias) ni afín (no conserva la noción de paralelismo)
 - El reconocimiento de formas del ser humano se basa en parte también en características proyectivas invariantes.
 - Suministra un modelo lineal (si no hay distorsiones) del proceso de captación de imágenes.
 - Permite estructurar la información según su robustez.
 - Homogenización de elementos. Dualidad entre puntos y rectas en un plano
 - Transformación entre planos proyectivos
 - Correlación entre puntos y rectas cuando se manejas distintos planos proyectivos

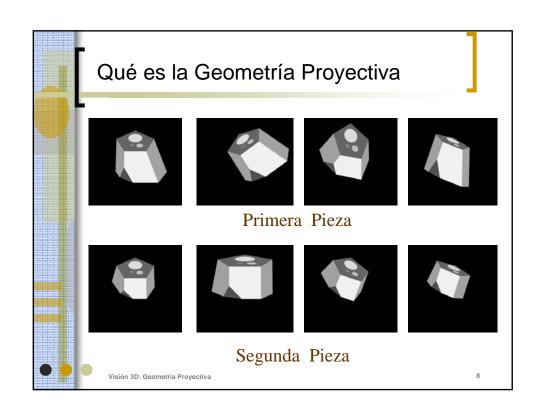
Visión 3D: Geometría Proyectiva

5

Qué es la Geometría Proyectiva

- Homogenización de elementos. Dualidad entre puntos y rectas en un plano
 - Geometría Euclídea: Rectas en un plano:
 - Hay una única recta que pasa por dos puntos dados
 - Una una única que recta que pasa por un punto dado y tiene una dirección absoluta dada
 - Dos rectas que no coinciden, o tienen un único punto de intersección o tienen la misma dirección absoluta
- Geometría Proyectiva: se sustituye dirección absoluta por puntos en el infinito, y todos los puntos en el infinito por la recta en el infinito:
 - Hay una única recta entre dos puntos distintos
 - Hay un único punto entre dos rectas distintas

Visión 3D: Geometría Proyectiva



Qué es la Geometría Proyectiva				
	Euclideo	Similaridad	Afín	Proyectivo
Transformaciones:				
Rotación, traslación Escalado isotrópico Escalado en ejes Trasformaciones perspectiva	Х	X	X X X	X X X
Invariantes:				
Distancia Ángulos, ratios de distancias Paralelismo, centro de masa Incidencia, cross-ratio	X X X	X X X	X X	x
	Transformaciones: Rotación, traslación Escalado isotrópico Escalado en ejes Trasformaciones perspectiva Invariantes: Distancia Ángulos, ratios de distancias Paralelismo, centro de masa	Euclideo Transformaciones: Rotación, traslación Escalado isotrópico Escalado en ejes Trasformaciones perspectiva Invariantes: Distancia Ángulos, ratios de distancias Varialelismo, centro de masa	Euclideo Similaridad Transformaciones: Rotación, traslación X X Escalado isotrópico X Escalado en ejes Trasformaciones perspectiva Invariantes: Distancia X Ángulos, ratios de X X distancias X X Paralelismo, centro de X X masa	Euclideo Similaridad Afín Transformaciones: Rotación, traslación X X X X X X X X X X X X X X X X X X X

Espacio Proyectivo Pn

$$\widetilde{x} \in P^n$$
 si $\widetilde{x} = [x_1, \dots, x_{n+1}]^T$ con algún $x_i \neq 0$

$$\widetilde{x}, \widetilde{y} \in P^n$$
; $\widetilde{x} \cong \widetilde{y}$ si existe $\lambda \neq 0$ tal que $x_i = \lambda y_i$

Colineación : Transformación proyectiva entre objetos (del mismo tipo) en un espacio proyectivo Se representa por matrices $\widetilde{A}_{(n+1)\times(n+1)}$ (normalmente invertibles)

$$\rho \widetilde{\mathbf{y}} = \widetilde{A}\widetilde{\mathbf{x}}$$

Conjunto de las $\widetilde{A} \Rightarrow$ Grupo proyectivo.

Visión 3D: Geometría Proyectiva

4

Espacio Proyectivo P^n

Base Proyectiva : Conjunto de (n+2) puntos tal que (n+1) sean linealmente independientes. por ejemplo :

$$\widetilde{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \ \widetilde{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \ \dots \ \widetilde{e}_{n+1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \ \widetilde{e}_{n+2} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

si se tiene $\widetilde{x}_1 \cdots \widetilde{x}_{n+2}$ puntos tal que hay (n+1) l.i. existe una \widetilde{A} tal que $\widetilde{A}\widetilde{e}_i = \lambda_i \widetilde{x}_i$ $i = 1, \dots, n+2$

Visión 3D: Geometría Proyectiva

Tabla de Contenidos

- Introducción
- Espacio Proyectivo Pⁿ
- Recta Proyectiva P¹
- Plano Proyectivo P²
- Espacio Proyectivo P³
- Homografías entre Planos Proyectivos

Visión 3D: Geometría Proyectiva

. . .

Recta Proyectiva P¹

Punto perteneciente recta proyectiva $\widetilde{x} \in P^1 \Rightarrow \widetilde{x} = [x_1, x_2]^T$

*Si $x_2 \neq 0$ se puede poner como

$$\widetilde{x} = x_2 \left[\frac{x_1}{x_2}, 1 \right]^T$$

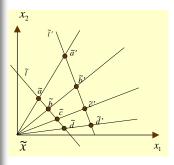
*Si se representa $X_1 = \frac{x_1}{x_2} = \alpha$

 \boldsymbol{X} es la coordenada de la recta afín.

- α es el parámetro proyectivo.
- * De esta forma cada punto representa una dirección.
- * Faltaría por considerar el punto $[x_1,0]^T$ que no pertenece a la recta afín. Es el punto en el infinito.

Visión 3D: Geometría Proyectiva

"Cross-Ratio" o Razón doble de cuatro puntos: $C_r \left\{ \widetilde{a}, \widetilde{b}; \widetilde{c}, \widetilde{d} \right\}$ si se denominapor $\alpha_a, \alpha_b, \alpha_c, \alpha_d$ los parametrosproyectivos de cada punto



$$C_r \left\{ \widetilde{a}, \widetilde{b}; \widetilde{c}, \widetilde{d} \right\} = \frac{\alpha_a - \alpha_c}{\alpha_a - \alpha_d} : \frac{\alpha_b - \alpha_c}{\alpha_b - \alpha_d}$$

Es invariante ante cualquier colinealidad.

$$\widetilde{A} = \begin{bmatrix} r & s \\ u & v \end{bmatrix}$$

Visión 3D: Geometría Proyectiva

Recta Proyectiva P1

•El "Cross-Ratio" o razón doble de cuatro puntos depende del orden en que se tomen los puntos:

Así si:

$$C_r\left\{\widetilde{a},\widetilde{b};\widetilde{c},\widetilde{d}\right\} = \frac{\alpha_a - \alpha_c}{\alpha_a - \alpha_d} : \frac{\alpha_b - \alpha_c}{\alpha_b - \alpha_d} = \tau$$

Se pueden obtener :
$$\tau$$
, $\frac{1}{\tau}$, $1-\tau$, $\frac{1}{1-\tau}$, $\frac{\tau-1}{\tau}$, $\frac{\tau}{\tau-1}$

Tabla de Contenidos

- Introducción
- Espacio Proyectivo Pn
- Recta Proyectiva P1
- Plano Proyectivo P²
- Espacio Proyectivo P³
- Homografías entre Planos Proyectivos

Visión 3D: Geometría Provectiva

Plano Proyectivo P2

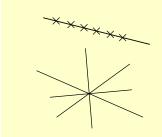
$$\widetilde{x} \in P^2 \Rightarrow \widetilde{x} = [x_1, x_2, x_3]^T$$

* Recta
$$\widetilde{l} \in P^2 \Rightarrow \widetilde{l} = [l_1, l_2, l_3]^T$$

* Recta que pasa por un punto

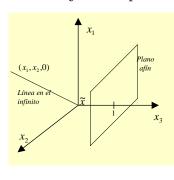
$$\widetilde{l}^T \cdot \widetilde{x} = 0$$

- * Dualida entre puntos y rectas
 - Conjunto de puntos que están en una recta.
 - Conjunto de rectas que pasan por punto.



*Si
$$x_3 \neq 0$$
 $\tilde{x} = [x_1, x_2, x_3]^T \Rightarrow \tilde{x} = [\frac{x_1}{x_3}, \frac{x_2}{x_3}, 1]^T = [X_1, X_2, 1]^T$

*Este conjunto de puntos define el plano afín



*Falta por considerar los puntos con $x_3 = 0$ que define la recta en el infinito.

Visión 3D: Geometría Proyectiva

10

Plano Proyectivo P2

* Pertenencia de un punto a una recta en el plano proyectivo

$$\widetilde{l}^T \cdot \widetilde{x} = 0 \implies l_1 x_1 + l_2 x_2 + l_3 x_3 = 0$$

* Pertenencia de un punto a una recta en el plano afín.

$$l_1 X_1 + l_2 X_2 + l_3 = 0$$

* Punto que pertenece a una recta que pasa por los puntos \tilde{x}_1, \tilde{x}_2

$$\widetilde{x} = \alpha \widetilde{x}_1 + \beta \widetilde{x}_2$$
 ó $\widetilde{x} = \gamma \widetilde{x}_1 + \widetilde{x}_2$
y la recta $\widetilde{l} = \widetilde{x}_1 \wedge \widetilde{x}_2 \implies \widetilde{l}^T \widetilde{x} = 0$

Visión 3D: Geometría Proyectiva

Producto Vectorial:

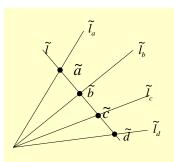
$$\widetilde{l} = \widetilde{x} \wedge \widetilde{y} = [\widetilde{x}]_{\wedge} \widetilde{y}$$

$$\widetilde{x} = \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \\ \widetilde{x}_3 \end{bmatrix} \qquad [\widetilde{x}]_{\wedge} = \begin{bmatrix} 0 & -\widetilde{x}_3 & \widetilde{x}_2 \\ \widetilde{x}_3 & 0 & -\widetilde{x}_1 \\ -\widetilde{x}_2 & \widetilde{x}_1 & 0 \end{bmatrix}$$

Visión 3D: Geometría Proyectiva

Plano Proyectivo P2

*"Cross - Ratio" o razón doble de cuatro rectas que se cortan en un punto $\left\{\widetilde{l}_{a},\widetilde{l}_{b};\widetilde{l}_{c},\widetilde{l}_{d}\right\} = \left\{\widetilde{a},\widetilde{b};\widetilde{c},\widetilde{d}\right\}$ Es independiente de la recta \widetilde{l} que corte a las cuatro rectas.



* Haz de rectas : Rectas que pasan por un punto fijo. Es un elemento proyectivo de dimensión uno.

$$l=\alpha\ l_1+\beta\ l_2$$

Visión 3D: Geometría Proyectiva

* Colineación en el plano proyectivo. Forma un grupo proyectivo

$$\rho \ \widetilde{y} = \widetilde{A} \ \widetilde{x} \quad \Rightarrow \quad \widetilde{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

*Subgrupo afín $\tilde{A} = \begin{pmatrix} a_{33}B_{2x2} & a_{33}b_{2x1} \\ 0_{1x2} & a_{33} \end{pmatrix}$

Si
$$\widetilde{y} \cong \widetilde{A} \widetilde{x}$$
 \Rightarrow $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a_{33}B_{2x2} & a_{33}b_{2x1} \\ 0_{1x2} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

$$\Rightarrow \begin{pmatrix} Y_1 \\ Y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} B_{2x2} & b_{2x1} \\ 0_{1x2} & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = B_{2x2} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + b_{2x1}$$

Visión 3D: Geometría Proyectiva

2

Plano Proyectivo P²

*Subgrupo afín: Mantiene la recta en el infinito.

$$\begin{pmatrix} a_{33}B_{2x2} & a_{33}b_{2x1} \\ 0_{1x2} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{33}B_{2x2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ 0 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix}$$

* Transformación de similitud : Además de mantener la recta en el infinito, mantiene los puntos absolutos $(1,\pm i,0)^T = \tilde{i},\tilde{j}$

será
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = c \begin{pmatrix} \cos \theta & sen \theta \\ -sen \theta & \cos \theta \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + b_{2x1}$$

rota (θ) Escala (c) Traslada (b)

* Transforma ción euclídea: Tranformación de

similitud con c = 1

Visión 3D: Geometría Proyectiva

- Correspondencia Homográfica u Homográfía:
 - o Correspondencia uno a uno que mantiene la razón doble entre cuatro elementos (lineal e invertible). Puede ser entre:
 - Punto a punto
 - Recta a recta
 - Haz de rectas a haz de rectas

Visión 3D: Geometría Provectiva

Plano Proyectivo P2

- Correlación:
 - o Transforma rectas en puntos y viceversa $\widetilde{l} = \widetilde{F} \ \widetilde{x}$

$$\widetilde{l} = \widetilde{F} \widetilde{x}$$

Composición de dos correlaciones: Colineación

$$\widetilde{l} = \widetilde{F} \widetilde{x} \quad ; \quad \widetilde{l}' = \widetilde{F}' \widetilde{x}'$$

Si
$$\widetilde{x}' = (\widetilde{F}')^{-1}\widetilde{l}'$$

$$\widetilde{l} = \widetilde{F} \widetilde{x} = \widetilde{F} (\widetilde{F}')^{-1} \widetilde{l}' = \widetilde{A} \widetilde{l}'$$

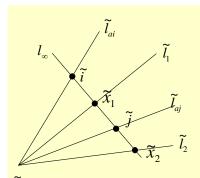
* Ángulo entre dos rectas \tilde{l}_1 , \tilde{l}_2 Se trazan las rectas auxiliares :

$$\widetilde{l}_{ai} = \text{Pasa por } \widetilde{a}, \widetilde{i}$$

$$\tilde{l}_{aj} = \text{Pasa por } \tilde{a}, \tilde{j}$$

Se cumple:

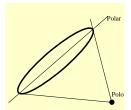
$$\alpha = \frac{1}{2i} \log \left(Cr \left\{ \widetilde{l}_1, \widetilde{l}_2; \widetilde{l}_{ai}, \widetilde{l}_{aj} \right\} \right)$$



Visión 3D: Geometría Proyectiva

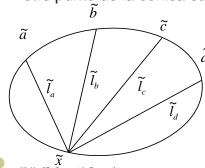
Plano Proyectivo P2

- *Cónicas : Conjunto de puntos del plano proyectivo que cumplen : $S(\widetilde{x}) = \sum_{i,j=1}^{3} C_{ij} x_i x_j = 0$; $S(\widetilde{x}) = \widetilde{x}^T \widetilde{C} \widetilde{x} = 0$
- * Intersección de una cónica con una recta $\widetilde{x} = \widetilde{x}_1 + \theta \widetilde{x}_2$ $S(\widetilde{x}_1) + 2\theta S(\widetilde{x}_1, \widetilde{x}_2) + \theta^2 S(\widetilde{x}_2) = 0$
- * Tangentea una cónica $S(\widetilde{x}_1,\widetilde{x}_2)^2 S(\widetilde{x}_1)S(\widetilde{x}_2) = 0$
 - * Se cumple : $\widetilde{l}_{\text{polar}} = \widetilde{C} \ \widetilde{P}_{\text{polo}}$



Visión 3D: Geometría Proyectiva

- La matriz de la cónica posee seis variables, aunque sólo cinco grados de libertad (factor de escala). La cónica estará definida por cinco puntos.
- Definidos cuatro puntos de una cónica, cualquier otro punto de la cónica cumple:



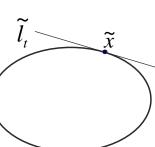
$$\forall x \text{ tal que } s(\tilde{x}) = 0$$

$$Cr\left\{\tilde{l}_a, \tilde{l}_b; \tilde{l}_c, \tilde{l}_d\right\} = cte$$

20

Plano Proyectivo P2

El objeto dual de la cónica es la envolvente a la cónica: conjunto de tangentes a todos los puntos de la cónica. Se cumple:



$$s(\widetilde{x}) = \widetilde{x}^T \widetilde{C} \widetilde{x} \quad ; \quad \widetilde{l}_t = \widetilde{C} \widetilde{x}$$

Si la cónica es no degenerada:

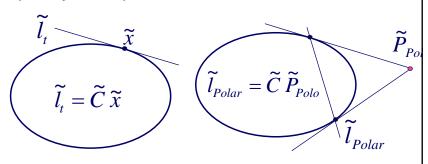
$$\widetilde{x} = \widetilde{C}^{-1} \widetilde{l}_t$$

Sustituyendo:

$$s(\widetilde{x}) = \widetilde{l}_t^T \widetilde{C}^{-T} \widetilde{C} \widetilde{C}^{-1} \widetilde{l}_t = \widetilde{l}_t^T \widetilde{C}^{-T} \widetilde{l}_t = s(\widetilde{l}_t)$$

Visión 3D: Geometría Proyectiva

La cónica define una correlación entre puntos del plano y rectas polares:



La cónica define una correlación entre sus puntos y sus tangentes:

Visión 3D: Geometría Proyectiva

24

Plano Proyectivo P2

Una transformación proyectiva convierte una cónica en otra:

$$s(\widetilde{x}) = \widetilde{x}^T \widetilde{C} \widetilde{x}$$
 Si $\widetilde{y} = \widetilde{T}\widetilde{x}$; $\widetilde{x} = \widetilde{T}^{-1}\widetilde{y}$

$$s(\widetilde{y}) = \widetilde{y}^T \widetilde{T}^{-T} \widetilde{C} \widetilde{T} \widetilde{y} = \widetilde{y}^T \widetilde{C}' \widetilde{y}$$

Al ser la matriz simétrica, mediante una transformación proyectiva la matriz se puede diagonalizar.

$$\widetilde{C}' = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Visión 3D: Geometría Proyectiva

Si la cónica posee puntos reales, la matriz se puede $\widetilde{C}' = \begin{bmatrix} \alpha^2 & 0 & 0 \\ 0 & \beta^2 & 0 \\ 0 & 0 & -\gamma^2 \end{bmatrix}$ Si la cónica posee puntos

$$\tilde{C}' = \begin{vmatrix} \alpha^2 & 0 & 0 \\ 0 & \beta^2 & 0 \\ 0 & 0 & -\gamma^2 \end{vmatrix}$$

- Mediante otra transformación se puede obtener
- $\tilde{C}' = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$
- Cualquier cónica puede ser transformada proyectivamente en un círculo

$$x_1^2 + x_2^2 - 1 = 0$$

Visión 3D: Geometría Proyectiva

Plano Proyectivo P2

Transformando tres puntos de la cónica a los puntos de referencia (base)

ountos
$$\widetilde{C}' = \begin{bmatrix} 0 & 0 & -0.5 \\ 0 & 1 & 0 \\ -0.5 & 0 & 0 \end{bmatrix}$$

Con lo que la ecuación de la cónica será:

$$\begin{cases} x_2^2 - x_1 x_3 = 0 & \Rightarrow x_2^2 = x_1 x_3 \\ \text{Si } x_3 \neq 0 & \Rightarrow \left(\frac{x_2}{x_3}\right)^2 = \frac{x_1}{x_3} = \theta^2 \end{cases}$$

Las coordenadas de la cónica se pueden expresar como:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \widetilde{T} \begin{bmatrix} \theta^{-2} \\ \theta \\ 1 \end{bmatrix}$$

- Introducción
- Espacio Proyectivo Pn
- Recta Proyectiva P1
- Plano Proyectivo P²
- Espacio Proyectivo P³
- Homografías entre Planos Proyectivos

Visión 3D: Geometría Provectiva

Espacio Proyectivo P³

* Un punto
$$\widetilde{x} \in P^3 \implies \widetilde{x} = [x_1, x_2, x_3, x_4]^T$$

* Plano

$$\widetilde{u} \in P^3 \Rightarrow \widetilde{u} = [u_1, u_2, u_3, u_4]^T$$

* Plano que pasa por un punto

$$\widetilde{u}^T \cdot \widetilde{x} = 0$$

$$\widetilde{u}^{\,\scriptscriptstyle T} \cdot \widetilde{x} \, = u_{\scriptscriptstyle 1} x_{\scriptscriptstyle 1} + u_{\scriptscriptstyle 2} x_{\scriptscriptstyle 2} + u_{\scriptscriptstyle 3} x_{\scriptscriptstyle 3} + u_{\scriptscriptstyle 4} x_{\scriptscriptstyle 4} = 0$$

- * Dualidad entre planos y puntos
 - Conjunto de puntos que están en un plano.
 - Conjunto de planos que pasan por un punto.

Espacio Proyectivo P³

* Espacio afín.

si
$$x_4 \neq 0$$
 \Rightarrow $\tilde{x} = \left[\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4}, 1\right]^T = \left[X_1, X_2, X_3, 1\right]^T$

* Plano en el infinito $\tilde{\Pi}_{\infty}$

$$\widetilde{x} \in \widetilde{\Pi}_{\infty} \quad \Rightarrow \quad \widetilde{x} = [x_1, x_2, x_3, 0]^{\mathrm{T}}$$

Visión 3D: Geometría Proyectiva

27

Espacio Proyectivo P³

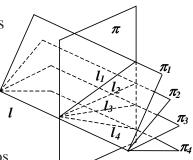
*"Cross - Ratio" de cuatro planos

$$Cr\{\widetilde{\Pi}_{1},\widetilde{\Pi}_{2};\widetilde{\Pi}_{3},\widetilde{\Pi}_{4}\} =$$

$$= Cr\{\widetilde{l}_{1},\widetilde{l}_{2};\widetilde{l}_{3},\widetilde{l}_{4}\} =$$

$$= Cr\{\widetilde{P}_{1},\widetilde{P}_{2};\widetilde{P}_{3},\widetilde{P}_{4}\}$$

* Haz de planos : Conjunto de planos que intersectan en una recta. Esta estructura proyectiva tiene dimensión 1.



Visión 3D: Geometría Proyectiva

- *Colinealidad en P^3 . Grupo proyectivo $\rho \widetilde{y} = \widetilde{A} \widetilde{x} \quad \text{con } \widetilde{A} \text{ matriz de } 4\text{x}4 \text{ invertible.}$
- *Transformæión afín.Subgrupoafín

$$\rho \widetilde{y} = \begin{pmatrix} B_{3x3} & b_{3x1} \\ 0_{1x3} & 1 \end{pmatrix} \widetilde{x} \quad \Rightarrow \quad Y = B_{3x3}X + b_{3x1}$$

- Cualquier punto que perteneciente al espacio afín permaneceen él al sufrir una transformación afín.
- \bullet Cualquier punto que pertenece al Π_∞ permaneceen él al sufrir una transformación afín.

Visión 3D: Geometría Proyectiva

30

Espacio Proyectivo P³

*Transformæión afín.Subgrupoafín

$$\rho \widetilde{y} = \begin{pmatrix} B_{3x3} & b_{3x1} \\ 0_{1x3} & 1 \end{pmatrix} \widetilde{x} \quad \Rightarrow \quad Y = B_{3x3}X + b_{3x1}$$

* Transformæión Similitud B_{3x3} es ortogonal

$$B_{3x3}B_{3x3}^{T} = \lambda^2 I$$

*Transformæión Euclídea B_{3x3} es ortogonalcon $\lambda^2 = 1$

Visión 3D: Geometría Proyectiva

Espacio Proyectivo P3

* Cuádrica : Conjunto de puntos $\tilde{x} \in P^3$ que cumplen :

$$S(\widetilde{x}) = \sum_{i,j=1}^{4} c_{ij} x_i x_j = 0 \quad \Rightarrow \quad S(\widetilde{x}) = \widetilde{x}^T \widetilde{C} \widetilde{x} = 0$$

* Curva Alabeada Cúbica (The twisted cubic)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \widetilde{T} \begin{bmatrix} \theta^{-3} \\ \theta^{-2} \\ \theta \\ 1 \end{bmatrix}$$

Visión 3D: Geometría Proyectiva

. .

Espacio Proyectivo P³

*Cónica absoluta. Cumple:

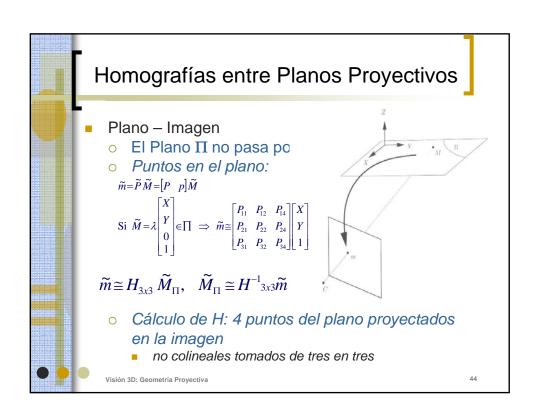
$$\sum_{i=1}^{4} x_i^2 = 0 = x_4 \implies x_1^2 + x_2^2 + x_3^2 = 0 \implies \begin{cases} \widetilde{x}^T \widetilde{x} = 0 \\ x_4 = 0 \end{cases}$$

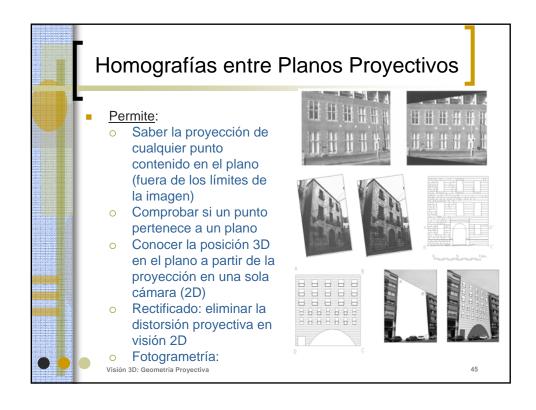
La cónica absoluta es invariante ante cualquier tranformación euclídea

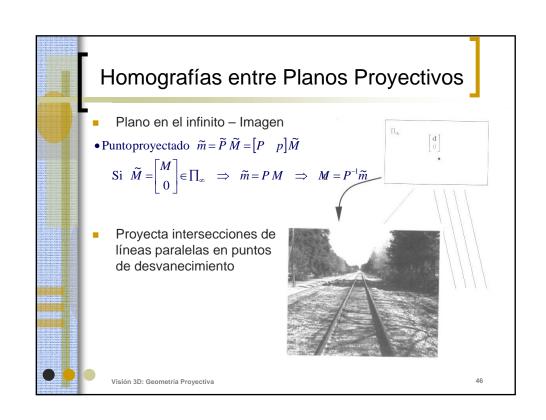
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 0 \end{pmatrix} = \begin{pmatrix} B_{3x3} & b_{3x1} \\ 0_{1x3} & a \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 0 \end{pmatrix} \implies \begin{cases} \widetilde{x}^T \cdot \widetilde{x} = \widetilde{y}^T B_{3x3}^T B_{3x3} \widetilde{y} = \\ = \lambda^2 \ \widetilde{y}^T I \ \widetilde{y} = \lambda^2 \ \widetilde{y}^T \cdot \widetilde{y} = 0 \end{cases}$$

Visión 3D: Geometría Proyectiva

Tabla de Contenidos Introducción Espacio Proyectivo Pn Recta Proyectiva P1 Plano Proyectivo P2 Espacio Proyectivo P3 Homografías entre Planos Proyectivos







Homografías entre Planos Proyectivos

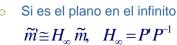
- Plano Imagen Plano de Imagen

 o El Plano ∏ no pasa por el centro óptico
 - El Plano II no pasa por el centro op $m{C}$ $\widetilde{m} \cong H_1 \, \widetilde{M}_{\square}, \quad \widetilde{M}_{\square} \cong H_1^{-1} \widetilde{m}$

$$\widetilde{m} \cong H_1 \widetilde{M}_{\Pi}, \quad \widetilde{M}_{\Pi} \cong H_1^{-1} \widetilde{m}$$

$$\widetilde{m}' \cong H_2 \widetilde{M}_{\Pi} = H_2 H_1^{-1} \widetilde{m}$$

$$\widetilde{m}' \cong H \widetilde{m}$$



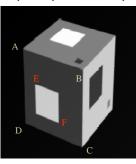
- Mosaicos de escenas distantes
- Correspondencia de puntos en

planos
Visión 3D: Geometría Proyectiva

4

Homografías entre Planos Proyectivos

- Cálculo de la Homogafía entre Puntos de un Plano:
 - o Se hallan la proyección de puntos del plano
 - o Se obtiene la matriz $H\pi$
- Se puede emplear para hallar la correspondencia de cualquier punto del plano



Visión 3D: Geometría Proyectiva

