

Técnicas de Correspondencia	37
➡ Técnicas basadas en Area ("area-based")	
➡ Técnicas basadas en Características ("feature-based"))
→ Teoría computacional de Marr-Poggio	
Teoría computacional de Mayhew-Frisby	
→ Técnicas basadas en segmentos de borde	
Correspondencia mediante características múltiple	S
→ Proceso de relajación	
⇒ Técnicas Jerárquicas	
→ Algoritmo de Hoff y Ahuja	
→ Algoritmo de Marapane y Trivedi	
⇒ Programación Dinámica	
→ Algoritmo de Otha y Kanade	
→ Algoritmo de Lee y Leou	
⇒ Algoritmos basados en estéreo trinocular	
Vición Tridimonsional	LIDM DISAM / LIMH
vision municipional	UTM-DISAWI / UMH

Estrategia tosco-a-fino	45
⇒ Se trata de una estrategia utilizada con difere correspondencia	ntes técnicas de
⇒ La información obtenida en una escala grose guiar y limitar la búsqueda de correspondenc más fina.	ra se utiliza para cias a una escala
⇒ Suele emplearse con las técnicas de correlac anteriormente junto con el uso de ventanas a	ión vistas daptativas.
⇒ También se emplea con técnicas basadas en dispersas	primitivas
Visión Tridimensional	UPM-DISAM / UMH

Técnicas Basadas en características 47
⇒ Obtienen primitivas de alto nivel (puntos de borde, segmentos, curvas, regiones) que atesoran un conjunto de características invariantes a la proyección en mayor o menor medida
 ⇒ Ventajas ⇒ Las primitivas de alto nivel atesoran información más rica que los niveles de intensidad ⇒ Permite utilizar restricciones geométricas entre las primitivas. ⇒ Son más robustas.
⇔ Inconvenientes ⇔ Proporcionan información dispersa
Visión Tridimensional UPM-DISAM / UMH

Teoría computacio	onal de	Marr-Poggio (1) dios más importantes	48
sobre el proces computacional	sobre el proceso visual humano estableciendo una teoría computacional completa.			
⇒ Dentro de esta t estereoscópica	⇒ Dentro de esta teoría se incluye el proceso de correspondencia estereoscópica			
⇒ Postula la visió tres niveles:	n como ι	in proceso que d	ebe ser comprendido a	a
Teoría computaci	onal	Representación y algoritmo	Implementación física	
¿Cuál es la finalidad? qué es apropiada ? ¿ es la lógica y la estra para llevarla a cabo	¿por cuál tegia o? ¿C	¿Cómo puede implementarse? uál es la representación e la entrada y la salida? uál es el algoritmo para esta transformación?	¿Cómo pueden realizarse físicamente la representación y el algoritmo?	
L Visión Tridimensional][UPM-DISAM / U	JMH

Teoría computacional de Marr-Poggio (2)49
⇒ Postula que la correspondencia estereoscópica se produce en las etapas iniciales de formación de imagen sin información perceptual de alto nivel.
⇔ Etapas:
 Las imágenes del par estéreo son filtradas mediante filtros Laplaciano- Gaussianos ajustados a diferentes escalas espaciales, evaluando los pasos por cero "zero-crossings"
2) Se realiza, para cada máscara, la correspondencia entre los segmentos de paso por cero extraídos de cada una de las imágenes que tienen el mismo signo y aproximadamente la misma orientación. Las ambigüedades en la correspondencia local se resuelven considerando la disparidad en el signo de correspondencias próximas no ambiguas.
3) Las correspondencias obtenidas de las máscaras de mayor tamaño controlan la convergencia del algoritmo eliminando ambigüedades en la correspondencia de las máscaras más pequeñas.
 Un proceso de relajación de etiquetas impone las restricciones de continuidad de superficie y unicidad
 Los resultados de la correspondencia se almacenan en un buffer que denomina esquema 2.5D, representando los pasos por cero junto a la disparidad entre ambas imágenes.
Visión Tridimensional UPM-DISAM / UMH

Teoría computacional de Marr-Poggio (6) 53	_
⇒ Proceso de Relajación: Algoritmo Cooperativo	
Correspondencia mediante la relajación de etiquetas:	
Identificar un conjunto de características en cada imagen (denominadas nodos), y posteriormente asignar una única etiqueta (correspondencia) a cada nodo dentro de un espacio de búsqueda discreto.	ı
Para cada pareja candidata se establece un probabilidad de correspondencia que es adaptada iterativamente dependiendo de las probabilidades de correspondencia de los nodos vecinos,de forma que correspondencias fuertes de nodos vecinos aumenten la probabilidad de las correspondencias débiles	1
Establece por tanto una consistencia global en el proceso de correspondencia, frente al proceso local de las etapas primarias comentadas anteriormente	
Visión Tridimensional UPM-DISAM / UMI	ł

Teoría computacional de Marr-Poggio (7)	56
Para cada línea epipolar de un par estéreo se asocia una red bidimensional de nodos o células interconectados (figura a)	
Las conexiones horizontales y verticales establecen un efecto inhibitorio, de forma que los nodos situados a lo largo de una horizontal o vertical se inhiben mutuamente quedando al final única correspondencia en cada línea (Restricción de Unicidad (figura b)	línea una)
Las conexiones diagonales (conexiones excitatorias) favorece correspondencia de elementos adyacentes en la diagonal con misma disparidad (Continuidad de Disparidad) (figura b), considerando por tanto en este modelo que las superficies so continuas y suaves.	en la la on
La restricción anterior de continuidad de la disparidad se esta únicamente en la dirección diagonal, para considerar una restricción bidimensional considera un entorno de vecindad excitatorio en forma de disco S(x,y,d) (figura c).	blece
Visión Tridimensional UPM-DISAM	/ UMH

Teoría computacional de Mayhew-Frisby (4)65
 ⇒ Actividad de cruzada entre canales: ⇒ Establece una correspondencia cruzada entre canales que requiere que un atributo de una primitiva con una disparidad dada, deba estar soportada por un
atributo similar en otro canal de frecuencia espacial, dentro de un cierto rango de disparidad.
Como atributos utilizan el signo del contraste de los pasos por cero y los picos de la convolución de la imagen con el filtro LoG, codificando una tripleta para cada posición y para tres frecuencias espaciales diferentes
Para una tripleta de la imagen izquierda (superior), existe un conjunto de posiciones candidatas de correspondencia en la imagen derecha cada una de las cuales tiene asignada su propia tripleta (fila media)
La fila inferior representa el resultado de la correspondencia binocular entre canales. Una correspondencia correcta se marca como M (match), y las incorrectas como R (rivalous). Si solo una de las imágenes tiene primitiva para un cierto canal se marca como desconocida U (unknown); y si no existe en ninguna de las dos imágenes es ignorada (·)
Visión Tridimensional UPM-DISAM / UMH

Técnicas basadas en segmentos de borde	74
⇔ Ventajas:	
Cuando se agrupan los puntos de borde en segmentos line el efecto de errores posicionales en la detección de dichos posición y orientación del segmento recto de bordes se ve por errores aislados.	eales se reduce s puntos. La e menos afectada
La localización de los segmentos rectos de borde puede re resolución por debajo del nivel de pixel, mejorando la resp errores de discretización.	ealizarse con una puesta ante
La restricción de conectividad entre los puntos de bordes imágenes, que debe ser impuesta explícitamente en los mo en puntos de borde, es en este caso considerada de forma construcción de las primitivas características.	en ambas odelos basados a implícita en la
⇒ Inconvenientes:	
Plantea problemas debido a la posible fragmentación de la correspondiente a un borde en diferentes segmentos en ca	a información ada imagen
Esta fragmentación supone que un segmento de una imag más de un segmento correspondiente en otra imagen, lo c restricción de unicidad	jen puede tener ual complica la
Isión Tridimensional UPN	1-DISAM / UMH

Algoritmo de Disparidad Diferencial Mínima (4) 79
El término I _{ijhk} indica la longitud de solapamiento más pequeña para todas las parejas de correspondientes (a _i , b _i) y (a _h , b _k)
Las funciones card(a,) y card(b,) evalúan el número de segmentos en las ventanas w(a,) y w(b,) respectivamente
La condición C ₁ (a _h) permite que a _i y a _h puedan ser correspondientes del mismo segmento b _j (=b _k) solo si a _i y a _h no se solapan, y viceversa para la condición C ₂ (a _h)
Esto permite la posibilidad de que si a _i y a _h son partes de un segmento fragmentado, puedan ser asignadas a un segmento no fragmentado en la otra imagen
Para cada segmento a _h en la ventana w(b _j) (entorno de vecindad) una correspondencia preferida b _k se localiza cuando gd _{hk} - d _{ij} g alcanza un valor mínimo
Durante la primera iteración, la selección de b _k para cada a _h se realiza a partir del conjunto completo S(a _h) ya que el conjunto de correspondencias preferidas está vacío
Este algoritmo de correspondencia minimiza la diferencia de disparidad entre segmentos de línea correspondientes en un entorno de vecindad.
Esta restricción impone la condición de que los objetos 3D reconstruidos a partir de los segmentos de borde correspondientes, son suaves en su mayor parte.
Visión Tridimensional UPM-DISAM / UMH

Algoritmo de Ayache y Faverjon (2)	81
Se establece una etapa de correspondencia global utilizando una representación especializada de las correspondencias potenciales llamado "grafo de disparidad"	
⇒ La idea de usar el grafo de disparidad es propagar las correspondencias dentro de los entornos de vecindad para recupe subconjuntos de segmentos 3D que yacen sobre un trozo de superficie suave	rar
 Un par de segmentos a_i y b_j de las imágenes izquierda y derecha constituyen una correspondencia potencial. La correspondencia se establece por tanto como un proceso de criba de los posibles candidatos, criba que es realizada en dos etapas: una primera etapa de <i>verificación local</i>, una segunda de <i>verificación global</i> de las hipótesis planteadas 	è
Visión Tridimensional UPM-DISAM / UN	MH

Técnicas de Correspondencia	84
 ✓ Técnicas basadas en Area ("Area-Based") ✓ Técnicas basadas en Características ("feature-based") ✗ Técnicas Jerárquicas ⇒ Algoritmo de Hoff y Ahuja ⇒ Algoritmo de Marapane y Trivedi 	
⇔ Programación Dinámica ⇒ Algoritmos basados en estéreo trinocular	
Visión Tridimensional UPM-DISAM /	UMH

Técnicas Jerárquicas 85
 ⇒ La utilización de una estructura jerárquica en el algoritmo de correspondencia estereoscópica supone la realización de dicho proceso a varios niveles del proceso de reconstrucción visual, intercambiando la información obtenida en cada nivel para imponer una consistencia global en el mapa de disparidad ⇒ Algoritmo de Hoff y Ahuja ⇒ Algoritmo de Marapane y Trivedi
Visión Tridimensional UPM-DISAM / UMH

Algoritmo de Marapane y Trivedi (2) 91	
 ⇒ Los resultados del análisis en los niveles más altos de la jerarquía son utilizados para guiar el análisis en los niveles inferiores ⇒ El algoritmo no está ligado a un único tipo de primitiva, y por tanto funciona dentro de un rango de tipos de escenas más amplio ⇒ El resultado del algoritmo es un conjunto de mapas de disparidad para diferentes niveles de abstracción que son fusionados para obtener un mapa más exacto y con una mayor resolución ⇒ El algoritmo también provee la capacidad para analizar selectivamente regiones de la imagen con un detalle variable. 	
Visión Tridimensional UPM-DISAM / UMH	I

Algoritmo de Marapane y Trivedi (4)	93
⇒ Restricciones jerárquicas :	
→ Restricciones jerárquicas espaciales (HSC): se utilizan para el gu	Jiado
del análisis estéreo	
🗯 Restricción jerárquica de herencia (HINH)	
🗯 Restricción jerárquica relacional (HREL)	
Restricción jerárquica de intervalo (HINT).	
Restricciones jerárquicas de disparidad (HDC): limitan la disparidad	lad
de las correspondencias potenciales generadas anteriormente.	
Visión Tridimensional UPM-DISAM /	UMH

Técnicas de Correspondencia	97
 ✓ Técnicas basadas en Area ("Area-Based") ✓ Técnicas basadas en características ("feature-based") ✓ Técnicas Jerárquicas ✗ Programación Dinámica ⇔ Algoritmo de Otha y Kanade ⇒ Algoritmos basados en estéreo trinocular 	97
Visión Tridimensional UPM-DISAM	/ UMH

Estéreo Trinocular sobre segmentos de borde (2) 110
Ayache y Lustman presentan un algoritmo que extiende la técnica de correspondencia binocular sobre segmentos rectos de borde mediante la utilización de una geometría trinocular
El algoritmo emplea un esquema de predicción y verificación, usando grafos de vecindad de los segmento rectos de borde en tres imágenes como una extensión del algoritmo binocular.
⇒ Para un segmento S_1 en la imagen 1 ,si la tripleta (S_1 , S_2 , S_3) satisface la restricción epipolar trinocular (líneas epipolares L_{12} , L_{23} , L_{13}) y presenta suficiente similaridad en las propiedades geométricas locales, entonces es retenida como una correspondencia potencial.
Debido al ruido en el preprocesamiento se puede producir una fragmentación de los segmentos rectos de borde entre las diferentes imágenes
Este problema es manejado flexibilizando el orden de las imágenes para generar las hipótesis de correspondencia
Visión Tridimensional UPM-DISAM / UMH

