
Iperf version 1.7.0
March 2003

NLANR applications support
http://dast.nlanr.net/
<dast@nlanr.net>

Iperf User Docs
Mark Gates
Ajay Tirumala
Jon Dugan
Kevin Gibbs

March 2003
[Compiling | Features | Tuning a TCP connection | Tuning a UDP connection |
IPv6 Mode | Representative Streams | Running Iperf as a daemon | Running
multiple multicast servers and clients | Adaptive Window Sizes | Running Iperf
as a Windows Service]

Compiling
Once you have the distribution, on UNIX, unpack it using gzip and tar. That will
create a new directory 'iperf-<version#>' with the source files and
documentation.

Iperf compiles cleanly on many systems including Linux, SGI IRIX, HP-UX,
Solaris, AIX, and Cray UNICOS. Use 'make' to configure for your OS and
compile the source code.

gunzip -c iperf-<version>.tar.gz | tar -xvf -
cd iperf-<version>
make

To install iperf, use 'make install', which will ask you where to install it. To
recompile, the easiest way is to start over. Do 'make distclean' then 'make'. See
the Makefile for more options.

If you have problems, please report them to dast@nlanr.net and we will try to fix
them quickly.

Features
• TCP

o Measure bandwidth
o Report MSS/MTU size and observed read sizes.
o Support for TCP window size via socket buffers.
o Multi-threaded if pthreads or Win32 threads are available. Client

and server can have multiple simultaneous connections.
• UDP

o Client can create UDP streams of specified bandwidth.
o Measure packet loss
o Measure delay jitter
o Multicast capable
o Multi-threaded if pthreads are available. Client and server can

have multiple simultaneous connections. (This doesn't work in
Windows.)

• Where appropriate, options can be specified with K (kilo-) and M (mega-)
suffices. So 128K instead of 131072 bytes.

• Can run for specified time, rather than a set amount of data to transfer.
• Picks the best units for the size of data being reported.
• Server handles multiple connections, rather than quitting after a single

test.
• Print periodic, intermediate bandwidth, jitter, and loss reports at specified

intervals.
• Run the server as a daemon (Check out Nettest for running it as a

secure daemon).
• Run the server as a Windows NT Service
• Use representative streams to test out how link layer compression affects

your achievable bandwidth.
• A library of useful functions and C++ classes.

Command line
option

Environment
variable option

Description

Client and Server options
-f, --format
[bkmaBKMA]

$IPERF_FORMAT A letter specifying the format to print
bandwidth numbers in. Supported formats
are

'b' = bits/sec 'B' =
Bytes/sec

'k' = Kbits/sec 'K' =
KBytes/sec

'm' = Mbits/sec 'M' =
MBytes/sec

'g' = Gbits/sec 'G' =
GBytes/sec

'a' = adaptive bits/sec 'A' =
adaptive Bytes/sec

The adaptive formats choose between kilo-
and mega- as appropriate. Fields other than
bandwidth always print bytes, but otherwise
follow the requested format. Default is 'a'.
NOTE: here Kilo = 1024, Mega = 1024^2
and Giga = 1024^3 when dealing with bytes.
Commonly in networking, Kilo = 1000,
Mega = 1000^2, and Giga = 1000^3 so we
use this when dealing with bits. If this really
bothers you, use -f b and do the math.

-i, --interval
#

$IPERF_INTERVAL Sets the interval time in seconds between
periodic bandwidth, jitter, and loss reports. If
non-zero, a report is made every interval
seconds of the bandwidth since the last
report. If zero, no periodic reports are
printed. Default is zero.

-l, --len
#[KM]

$IPERF_LEN The length of buffers to read or write. Iperf
works by writing an array of len bytes a
number of times. Default is 8 KB for TCP,
1470 bytes for UDP. Note for UDP, this is
the datagram size and needs to be lowered
when using IPv6 addressing to 1450 or less
to avoid fragmentation. See also the -n and -t
options.

-m, --
print_mss

$IPERF_PRINT_MSS Print the reported TCP MSS size (via the
TCP_MAXSEG option) and the observed
read sizes which often correlate with the
MSS. The MSS is usually the MTU - 40
bytes for the TCP/IP header. Often a slightly
smaller MSS is reported because of extra
header space from IP options. The interface
type corresponding to the MTU is also
printed (ethernet, FDDI, etc.). This option is
not implemented on many OSes, but the read
sizes may still indicate the MSS.

-p, --port # $IPERF_PORT The server port for the server to listen on and
the client to connect to. This should be the
same in both client and server. Default is
5001, the same as ttcp.

-u, --udp $IPERF_UDP Use UDP rather than TCP. See also the -b
option.

-w, --window
#[KM]

$TCP_WINDOW_SIZE Sets the socket buffer sizes to the specified
value. For TCP, this sets the TCP window
size. For UDP it is just the buffer which
datagrams are received in, and so limits the
largest receivable datagram size.

-B, --bind
host

$IPERF_BIND Bind to host, one of this machine's
addresses. For the client this sets the
outbound interface. For a server this sets the
incoming interface. This is only useful on
multihomed hosts, which have multiple
network interfaces.

For Iperf in UDP server mode, this is also
used to bind and join to a multicast group.
Use addresses in the range 224.0.0.0 to
239.255.255.255 for multicast. See also the -
T option.

-C, --
compatibility

$IPERF_COMPAT Compatibility mode allows for use with
older version of iperf. This mode is not
required for interoperability but it is highly
recommended. In some cases when using
representative streaming you could cause a
1.7 server to crash or cause undesired
connection attempts.

-M, --mss
#[KM}

$IPERF_MSS Attempt to set the TCP maximum segment
size (MSS) via the TCP_MAXSEG option.
The MSS is usually the MTU - 40 bytes for
the TCP/IP header. For ethernet, the MSS is
1460 bytes (1500 byte MTU). This option is
not implemented on many OSes.

-N, --nodelay $IPERF_NODELAY Set the TCP no delay option, disabling
Nagle's algorithm. Normally this is only
disabled for interactive applications like
telnet.

-V (from v1.6 or
higher) .

Bind to an IPv6 address
Server side:
$ iperf -s -V

Client side:
$ iperf -c <Server IPv6 Address> -V

Note: On version 1.6.3 and later a specific
IPv6 Address does not need to be bound
with the -B option, previous 1.6 versions do.
Also on most OSes using this option will
also respond to IPv4 clients using IPv4

mapped addresses.

Server specific options
-s, --server $IPERF_SERVER Run Iperf in server mode.

-D (from v1.2 or
higher) .

Run the server as a daemon (Unix platforms)
On Win32 platforms where services are
available, Iperf will start running as a
service.

-R (only for
Windows, from
v1.2 or higher)

. Remove the Iperf service (if it's running).

-o (only for
Windows, from
v1.2 or higher)

. Redirect output to given file.

-c, --client
host

$IPERF_CLIENT If Iperf is in server mode, then specifying a
host with -c will limit the connections that
Iperf will accept to the host specified. Does
not work well for UDP.

-P, --parallel
#

$IPERF_PARALLEL The number of connections to handle by the
server before closing. Default is 0 (which
means to accept connections forever).

Client specific options
-b, --
bandwidth
#[KM]

$IPERF_BANDWIDTH The UDP bandwidth to send at, in bits/sec.
This implies the -u option. Default is 1
Mbit/sec.

-c, --client
host

$IPERF_CLIENT Run Iperf in client mode, connecting to an
Iperf server running on host.

-d, --dualtest $IPERF_DUALTEST Run Iperf in dual testing mode. This will
cause the server to connect back to the client
on the port specified in the -L option (or
defaults to the port the client connected to
the server on). This is done immediately
therefore running the tests simultaneously. If
you want an alternating test try -r.

-n, --num
#[KM]

$IPERF_NUM The number of buffers to transmit.
Normally, Iperf sends for 10 seconds. The -n
option overrides this and sends an array of
len bytes num times, no matter how long that
takes. See also the -l and -t options.

-r, --tradeoff $IPERF_TRADEOFF Run Iperf in tradeoff testing mode. This will
cause the server to connect back to the client
on the port specified in the -L option (or
defaults to the port the client connected to

the server on). This is done following the
client connection termination, therefore
running the tests alternating. If you want an
simultaneous test try -d.

-t, --time # $IPERF_TIME The time in seconds to transmit for. Iperf
normally works by repeatedly sending an
array of len bytes for time seconds. Default
is 10 seconds. See also the -l and -n options.

-L, --
listenport #

$IPERF_LISTENPORT This specifies the port that the server will
connect back to the client on. It defaults to
the port used to connect to the server from
the client.

-P, --parallel
#

$IPERF_PARALLEL The number of simultaneous connections to
make to the server. Default is 1. Requires
thread support on both the client and server.

-S, --tos # $IPERF_TOS The type-of-service for outgoing packets.
(Many routers ignore the TOS field.) You
may specify the value in hex with a '0x'
prefix, in octal with a '0' prefix, or in
decimal. For example, '0x10' hex = '020'
octal = '16' decimal. The TOS numbers
specified in RFC 1349 are:

IPTOS_LOWDELAY minimize
delay 0x10

IPTOS_THROUGHPUT maximize
throughput 0x08

IPTOS_RELIABILITY maximize
reliability 0x04

IPTOS_LOWCOST minimize
cost 0x02

-T, --ttl # $IPERF_TTL The time-to-live for outgoing multicast
packets. This is essentially the number of
router hops to go through, and is also used
for scoping. Default is 1, link-local.

-F (from v1.2 or
higher) .

Use a representative stream to measure
bandwidth, e.g. :-
$ iperf -c <server address> -F <file-name>

-I (from v1.2 or
higher) . Same as -F, input from stdin.

Miscellaneous options
-h, --help Print out a summary of commands and quit.
-v, --version Print version information and quit. Prints

'pthreads' if compiled with POSIX threads,
'win32 threads' if compiled with Microsoft

Win32 threads, or 'single threaded' if
compiled without threads.

Tuning a TCP connection
The primary goal of Iperf is to help in tuning TCP connections over a particular
path. The most fundamental tuning issue for TCP is the TCP window size,
which controls how much data can be in the network at any one point. If it is too
small, the sender will be idle at times and get poor performance. The theoretical
value to use for the TCP window size is the bandwidth delay product,
bottleneck bandwidth * round trip time
In the below modi4/cyclops example, the bottleneck link is a 45 Mbit/sec DS3
link and the round trip time measured with ping is 42 ms. The bandwidth delay
product is
45 Mbit/sec * 42 ms
= (45e6) * (42e-3)
= 1890000 bits
= 230 KByte
That is a starting point for figuring the best window size; setting it higher or
lower may produce better results. In our example, buffer sizes over 130K did
not improve the performance, despite the bandwidth delay product of 230K.

Note that many OSes and hosts have upper limits on the TCP window size.
These may be as low as 64 KB, or as high as several MB. Iperf tries to detect
when these occur and give a warning that the actual and requested window
sizes are not equal (as below, though that is due to rounding in IRIX). PSC has
a list detailing how to change the default and maximum window sizes for
various OSes. For more information on TCP window sizes, see the User's
Guide to TCP Windows.

Here is an example session, between node1 in Illinois and node2 in North
Carolina. These are connected via the vBNS backbone and a 45 Mbit/sec DS3
link. Notice we improve bandwidth performance by a factor of 3 using proper
TCP window sizes. Use the adaptive window sizes feature on platforms which
allow setting window sizes in the granularity of bytes.

node2> iperf -s
--
Server listening on TCP port 5001
TCP window size: 60.0 KByte (default)
--
[4] local <IP Addr node2> port 5001 connected with <IP Addr node1>
port 2357
[ID] Interval Transfer Bandwidth
[4] 0.0-10.1 sec 6.5 MBytes 5.2 Mbits/sec

node1> iperf -c node2
--
Client connecting to node1, TCP port 5001
TCP window size: 59.9 KByte (default)
--

[3] local <IP Addr node1> port 2357 connected with <IP Addr node2>
port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 6.5 MBytes 5.2 Mbits/sec

node2> iperf -s -w 130k
--
Server listening on TCP port 5001
TCP window size: 130 KByte
--
[4] local <IP Addr node 2> port 5001 connected with <IP Addr node 1>
port 2530
[ID] Interval Transfer Bandwidth
[4] 0.0-10.1 sec 19.7 MBytes 15.7 Mbits/sec

node1> iperf -c node2 -w 130k
--
Client connecting to node2, TCP port 5001
TCP window size: 129 KByte (WARNING: requested 130 KByte)
--
[3] local <IP Addr node1> port 2530 connected with <IP Addr node2>
port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 19.7 MBytes 15.8 Mbits/sec
Another test to do is run parallel TCP streams. If the total aggregate bandwidth
is more than what an individual stream gets, something is wrong. Either the
TCP window size is too small, or the OS's TCP implementation has bugs, or the
network itself has deficiencies. See above for TCP window sizes; otherwise
diagnosing which is somewhat difficult. If Iperf is compiled with pthreads, a
single client and server can test this, otherwise setup multiple clients and
servers on different ports. Here's an example where a single stream gets 16.5
Mbit/sec, but two parallel streams together get 16.7 + 9.4 = 26.1 Mbit/sec, even
when using large TCP window sizes:
node2> iperf -s -w 300k
--
Server listening on TCP port 5001
TCP window size: 300 KByte
--
[4] local <IP Addr node2> port 5001 connected with <IP Addr node1>
port 6902
[ID] Interval Transfer Bandwidth
[4] 0.0-10.2 sec 20.9 MBytes 16.5 Mbits/sec

[4] local <IP Addr node2> port 5001 connected with <IP Addr node1>
port 6911
[5] local <IP Addr node2> port 5001 connected with <IP Addr node2>
port 6912
[ID] Interval Transfer Bandwidth
[5] 0.0-10.1 sec 21.0 MBytes 16.7 Mbits/sec
[4] 0.0-10.3 sec 12.0 MBytes 9.4 Mbits/sec

node1> ./iperf -c node2 -w 300k
--
Client connecting to node2, TCP port 5001
TCP window size: 299 KByte (WARNING: requested 300 KByte)
--
[3] local <IP Addr node2> port 6902 connected with <IP Addr node1>
port 5001
[ID] Interval Transfer Bandwidth

[3] 0.0-10.2 sec 20.9 MBytes 16.4 Mbits/sec

node1> iperf -c node2 -w 300k -P 2
--
Client connecting to node2, TCP port 5001
TCP window size: 299 KByte (WARNING: requested 300 KByte)
--
[4] local <IP Addr node2> port 6912 connected with <IP Addr node1>
port 5001
[3] local <IP Addr node2> port 6911 connected with <IP Addr node1>
port 5001
[ID] Interval Transfer Bandwidth
[4] 0.0-10.1 sec 21.0 MBytes 16.6 Mbits/sec
[3] 0.0-10.2 sec 12.0 MBytes 9.4 Mbits/sec
A secondary tuning issue for TCP is the maximum transmission unit (MTU). To
be most effective, both hosts should support Path MTU Discovery. PSC has a
list detailing what OSes support Path MTU Discovery. Hosts without Path MTU
Discovery often use 536 as the MSS, which wastes bandwidth and processing
time. Use the -m option to display what MSS is being used, and see if this
matches what you expect. Often it is around 1460 bytes for ethernet.
node3> iperf -s -m
--
Server listening on TCP port 5001
TCP window size: 60.0 KByte (default)
--
[4] local <IP Addr node3> port 5001 connected with <IP Addr node4>
port 1096
[ID] Interval Transfer Bandwidth
[4] 0.0- 2.0 sec 1.8 MBytes 6.9 Mbits/sec
[4] MSS size 1448 bytes (MTU 1500 bytes, ethernet)
[4] Read lengths occurring in more than 5% of reads:
[4] 952 bytes read 219 times (16.2%)
[4] 1448 bytes read 1128 times (83.6%)
Here is a host that doesn't support Path MTU Discovery. It will only send and
receive small 576 byte packets.
node4> iperf -s -m
--
Server listening on TCP port 5001
TCP window size: 32.0 KByte (default)
--
[4] local <IP Addr node4> port 5001 connected with <IP Addr node3>
port 13914
[ID] Interval Transfer Bandwidth
[4] 0.0- 2.3 sec 632 KBytes 2.1 Mbits/sec
WARNING: Path MTU Discovery may not be enabled.
[4] MSS size 536 bytes (MTU 576 bytes, minimum)
[4] Read lengths occurring in more than 5% of reads:
[4] 536 bytes read 308 times (58.4%)
[4] 1072 bytes read 91 times (17.3%)
[4] 1608 bytes read 29 times (5.5%)
Iperf supports other tuning options, which were added for exceptional network
situations like HIPPI-to-HIPPI over ATM.

Tuning a UDP connection

Iperf creates a constant bit rate UDP stream. This is a very artificial stream,
similar to voice communication but not much else.

You will want to adjust the datagram size (-l) to the size your application uses.

The server detects UDP datagram loss by ID numbers in the datagrams.
Usually a UDP datagram becomes several IP packets. Losing a single IP
packet will lose the entire datagram. To measure packet loss instead of
datagram loss, make the datagrams small enough to fit into a single packet,
using the -l option. The default size of 1470 bytes works for ethernet. Out-of-
order packets are also detected. (Out-of-order packets cause some ambiguity in
the lost packet count; Iperf assumes they are not duplicate packets, so they are
excluded from the lost packet count.) Since TCP does not report loss to the
user, I find UDP tests helpful to see packet loss along a path.

Jitter calculations are continuously computed by the server, as specified by RTP
in RFC 1889. The client records a 64 bit second/microsecond timestamp in the
packet. The server computes the relative transit time as (server's receive time -
client's send time). The client's and server's clocks do not need to be
synchronized; any difference is subtracted out in the jitter calculation. Jitter is
the smoothed mean of differences between consecutive transit times.

node2> iperf -s -u -i 1
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 60.0 KByte (default)
--
[4] local <IP Addr node2> port 5001 connected with <IP Addr node1>
port 9726
[ID] Interval Transfer Bandwidth Jitter Lost/Total
Datagrams
[4] 0.0- 1.0 sec 1.3 MBytes 10.0 Mbits/sec 0.209 ms 1/ 894
(0.11%)
[4] 1.0- 2.0 sec 1.3 MBytes 10.0 Mbits/sec 0.221 ms 0/ 892
(0%)
[4] 2.0- 3.0 sec 1.3 MBytes 10.0 Mbits/sec 0.277 ms 0/ 892
(0%)
[4] 3.0- 4.0 sec 1.3 MBytes 10.0 Mbits/sec 0.359 ms 0/ 893
(0%)
[4] 4.0- 5.0 sec 1.3 MBytes 10.0 Mbits/sec 0.251 ms 0/ 892
(0%)
[4] 5.0- 6.0 sec 1.3 MBytes 10.0 Mbits/sec 0.215 ms 0/ 892
(0%)
[4] 6.0- 7.0 sec 1.3 MBytes 10.0 Mbits/sec 0.325 ms 0/ 892
(0%)
[4] 7.0- 8.0 sec 1.3 MBytes 10.0 Mbits/sec 0.254 ms 0/ 892
(0%)
[4] 8.0- 9.0 sec 1.3 MBytes 10.0 Mbits/sec 0.282 ms 0/ 892
(0%)
[4] 0.0-10.0 sec 12.5 MBytes 10.0 Mbits/sec 0.243 ms 1/ 8922
(0.011%)

node1> iperf -c node2 -u -b 10m
--
Client connecting to node2, UDP port 5001

Sending 1470 byte datagrams
UDP buffer size: 60.0 KByte (default)
--
[3] local <IP Addr node1> port 9726 connected with <IP Addr node2>
port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 12.5 MBytes 10.0 Mbits/sec
[3] Sent 8922 datagrams
Notice the higher jitter due to datagram reassembly when using larger 32 KB
datagrams, each split into 23 packets of 1500 bytes. The higher datagram loss
seen here may be due to the burstiness of the traffic, which is 23 back-to-back
packets and then a long pause, rather than evenly spaced individual packets.
node2> iperf -s -u -l 32k -w 128k -i 1
--
Server listening on UDP port 5001
Receiving 32768 byte datagrams
UDP buffer size: 128 KByte
--
[3] local <IP Addr node2> port 5001 connected with <IP Addr node1>
port 11303
[ID] Interval Transfer Bandwidth Jitter Lost/Total
Datagrams
[3] 0.0- 1.0 sec 1.3 MBytes 10.0 Mbits/sec 0.430 ms 0/ 41
(0%)
[3] 1.0- 2.0 sec 1.1 MBytes 8.5 Mbits/sec 5.996 ms 6/ 40
(15%)
[3] 2.0- 3.0 sec 1.2 MBytes 9.7 Mbits/sec 0.796 ms 1/ 40
(2.5%)
[3] 3.0- 4.0 sec 1.2 MBytes 10.0 Mbits/sec 0.403 ms 0/ 40
(0%)
[3] 4.0- 5.0 sec 1.2 MBytes 10.0 Mbits/sec 0.448 ms 0/ 40
(0%)
[3] 5.0- 6.0 sec 1.2 MBytes 10.0 Mbits/sec 0.464 ms 0/ 40
(0%)
[3] 6.0- 7.0 sec 1.2 MBytes 10.0 Mbits/sec 0.442 ms 0/ 40
(0%)
[3] 7.0- 8.0 sec 1.2 MBytes 10.0 Mbits/sec 0.342 ms 0/ 40
(0%)
[3] 8.0- 9.0 sec 1.2 MBytes 10.0 Mbits/sec 0.431 ms 0/ 40
(0%)
[3] 9.0-10.0 sec 1.2 MBytes 10.0 Mbits/sec 0.407 ms 0/ 40
(0%)
[3] 0.0-10.0 sec 12.3 MBytes 9.8 Mbits/sec 0.407 ms 7/ 401
(1.7%)

node1> iperf -c node2 -b 10m -l 32k -w 128k
--
Client connecting to node2, UDP port 5001
Sending 32768 byte datagrams
UDP buffer size: 128 KByte
--
[3] local <IP Addr node2> port 11303 connected with <IP Addr node1>
port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 12.5 MBytes 10.0 Mbits/sec
[3] Sent 401 datagrams

Multicast

To test multicast, run several servers with the bind option (-B, --bind) set to the
multicast group address. Run the client, connecting to the multicast group
address and setting the TTL (-T, --ttl) as needed. Unlike normal TCP and UDP
tests, multicast servers may be started after the client. In that case, datagrams
sent before the server started show up as losses in the first periodic report (61
datagrams on arno below).

node5> iperf -c 224.0.67.67 -u --ttl 5 -t 5
--
Client connecting to 224.0.67.67, UDP port 5001
Sending 1470 byte datagrams
Setting multicast TTL to 5
UDP buffer size: 32.0 KByte (default)
--
[3] local <IP Addr node5> port 1025 connected with 224.0.67.67 port
5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 5.0 sec 642 KBytes 1.0 Mbits/sec
[3] Sent 447 datagrams

node5> iperf -s -u -B 224.0.67.67 -i 1
--
Server listening on UDP port 5001
Binding to local address 224.0.67.67
Joining multicast group 224.0.67.67
Receiving 1470 byte datagrams
UDP buffer size: 32.0 KByte (default)
--
[3] local 224.0.67.67 port 5001 connected with <IP Addr node5> port
1025
[ID] Interval Transfer Bandwidth Jitter Lost/Total
Datagrams
[3] 0.0- 1.0 sec 131 KBytes 1.0 Mbits/sec 0.007 ms 0/ 91
(0%)
[3] 1.0- 2.0 sec 128 KBytes 1.0 Mbits/sec 0.008 ms 0/ 89
(0%)
[3] 2.0- 3.0 sec 128 KBytes 1.0 Mbits/sec 0.010 ms 0/ 89
(0%)
[3] 3.0- 4.0 sec 128 KBytes 1.0 Mbits/sec 0.013 ms 0/ 89
(0%)
[3] 4.0- 5.0 sec 128 KBytes 1.0 Mbits/sec 0.008 ms 0/ 89
(0%)
[3] 0.0- 5.0 sec 642 KBytes 1.0 Mbits/sec 0.008 ms 0/ 447
(0%)

node6> iperf -s -u -B 224.0.67.67 -i 1
--
Server listening on UDP port 5001
Binding to local address 224.0.67.67
Joining multicast group 224.0.67.67
Receiving 1470 byte datagrams
UDP buffer size: 60.0 KByte (default)
--
[3] local 224.0.67.67 port 5001 connected with <IP Addr node5> port
1025
[ID] Interval Transfer Bandwidth Jitter Lost/Total
Datagrams
[3] 0.0- 1.0 sec 129 KBytes 1.0 Mbits/sec 0.778 ms 61/ 151
(40%)

[3] 1.0- 2.0 sec 128 KBytes 1.0 Mbits/sec 0.236 ms 0/ 89
(0%)
[3] 2.0- 3.0 sec 128 KBytes 1.0 Mbits/sec 0.264 ms 0/ 89
(0%)
[3] 3.0- 4.0 sec 128 KBytes 1.0 Mbits/sec 0.248 ms 0/ 89
(0%)
[3] 0.0- 4.3 sec 554 KBytes 1.0 Mbits/sec 0.298 ms 61/ 447
(14%)

IPv6 Mode
Download the IPv6 version of this release.
Get the IPv6 address of the node using the 'ifconfig' command.
Use the -V option to indicate that you are using an IPv6 address Please
note that we need to explicitly bind the server address also.

Server side:
$ iperf -s -V

Client side:
$ iperf -c <Server IPv6 Address> -V

Note: Iperf version 1.6.2 and eariler require a IPv6 address to be
explicitly bound with the -B option for the server.

Using Representative Streams to measure
bandwidth

Use the -F or -I option. If you want to test how your network performs
with compressed / uncompressed streams, just create representative
streams and use the -F option to test it. This is usually due to the link
layer compressing data.

The -F option is for file input.
The -I option is for input from stdin.

E.g.
Client: $ iperf -c <server address> -F <file-name>

Client: $ iperf -c <server address> -I

Running the server as a daemon
Use the -D command line option to run the server as a daemon. Redirect
the output to a file.
E.g. iperf -s -D > iperfLog. This will have the Iperf Server running as a
daemon and the server messages will be logged in the file iperfLog.

Using Iperf as a Service under Win32
There are three options for Win32:

-o outputfilename
output the messages into the specified file
-s -D
install Iperf as a service and run it
-s -R
uninstall the Iperf service

Examples:

iperf -s -D -o iperflog.txt
will install the Iperf service and run it. Messages will be reported into
"%windir%\system32\iperflog.txt"
iperf -s -R
will uninstall the Iperf service if it is installed.

Note: If you stop want to restart the Iperf service after having killed it with
the Microsoft Management Console or the Windows Task Manager,
make sure to use the proper OPTION in the service properties dialog.

Running the multicast server and client
Use the -B option while starting the server to bind it to a multicast
address.
E.g. :-iperf -s -u -B 224.0.55.55.

This will have the Iperf server listening for datagrams (-u) for the address
224.0.55.55(-B 224.0.55.55).

Now, start a client sending packets to this multicast address.

E.g. : iperf -c 224.0.55.55 -u. This will have a UDP client (-u) sending to
the multicast address 224.0.55.55(-c 224.0.55.55).

Start multiple clients or servers as explained above, sending data to the
same multicast server. (If you have multiple servers listening on the
multicast address, each of the servers will be getting the data)

Copyright 1999,2000,2001,2002,2003
The Board of Trustees of the University of Illinois

All rights reserved
See UI License for complete details.

