

Ingeniería Industrial

FUNDAMENTOS DE INFORMÁTICA PROBLEMAS DE ARQUITECTURA DE COMPUTADORES TEMA 2. CODIFICACIÓN DE LA INFORMACIÓN

1.	Convertir a binari a) 428 ₁₀	o las siguiente o b) 765 ₁₀	cantidade c) 431		nales. d) 471 ₁₀		
2.	Convertir a binar a) 327.625 ₁₀	io las siguientes b) 356,92 ₁₀		les en 0 0,17 ₁₀	decimal d) 691,2	23 ₁₀	
3.	Convertir a base a) 11100111 ₂		uientes ca 0111 ₂	antidad	es en binario c) 00101000		d) 1110,1110 ₂
4.	Convertir a octal a) 110011 ₂	las siguientes ob) 1110001010			as. 01101001111	₂ d) 10	11110101110 ₂
5.	Convertir a base a) 1010110,101				binarias. 011101 ₂	c) 11110),000110 ₂
6.	Convertir a base a) 11000101101 c) 1011000,110	0 ₂ l	ns siguient o) 100110 d) 101111	101,01	011101 ₂	ias.	
7.	Convertir a base a) 6754 ₈	decimal las sig b) 12345 ₈		antidad c) 75,2		d) 24,02	60 ₈
8.	Convertir las signal $437,7_{10} \Rightarrow X_8$ b) $125_{10} \Rightarrow X_8$ c) $450_{10} \Rightarrow X_{10}$ d) $333.125_{10} =$ e) $125_8 \Rightarrow X_{16}$ f) $627_8 \Rightarrow X_{10}$ g) $4A7_{16} \Rightarrow X_2$ h) $C39_{16} \Rightarrow X_8$ i) $7FB_{16} \Rightarrow X_1$	X ₈ 6	des a las l	oases i	ndicadas:		
9.	Realizar las sigu a) 110100 + 10 b) 110110 + 01 c) 101101 - 010 d) 101101 - 010	0111 1110 0011	nes en bir	nario:			

10. ¿Cuántos bits se necesitarán como mínimo para codificar un conjunto de 108 caracteres?

e) 101101 - 011111

11. Representar en BCD los números 5 y 42 y obtener el resultado de sumarlos como si estuviesen en el sistema de numeración binario. Realizar la misma operación representando los números en binario.

Ingeniería Industrial

- **12.** Representar todos los números de 4 bits en los formatos signo-magnitud, complemento a 1 y complemento a 2, indicando el número positivo o negativo que representan en decimal.
- 13. Razonar cuál es el rango de representación de n bits en los formatos:
 - a) a) Signo-magnitud
 - b) b) Complemento a 2
 - c) c) Complemento a 1
- **14.** Indicar cuál es el mínimo número de bits necesario para representar el número -256₁₀ en:
 - a) a) Complemento a 1
 - b) b) Complemento a 2
 - c) c) Signo magnitud
- **15.** Se dispone de un formato de representación numérica de 7 bits. Obtener razonadamente:
 - a) Mayor número positivo representable en complemento a 1.
 - b) Menor número negativo representable en complemento a 2.
 - c) Representación del 0₁₀ en binario con signo.
- **16.** Expresar las siguientes cantidades decimales en complemento a 1, complemento a 2 y en binario con signo (magnitud-signo).
 - a) 14310
 - b) 22510
 - c) -2110
 - d) 367510
- **17.** ¿Cuáles serían los números decimales enteros correspondientes a los números 1010 1110; 0111 1011; 1000 0000; suponiendo las siguientes representaciones.
 - a) Sin signo.
 - b) Signo y magnitud.
 - c) Complemento a 1.
 - d) Complemento a 2.
 - e) BCD.
- **18.** Realizar las siguientes sumas en C2 y en C1.
 - a) 120 + (-43)
 - b) 25 + (-42)
 - c) (-33) + (-89)
 - d) 79 + 13
- **19.** Obtener las mantisas normalizadas de los siguientes datos suponiendo m = 12 bits.
 - a) 1001.1100110·2^{.5}
 - b) 0.000001101101.2³⁴
- **20.** Suponiendo n = 7 bits y m = 8 bits, obtener el valor decimal correspondiente a los siguientes números expresados en coma flotante:
 - a) 1 0011 1110 0011 110
 - b) 0 0000 0000 0000 000
 - c) 1 1111 1111 1111 111
 - d) 0 1111 1111 0110 001
 - e) 0 0000 0000 0000 100

Ingeniería Industrial

- **21.** Considérese el formato de coma flotante IEEE de simple precisión (n = 8, m = 23). Calcular:
 - a) El valor del número mayor que se puede representar en este formato.
 - b) Número positivo mas pequeño
- **22.** Considérese el formato de coma flotante IEEE de simple precisión (n = 8, m = 23). Se pide representar los siguientes números:
 - a) -23.57
 - b) 0.5
 - c) 6.6254· 10²⁷
 - d) 10⁻⁴
 - e) -543.7· 10⁻¹⁷
- **23.** Obtener la capacidad necesaria para almacenar 1 minuto de una señal de audio estereo con calidad CD.
- **24.** Obtener la capacidad de memoria que ocupará una imagen en blanco y negro con una resolución de 640 x 350 elementos de imagen y con 16 niveles de grises.
- **25.** Obtener la capacidad de memoria que ocupará una imagen en color con una resolución XGA y con 265 niveles para representar cada color básico.
- **26.** ¿Qué velocidad de transmisión se necesitará para transmitir, sin compresión, una señal de audio de calidad radio, no estéreo?
- **27.** ¿Cuánto tiempo de música en calidad CD estéreo se puede almacenar, sin compresión, en un CD-ROM de 650 MBytes?, ¿y en un DVD de 4.7 GBytes?
- 28. ¿Cuántas imágenes caben en un CD de 650 MBytes, suponiendo:
 - a) Resolución VGA.
 - b) Resolución SVGA.
 - c) Resolución XVGA.
- **29.** Suponiendo que un computador reserva 2 bytes para un short y 1 byte para un char, y que la representación de los datos short se realiza en formato complemento a dos. Se pide escribir la salida del siguiente programa en C:

```
#include <stdio.h>
void main(void)
{
    short a, b, c;
    unsigned short d, e;
    a = 64320;
    b = 1048560;
    c = 5454327;
    d = -1;
    e = -137;
    printf("Variables short: a = %d, b = %d, c = %d\n", a, b, c);
    printf("Variables unsigned short: d = %d, e = %d\n", d, e);
    printf("Caracteres equivalentes: a = %c, e = %c\n\n", a, e);
}
```


Ingeniería Industrial

30. Suponiendo que un computador reserva 4 bytes para un int y que la representación de los enteros se realiza en formato complemento a dos, se pide escribir la salida del siguiente programa en C:

```
#include <stdio.h>

void main(void)
{
    int a, b, c, d, e;

    a = 132;
    b = 0133;
    c = 0X132;
    d = -19;
    e = c + d;

printf("Formato decimal: a = %d, b = %d, c = %d, d = %d, e = %d\n", a, b, c, d, e);
printf("Formato octal: a = %o, b = %o, c = %o, d = %o, e = %o\n", a, b, c, d, e);
printf("Formato hexadecimal: a = %x, b = %x, c = %x, d = %x, e = %x\n\n", a, b, c, d, e);
system("PAUSE");
}
```