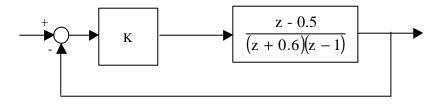

UNIVERSITAS Miguel Hernández

Ingeniería Industrial Autómatas y Sistemas de Control

13 de diciembre de 2001

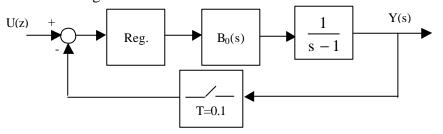
AUTÓMATAS Y SISTEMAS DE CONTROL

1. El sistema G(z) de la figura se realimenta con un captador variable (α) , y se controla con un regulador discreto R(z) con sólo acción derivativa tal y como se muestra a continuación:.



Se pide:

- a.- Determinar los valores que deben tener (a, α) , para que el sistema en cadena cerrada presente un intervalo de establecimiento menor o igual que 5 $(n_s \le 5)$, un intervalo de pico de sobreoscilación de 4 $(n_p \approx 4)$ y el mínimo error de posición posible.
- b.- Con los datos obtenidos en el anterior apartado, obtener la secuencia de salida Y(z) ante entrada escalón unitario en U(z). Justificar si cumple las especificaciones impuestas $(n_s,\,n_p)$ y el error de posición.
- c.- Con el mismo regulador y sin limitaciones en el n_s y en el n_p , ¿Se podría obtener algua pareja de valores (a,α) que ocasionara un error de posición tan pequeño como se quisiera?. ¿Y un error nulo en un número finito de muestras? Justificar ambas respuestas.


(3.5 *puntos*)

2. Determinar por el criterio de Nyquist la estabilidad del siguiente sistema:

(2 puntos)

3. En el sistema de la figura:

a.- Calcular el regulador más sencillo que consiga que la diferencia entra la entrada U(z) y la salida Y(z) se anule, ante entrada escalón, en el menor número de muestras posible. Hallar el intervalo de establecimiento y la sobreoscilación de la salida Y(z).

(1.5 *puntos*)