
Erable 3.024

Bernard Parisse
Institut Fourier (CNRS UMR 5582)

Université de Grenoble I
F-38402 St Martin d’Hères Cédex

Tél. (33 — 0) 4 76 51 43 14
Bernard.Parisse@ujf-grenoble.fr

July 8, 1998

Abstract

This is the manual of the Erable computer algebra system for the
HP48 calculators. Section 1 describes the end user license. Section 2 de-
scribes how to install Erable on your HP48. Section 3 gives an overview
of the capabilities of Erable, compared to other computer algebra systems
available on calculators. Section 4 explains the user interface of Erable.
The rest of the manual gives more details on Erable functions topic by
topic and the appendix starting from a Frequently Asked Questions (sec-
tion B) gives some references.

1

Contents

1 License 5

2 Installation. 5
2.1 Simplified installation for a GX. 5
2.2 All other cases. 6

2.2.1 Getting the binaries from a computer. 7
2.2.2 Getting the binaries from another HP48. 7
2.2.3 Installing the binaries . 7
2.2.4 Installing the user keys redefinition. 7
2.2.5 Improve your installation 8
2.2.6 Abstract of the installation commands 8

3 Introduction. 8
3.1 Overview. 8
3.2 Warnings. 10
3.3 Erable and alg48. 10
3.4 Implementation notes. 11
3.5 Next upgrades. 11

4 Getting started. 11
4.1 Current variable. 12
4.2 Complex and real modes . 12
4.3 Main functions . 12
4.4 The main menu . 15

5 Simplifications. 18
5.1 Rational simplifications instructions. 18
5.2 Presimplifications instructions . 18

5.2.1 Linearization. 18
5.2.2 Development. 19
5.2.3 Trigonometry . 19
5.2.4 The TSIMP instruction . 19

5.3 Recurse flag. 19

6 Limits, Taylor and asymptotic series. 20

7 Derivation and integration. 21
7.1 Derivation . 21
7.2 Integration . 22
7.3 Integration by part . 23

2

8 Ordinary differential equations. 24
8.1 Linear differential equations (systems) with constant coefficients. 24

8.1.1 Laplace transform. 24
8.1.2 Inverse laplace transform. 24
8.1.3 Linear differential equations systems with constant coef-

ficients. 25
8.2 First order equations. 26

9 Substitution, change of variables: EXEC. 27

10 Arithmetic. 28
10.1 Complex arithmetic . 28
10.2 Integer and polynomial arithmetic 29
10.3 Infinities. 30
10.4 Modular arithmetic . 30

11 Factorization. Solving equations. 31
11.1 Summary of the instructions. 31
11.2 A word about factorization. 33

12 Linear algebra. 34
12.1 Building a matrix . 35
12.2 Operations . 35
12.3 Gauß -Jordan row reduction. 35

12.3.1 Solving a linear system. 36
12.3.2 Inversion . 37
12.3.3 Determinant . 37

12.4 Kernel and image of a linear application. 37
12.4.1 Other examples. 37
12.4.2 Stack input/output for reduction instructions. 38

12.5 Diagonalization . 39
12.6 The MMULT— instruction. 41

13 Multivariate analysis. 42

14 Quadratic forms. 43

15 Customization and other utilities. 45
15.1 Data types. 45
15.2 User flags. 45
15.3 Conversions . 45
15.4 Other functions . 47
15.5 Permutations . 47
15.6 Variables . 47
15.7 Differential geometry . 48

16 Final remarks. 48

3

A Frequently asked questions 49

B All functions of Erable— listed in alphabetic order 50

C User Keys. 53

D User flags 55

E Error codes for the SERIES command. 56

F Thanks to ... 56

4

1 License

Erable v3.024 c© 07/1998 by Bernard Parisse, with integers routines from
ALG48, c© 1997 by Claude-Nicolas Fiechter and Mika Heiskanen, The S ver-
sion is no more provided here. To compile it, get erablsrc.zip from:
ftp://fourier.ujf-grenoble.fr/pub/hp48 and follow instructions in the file
ersolv.s.

The Erable package is made of a KERNEL.LIB library and the ERABLEG.LIB
library which needs the kernel library. The kernel library is a work based on
ALG48 (using long integer routines) hence is submitted to the license of ALG48
(see the file license.txt). See eqstk.doc in eqstk.zip for license information
about eqstk and readme.txt for information about minwriter. The rest of the
package is submitted to the ERABLE license (see the file copying.doc).

2 Installation.

This section describes the installation of Erable with the kermit software. You
must choose one of the method described in section (2.1) or in section (2.2).
The first method will install Erable and some stack handling improvements (a
modified eqstk and the minwriter editor), it is recommended for new users.
Choose the second method if you have a SX or if you want to install Erable in
port 1 or higher. If you have a HP48G(X), you may use the X-modem protocol
for faster transferts (look at section 2.2 and replace the command KGET by
XGET except for the GXKEYS/SXKEYS file that you must download with kermit
in binary mode).

2.1 Simplified installation for a GX.

Erable provides now a simplified installation procedure which should make it a
lot easier for new users. Thanks to Mika Heiskanen and Claude-Nicolas Fiechter
for letting me modify and distribute their eqstk library; to Jean-Yves Avenard
(for the minwriter), and to Andre Schoorl (for ufl102) for letting me include
their programs in the Erable distribution.

1. Go to the directory where you have unzipped erable.zip.

2. Run kermit on your computer. If you don’t have kermit, you can get it
at e.g. ftp://kermit.columbia.edu or at a mirror site. If your version
of kermit does not work under Windows 95, restart your computer in
MS-DOS mode and try again.

3. Set the line to the HP48, e.g. type
set port 2
if the HP is connected to the second serial port COM2 (for Linux type
set line /dev/cua1).

5

4. To insure binary file transfer, type:
set file type binary

5. Type the following command to set the speed of kermit to 9600 bauds:
set speed 9600

6. Put kermit in server mode, type:
serv

7. Now take your HP48. You must have at least 120K free in your HP48GX.
If you do not have important data in your memory, press the ON key,
then the A key, then the F key and release them, then press the F key to
answer NO to Try to recover memory. Otherwise, if you are running a
stack replacement like java or eqstk, switch to the HP48 built-in stack
handler.

8. Type the left shift key followed by the 1 key, type the B menu key to select
IOPAR, press the A menu key until line 1 looks:
IR/wire: wire

9. Press the α key, and type S E T U P then the space key then K G E T, release
the α key and press the ENTER key. This will get the program SETUP from
the computer to the HP. If an error occurs, verify the configuration of
kermit and try again.

10. Press the VAR key, then the A menu key (for SETUP), this will get and install
the binaries for you. If you don’t have enough memory, an Insufficient memory error
will occur. You may get a Object in use error if you are running stack
replacement like java or eqstk, in this case, leave them (for java, type
JAVA and for eqstk, type simultaneously ON and C). Otherwise, after about
10 minutes your HP48 will reboot.

11. After the reboot, press the VAR key, then the E menu key (again for SETUP).
This will continue the installation and reboot the calculator after about 1
minute.

12. Eventually press the VAR key, then the A menu key (for INIT). This will
launch the modified eqstk stack handler. Congratulations, you’re done!!

The installation is completed, all should work smoothly. You can go to
section (3)

2.2 All other cases.

You must first get the binary either from a computer or from another HP48
where Erable is installed. Then you have to install the binaries and eventually
install the user keys redefinition.

6

2.2.1 Getting the binaries from a computer.

Connect your HP to your computer. Run kermit in server mode on your com-
puter, and type either:
{ KERNEL.LIB ERABLEG.LIB algbg GXKEYS } KGET (HP48 GX)
or
{ KERNEL.LIB erable.lib algb SXKEYS } KGET (HP48SX)
If you have the metakernel, you should rename UKEYS to GXKEYS on your com-
puter before the transfer and you should get STARTEQW as well to enable the use
of some Erable commands in the EQW environment by hitting the CST key.

2.2.2 Getting the binaries from another HP48.

Check that both HP48 are in IR mode for I/O transferts.
If Erable is installed in a RAM card, check that the RAM card is writeable
(otherwise the RCL function below will fail).
Put the recieving HP48 in server mode.
On the giving HP (where Erable is installed), call the SENDIR program if you
have it or type the following little program:

<< :&:787 RCL :&:788 RCL RCLKEYS -> KERNEL.LIB ERABLEG.LIB GXKEYS
<< { KERNEL.LIB ERABLEG.LIB GXKEYS } SEND
>>

>>

and EVAL it.

2.2.3 Installing the binaries

The kernel library must be installed in port 0 or port 1, for port 0 type:
’KERNEL.LIB’ DUP RCL SWAP PURGE 0 STO
or for port 1:
’KERNEL.LIB’ DUP RCL SWAP PURGE 1 STO
The Erable library may be installed in any port, for example in port 2:
’ERABLEG.LIB’ DUP RCL SWAP PURGE 2 STO
(or ’erable.lib’ DUP RCL SWAP PURGE 2 STO for a HP48SX)

2.2.4 Installing the user keys redefinition.

This step is optional but recommended.

• if you got algb or algbg from your computer, go in the algb or algbg
folder and hit INIT. This will assign keys for the user mode.

• if you got GXKEYS (or SXKEYS) from another HP, type:
’GXKEYS’ DUP RCL SWAP PURGE STOKEYS
(or ’SXKEYS’ DUP RCL SWAP PURGE STOKEYS)
to assign keys for user mode.

7

2.2.5 Improve your installation

If you are short on memory, you can erase parts or the whole algb (respectively
algbg) directory: keep SENDIR if you want to transfert Erable to another HP48.
You can erase the GXKEYS (or SXKEYS) variable in the { HOME } directory unless
you want to customize the user key redefinition of Erable. If you have assigned
Erable user key redefinition, you may decide to delete the main menu of the
HP48, which is mainly useful for new users of the HP48GX: to do this, type:
22.1 DELKEYS

If you have a HP48GX with 128K, I recommend to install EQSTK.LIB,
MINWRT12 and UFL3.LIB. This will leave your HP48GX with 18K of RAM.

If you have enough memory, you can download the other directory and
on-line help (fr or us).

If you install Erable user keys redefinition but you don’t install the MINWRT12,
you must unassign the downarrow key by typing
35.1 DELKEYS
(Otherwise hiting the downarrow key will return ’EDITM’)

If you don’t install EQSTK.LIB, you must unassign the left shift-downarrow
key by typing
35.2 DELKEYS

2.2.6 Abstract of the installation commands

This is the list of commands in the algb or algbg directory:

• GETALL: downloads directories with some programs using Erable

• INIT: downloads the Erable libraries if they are not installed and reboots.
Otherwise, installs GXKEYS or SXKEYS as user keys redefinition and reboots.

• PURG: purge the algb or algbg directory

• SENDIR: used to transfert the Erable libraries and the user keys assigne-
ment from one HP to another HP. Before calling SENDIR, you must check
that both HP48 are in IR mode (in the I/O menu) and you have to put
the recieving HP48 in server mode.

• SETFR: set some flags: e.g. European date display, or radian mode, ...

3 Introduction.

3.1 Overview.

Erable is a computer algebra system for the HP48. The main features are sim-
plifications (including complexes and square roots), integration, first order dif-
ferential equations, partial fraction decomposition, Laplace and inverse Laplace
transform, limits, Taylor and asymptotic series, row reduction to echelon form of
matrices, linear system (including over and underdetermined), eigenvalues and

8

eigenvectors, quadratic forms, permutations, variables substitution, ... With
Erable you will be able to solve most problems solved by a TI92 and some
problems which are not solved by a TI92: some integrals (the Risch algorithm
is not implemented in the TI92), some Taylor series, arithmetic, diagonalization
of matrices, change of variables,...
If you have both alg48 and Erable, then you have the most complete
computer algebra system currently available on a calculator (HP, TI
and CASIO).

Examples:

1 +
√

2
1 + 2

√
2

EXPA
3
7

+
1
7

√
2

eiπ/6 TSIMP
√

3
2

+
i

2

ln(1 + i) TSIMP
ln(2)

2
+

1
4
πi

1
ex − 1

RISCH
∫

1
ex − 1

dx = ln(ex − 1)− x

lim
x→0

yx − 1
x

LIMIT ln(y) 1 1 a
1 a 1
a 1 1

 rref

 2− a− a2 0 0
0 −2 + a+ a2 0
0 0 2− a− a2


Examples not solved natively by a TI92:

sin(x)/(ex − 1), x, 4 SERIES 1− 1
2
x− 1

12
x2 +

1
12
x3 +O(x4)

cos(x)2 LAP
1

2x
+

1
4(x− 2i)

+
1

4(x+ 2i)
1

(x2 + 1)(x+ 1)
ILAP

−1
2

cos(x) +
1
2

sin(x) +
1
2
e−x

y′ = xy2 DSOLVE EXPA y =
y0

e−1/2x2+1/2x2
0∫ 1

0

(1 + 2x2)ex
2
dx EXPA e∫ b

a

ex

x
dx, ex = y EXEC

∫ eb

ea

y

y ln(y)
dy(

0 1
−1 2

)
JORDAN Char :1:(1, 0); Eigen :1:(−1,−1)

9

3.2 Warnings.

• Using a computer algebra system does not mean that you don’t have to
think. Most of the time, all works perfectly and you get the answer within
30 seconds. But sometimes, after 1 or 2 minutes, you don’t get the answer
or you get a Insufficient memory error. In this case, you should think
“Is there a different way to get the answer? Is there a way which will be
easier for the system?” And most of the time, there is a better way! Think
of double integrals where you can reverse the integration order or define
integrals where you may do a variable translation to have less variables,
or linearity in inverse Laplace transform, ... You should learn math and
algorithms to get the best of any computer algebra system. And a system
is never complete, you will need to program sometimes!

• Most of the problems in the real life don’t have exact answers but can only
be solved approximately. Think of integrals, differential equations, large
matrices (say e.g. 100×100), ... Before learning how to solve exactly a
problem, I strongly recommend that you learn how to solve numerically a
problem. Then for a real life problem, you will know when you must stop
finding an exact solution and begin to use a numerical algorithm.

3.3 Erable and alg48.

Erable is partially derived from the alg48 package. The arithmetic functions
of Erable are derived from those of alg48. Erable and alg48 have some other
common features like simplifications, partial fraction expansion or rational in-
tegration. The main differences are:

• Erable is most of the time slower (about 2 times I would say, this is only a
mean, sometimes alg48 is 3 times faster than Erable, sometimes Erable
is 1 to 2 faster than alg48). Why? Because Erable handles complexes
and square roots natively: e.g. Erable simplifies expressions like (1 +
i)/(1 + 2i) = 3−i

5 , (1 +
√

2)/(1− 2
√

2) = − 5
7 + −3

7

√
2, e5iπ/6 = − 1

2

√
3 + i

2 .
Hence arithmetic operations in Erable must be generic, that’s why they
are slower. On the other hand, Erable treats matrices as global objects
for simplifications, as alg48 simplifies matrices element by element, hence
Erable may be faster if matrices are involved.

• Erable accepts strings embedded in symbolics, this means that if you
EXPAnd (5x + 12)16 with Erable you’ll get the exact answer. You may
also do arithmetic operations on strings representing integers (e.g. try
"123456789123456789" DUP MULT)

• Erable handles numerical data (reals which are not integers and complexes
with non integral real and/or imaginary parts)

• Erable has a partial implementation of the Risch integration algorithm:
it handles most of the common integrals, not only rational fractions.

10

• alg48 (version 4) implements the complete factorization algorithm over
the rationals, Erable finds only first order factors of the square-free fac-
torization and then, for 1-variable polynomials, calls the numeric solver if
necessary and tries to rebuild 2nd order factor. Hence, alg48 factors the
expanded form of (x4 + x3 + 1)(x4 + x + 1) but not x4 + 1 and Erable
does not factor the first example but factors the second one.

• The main specific feature of alg48 is the Gröbner base computation. The
main specifics features of Erable are eigenvalues and eigenvectors of ma-
trices, differential equations (first order: linear, Bernouilli, homogenous;
linear with constant coefficients), limits and Taylor series, quadratic forms,
permutations, variable substitutions.

If you have enough memory, do like me: keep both on your calc and choose the
right instruction!

3.4 Implementation notes.

This software is written in ML and Sysrpl with HP48 supported entries and
standard instructions (and a few unsupported but static entries), hence it should
work on all versions of the HP48. Of course, you should backup your calc before
trying it: no software is bug free!

This package was written on a 90Mhz Pentium PC running under Linux
(RedHat 4.2), the GNU emacs editor, my patched version of the x48 emulator
(with almost instantaneous file transfers) with JAZZ installed, the gtools package
(HP48 GNU compiler) and kermit.

3.5 Next upgrades.

The latest versions are available by anonymous ftp in the directory:
ftp://fourier.ujf-grenoble.fr/pub/hp48/
If you have a WEB client (like Netscape), you may prefer to go to my profes-
sional homepage:
http://www-fourier.ujf-grenoble.fr/~parisse/english.html
or to my personal homepage:
http://perso.wanadoo.fr/bernard.parisse/english.html

4 Getting started.

This section explains the interface of Erable. It is assumed that you have
installed the user keys redefinition as explained in section (2.2.4). Now you
must switch your calc to user mode. Look at the status lines, if USER appears,
then you are done, otherwise (or if NORM appears when using JAVA) you must
type the left shift key followed by the α key once or twice (try once and type a
key, if USER disappears then type the left shift- α key sequence twice).

11

4.1 Current variable.

When you start Erable (and each time you reset it by typing VER followed by
the ENTER key), the current variable is set to ’X’. The DEL key is assigned to X.
It is therefore easy to enter a symbolic expression depending of X because you do
not need to press the α key. You may need to modify the current variable. This
is done by changing the content of the VX variable (in the { HOME } directory).
For example to set the current variable to Y, type:
Y ’VX’ STO

4.2 Complex and real modes

Erable has two major modes: complex and real mode. The user flag 13 is set
in complex mode and cleared in real mode (default state). This mode affects
the way Erable outputs results. For example, partial fraction decomposition is
made over IC or over IR depending of the current mode. If you see unwanted i
on the stack, this means that Erable is probably in complex mode. For G/GX
users, the key sequence α-right shift-CST provides an easy way to switch to
complex or real mode using arrow keys to select the mode (type the ENTER key
to confirm). HP48S/SX users can go to real mode either by typing 13 CF or
by typing VER (which reset all flags to their default state) and can switch to
complex mode by typing 13 SF.

4.3 Main functions

The keys redefined by Erable are most of the time preceded by the α and
right-shift keys. For example, the add addition function of Erable is obtained
in USER mode by hitting threes keys: α , Right Shift , + .

The same method applies for other arithmetic operations. The +, −, ∗, /,
yx,
√
x, ±, 1/x, ∂,

∫
keys are redefined (after α and Right Shift) as add,

SUBT, MULT, DIV1, POWER, SQRT, CHS, INVL, der1, RISCH. These commands are
Erable commands for addition, subtraction, multiplication, division, power,
square root, change sign, derivation and integration with respect to the current
variable 1.

All other Erable functions may be reached by the MTH-Erable menu2 or by
a key preceded by α-right shift. To launch the MTH-Erable menu, type the MTH
key, use arrow keys or hit a number to select a topic and type the ENTER key.
After that you select the desired command by hitting the white A-F keys or
search further by hitting the NXT key.

Remark 1 A main menu of the HP48GX is available by hitting the PRG key and
may be useful for beginners. Note that the former MTH and PRG key definition
are reached by α-right shift-MTH or α-right shift-PRG. If you want to delete the

1This variable is contained in ’VX’, it is by default set to ’X’, note that you can easily type
X by hitting the DEL key

2This menu is not available on HP48 S/SX

12

PRG key assignement, type 22.1 DELKEYS (note that the 0.BACK option of the
MTH menu will no longer work)

You can directly reach a topic of Erable by hitting α-right shift followed by
the number of the topic in the MTH-Erable menu. For example, if you hit α-right
shift-1, you will get the BASE ALGEBRA menu, that is the most useful commands
of Erable that are illustrated with an example below:

• EXPA (expand an expression):
(X+1)4

X2−1 EXPA X3+3X2+3X+1
X−1

• COLC (factorize an expression):
X4 − 1 COLC (X2 + 1)(X + 1)(X − 1)

• der1 (derive an expression with respect to the current variable):
ln(ln(X))2 der1 2 1

X
1

ln(X) ln(ln(X))

• RISCH (integrate an expression with respect to the current variable):
eX sin(X)2 RISCH eX 1

2 + eX((− sin(2X) 1
5 + −1

10 cos(2X))

• LIMIT (of the expression at stack level 2, you must specify the variable
and the limit point at level 1, e.g. ’X=0’):
(1 + 1

X)X , X =∞ LIMIT e

• TAYLR (the built-in one):
sin(X), X 4 TAYLR X − 1

3!X
3

• EXEC (to make a substitution at stack level 2, you must specify the sub-
stitution at level 1, e.g. ’X=1+Y’):
ln(X2 + 1) + arctan(X), X = 2 EXEC ln(22 + 1) + arctan(2)

• SOLV (to isolate a variable at level 1 in an expression at level 2):
X4 − 1, X SOLV X, { 1 -1 ’i’ ’-i’ }

• FSIGN (sign of a rational fraction):
X2−X−2 FSIGN returns ’X’: { + 1 - 2 + }. You read the sign starting
from −∞ at the left to +∞ at the right. 1 and 2 are here zeroes from
the rational fraction, in general the value appearing in the list are roots
or poles.

• IPP (integration by part: see 7.3):∫ 2

1
ln(X)dX, X IPP

∫ 2

1
ln(X) dX = 2 ln(2)−

∫ 2

1
1 dX

(applies
∫
uv′ = [uv]−

∫
u′v where ln(X) is the function u and the argu-

ment X is the function v)

Some of these commands are directly assigned to a shortcut:

• the EXPA command is assigned to the α-right shift-SPC sequence,

• the EXEC command is assigned to the α-right shift-EVAL sequence,

13

• i is assigned to the CST key,

• X is assigned to the DEL key,

• ∞ or +∞ is assigned to the α-right shift-DEL sequence,

• −∞ is assigned to the α-left shift-DEL sequence,

Here is a brief description of all the functions of Erable which may be
launched this way:

• α-right shift-1: basic algebra commands:
EXPA, COLC, der1, RISCH, LIMIT, TAYLR, EXEC, SOLV, FSIGN, IPP (see
above)

• α-right shift-2: complex:
re, im, conj, arg, abs and i. Note that you can always get i if you hit
the CST key.

• α-right shift-3: trigonometry:
TEXPA (trigonometric expand), TRIGLIN (trig. linearization), SINCOS (con-
vert complex exp and ln to trigonometric expressions), TRIG (applies
sin2 + cos2 = 1 to simplify an expression), TRIGCOS (same as TRIG, re-
turns only cosines if possible), TRIGSIN (same as TRIGCOS but returns
only sines if possible), HALFTAN (convert to tan of the half-angle), ->SC2
(convert tan to sin and cos of the double angle), T->SC (convert tan to sin
and cos of the same angle).

• α-right shift-4: matrices
rref (row reduction to echelon form), JORDAN (diagonalization of matri-
ces), det (determinant), PCAR (characteristic polynomial), SYST (solves
a linear system), SOLGEN (returns all solutions of a linear system), RDET
(determinant by row reduction), RANG (half-row reduction), idn (symbolic
identity matrix), LCXM (to build a matrix), HILBERT and VAND to build
Hilbert and Vandermonde matrices.

• α-right shift-5, conversions:
AXL (numeric to symbolic matrices or conversely), EXEC (substitution),
SINCOS (exponentials and logarithms to sines and cosines), EXPLN (sines
and cosines to exponentials), FXND (fraction to numerator and denomi-
nator or equality to left and right handsides), NDXF (numerator and de-
nominator to fraction), AXQ and QXA (matrix to symbolic representation
of quadratic forms and conversely)

• α-right shift-6, integer and polynomial arithmetic:
DIV2 (euclidean division), GDC1 (usual greatest common denominator),
GCD3 (extended gcd), ABCUV (Bézout identity), LCM1 (least common multi-
ple), PF (partial fraction decomposition), COLC (factorization), DIVIS (list
of divisors), SIMP2 (simplification of stack levels 2 and 1), EULER (Euler

indicatrix), fact (factorial), comb (
(
n
p

)
).

14

• α-right shift-7, solve and factorization:
FROOTS (roots and poles of a fraction with multiplicity), FCOEF (reverse
of FROOTS), SOLV (isolate a variable in an equation), LNCOLC (collect log-
arithms), COLC (factorization), EXEC (substitution)

• α-right shift-8, exponentials and logarithms:
EXPLIN (linearization of exponentials), EXPLN (convert sines and cosines
to exponentials), LNCOLC (collect logarithms), TEXPA (expand logarithms
and exponentials), TSIMP (transcendental presimplification)

• α-right shift-9, differential calculus:
der (derivative and gradient), RISCH (integration), IPP (integration by
part), SERIES (asymptotic series expansion), LIMIT (limits), DSOLVE (or-
dinary first order differential equation solver), LDEC (linear differential
equation with constant coefficients solver), LAP (Laplace transform), ILAP
(invert Laplace transform)

An easy way to configure Erable is to type the α-right shift-CST sequence
(for Erable MODES) and select the mode you want to switch to.

Let’s finish by redefined keys which are not α-right shifted:

• On SX models, the →Q and →NUM keys (not alpha shifted) are redefined
to handle matrices. They toggle user flags 12, 14 and 15 (XNUM to clear
and XQ to set) and system flag 2.

• On a G/GX models, use α - Right Shift -Q or →NUM (not shifted).

4.4 The main menu

If you hit the PRG key in user mode, you will get a main menu for the HP48,
not only for Erable. This menu will help new users of the HP48. Experienced
users can remove this key assignment, saving some memory (using the command
22.1 DELKEYS). Here is a brief description of this main menu:

1. EDITORS:

• EDIT LEVEL 1:
To modify the object at stack level 1 (shortcut: downarrow)

• VIEW LEVEL 1:
To view (not modify) the object at stack level 1 (shortcut: left shift-
downarrow)

• EDIT STACK:
To Delete, copy or move object from one stack level to another stack
level (shortcut: uparrow or right shift-uparrow)

• SPEC. CHAR.:
To get special characters (shortcut: right shift-PRG)

15

• NEW EQUATION:
To enter a new equation in the EquationWriter environment (short-
cut: left shift-ENTER)

• NEW TEXT:
Enter a new string with the Minwriter editor. See the Minwriter
documentation for editing keys.

• NEW MATRIX:
Enter a numeric array in the MatrixWriter environment (shortcut:
right shift-ENTER)

• NEW LIST:
Enter a new list with the Minwriter editor.

• NEW PROGRAM:
Enter a new program with the Minwriter editor.

• PICTURE:
Modify the graphic object (e.g. the graph of a function) in the
PICTURE environment (shortcut: left shift-rightarrow)

2. VAR, I/O:

• MEMORY:
The memory handler of the HP48: see your variable and their con-
tents (shortcut: right shift-VAR)

• SEND/GET:
The Input/Output menu of the HP48, to exchange files with a com-
puter or another HP48 (shortcut: right shift-1)

• PORTS:
Management of your RAM/ROM card extensions (shortcut left shift-
1)

3. PROGRAMS:

• USER PROG:
The programmation menu of the HP48 (shortcut in user mode: α-
right shift-PRG)

• LIBRARIES:
The libraries installed (shortcut rightshift-2)

4. PHYSICS

• EQ. LIBRARY:
The Equation Library of the HP48 (shortcut: right shift, 3)

• CONSTANTS:
Physical constants and other utilities (shortcut left shift-3). Choose
COLIB (B menu key) to get either the library of constants (CONLI) or
the CONST function (convert e.g. ’c’ at level 1 to the speed of light)

16

• DATE & TIME:
To set or modify the date and the time, and compute with dates and
time (shortcut: left shift-4)

5. SETUP

• CALC MODES:
Modes of the HP48: system flags, angle format, clock display, ...
(shortcut right shift-CST)

• RESET ERABLE:
Like the VER command of Erable: restore standard state (no short-
cut)

• REAL MODE:
Put Erable in real mode, like the command 13 CF

• COMPLEX MODE:
Put Erable in complex mode, like the command 13 SF

• INTEGER ARIT:
Assumes now that you are doing arithmetic on integers, not polyno-
mials, like the command 10 SF

• POLYN. ARIT:
Assumes now that you are doing arithmetic on polynomials, not in-
tegers, like the command 10 CF

• NUMERIC MODE:
Asumes now that your integer input are not exact but numeric, like
the command XNUM

• SYMBOLIC MODE:
Assumes now that you integer input are exact, not numeric approx-
imations, like the command XQ

• TIME SETUP:
The TIME menu of the HP48 to set, browse alarms and date/time
(shortcut right shift-4)

6. STATISTICS
The STAT menu of the HP48: single-var, frequencies, fit data, summary
stats (shortcut: right shift-5)

7. UNITS:
The UNITS menu of the HP48: length, area, volume, time, speed, mass,
force, energy, power, pressure, temperature, electricity, angle, light, ra-
dioactivity, viscosity (shortcut: right shift, 6)

8. NUMERIC
The built-in numerical functions of the HP48:

17

• MATH FNCS
vectors, matrices, list, hyperbolic, real fonctions, base probability,
Fast Fourier Transform, complex, constants: the built-in MTH menu
(shortcut in user mode: α-right shift-MTH)

• SOLVE EQN
The SOLVE menu of the HP48: numeric or semi-numeric solutions for
equations, differential equations, polynomial, linear systems, finan-
cial problems (shortcut: left shift-7)

9. GRAPH
If you want to plot the function at stack level 1, choose PLOT LEVEL 1,
otherwise choose PLOT MENU

10. ERABLE
To launch the Erable main menu if you don’t remember that the MTH key
does it directly. See description above.

5 Simplifications.

Two kinds of simplifications are provided: full rational simplification (EXPA)
and transcental presimplification (TEXPA, EXPLIN, TRIGLIN, TRIGSIN, TRIGCOS,
..., LNCOLC, TSIMP). In many situations, full rational simplification achieve the
whole simplification, but sometimes you will need to detect relations between
exponentials and logarithms; in this situation you should call TEXPA, TRIGLIN,
..., TSIMP, followed by EXPA or COLC to finish the simplification.

5.1 Rational simplifications instructions.

EXPA does a complete simplification of an expression viewed as a rational frac-
tion, COLC tries to factorize a symbolic. For convenience, arithmetic operations
of Erable perform automatic rational simplifications: e.g. add (shortcut: α-
right shift-+) is equivalent to + EXPA.

5.2 Presimplifications instructions

To simplify non rational expressions, you will most of the time apply identities
like ln(xy) = ln(x) + ln(y) or conversely and after you will call EXPA.

5.2.1 Linearization.

Exponential and trigonometric linearization are implemented via:

• EXPLIN: exey → ex+y and for integral powers (ex)n = enx

• TRIGLIN: sin(x) sin(y) = 1
2 (cos(x− y)− cos(x+ y)) and similar identities,

sin(x)n and cos(x)n for n integer

18

5.2.2 Development.

The TEXPA instruction applies the following identities:

• ex+y = exey and enx = (ex)n for n integer,

• ln(xy) = ln(x) + ln(y).
Warning: this identity is only valid module 2iπ

• sin(x+ y) = sin(x) cos(y) + sin(y) cos(x) and cos(x+ y) = cos(x) cos(y)−
sin(x) sin(y)

5.2.3 Trigonometry

The remaining trigonometric simplifications instructions are:

• EXPLN and SINCOS to apply Euler idendities in both directions

• TRIGCOS, TRIGSIN: replace sin2 [resp. cos2] by 1− cos2 [resp. 1− sin2]

• TRIG: replace complex logarithms with arctan functions, then does TRIGCOS
or TRIGSIN (according to the last call to one of these functions)

• TAN2SC: replace tan by sin / cos

• TAN2SC2: replace tan(x) by sin(2x)/(1+cos(2x)) or by (1−cos(2x))/ sin(2x).

• HALFTAN: replace sin(x), cos(x) and tan(x) in terms of tan(x/2)

5.2.4 The TSIMP instruction

TSIMP is used to minimize the number of rational “variables”. It may be used if
RISCH fails because it returns an expression which is “weak-normalized”. Note
that TSIMP considers trigonometric functions as complex exponentials, and sim-
plifies them this way and that the output of TSIMP is affected by the state of
the flag 13 (complex flag): if flag 13 is cleared, then complex logarithms and
exponentials are converted to arctan and sin/cos functions.

5.3 Recurse flag.

If flag 21 is set, “variables” of an expression are simplified recursively (global
name are evaluated, integrals are evaluated by a call to RISCH). Warning: deriva-
tives of user-functions are not evaluated (you have to do an explicit substitution
with EXEC for this).

19

6 Limits, Taylor and asymptotic series.

The program SERIES computes Taylor series, asymptotic development and limit
at finite and infinite points. It should cover a lot of weird limits, even some that
are not handled by the TI92 (not surprising!) nor by maple (more surprising!)
like:

lim
x→0

sin(1/x+ x)− sin(1/x)

The LIMIT instruction may be used if you need only the limit. Note that SERIES
handles more limits than LIMIT, but is a lot slower for trivial cases. SERIES
can not be used with non-exact arguments (like 0.1) and should not be used
with parameters. LIMIT may give strange results with parameters. If you see
a warning message, you will get a binary integer as answer, this means that
SERIES or LIMIT was not successful, the binary integer is an error code.

Syntax of SERIES:
Put on the stack the following arguments in this order

• the function f(x)

• the variable if the limit point is 0 or an equation x = a if the limit point
is a (and the variable is x). This entry is optional if the stack as only 1
argument.

• the order for series expansion (optional), by default 4 (minimum 2, max-
imum 20). If the order is a positive integer, the series expansion is made
from the right, if the order is a negative integer from the left. For bidirec-
tional series expansions, give the order as a binary integer (e.g. #5d).

Type SERIES, this computes the bidirectional limit at level 3. At level 2, you
get a list of two elements: the series expansion and the rest order. They are
expressed in terms of a small parameter h. At level 1, h is expressed in terms
of the initial variable (hence calling EXEC would return the series expansion and
the rest in terms of the initial variable).

Remark 2 • Note that the series expansion is not always fully truncated,
don’t forget to look at the rest. If you need to truncate the series expansion,
split the list on the stack (hit the EVAL key) and call the TRUNC function.

• Sometimes SERIES will not be successful and returns an error code. You
can look at E for more details about the failure.

• For mono-directional series expansion, either precise the order as a posi-
tive or negative integer, or for default order, put an equation x = a+0 for
a left-directional series expansion at a or x = a− 0 for a right-directional
series expansion.

• For limits at infinity: you may use the ∞ symbol (from keyboard type α-
right shift-DEL in user mode or α-right shift-I in normal mode). To get
X = +∞, type X =∞, then hit EVAL.

20

Examples:
1/x x =∞ SERIES
1/x x = +∞ SERIES
1/x x = −∞SERIES
sin(x)/x x SERIES
sin(x)/x x = +∞SERIES√

(2 + x) x 5 SERIES
sin(1/x+ x)− sin(x) x SERIES
(ln(− ln(x+ x2))− ln(− ln(x))) ∗ ln(x)/x x = 0 + 0 SERIES

The syntax of LIMIT is similar: put the function and the ’variable=limit_point’
equation on the stack. Note that you can not force the order for series expan-
sions and LIMIT handles only bidirectional limits (except at infinity). LIMIT
returns only the limit at stack level 1.

Erable can handle relatively complex limits, like the example above (ex-
tracted from the Mupad on-line help):

exp
(

e−x

e−x+e
−2x2
x+1

x

)
− ex

x

X =∞ LIMIT returns −e2.
In addition Erable provides the:

• TRUNC instruction which truncates a series expansion at level 2 with respect
to the rest at level 1.

• DIVPC instruction which make a division in ascending power up to an
integer order. The numerator is at level 3, the denominator at level 2 and
the order at level 1.

These instructions may be used to understand series expansions without cum-
bersome calculations.

7 Derivation and integration.

7.1 Derivation

The Erable derivation instructions are der and der1, they compute the deriva-
tive of a (list of) function(s) like the built-in instruction but do not evaluate
numeric expressions (like

√
2 or 1

2). der1 is used for derivation with respect
to the variable contained in VX and takes only one argument (the function to
derive). der is used with 2 arguments: the (list of) function(s) to derive at level
2 and the variable with respect to which you want to derive at level 1. If level
1 is a list, der returns the gradient of level 2:
2: ’X^2+2*X*LN(Y)-1/Y’, 1: { X Y }
-> { ’2*X+2*LN(Y)’ ’2*X*(1/Y)+1/Y^2’ }

der returns djZ(X,Y,...) for the derivative of the user-defined function Z(X,Y,...)

21

with respect to the j-th variable of z(x, y, ...).
Examples:
Suppose that x → z(x) is the primitive of

√
x3 − 1. Type ’Z(X)’ X der, you

get ∂1z(x) on the stack. Enter
√
x3 − 1 and hit = then enter DEFINE. Now, you

can type ’Z(X^2)’ X der EVAL and get 2x
√

(x2)3− 1.
Try ’Y(X,X^2)’ X der.

7.2 Integration

The main integration command are RISCH and EXPA. The RISCH program ac-
cepts functions as input and (tries to) return the primitive. EXPA should be
called for symbolic expressions which contains the

∫
symbol. The last com-

puted antiderivative is stored in the variable PRIMIT. The variable ERABLEMSG
contains additionnal information if RISCH returns an unevaluated antiderivative
(with a

∫
sign).

Some examples for RISCH:

• 1
x2−4 →

1
4 ln(x− 2)− 1

4 ln(x+ 2)

• x ln(x)→ 1
2x

2 ln(x)− 1
4x

2

•
√
x2 − 1→ 1

2 ln(−x+
√
x2 − 1) + x

2

√
x2 − 1:

• 1/(sin(x) + 2)→ −2
3

√
3 arctan(−2 tan(x/2)−1

3

√
3)

The RISCH program must sometimes be used in conjunction with the TSIMP
function to get “weak normalization”. If you get No closed form in ERABLMSG,
try TSIMP and RISCH again, if you get again the message No closed form,
this does not mean that RISCH failed, but that your input does not admit an
antiderivative which may be expressed in terms of elementary functions.

Remark 3 • RISCH is only a partial implementation of the Risch algorithm:
it works with pure transcendental extensions (i.e. square root are gener-
ically not allowed), and exponential polynomial parts must not contain
logarithms or other exponentials. Examples:

ln ln(x),
1

ex2+1 − 1
, x3e(

x+1
x+2)

are allowed (and returned since they do not have a antiderivative which
may be expressed with elementary functions), but:√

ln(x)2 − 1, eln(x)2+1

are not allowed as input.

In addition to this partial implementation, RISCH can integrate fractions
of the type F (x,

√
ax2 + bx+ c).

22

• You can not use the name of the current variable as a parameter name in
an integral, for example if VX is set to X, evaluation of:∫ T

0

(X2 − Y 2) dY

does not return a correct answer, because X in the integral is a parameter.
You can however use X as integration variable, e.g.∫ T

0

(X2 − Y 2) dX

works.

For integrals with bounds, the right instruction is EXPA.
Example of EXPA usage (in real and symbolic mode):∫ 2

1

1
x3 + 1

EXPA
ln(3)− 2 ln(2)

6
+

π

18

√
3

If you have still computed the antiderivative e.g. with RISCH, you can evaluate
it between two bounds using PREVAL. Arguments of PREVAL are a function f(x)
at level 3, lower and upper bounds a and b at level 2 and 1. It returns f(b)−f(a)
(x is the variable contained in VX).

Remark 4 Warning: EXPA does not detect discontinuities of the antiderivative.
It blindly computes the value at both end of the integration interval (by a call
to LIMIT, hence infinite bounds are allowed) and returns the difference. For ex-
ample,

∫ 2π

0
1

sin(x)+2 returns 0. You should always check the answer numerically
and if the answers are not the same, you have to study the antiderivative for
discontinuities.

7.3 Integration by part

Integration by part is implemented via the IPP command. You have to put a
defined integral

∫ b
a
f(t) dt at level 2 and a function u(t) at level 1. Let v = f/u′,

then IPP returns∫ b

a

f(t) dt =
∫ b

a

u′v(t) dt = [uv(t)]ba −
∫ b

a

uv′(t) dt

You may call IPP twice or more. In this case, the transformation applies on the
first integral of the second member of the equality.
Example:
• ∫ x

0

arcsin(t)2 dt

’T’ IPP
√

1− T 2 IPP EXPA returns the antiderivative of arcsin(x)2.

23

• Try: ∫ x

0

exp(t) sin(2t) dt

with exp(t) IPP twice. The resulting equality may be used to compute
the antiderivative (RISCH may be called directly on this example, but IPP
gives a pedagogical approach)

8 Ordinary differential equations.

8.1 Linear differential equations (systems) with constant
coefficients.

The most efficient tool for these equations is the Laplace transform defined by:

Y (s) = L(y)(s) =
∫ ∞

0

e−sty(t) dt

Example: solve y′ + 2y = cos(x). Apply L, since:

L(y′)(s) = sL(y)(s)− y(0)

we get:
(s+ 2)L(y)(s) = L(cos(x))(s) + y(0)

hence:

y(x) = L−1

(s
s2+1 + y(0)

s+ 2

)
= L−1

(s
s2+1

s+ 2

)
+ y(0)L−1(

1
s+ 2

)

since L(cos(x))(s) = s/(s2 + 1). This method is implemented by the LDEC
instruction. It takes the second member at level 2 (here cos(x)), and the char-
acteristic equation at level 1 (here x+ 2) and returns the solution vanishing at
the origin at level 1, the characteristic equation at level 2, and 1 at level 3. Be
sure that the current variable name contained in VX is the right one!

8.1.1 Laplace transform.

The program LAP takes the function f as argument and returns L(f) (Laplace
transform is performed with respect to the variable contained in VX).

8.1.2 Inverse laplace transform.

The program ILAP performs inverse Laplace transform of rational fractions.
Example: for x/((x2 + 1)(x + 2), type ’X/(X^2+1)’ ’X+2’ / ILAP to get the
answer:

y(x) =
1
5

(2 cos(x) + sin(x)) +
−2
5
e−2x

Remark 5 The name of the Laplace variable is the same name as the normal
variable (and is contained in VX).

24

8.1.3 Linear differential equations systems with constant coefficients.

Example: suppose we want to solve the following system:{
y′1(x) = y1(x) − y2(x) + 1
y′2(x) = 2y1(x) + 4y2(x) + ex

with initial data y1(0) = y2(0) = 0.
For scalar linear differential equations with constant coefficients, it is a well-

known procedure to use Laplace transform, e.g. to solve

ay′′ + by′ + cy = f(x)

one would perform the L-transform and get:

(as2 + bs+ c)L(y) = L(f)(s) + a(sf(0) + f ′(0)) + bf(0)

where f(0) and f ′(0) are the initial consitions at x = 0. If L(f) is a rational
fraction, ILAP allows you to recover y by inverse Laplace transform of

L(f)(s) + a(sf(0) + f ′(0)) + bf(0)
as2 + bs+ c

But this method may be applied to systems of linear differential equations as
well. The aim of LDEC is to help you solving 1st order systems (note that higher
order systems may always be rewritten as 1st order systems). Let y = (y1, ..., yn)
be a vector of functions of x and suppose that we want to solve:

y′ = Ay + b

where A is a n× n constant matrix and b a vector of n functions of x. Denote
by L(b) the vector of the n Laplace transform of the n functions of b , and by
y(0) the vector of n initial data at x = 0 . Then

(sI −A)L(y) = L(b) + y(0)

(I denotes the identity matrix), hence:

L(y) = (sI −A)−1(L(b) + y(0))

and:
y = L−1

[
(sI −A)−1(L(b))

]
+ L−1

[
(sI −A)−1y(0)

]
(1)

The purpose of LDEC is to compute

y = L−1((sI −A)−1(L(b)))

the solution with initial data y(0) = 0, given A and b. The stack should be
prepared as:
stk2: b
stk1: A,

25

then type LDEC and you will get y at stack level 1. Stack level 3 is the comatrix,
stack level 2 is the determinant of (sI −A).

Let’s do it for the example above:
First put b on the stack: { 1 ’EXP(X)’ } (here VX is set as usual to ’X’). Now
put the matrix A on the stack:
{ { 1 -1 } { 2 4 } }
After calling LDEC, we get:{

y1 = −1/2ex − 2/3 + 2e2x − 5/6e3x

y2 = 1/3− 2e2x + 5/3e3x

At level 2, we have det(sI −A) (with s = X):

det(sI −A) = (2− s)(3− s)

and level 3 is the comatrix of sI −A:(
−4 + s −1

2 −1 + s

)
Level 2 and 3 will be useful if we want to compute the solution of the LDEC with
non-zero initial data , e.g. y1(0) = 1, y2(0) = 2. If we look at Equation (1),
we see that we have to add L−1

[
(sI −A)−1y(0)

]
to the previous solution. To

do this, type { 1 2 }, multiply by the comatrix from level 3, multiply by the
inverse of the determinant from level 2 (you can note divide a vector, you must
first invert the determinant and then multiply):

(sI −A)−1(1, 2) = (
−6 + s

6− 5s+ s2
,

2s
6− 5s+ s2

)

call ILAP:
(4e2x − 3e3x,−4e2x + 6e3x)

and add the result to the previous solution:{
y1 = −1/2ex − 2/3 + 6e2x − 23/6e3x

y2 = 1/3− 6e2x + 23/3e3x

8.2 First order equations.

The DSOLVE program recognizes and solves the following equation types:

• y′(x) = f(y(x)),

• y′(x) = f(x, y(x)) with f homogenous,

• y′(x) = g(x)y(x) + h(x)y(x)α, α ∈ IR (Bernouilli type)

• y′(x) = f(x)g(y) (separable, if f and g are rational fractions)

• y′(x) = f(x)y(x) + g(x) (linear)

26

The input is the function f(x, y(x)) or an equation like ’d1Y(X)+Y(X)=2’. Ex-
amples:

Y(X)^2+Y(X) DSOLVE (incomplete)
X*Y(X)+1-X^2 DSOLVE (linear)
(Y(X)-X)/(Y(X)+X) DSOLVE (homogenous)
Y(X)^2+X*Y(X) DSOLVE (Bernouilli)

The output may be y as a function of x or x as function of y or x and y as a
function of t (parametric solution) for an homogenous ode. The equation type
is stored in the ODETYPE variable.

9 Substitution, change of variables: EXEC.

The EXEC programs checks the object type at stack level 1 and performs the
corresponding action:

• one algebraic substitution:
If stack 1 is an equation (’objA=objB’), replace objA by objB in stack2.
The syntax is ’old_name=expression’ EXEC.
oldname may be a global name, an expression (in this case, the first global
name in this expression will be isolated) or a user-defined function.
Examples:

– ’X^2+2*X+5’ ’X=1’ EXEC: evaluate an expression at x = 1.

– ’X=Y^2’ EXEC: change of variables, works in integrals too

– ’2*Z(X)-X*d1Z(X)’ ’Z(X)=X^2 EXEC: in a differential equation, re-
place the function z(x) by x2.

– ’Z(X)+d1Z(X)’ ’Z(X)=EXP(-X)*Y(X)’ EXEC:
change of function in a differential equation.

– ’X^2+X*COS(X)’ ’X^2=1-Y’ EXEC: replace x2 by 1− y and replace
x by

√
1− y.

• multiple substitutions:
If stack 1 and 2 are lists, replace each object of list2 in stack level 3 by
the corresponding object of list1. The syntax is
{ old_name_1 ... old_name_n } { expr_1 ... expr_n } EXEC
Note that here EXEC does only substitutions.
Examples:

– ’SIN(X)^2+SIN(X)*COS(X)’ { ’SIN(X)^2’ } { ’1-COS(X)^2’ } EXEC:
replace sin(x)2 by 1−cos(x)2 but does not replace sin(x) by

√
1− sin(x)2.

– ’COS(X)+i*SIN(X)’
{ SIN COS }
{ << i * EXP DUP INV - i 2 * / >>
<< i * EXP DUP INV + 2 / >>

27

}
EXEC

replace sin and cos by complex exponentials. If you call EXPA after
you get eix.

• variable isolation:
If stack 1 is a symbolic but not an equality, EXEC tries to isolate stack level
1 in stack level 2. Example:

’X^2-5’
X
EXEC

returns ’X=’
√

5.

• doall function:
If stack 1 is a program, EXEC executes program at stack level 1 recur-
sively on the components of a list object at stack level 2. Example:
{ 1 2 3 } << NEG >> EXEC
is the same as { 1 2 3 } CHS

10 Arithmetic.

10.1 Complex arithmetic

• re: real part

• im: imaginary part

• conj: conjugate

• abs: absolute value (modulus)

• arg: argument. Warning: for expressions containing variables, the re-
turned argument is only valid modulo π.

Remark 6 If flag 13 is cleared (real mode), all global names and all non ratio-
nal functions are considered as real w.r.t. the instructions RE, IM, CONJ. This
could lead to false simplifications if a global name stays for a complex, or if a
non-rational inverse function is called with a usually forbidden real argument,
like LN(-1) or ASIN(2)

Solution: either replace your global name, say ’Z’, by ’X+iY’ or set flag 13
(shortcut α-right shift-CST or 13 SF)

28

10.2 Integer and polynomial arithmetic

You may force integer arithmetic by setting flag 10 (shortcut α-right shift-CST
or 10 SF). Otherwise, polynomial arithmetic is assumed. This is important for
instructions like GCD3 or ABCUV.

• DIV2: euclidean division. Stack 2 is the quotient, stack 1 the remainder.

• GCD1:
returns the greatest common divisor d of two objects a and b (integers,
Gauß integers, polynomials). Examples:
’X^2+2*X+1’ ’X^2+3*X+2’ GCD1 returns ’X+1’
25 15 GCD1 returns 5
If flag 12 is clear returns 1.

• LCM1: lowest common multiple (GCD1(a, b)×LCM1(a, b) = a×b). Examples:
’X^2+2*X+1’ ’X^2+3*X+2’ LCM1 returns ’(X^2+2*X+1)*(X+2)’
25 15 LCM1 returns 75

• GCD3: extended gcd algorithm, given x and y returns d , u and v s.t.:

ux+ vy = d

(d is a multiple of the gcd of x and y by an invertible, i.e. an integer in
the univariate case)

• ABCUV: (Bezout identity)
solve the equation c=ax+by Examples:

’X^2+2*X+1’ ’X^2+3*X+2’ ’X+1’ -> -1 1 1
’X^2+2*X+1’ ’X^2+3*X+2’ 1 -> 0

This means for the first case that:

(X + 1) = (X2 + 2X + 1) ∗ (−1) + (X2 + 3X + 2) ∗ 1

as in the second case there is no solution because the gcd of x2 + x + 1
and x2 + 3x+ 2 does not divide 1.

• LGCD: returns the gcd of a list of objects.

• SIMP2: simplifies two objects by dividing them by their GCD. Sets flags
12, 14 and 15. Ex:
stk2: 9, stk1: 6 SIMP2 -> stk2: 3, stk1: 2

• DIVIS: gives a list of divisors of an object. Example:
21 -> { 1 7 3 21 }

• fact and comb: like the built-in FACT and COMB instructions but for long
integers.

29

• EULER: Euler indicatrix
Given an integer n, returns an integer e: the number of integers lower
than and prime with n.
Example:
for n = 25, e = 20 because 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18,
19, 21, 22, 23, 24 are prime with 25.

• PA2B2 (kernel library):
Given a prime p which is 1 modulo 4, returns a complex z = a + ib such
that |z|2 = a2 + b2 = p. Used for factorization of Gauß integers.

• XFRC:
Same as→Q but handles quadratic irrationals (recognize a quadratic irra-
tional if its expansion in continued fraction is ultimately periodic of period
less or equal to 3) Examples:

1.20710678118→ 1
2

+
1
2

√
2 1.5→ 3

2

• ORND:
round object at stack level 2, stack level 1 is the expected denominator of
all rationals of the object. For example, .49999999999 + .2000000001 ∗ x
10 ORND returns .5 + .2 ∗ x.

10.3 Infinities.

The arithmetic operations of Erable accept infinity arguments. The +∞ symbol
may be obtained from the keyboard by α-right shift-I in normal mode or α-right
shift-DEL in user mode followed by ENTER. The −∞ symbol is obtained by hitting
the quote key, the - key and α-right shift-I or α-right shift-DEL followed by ENTER.
∞ and −+∞ are understood as unsigned infinity (with the following exception:
∞ is understood as +∞ in a bound of an integral or in a LIMIT instruction).
The ? symbol means that the result of an operation is undefined. All operations
involving ? will return ? after simplifications.

Remark 7 The current release returns ? for some expressions which are not
undetermined, like (+∞)−∞.

Be aware of the fact that arithmetic operations on infinities may return false
answers because Erable can not check for nullity if non rational expressions are
encoutered. For example (sin(2x) − 2 sin(x) cos(x))/0 will return ∞ instead of
0. This remark applies to the LIMIT instruction too (call SERIES if the answer
of LIMIT seems false).

10.4 Modular arithmetic

You must first store an integer n in the MODULO variable (by default n is set
to 2). All computations are made modulo this integer. The kernel library
provide the following commands MODADD, MODSUBT, MODMULT, MODDIV, MODPOW

30

and MODINV for the usual operations. MODADD, MODSUBT, MODMULT, MODDIV now
accepts polynomials and Gauß integers as well as integers as input. MODPOW
accept polynomial as first argument, the second argument must be a positive
integer.

Remark for alg48 users: these functions are analog to AADD, ASUB, ... applied
to mod-polynomials (like ’MOD(X^2+3*X+7,11)’) but without MOD notation. I
reserve the MOD notation for a future use with a polynomial as second argument
so that it will be possible to compute e.g. in ZZ/3ZZ[X]/(X2 + 1).

11 Factorization. Solving equations.

11.1 Summary of the instructions.

• COLC: factorize a symbolic fraction (returns a symbolic). Factorization may
be incomplete, but is squarefree and all first order factors are detected.

• LNCOLC: collect logarithms, e.g. ln(2) + ln(3) LNCOLC returns ln(2× 3).

• SOLV: tries to isolate a variable name at stack level 1 in the symbolic ex-
pression located at level 2. Returns the variable name at level 2 and a list
of solutions at level 1. Examples:

– ’X^4-1’ X SOLV returns { 1 -1 ’i’ ’-i’ } at level 1 (and X at
level 2)

– ’2*SIN(X)^2-3*SIN(X)+1’ X SOLV returns

{ ’-(12*pi*n2+-5*pi)/6’ ’(12*pi*n2+pi)/6’
’-(4*pi*n2+-pi)/2’ ’(4*pi*n1+pi)/2’ }

where n1 and n2 represent integers.

SOLV will be successful if the symbolic expression is a polynomial of a
function of the variable or a product of polynomials. Otherwise it will
fail. Hence, it may be useful to rewrite the symbolic expression using
LNCOLC or/and COLC before calling SOLV. Example:
’LN(X-1)+LN(X+2)=2’ X SOLV doesn’t work
but ’LN(X-1)+LN(X+2)=2’ LNCOLC X SOLV works

• FSIGN: returns the sign of a monovariate rational fraction as a list of signs
+ or - separated by roots or poles of the rational fraction, starting from
−∞ at the left tp +∞ at the right of the list.
Example:
’(X^2-1)/(X^3-7*X^2+16*X-2)’ FSIGN
returns:
’X’: { - -1 + 1 - 2 - 3 + }
hence x2−1

x3−7x2+16x−2 is negative for x ∈ (−∞,−1) ∩ (1, 2) ∩ (2, 3), positive
for x ∈ (−1, 1) ∩ (3,+∞), and zero or infinite for x ∈ {−1, 1, 2, 3}.

31

• FROOTS: given an object as input, outputs the list of var (stack level 3),
the list polynomial (2), and the list of root/multiplicity (1) (each root is
followed by its multiplicity). Examples:

* ’X^3-6*X^2+11*X-6’
-> 3: { X }, 2:’X^3-6*X^2+11*X-6’ , 1: { 2 1 3 1 1 1 }

* ’1/X^2’ -> 3: { X }, 2: ’1/X^2’, 1: { 0 -2 }
* ’X^2+2*X*Y+Y^2’ ->
3: { X Y }, 2: ’X^2+2*X*Y+Y^2’, 1: { ’-Y’ 2 }

For a symbolic, FROOTS factorizes with respect to the variable contained
in VX, or if the symbolic is independant of VX with respect to the first
variable of LVAR applied to the symbolic.

(For the SX version only):
If stack 1 is a real integer, FROOTS computes the roots of a list polynomial
with numeric coefficient using Bairstow method (real coefficients) or La-
guerre method (complex coefficients). During iterations, you can modify
some parameters:

– E*10: (ε × 10) multiplies the test value by 10, use this when there
are multiple roots.

– E/10: divides the test value/10, for accurate precision (use this after
you have found all multiple roots)

– RAND: reset current iteration (restart with random initial value)

– STOP abort iteration (for the next one or two roots)

Displayed are the last found roots and the current test value (to compare
with the ε value). Before starting the program, you must specify the ε
value and the number of test-successfully iterations using the following
stack input:

– 3: list polynomial,

– 2: test value (positive real),

– 1: iteration number (real integer)

Example:

{ 1 -21 183 -847 2196 -3024 1728 }
1E-4
3
FROOTS
-> approximatively { 3 3 3 4 4 4 }

32

The result is bad since 3 and 4 are multiple roots.
(End of specificity of the SX version)

• FACTO: same stack as FROOTS but returns a list of ”prime” factors instead
of roots. Example:

* ’X^3-6*X^2+11*X-6’
-> 3: { X }, 2: ’X^3-6*X^2+11*X-6’, 1: { ’(X-2)’ 1 ’(X-3)’ 1 ’(X-1)’ 1 }

* 21 -> 3: { }, 2: 21, 1: { 3 1 7 1 }

• FCOEF: input is a list of roots/multiplicity, output is a fraction or polyno-
mial with leading coefficient 1 having this roots (and poles). Example:
{ 1 1 2 1 3 1 } -> ’(X-3)*(X-2)*(X-1)’
{ A -1 2 1 } -> ’(X-2)/(X-A)’

11.2 A word about factorization.

You should skip this section for a first reading. Factorization of polynomial is
very important in several mathematical functions, like symbolic integration or
matrix diagonalization. It is important to understand the mechanism used by
Erable to perform this tasks.

Let’s begin by recalling some mathematicals facts:

• Theorem (d’Alembert):
A polynomial of degree n has exactly n complex roots (counted with mul-
tiplicity).

• Formula exists to get the solution of polynomials up to order 4 but Galois
proved the following theorem last century:
There is no formula for solving a generic polynomial of degree ≥ 5 (by
algebraic operations and extraction of n-th roots)

This means that you can not root a multivariate polynomial of order ≥ 5 (for
such polynomials, systems like Maple, Reduce, Axiom Mathematica or Mupad
use algebraic extension), and that you can only root numerically a univariate
polynomial of order ≥ 5. Note that the generic solution of a polynomial of
order 3 is still complicated and of order 4 very complicated. I think that it is
not possible to handle the generic solution of polynomials of order 3 or 4 on the
HP48 in a reasonable amount of time. Hence, only polynomial of order 2 are
generically solved by Erable.

However, in some situations, you can root exactly polynomials of order ≤
3, by searching multiple roots and by finding obvious roots (or obvious factor).
The rooting algorithm of Erable search first multiple roots by computing the
gcd of the polynomial and his first derivative (this is the SQFFext algorithm
in the source of Erable). Of course flag 12 must be set for this step to be
done. If a univariate polynomial has only integer (or rational) coefficients,

33

you can find all rational solutions of this polynomial by testing a finite set
of rationals (of the form numerator/denominator where numerator is a divisor
of the constant coefficient and denominator a divisor of the leading coefficient).
This is implemented in Erable by the nullnamed XLIB EVIDENText which is
called if flag 14 is set. Hence, Erable detects all 1st order factors of a symbolic.

If exact solving fails, Erable calls the numeric solver for univariate polyno-
mials (which is the HP48GX PROOT function in ERABLEG.LIB or the Bairstow
or Laguerre algorithm in erable.lib) and tries to find second order polyno-
mial with integer coefficients by coupling 2 approximate solutions (this was an
idea of Mika Heiskanen implemented in POLYLIB). Hence Erable should find all
rational and quadratic irrationals roots of a univariate polynomial (unless the
polynomial is badly conditionned).

For multivariate polynomials, the two first steps are achieved (EVIDENText
and SQFFext). Erable should find all rational multivariate roots of a polynomial
(1st order factors). Unfortunately, Erable does not implement the exhaustive
search of all 2nd order (or greater) multivariate rational factors. This can be
performed using the FCTR function of the ALG48 library.

Abstract of the Sysrpl XLIBs (include erextdec.h and erhash.h in your
source code to use them) to factorize:

• EVIDENText: finds rational roots

• SQFFext: finds square-free factorization of a polynomial

• SOLVext: roots a univariate polynomial numerically and tries to rebuild
quadratic irrationals roots

Abstract of the user commands to factorize:

• COLC:
for symbolic input calls SQFFext, then EVIDENText, does not call SOLVext,
for list input calls only SQFFext

• FROOTS: calls SQFFext then EVIDENText then SOLVext,

• FACTO: calls SQFFext then EVIDENText, does not call SOLVext

Flags 12 and 14 may be cleared to skip respectively SQFFext and EVIDENText.

12 Linear algebra.

List of lists are used to represent symbolic matrices, in other words a symbolic
matrix is entered like a numeric matrix, replacing [by { and] by }. Symbolic
vectors are allowed as well (represented as lists).

34

12.1 Building a matrix

To build a matrix, you may type it as usual with { and } instead of [and] or
you may use one of the following instructions:

• idn: to build a symbolic identity matrix In (if n is at level 1)

• LCXM: to build a matrix A = (aij)1≤i≤l,1≤j≤c. The command takes 3
arguments: l, c and a program building aij from i and j. Example:
2 4 << SQ + >> LCXM returns a 2× 4 matrix with aij = i+ j2.

• VAND and HILBERT return Vandermonde and Hilbert matrices given re-
spectively a list of objects or an integer.

12.2 Operations

Erable provides the arithmetic usual operations on matrices and vectors (add,
SUBT, MULT, CHS) and:

• STUDMULT: (MATR directory) student multiplication of matrices (term by
term)

• TR: trace of a matrix

• TRAN: transposed of a matrix (true transposed, no conjugation)

• XY: scalar product of two vectors

• cross: cross product of two 3-d vectors.

12.3 Gauß -Jordan row reduction.

Summary of the instructions:

• rref: row reduction to echelon form. At level 2, the list of pivoting
coefficients is given, this is useful to treat particular cases.

• RANG: like rref but creates 0 only under the diagonal.

• det and RDET: determinant (using respectively the O(n ∗ n!) algorithm or
row reduction)

• INVL: inverse of a matrix using row reduction

• LU2: given a square matrix, returns L−1 and U s.t. A = LU (i.e.
A =stk2−1×stk1) where L and U are lower and upper triangular (maybe
w.r.t. to a permutation matrix, this means that computing the inverse of
L or U is trivial). For comparison, the built-in LU returns three matrices
L, U and P s.t. A = PLU .

• SYST and SOLGEN: solution of a linear system.

Note that all instructions using row reduction show intermediate steps if flag 1
is set (1 SF). If flag 1 is cleared (1 CF), you get directly the results.

35

12.3.1 Solving a linear system.

Suppose you want to find (x, y) s.t.:{
mx + y = −2
mx + (m− 1)y = 2

where m is a parameter. SYST instruction. Type a list containing the linear
equations and as last element put the list of unknowns. Here:
{ ’M*X+Y=-2’ ’M*X+(M-1)*Y=2’ { X Y } }
Then call SYST or SOLGEN. For SYST, you get the solution at level 1, the list of
particular cases at level 2 and the original system at level 3. For SOLGEN you
get the same results but at level 2, 3 and 4 and the paramatrized solution at
level 1.

On the above example, we get at level 1:
:X:’-2/(M-2)’ :Y:’4/(M-2)’
At level 2, you get the list of pivots. The result returned by SYST and SOLGEN
is incorrect if one of the pivot is 0. Here level 2 is:
{ ’M^2-2*M’ ’-M+2’ -1 ’M+-2’}
Using M SOLV, we see that we have to solve for the particular cases m = 0 and
m = 2. The commands SYST and SOLGEN create a variable named SYSTEM to
help solving particular cases. To solve for m = 2, recall SYSTEM on the stack,
type ’M=2’ EXEC, and call SYST.

For systems, the SOLGEN program provides another way of writing the solu-
tion as an affine space of solutions. Recall the matrix on the stack (simply hit
SYSTEM), type:
’M=0’ EXEC SOLGEN
you get at level 2:
If { }, { X Y }=:{ X -2 }
(level 1 is the same as the result of SYST). This means that (x,−2) is solution for
every x. The If statement shows necessary conditions for the system to have
solutions (here no condition, but if we try m = 2 instead of m = 0 the system
has no solution: the If statement is If { ’0=-1’} never fulfilled).

Another way to solve the system is the enter the matrix of the system
{ {M 1 -2} { M ’M-1’ 2 } }
and call rref to reduce it. You get at level 1:
{ { ’M^2-2*M’ 0 ’-2*M’ } { 0 ’M-2’ 4 } }.
This means that:

(m2 − 2m)x = −2m, (m− 2)y = 4.

The reduction is correct iff all the coefficients in the list at level 2 are non 0.
You should have at level 2:
{ 1 ’M-2’}
The second coefficient vanishes if m = 2. You have to solve for this particular
case again. To do this, you can use the variable named MATRIX (which is created
if the argument contains at least one parameter). Recall this matrix and type:

36

’M=2’ EXEC
This replace all occurences of M by 2 in the original matrix. Now type rref
again, you get:
{ { 2 1 -2 } { 0 0 4 } }
The last line means that:

0x+ 0y = 4

which is clearly impossible; the system has no solution.

12.3.2 Inversion

The INVL implements the Gauß method to invert matrices.

{ { ’1/2’ -1 }
{ 1 ’2/3’ } }

INVL returns
{ { ’1/2’ ’3/4’ }
{ ’-3/4’ ’3/8’ } }

12.3.3 Determinant

The RDET instruction implements Gauss row reduction to compute determinant.

{ { 1 T T T }
{ 1 K T T }
{ 1 T K T }
{ 1 T T K } }

RDET -> ’(-T+K)*(-T+K)*(-T+K)’

12.4 Kernel and image of a linear application.

To get the kernel of a linear application f with matrix A, enter the matrix A
and type KERN. This will return the parametrized equations of the kernel like
SOLGEN.

To get a basis of the image of f , enter the matrix A, type:
<< TRAN rref >>
the basis is made of the non-zeros lines of this matrix.

12.4.1 Other examples.

• LU decomposition example:

A =
(

1 2
3 4

)
LU2 returns:

L−1 =
(

1 0
−3 1

)
U =

(
1 2
0 −2

)
We have A = LU .

37

• Rank of a matrix: 
1 2 4 6
−1 3 5 7
2 1 0 1
2 6 9 14

 ,

hit RANG, and look at the matrix:
1 2 4 6
0 5 9 13
0 0 −13 −16
0 0 0 0


the rank is 3, the number of non zero lines (BTW you get a half reduced
matrix)

• Linear relations between vectors
Suppose we want to know the rank and linear relations existing between
v1(1, 2, 0), v2(−2,−1, 1), v3(0, 3, 1) ∈ IR3:

{ { 1 2 0 V1 }
{ -2 -1 1 V2 }
{ 0 3 1 V3 } }

then RANG, we get:

{ { 1 2 0 V1 }
{ 0 3 1 ’2*V1+V2’ }
{ 0 0 0 ’-(2*V1)-V2+V3’ } }

The family is of rank 2 (the 3rd line is 0) and −2v1 − v2 + v3 = 0.

12.4.2 Stack input/output for reduction instructions.

Program Input Output
LU2 1: matrix A = LU 3: pivots, 2: L−1, 1: U
RANG 1: matrix 2: pivots, 1: half-reduced matrix
rref 1: matrix 2: pivots, 1: rref-ed matrix
RDET 1: matrix 1:determinant
INVL 1: matrix 1: inverse
SYST 1: { equations { unknown } } 3: original system

2: list of pivots
1: result as a list of tagged algebraics

SOLGEN 1: { equations { unknown } } 4: original system
3: list of pivots
2: result, 1: list of tagged algebraics,

38

12.5 Diagonalization

The diagonalization instructions are:

• MAD: given a square matrix, returns determinant, formal inverse, a list
polynomial and the characteristic polynomial. The list polynomial PA is
a matrix coefficient polynomail defined by the relation:

(xIn −A)PA(x) = M(x)In = M(x)In −M(A) (2)

where M denotes the characteristic polynomial of A.

• PCAR: characteristic polynomial using det

• JORDAN: compute eigenvalues and eigenvectors (cf. infra)

Given a square matrix A, JORDAN returns 6 levels:

• 6: det(A)−1

• 5: A−1

• 4: list of eigenvalues (with multiplicities)

• 3: characteristic polynomial

• 2: minimal polynomial M (it divides the characteristic polynomial)

• 1: list of characteristic spaces tagged by the corresponding eigenvalue
(either a vector or a list of Jordan chains, each of them ending by a
”Eigen:”-tagged eigenvector)

Examples:

1.

A =

 1 −1 0
0 1 −1
−1 0 1


returns:

6: 0
5: { { inf inf inf }

{ inf inf inf }
{ inf inf inf } }

4: {0 1 ’3/2+i/2*V3’ 1 ’3/2-i/2*V3’ 1 }
3: ’X^3-3*X^2+3*X’
2: ’X^3-3*X^2+3*X’
1: { :0: {1 1 1}

:’3/2+i/2*V3’: {1 ’-1/2-i/2*V3’ ’-1/2+i/2*V3’}
:’3/2-i/2*V3’: {1 ’-1/2+i/2*V3’ ’-1/2-i/2*V3’} }

39

This means that A has 3 eigenvalues 3±
√

3i
2 , and a basis of eigenvectors is:

{(1, 1, 1), (1,
−1∓ i

√
3

2
,
−1± i

√
3

2
)}

corresponding to 0, (3 +
√

3i)/2, (3−
√

3i)/2. The characteristic and mini-
mal polynomial are identical (this is generically the case) X3−3X2 + 3X.
The matrix is not invertible and has a 0 determinant.

2. For the identity matrix I2 (2 idn), we get:

6: 1
5: { { 1 0 } { 0 1 } }
4: {1 2}
3: ’X^2-2*X+1’
2: ’X-1’
1: { :1, Eigen: { 0 1 } :1, Eigen: { 1 0 } }

The minimal polynomial is X − 1, different from the characteristic poly-
nomial (X − 1)2 = X2 − 2X + 1.

3.  1 2 1
2 0 0
1 0 3


4. An example with 1 parameter:

{ { 1 A }
{ A 1 } }

5. In dimension greater than 2, the factorization routines may fail. For this
reason, you may have to call MAD, factor the characteristic polynomial (e.g.
by trying the FCTR instruction of ALG48) before calling JORDAN. If you have
ALG48 installed, try this:

{ { 1 1 A }
{ 1 A 1 }
{ A 1 1 } }

MAD FCTR JORDAN

Note that this example is solved by typing JORDAN directly but it may fail
in other situations.

6. Jordan cycles example:

A =

 3 −1 1
2 0 1
1 −1 2

 ,

returns:

40

6: -4
5: : { { ’1/4’ ’1/4’ ’-1/4’ }

{ ’-3/4’ ’5/4’ ’-1/4’ }
{ ’-1/2’ ’1/2’ ’1/2’ } }

4: { 2 2 1 1}
3: ’X^3-5*X^2+8*X-4’
2: ’X^3-5*X^2+8*X-4’
1: { :2, Char: { 2 2 1 } :2, Eigen:{ 1 1 0 } :1: { 0 1 1 } }

This means that 2 has multiplicity 2, but the corresponding eigenspace
is only 1-dimensional (spanned by (1, 1, 0) the last vector of the Jordan
chain). The first vector (2, 2, 1) is only a characteristic vector, his image
by (A− 2I) is the eigenvector (1, 1, 0) .

Remark 8 You can not use the current variable name as a parameter of a
symbolic matrix that you want to diagonalize. This would lead to incorrect
results. For example, is VX is set to X, you can not diagonalize the following
matrix:

{ { 1 1 X }
{ 1 X 1 }
{ X 1 1 } }

Workaround: make a change of variable, e.g. ’X=A’ EXEC.

12.6 The MMULT— instruction.

This multiplication takes 3 arguments: 2 objects at levels 3 and 2, and a real
at level 1: the product type:

• 0: matrix, matrix

• 1: matrix, vector

• 2: matrix, scalar,

• 3: vector, scalar

• 6: scalar, matrix

• 7: scalar, vector

It is useless in interactive mode (if you plan to write your own program over
Erable, you may need MMULT to switch to internal mode data representation for
speed).

41

13 Multivariate analysis.

Erable implements the following functions:

• der with a list of variables at level 1 returns the gradient of the expression
at level 2 with respect to these variables.
Example:
’X+2*Y’ { X Y } der returns { 1 2 }= (∂f∂x ,

∂f
∂y).

• DIV returns the divergence of a list-vector at level 2 with respect to a list
of variables at level 1.
Example:
{ ’X+2*Y’ ’X^2+3*Y^3’} { X Y } DIV returns ’1+9*Y^2’=∂f

∂x + ∂f
∂y .

• CURL returns the rotationnal (same arguments as DIV)

• LAPL returns the laplacian of a symbolic expression at level 2 with respect
to a list of variables at level 1 (same arguments as der, LAPL is simply a
shortcut for der DIV)

• HESS returns at level 1 the hessian of a symbolic expression with respect to
a list of variables (same arguments as der). Level 2 is the gradient. This
is useful to find local minima and local maxima of a function: you find
first the solutions of gradient=0 (you may use the Gröbner basis program
of ALG48 to simplify this system and use the SOLV instruction to find all
solutions), then you compute with EXEC the hessian at these critical points,
and you find the signature of the critical point using GAUSS (in the other
directory: see section 14).
Example:

f(X,Y) = X4 +XY + Y 3

{ X Y } HESS returns at level 2:

(4X3 + Y,X + 3Y 2) = (
∂f

∂X
,
∂f

∂Y
)

and at level 1: (
12X2 1

1 6Y

)
To find critical points, you have to solve level 2=(0,0):

(4X3 + Y,X + 3Y 2) = (0, 0)

hence X = −3Y 2. Swap level 2 and 1, type ’X=-3*Y^2’ EXEC, then 1 GET
to have the first coordinate:

4(−3Y 2)3 + Y

42

then Y SOLV. This equation has two real solutions: 0 and approximately
0.392026340842 giving two critical points. For (0, 0), the hessian is:(

0 1
1 0

)
hence (0, 0) is not an extremum (signature (1, 1)). For the second point
(Y = 0.392026340842, X = −3Y 2), the hessian is:(

1.84421582297 1
1 −2.76632373445

)
hence is not an extremum.

14 Quadratic forms.

The main program is GAUSS (located in the other directory) to perform reduc-
tion of a quadratic form q. There are two ways to use GAUSS:

• symbolic input:
Input: a quadratic form q (symbolic) at level 1 or the quadratic form q at
level 2 and the list of variables at level 1.
Output:

– stk5: D the list of diagonal coefficients (only the number of positive
and negative coefficients is characteristic of q)

– stk4: P (the columns vectors of P−1 form a q-orthogonal basis of A
at level 3)

– stk3: A (A is the matrix of q in the dual base of the coordinates-forms
at level 2, we have A = P tDP where P t denotes the transposed of
P)

– stk2: list of variables

– stk1: symbolic as a sum of independent squares

Examples:

Example 1:
’X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2’ GAUSS
5: { 1 ’-25/6’ ’1/6’ }
4: { { 1 2 -1 } { 0 1 0 } { 0 5 6 } }
3: { { 1 2 -1 } { 2 4 3 } { -1 3 7 } }
2: { X Y Z }
1: ’1/6*(6*Z+5*Y)^2+ -25/6*Y^2+(-Z+2*Y+X)^2’

43

Example 2: same example but with variable in the reverse order
’X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2’ { Z Y X } GAUSS
5: { ’1/7’ ’7/19’ ’-25/19’ }
4: { { 7 3 -1 } { 0 ’19/7’ ’17/7’ } { 0 0 1 } }
3: { { 7 3 -1 } { 3 4 2 } { -1 2 1 } }
2: { Z Y X }
1: ’-25/19*X^2+7/19*(17/7*X+19/7*Y)^2+1/7*(-X+3*Y+7*Z)^2

Example 3: if you want to orthogonalize with parameter, you need to
enter the list of variables of the quadratic form
’X^2+2*A*X*Y’ { Y X } GAUSS
5: { ’-A^2’ 1 }
4: { { 1 0 } { A 1 } }
3: { { 0 A } { A 1 } }
2: { Y X }
1: ’(X+A*Y)^2-A^2*Y^2’

• matrix input:
Input (stack level 1): the formal matrix A of the quadratic form q
Output: at stack level 2 D the diagonal coefficients list and at stack level
1 the transition matrix P . We have A = P tDP where P t denotes the
transposed of P . Note that to obtain a q-orthogonal basis, one can take
the columns of the inverse P−1 of P).

Example:
The matrix of q defined by q(x, y) = 4x2 + 2xy − 3y2 is:

A =
(

4 1
1 −3

)
,

(to get the matrix of q, enter ’4*X^2+2*X*Y-3*Y^2’, then the list of
variables { X Y} and hit QXA). Call GAUSS which returns:

2: { ’1/4’ ’-13/4’ }
1: { { 4 1 } { 0 1 } }

this means that:

A =
(

4 0
1 1

)
×
(′1/4′ 0

0 ′ − 13/4′

)
×
(

4 1
0 1

)
.

This means that:

q(x, y) = 4x2 + 2xy − 3y2 =
1
4

(4x+ y)2 − 13
4
y2.

The other utilities are QXA and AXQ to switch from algebraic to matricial
representation of a quadratic form (quadratic as symbolic to array). QXA accepts
an optional list of variables at level 1.

44

15 Customization and other utilities.

15.1 Data types.

Data handled by Erable have two representations: the user representation
which you use most all the time and the internal representation (used inter-
nally).

List of data types:
True data Example User Example Internal Example
Integer 5 real, hex, string 5 hex #5
Float 5.02 real 5.02 long real %% 5.02
Gauss integer 1 + 2i symbolic ’1+2*i’ secondarie :: #1 #2 ;

Complex (1.1,2.3) complex (1.1,2.3) long complex C%% 1.1 2.3

Fractions 2
3 symbolic ’2/3’ symbolic ’#2/#3’

Irr. quadr. 1 + 2
√

5 symbolic ’1+2*V3’ program << #1 #2 #5 >>

Unknowns a, x ... variables A X list variable

Symbolics a + x2 symbolic ’A+X^2’ list variable
Lists { 1 i } list { 1 ’i’ } list { #1 :: #0 #1 ; }

Array [1 2] array [[1 2] [3 4]] array [[1 2] [3 4]]

Symb. array { 1 2 } list { { 1 2 } { 3 4 } list { { #1 #2 } { #3 #4 } }

15.2 User flags.

You may change the behavior of Erable by clearing or setting some user flags
(and the system flag -27). Here are the most important flags of Erable (see
section (D) for a complete list):

• flag 1: display flag (if set then verbose mode selected)

• flag 10: integer arithmetic (if set then Erable expects integer arguments
for instructions like GCD3, ABCUV or DIV2).

• flag 12: simplification flag (if set then Erable calls the gcd algorithm if
needed)

• flag 13: complex flag (if cleared, all expressions are assumed to be real
and Erable tries to return only real expressions)

• flag 15: real are integer flag (if set, real are assumed to be integer)

• flag 21: recurse flag (if set, the simplification algorithms EXPA and TSIMP
will simplify in subexpressions)

• system flag -27: if set, then the user representation of complex numbers
is symbolic.

To set a flag (e.g. flag 13), type 13 SF. To clear this flag, type 13 CF.

15.3 Conversions

• AXL: array ↔ list conversion (transforms { } to [] and conversely).

• EPSX0: strip leading zeros in list-polynomials, replace objects by 0 if their
absolute value is less than EPS.

45

• FXND: splits a fraction in numerator (stack 2) and denominator (stack 1).
Ex:
’(X+1)/A’ FXND -> 2:X+1, 1:A

• NDXF: reverse of FXND. Ex:
1 2 NDXF -> ’1/2’
Works for all data types (warning: you can get strange symbolics with
NDXF).

• XNUM: convert level 1 to a numeric format like the build-in →NUM, but
accepts lists (this was not the case on S/SX models). Clears flags 12, 14
and 15.

• XQ: convert level 1 to rational format, like the build-in →Q. Sets flags 12,
14 and 15.

• idn: like the built-in IDN but returns a symbolic identity matrix.

• SXL (other directory, obsolete): Used for conversion to internal data type
representation)

– VX variable-fraction representation conversion. Switches from alge-
braic to list-polynomials or fractions. Ex:
’(X+1)/(3*X-2)’ <--> ’{1 1}/{3 -2}’ (displayed as ’UNKNOWN/UNKNOWN’)
’X+3’ <--> {1 3}

– General stack object conversion. Ex:

’X+3*SIN(X)’
{ { 1 ’5*X’ } { ’SIN(X)’ 1 } }
{ ’X^2+7*X’ ’3*SIN(X)’ }
#3h SXL ->
{ ’SIN(X)’ X }
{ 3 { 1 0 } }
{ { 1 { { 5 0 } } } { { 1 0 } 0 } }
{ { { 1 7 0 } } { 3 0 } }

To go back, type { #0 #1 #2 } SXL

• S2L (other directory, obsolete): convert an algebraic polynomial in a list
polynomial. Ex:
’1+2*A’ A S2L -> { 2 1 } Accepts lists. Ex:
{ ’1+A’ ’2*A-3’ } A S2L -> { { 1 1 } { 2 -3} }

• L2S (other directory, obsolete): converts back a list polynomial to an al-
gebraic. L2S may be used for multiple variable polynomial evaluation. Ex:
{ { 1 2 3} {4 5 6} } { X Y } L2S -> ’(Y^2+2*Y+3)*X+(4*Y^2+5*Y+6)’

46

15.4 Other functions

• HORN executes an Horner scheme. The syntax is:

stk2: P
stk1: r
-> 3: P div (X-r), 2: r, 1: P(r)
Ex: ’X^2+2*X+3’ 5 -> ’X+7’ 5 38

This means that X2 + 2 ∗X + 3 = (X + 7)(X − 5) + 38.

• PTAYL: fast Taylor development for polynomials:
2: P(X), 1: r -> P(X-r)
Example:
’X^3+2*X’ 2 PTAYL -> ’X^3+6*X^2+14*X+12’
means that X3 + 2X = (X − 2)3 + 6(X − 2)2 + 14(X − 2) + 12

• LEGENDRE [resp. HERMITE and TCHEB]: given an integer n, returns the n-th
degree Legendre [resp. Hermite and Tchebycheff] polynomial.

• PFEXEC: execute the program at level 1 in subexpressions between all +
and − of the symbolic expression at level 2. For example, try:
’1/2/(X^2-1)+1/4/(X^2-4)’ << COLC >> PFEXEC

• XPRG: explodes a program on the stack or creates a program with stack
level 1 components.

• tEVAL (other directory): evaluate object 1 and returns the time it tooks
to evaluate it. Not as accurate as TIM of the hacker library.

• LATEX: converts a symbolic to a string, the LATEX traduction of the sym-
bolic. To tex it on a computer, you must include the string in a math.
environment (in $ $ or in \[\] or in an equation environment, and you
must include the file hp48.tex).

15.5 Permutations

A permutation is represented as a list of images of [1..n] e.g. { 5 1 2 4 3 } means
σ(1) = 5, σ(2) = 1, σ(3) = 2, σ(4) = 4 and σ(5) = 3. The P2C instruction
converts this representation to the cycle decomposition, here { { 1 5 3 2 } { 4 } }
(stack level 2) and computes the signature of p (stack level 1). C2P converts back
cycle decomposition to usual representation of permutations. CIRC compose 2
permutations in the usual representation (returns σlevel 2 ◦ σlevel 1).

15.6 Variables

• LVAR: returns the list of “variables” of an algebraic. The list is sorted by
reverse alphabetic order. Example:
’SIN(A)+B*X+1’ -> { X B ’SIN(A)’ }

47

• LIDNT: list of global names of an algebraic Example:
’SIN(A)+B*X+1’ -> { X B A }

15.7 Differential geometry

There is currently only one program available in the other directory, written in
UserRPL by John Wilson, that I have translated into SysRPL, it is named TNBA
for tangent, normal, binormal, acceleration. It takes a 3-dimensional vector (as
a list) at level 1 (e.g. { ’2*T’ 1 ’T^2’ }) and returns the position, tangent,
normal and binormal vectors as well as the tangential and normal acceleration.

16 Final remarks.

Remaining things to do:

• adapt and integrate the polynomial division routines of alg48 for speed,

• rewrite the Gauß reduction to include the Bareiss method,

• extend the Risch algorithm to multiples exponentials, and return an un-
evaluated integrals when there is no closed form,

• improve the factorization algorithm (Berlekamp method over ZZ[i]).

• ...

I will probably build a contrib directory (or library) if I have sufficient material
to do it, your RPL and SysRPL programs are welcomed. Otherwise, I would
say that Erable over the Saturn architecture is almost finished since we have
probably reached the microprocessor limits. Anyway, it is certainly sufficient to
help maths students in their studies, which was my first aim.

I will probably switch to another project like working on C(++) on a fast
CPU (it would be interesting to have a sysrpl implementation written in C(++),
I would only have to rebuild a KERNEL.LIB to have a competitive Erable!).

48

A Frequently asked questions

• When I call SETUP, I get the error STO Error with 0 at level 1. Why?
You did not use kermit to download files to your HP48 and your software
is case-insensitive, or your filesystem is case-insensitive and translated up-
percase names to lowercase names. Please use kermit, and unzip the
Erable archive over a case-sensitive filesystem or a filesystem where file-
names are uppercase names. MS-DOS should work, as well as ext2 (Linux),
but not VFAT (Windows 9x filesystem under Linux).

• When I call INIT, I get the RCL Error: Undefined Name with GXKEYS at
level 1 on the stack. Why?
The reason is the same as above, but there is a simple workaround in this
case. Type the following command line:
’gxkeys’ DUP RCL ’GXKEYS’ STO PURGE INIT

• How can I launch the eqstk stack replacement?
Type ASTK.

• ASTK does not launch eqstk. Why?
If you want to shutdown your calc, you must press the right shift followed
by the ON key. If you press the ON key too fast, this will stop eqstk unex-
pectedly and ASTK will not work.
Workaround: type ON and C simultaneously, then again ASTK. If this
doesn’t work, you must reinstall eqstk.

• In previous versions of Erable, a CST menu was created. Is it gone?
Yes, the user interface is now completely handled by the user key redef-
inition, because this is faster. You may create you own CST menu if you
want by compiling the SCST file from the original package.

• How can I simplify
√
x2?

Type 28 SF to simplify
√
x2 = |x|. Otherwise

√
x2 remains not modified.

This flag setting is not the default because setting flag 28 means that
subexpressions are always simplified and this slow down most simplifica-
tions.

• How can I simplify |x| if I know that x > 0?
Type 29 SF. If flag 29 is set, Erable will try to guess the sign of your
expression: either at x = 0+ or at x = +∞ depending of the status of flag
24. The default is x = +∞ but be aware that calling SERIES (directly or
indirectly via LIMIT) sets flag 24 enabling guess at x = 0+.

• Sometimes, Erable can not find the antiderivative of sin(x). Why?
You are in complex mode. In this mode, RISCH does not recognize trigono-
metric functions, you must convert them to complex exponentials (EXPLN)
or go back to real mode (13 CF).

49

• I have alg48 installed, I would like to use the factorization routines of
alg48 inside Erable. Is it possible?
Yes, but since I experienced many crashes, this feature is not included in
the released versions. You can compile you own version and try different
configurations to get this working. To do this, install the HP GNU tools and
erablsrc.zip, uncompress it and uncomment in kernel.s and erable.s
the lines between
*teste la presence d’ALG48 and *fin de test
Type compile to compile the whole package, download to your HP and
test!

B All functions of Erable— listed in alphabetic
order

The following symbols will be used:

• %: real

• C%: complex

• n: integer (real integer)

• []: numeric array

• { l }: list

• { m }: symbolic array

• p: polynomial ({ p } for a list-polynomial),

• { v }: list of variables

• s: symbolic object

• v: variable (global name or irrational symbolic)

• f : a fraction

• N , D: numerator and denominator of a fraction

• o: object

List of all global variables in HOME, algb or algbg:

Name Function Arguments Returns
EPS ε %
ERABLMSG Risch log string
INVLAP Last inverse Laplace nothing s
MATRIX Last matrix nothing m
MODULO Arithmetic in ZZ/nZZ n
ODETYPE Ordinary diff. equ. type string
PRIMIT Last primitive nothing s
SYSTEM Last system nothing {mv}
GX/SX/UKEYS User keys string nothing string
VX integration variable Rien v
fr French short doc nothing string
us English short doc nothing string

If you are short in memory, you can erase all variables in { HOME } and subdirectories except EPS, VX and MODULO.

50

Functions of the Erable library and of the other, algb or algbg directories:
Name Function Arguments Returns
ABCUV Bezout ax + by = c 3,2,1:a, b, c 1:1 [3,2: x, y] or 1: 0
AXL array ↔ list [] ou { m } { m } or []
AXQ array to s quadratic form { m } s

2: { m }, 1: { v } s
C2P Cycles → permutation { cycles } p
CHS Change signe o −o
COLC Factorization s s
COSN cos, sin(nx) → P (cos x, sin x) n > 0 2: s, 1: s

n < 0 2: { p }, 1: { p }
CIRC Compose 2 permutations 2:p2, 1:p1 p2 ◦ p1
CURL Rotationnal 2: { s1 s2 s3 } 1: { v } { s′1 s

′
2 s
′
3 }

DEGRE Order { p } n
DIV Divergence 2: { s1 ... sk } 1: { v } s
DIV1 Usual division 2: o2, 1: o1 o2/o1
DIV2 Euclidean division 2: o2, 1: o1 2: o2 div o1,1: o2 mod o1
DIVIS List of divisors o { l }
DIVPC Division in ascending power 3: s, 2: s′, 1: n s

DSOLVE Solve y′(x) = f(y(x), x) f(y(x), x) y(x)
EPSX0 Strip expression o o
EULER Euler indicatrix n ϕ(n)
EXEC Substitution or doall 2: { l }, 1: program 1: { l }

2: s, 1: o1 = o2 s
3: s, 2: { l1 } 1: { l2 } s

EXPA Simplification o o′
EXPLN Conversion to exp, ln s s
EXPLIN Linearization of exp s s
FACTO Factorization o 3: { v } 2: f , 1: { f1n1f2n2 ... }
FCOEF roots/poles → Fraction { r1n1r2n2 ... } f
FROOTS Factorization o 3: { v } 2: f , 1: { s1n1s2n2 ... }
FSIGN Sign of a rational fraction s tagged list
FXND Split a fraction f = N/D 2: N, 1: D
GAUSS Gauß quadratic form reduction 1: A 2: D, 1: P

s 5: D,4: P , 3: A, 2: { v },1: s
2: s, 1: { v } 5: D,4: P , 3: A, 2: { v },1: s

GCD1 Greatest common divisor 2: o2, 1: o1 GCD(o2,o1)
GCD3 GCD (solves au + bv = d) 2,1: a , b GCD(a, b) = d, u, v
HALFTAN To half angle tangent
HERMITE Hermite polynomial integer n Hn
HESS Hessian 2: s, 1: { v } matrix
HILBERT Hilbert matrix integer n n × n matrix
HORN Horner scheme 2:p , 1: r 3: p/(X − r) , 2: r, 1: P (r)
ILAP Inverse laplace transform s L−1(s)
INIT Initialization nothing nothing
INVL Inversion o o−1

IPP Integration by part
∫ b
a
f(t)dt, u [uv]ba −

∫ b
a
uv′(t)dt (v = f/u′)

JORDAN Diagonalization endomorphism 7 to 1: cf. section 12
KERN Kernel of a lin. appl. m 4 to 1: cf. section 12
LAP Laplace transform 2:f, 1:g L(f)/g
LAPL Laplacian 2: f, 1: { v } ∆f
LATEX LATEX conversion 1: s 1: string
L2S Evaluation 2: { p }, 1:v p(v)

2: { p },1: { v } p(v)
LCM1 Least common multiple 2: o2, 1: o1 LCM(o2,o1)
LCXM Matrix creation 3: r, 2: c, 1: prog 1: r × c matrix
LDEC Lin Diff Equ Cst Coef 2: { v }, 1: { m } 3,2: (m − x)−1, 1: (m − x)−1v
LEGENDRE Polynomials integer r list of r + 1 polynomials
LGCD GCD of a list { l } o=GCD
LIDNT List of variables s 2: s, 1: { v }
LIMIT Limit 3:s, 2:v, 1:n s
LNCOLC Collect log s s

LU2 LU decomposition M L−1, U
LVAR list of variables o { v }
MAD inverse, char. polyn., etc. o 4: det, 3: 1/o, 2: { p },1: { p }
MMULT special product 3: o2, o1, n “o2 × o1”
MULT product 2: o2, o1 o2 × o1
NDXF create a fraction 2: N, 1: D f = N/D
ORND Round an object 2: o, 1: D o

51

P2C Permutation → cycles p 3: p, 2: cycles, 1: signature
PCAR Characteristic polynomial endomorphism s

PF Partial fraction f

∑
i
fi

PFEXEC exec between + and − 2:
∑

i
fi 1: prg

∑
i

prg(fi)

POWER integral power 2: o, 1: n on

PREVAL Evaluation 3: primitive, 2,1:bornes s
PTAYL Taylor for polynomials 2: P (X), 1: o P (X − o)
PURG Purge algb(g) nothing nothing
QXA s quadratic form to array 2: s, 1: { v } { m }

s 2:{ m }, 1: { v }
RANG Réduction sous-diagonale { m } 2: spec. cases, 1:{ m }
RDET Determinant (rref) endomorphism { m } 2: { m }, 1: determinant
RISCH Symbolic integration s s
S2L Symbolic to list 2: o, 1: { v } 2: { v },1:{ p }

2: o, 1: v { p }
SCROLL Scrolls a grob grob
SERIES Series 3: s, 2: v, 1: n 6: 6-1: s
SETFR Set French Flags nothing nothing
SIMP2 Simplification 2: o2, 1: o1 2: o′2, 1: o′1
SINCOS Exponential to sine/cosine s s
SOLGEN Solves a linear system { eqns { v } } cf. section 12
SOLV Solve 2: s, 1: x 2: x, 1: solutions
SQRT Square root n or C% or s n or C% or s
STUDMULT “students” × of matrices M, M′ “MṀ′ ”
SUBT Subtraction 2: o2, 1: o1 o2 − o1
SXL Conversion Internal [user] User [internal]
SYST Solves a linear system { eqns { v } } cf. section 12
TAN2SC Tangent to sin/cos
TAN2SC2 Tangent to sin/cos2θ
TCHEB Polynomials integer r list of r + 1 polynomials
TEXPA Expand transcendent functions s s
TNBA Tangent, normal, ... {v}
TR trace [] or { m }= (aij)1≤i,j≤n

∑n

i=1
aii

TRAN transposed [] or { m } [] ou { m }
TRIG Trigonometry: → sin, cos, arctan s s

TRIGCOS Trigonometry: sin2 → 1 − cos2 s s
TRIGLIN Trig. linearization C%, s ou { p } s

TRIGSIN Trigonometry: sin2 → 1 − cos2 s s

TRUNC Truncate an asymptotic expansion 2: s, 1: rest s′ s
TSIMP Simplification (transcendental) s s
VAND Vandermonde matrix list of objects matrix
VER Version rien % 2.99
XFRC To quadratic irrational o o
XNUM → Numeric o o
XQ → Rational o o
XY Scalar product of 2 vectors 2: x 1: y x.y
abs Absolute value s s
add Addition 2: o2, 1: o1 o2 + o1
arg Argument 1: s 1: s

comb Combinaisons 2: n, 1: n′ Cn
′

n
conj Conjugate o o
cross Wedge product 2: x, 1: y x ∧ y
der derivative or gradient 2: s, 1: v 1: s
der1 derivative s s
det Determinant (expand) endomorphism determinant
fact Factorielle n n!
idn identity real integer or matrix identity matrix
im imaginary part o =(o)
re real part o <(o)
rref Row reduction M { s }, reduced matrix
tEVAL Execution time ..., 1: o EVAL(o), 1: time

52

Functions of the kernel library. Don’t forget to set an integer n in the
variable MODULO (by default n = 2):

Name Function Arguments Returns
{KERNEL.LIB} (0:788)
MODADD Modular addition 2: n1, 1:n2 (n1 + n2) mod n
MODSUBT Modular subtraction 2: n1, 1:n2 (n1 − n2) mod n
MODMULT Modular multiplicatin 2: n1, 1:n2 (n1 ∗ n2) mod n
MODDIV Modular division 2: n1, 1:n2 (n1/n2) mod n
MODPOW Modular power 2: n1, 1:n2 nn2

1 mod n
MODINV Modular inversion 1: n1 n−1

1 mod n
PA2B2 Prime factorization 1: p (p ≡ 1[4]) 1: a+ ib/ a2 + b2 = p

C User Keys.

From top left corner to bottom right corner, α - Right Shift -ed keys:
Princ. Key Reminder Function
MTH (normal MTH)
PRG (normal PRG)
CST MODES (Erable config, for GX only)
EVAL EXEC
SIN ∂ der1
COS

∫
RISCH

√ √ SQRT
yx yx POWER
1/x 1/x INVL
± pm CHS
DEL ∞
7 (solve, factor)
8 (exp and ln)
9 (diff. calc.)
.
.

.

. DIV1
4 (matrices)
5 (conversions)
6 (arithmetic)
× × MULT
1 (basic algebra)
2 (complex)
3 (trigonometry)
- - SUBT
SPC EXPA
+ + add

Other redefined keys:

• G/GX only: MTH key (runs Erable main menu)

53

• G/GX only: PRG key (runs a HP48GX main menu)

• CST key: i

• DEL key: X

• right shift-DEL key: −∞

• downarrow key (35.1): calls the Miniwriter. Type:
35.1 DELKEYS
if you do not have the Miniwriter installed. If you have JAZZ or TEDVV
instead, you may redefine this keystroke by typing:
{ TED 35.1 } STOKEYS

• left shift-downarrow (35.2): calls AGROB followed by SCROLL. Needs eqstk
or JAVA. Type:
35.2 DELKEYS
if you do not have eqstk or JAVA

• S/SX only: 33.2 (XQ) and 33.3 (XNUM)

• G/GX only: 33.2 (XNUM) and 35.6 (XQ).

54

D User flags

List of the flags used by Erable (the sign * after the flag number means that
the flag is cleared if VER is called, # means that the flag is set if VERis called):

• 01: if set then verbose mode (details of some algorithms are shown) else
quiet mode.

• 10: if set then Erable performs integer arithmetic otherwise Erable per-
forms polynomial arithmetic

• # 11: internal use, cleared if a non-rational algebraic is found

• # 12: if clear then GCD returns always 1 (hence algebraics are not simplified
and multiple roots of polynomials are not detected)

• # 13: if set then complex mode, else real mode (modifies the way of
simplifying expressions with re, im and conj and the way of rooting poly-
nomials)

• # 14: if set then searchs formal first order factors

• # 15: if set enables construction of integer fractions and square roots of
integers

• * 16: internal use, if set then inverse Laplace transform

• * 17: cleared to use user data representation, set to use internal data
representation.

• * 18: internally used by INT, if set then INT integrates a fraction of sin / cos

• * 19: internally used by INT, if set then integration else partial fraction
decomposition.

• * 20: internally used by DIAG, if set then force multiplication of lists to be
matrix times polynomials in Horner scheme

• # 21: if set then recursive simplification for EXPA and TSIMP

• * 22: if set then the rule i2 = −1 is not applied

• * 23: if set then RISCH does not try linearity

• * 24: if set then positivity of expressions are tested at x = 0 instead of
x→ +∞.

• * 25: if set then the rule
√
x

2 = x is not applied

• * 26: if set then TRIG tries to return only sines, otherwise it returns cosines

55

• * 28: determines whether embedded quotients are immediatly simplified
or not (for example 2/4 + 3/6 may be simplified first to 1/2 + 1/2 and
then to 1 or directly to 24/24 = 1).

• * 29: if set then |x| is simplified to x for every “variable” (as returned by
LVAR)

You should only modify user flags 1,10,13,15 and 21 to 29.

Remark 9 System flag 27 (-27) affects the way symbolic complex numbers are
displayed. System flag 2 affects the way symbolic constants are evaluated (for
example π is returned as a symbolic constant or as a numeric approximation).
This flag is set or cleared by Erable according to the current mode of Erable
(numeric or symbolic).

E Error codes for the SERIES command.

• 1: can not determine series expansion for arctan(x) function with current
argument x.

• 2: arcsin(x) not defined for infinite argument.

• 3: no series expansion for exp(x) at x =∞ if sign is unknown.

• 4, 5, 6, 7: failed to compare 2 variables.

• 8: can not determine order for the current rest.

• 9: negative argument for logarithm function.

• 10 (<Ah>): insufficent order. (You can try again with a larger order)

• 11 (<Bh>): can not find sign of argument of ABS function

• 16 (<10h>): numeric input are not allowed

F Thanks to ...

Many people helped me during the creation and distribution of Erable:

• Claude-Nicolas Fiechter and Mika Heiskanen for letting me use their long
integer routines for Erable. Special thanks to Mika for explanations about
the source code of ALG48.

• Some of my students and netsurfers tested various versions of Erable and
encouraged me to improve it: particularly Maurice Al-Khaliedy, Christophe
Burdin, Craig Clifford, Jerome Coss, David Czinczenheim, Ludovic Du-
maine, Eduardo (maciasval@mx2.redestb.es), Frederic Hermann, Eric
Gorka, Stephane Monboisset, Lionel Pilot, Eric Saya, Quan Tong Duc,
Samy Venin, John Wilson ... Special thanks to Gilles Virone who showed
me first what an HP28/48 is able to do.

56

• Some math teachers, particularly Renée de Graeve and Scott Guth who
made tests, suggestions and bug reports.

• all anonymous ftp sites administrators, particularly those of fourier.ujf-
grenoble.fr (André Voutier), ftp.funet.fi, cbs.cis.com, hplyot.obspm.fr, hpcvbbs.cv.hp.com
and wuarchive.wustl.edu,

• I used the following softwares to create Erable: the EQSTK, JAVA stack
displays ([7], [17]), the TED and Miniwriter editors ([13], [1]), the JAZZ
debugger ([12]), the Metakernel ([14]), various compilers (JAZZ, the HP
tools ([2]), the RPL based tools ([16]) and eventually the GNU tools ([15]).

• I looked at the following book and softwares: [8], [3], [6], [4], [5], [10], [11],
[9] . One of the best reference is certainly [4] and references therein. M.
Heiskanen’s WWW-homespage has a lot of interesting math links.

57

References

[1] J.-Y. Avenard. miniwriter. http://www.epita.fr/˜avenar j, 1997.

[2] H. P. Corvallis. TOOLS.EXE. hpcvbbs.cv.hp.com ftp.funet.fi
wuarchive.wustl.edu, 1991.

[3] P. Courbis and S. Lalande. Voyage au centre de la HP 48 S/SX. Angkor,
1993.

[4] J. Davenport, Y. Siret, and E. Tournier. Calcul formel: Systèmes et algo-
rithmes de manipulations algébriques. Masson, 1989.

[5] J. Ferrard. “Mathez” la HP 48 G/GX. D31 Diffusion (HP48), 1993.

[6] C. Ferraro. POLY46SX, POLY46GX, SMATH, SMATHGX. ftp.funet.fi
ftp.cis.com hplyot.obspm.fr, 1993.

[7] C. N. Fiechter and M. Heiskanen. EQSTK92.ZIP.
http://www.hut.fi/˜mheiskan, 1997.

[8] C. N. Fiechter and M. Heiskanen. ALG48V42.ZIP.
http://www.cs.pitt.edu/˜fiechter/hp48
http://www.hut.fi/˜mheiskan, 1998.

[9] B. Fuchssteiner. MuPAD. ftp://ftp.inria.fr/lang/MuPAD
http://www.mupad.de, 1998.

[10] F. Gantmacher. Théorie des matrices, volume 1. Dunod, 1966.

[11] M. Heiskanen. POLYLIB.ZIP. http://www.hut.fi/˜mheiskan, 1992,1995.

[12] M. Heiskanen. JAZZV65.ZIP. http://www.hut.fi/˜mheiskan, 1996.

[13] M. Heiskanen. TED31.ZIP. http://www.hut.fi/˜mheiskan, 1997.

[14] Maubert Development Group. Metakernel, 48+.
http://www.epita.fr/˜avenar j, 1998.

[15] M. Mikocevic. GNUTOOLS.
ftp://srcm1.zems.fer.hr:/pub/hp48/tools2.1.9.zip, 1995.

[16] D. Müeller and R. Hellstern. RPL48V20.ZIP. ftp.funet.fi cbs.cis.com
hplyot.obspm.fr, 1993.

[17] R. Steventon, A. Schoorl, and W. Laughlin. JAVA34.ZIP.
ftp://ftp.cis.com/pub/hp48g/uploads/java34.zip
http://www.engr.uvic.ca/˜aschoorl, 1998.

58

	License
	Installation.
	Simplified installation for a GX.
	All other cases.
	Getting the binaries from a computer.
	Getting the binaries from another HP48.
	Installing the binaries
	Installing the user keys redefinition.
	Improve your installation
	Abstract of the installation commands

	Introduction.
	Overview.
	Warnings.
	Erable and alg48.
	Implementation notes.
	Next upgrades.

	Getting started.
	Current variable.
	Complex and real modes
	Main functions
	The main menu

	Simplifications.
	Rational simplifications instructions.
	Presimplifications instructions
	Linearization.
	Development.
	Trigonometry
	The {tt TSIMP} instruction

	Recurse flag.

	Limits, Taylor and asymptotic series.
	Derivation and integration.
	Derivation
	Integration
	Integration by part

	Ordinary differential equations.
	Linear differential equations (systems) with constant coefficients.
	Laplace transform.
	Inverse laplace transform.
	Linear differential equations systems with constant coefficients.

	First order equations.

	Substitution, change of variables: {tt EXEC}.
	Arithmetic.
	Complex arithmetic
	Integer and polynomial arithmetic
	Infinities.
	Modular arithmetic

	Factorization. Solving equations.
	Summary of the instructions.
	A word about factorization.

	Linear algebra.
	Building a matrix
	Operations
	Gauss -Jordan row reduction.
	Solving a linear system.
	Inversion
	Determinant

	Kernel and image of a linear application.
	Other examples.
	Stack input/output for reduction instructions./

	Diagonalization
	The MMULT| instruction.

	Multivariate analysis.
	Quadratic forms.
	Customization and other utilities.
	Data types.
	User flags.
	Conversions
	Other functions
	Permutations
	Variables
	Differential geometry

	Final remarks.
	Frequently asked questions
	All functions of Erable| listed in alphabetic order
	User Keys.
	User flags
	Error codes for the {tt SERIES} command.
	Thanks to ...

