Michaël’s cosy programmers’ corner.

This month is part 2 about input forms:

In this part we will learn how a user can select things that a programmer already chooses for him. We are going to get strings from the user and we are going to use a check field. We have much to do, so let’s start right away:

First we are going to start with getting the name of the user. For that we make a data field (like in the previous number) that accepts a string.
We start with defining the label. That means name of label, x-coordinate and y-coordinate. For the name "Name:" will do perfectly. X-coordinate will be ONE and y-coordinate TEN. Now for the field: there isn’t a message handler so write: 'DROPFALSE. X-coordinate of the field will be BINT22 and the y-coordinate BINT8. Length of the field will be BINT78 and height as normal so BINT9. It’s a data field so write ONE. Now we have to say that we may enter strings so write MINUSTWO. Standard mode will be used so write FOUR. And now for the help string: "Enter your name." could describe perfectly what we want the user to enter. So write that. There is no choose data and no choose decomp so write MINUSONE DUP. What would we want to have as reset and init value. Let’s just have an empty string so write NULL$ DUP. Your source should like this:

Now we are going to make the list field. Scroll up till you see "Name:" ONE TEN again. Write under that: "Choose toy:" ONE BINT24. Now scroll again down where we were the other time (NULL$ DUP). Again for this new field there isn’t a message handler, so write 'DROPFALSE. X-coordinate for this field will be BINT48 and y-coordinate BINT22. Length of this field will be BINT52 and height as normal so BINT9. Data fields are defined as ONE, but this field isn’t a data field, it’s a list field so now we have to write TWELVE. You might wonder how I know all this stuff. Well Sys-Rpl for the HP-39/40g looks a lot like the HP-48g/49g/49g+ (geez (),so you can just read some tutorials for these calculators. But anyway back to the subject. Now we have to define the allowed types. With List Fields that’s always MINUSONE. That means there aren’t arguments that we can enter. For decompiling we write BINT17. That says we will work with lists. Now we have to define our help string. "Choose the toy you want!" looks appropriate, so let’s take that one. Now we have to define our chooseData and ChooseDecompile. You probably think now that it is MINUSONE DUP like usual, but you are thinking wrong. What? Yes, we have to write something different (that is those other 10% I was talking about in the last issue)! We have to define here what the user can select. So let’s do that. To do that we must use lists and lists in lists. We make first our 1st list so write {. Now we have to define our first option. That’s again a list with two elements in it: the first one is a string which the user will see when he chooses and the second is the element you want to have. After the input form is ended (when the user presses OK) whole the ‘your option you have choose’ list is put on the stack. So write { "A car" "a car" }. Note that whole this list will be dropped when the user chose a car. Now as second choice I want a teddy bear. The same string as second element. So write { "A teddy bear" "a teddy bear" }. As a third option I want to see doll as a choice and again the same as second element. So write: { "A doll" "a doll" }. That’s all for the options the user can choose so let’s end our first list with }. For ChooseDecompile we write: SEVENTEEN. Now for our reset value and initial value we write: { "A car" "a car" } DUP. Your source should look like this:

Now scroll back up to our ‘label section’ as we want to display “cash?” on coordinates (1,38). Write: "Cash?" ONE BINT38. So the beginning of our source looks like this:

Now scroll back down. Again there isn’t a message handler. So write: 'DROPFALSE. Display the check field on (22, 36). Write BINT22 BINT36. Length of a Check field is always SIX. And the height is as normal so NINE. Now we have to define it’s a check field. To do that write: BINT32. Again there aren’t elements which the user can enter so write MINUSONE. There is also no decompiling so write: DUP. For the help string: "Do you want to pay cash?". No ChooseData and no ChooseDecompile so write: MINUSONE DUP. Now for the reset and initial value we have to write a Boolean value (True or False). We doesn’t want the option to be checked (I wonder why they call it a check field () So write: FALSE DUP. But we are memory friendly so instead write: FalseFalse. With that last command we save 2.5 bytes! Now we are almost done with our input form. We only have to write how many fields and labels there are. The message handler for the whole input form (=none). The title. The command to make the input form. And the routine for when the user presses cancel. But we all seen that in the previous issue so I won’t repeat that here again. Anyway the whole source + some extras

Like you can see the Boolean value is put first on the stack, then the list and then the string. So the last field is the first on the stack and the first field is indeed the last.

Screenshots:

[image: image1.png]
[image: image2.png]
Next month we will learn over message handlers.
"Name:" ONE TEN

'DROPFALSE

BINT22

BINT8

BINT78

BINT9

ONE

MINUSTWO

FOUR

"Enter your name."						

MINUSONE DUP

NULL$ DUP

"Name:" ONE TEN

"Choose Toy:" ONE BINT24

"Enter your name."

MINUSONE DUP

NULL$ DUP

'DROPFALSE

BINT48

BINT22

BINT52

BINT9

TWELVE

MINUSONE

BINT17

"Choose the toy you want!"

{

	{ "A car" "a car" }

	{ "A teddy bear" "a teddy bear" }

	{ "A doll" "a doll" }

}

SEVENTEEN

{ "A car" "A car" }

DUP

* labels

"Name:" ONE TEN

"Choose Toy:" ONE BINT24

"Cash?" ONE BINT38

* labels

"Name:" ONE TEN

"Choose Toy:" ONE BINT24

"Cash?" ONE BINT38

* fields

'DROPFALSE 								(no message handler)

BINT22

BINT8

BINT78

BINT9

ONE

MINUSTWO

FOUR

"Enter your name."

MINUSONE DUP

NULL$ DUP

'DROPFALSE

BINT48

BINT22

BINT52

BINT9

TWELVE

MINUSONE

BINT17

"Choose the toy you want!"

{

	{ "A car" "a car" }

	{ "A teddy bear" "a teddy bear" }

	{ "A doll" "a doll" }

}

SEVENTEEN

{ "A car" "a car" }

DUP

'DROPFALSE

BINT24 BINT36

SIX

NINE

BINT32

MINUSONE

DUP

"Do you want to pay cash?"

MINUSONE DUP

FalseFalse

THREE DUP

'DROPFALSE

"Input Form"

DoInputForm

NOTcase

Entry

Cash!									

TWO NTHCOMPDROP

" wants "

SWAP&$

&$

Cash@ FALSE EQITE " but doesn't pay cash." " and pays cash!"

&$

Ck&DoMsgBox

Entry

© 2004 Michaël De Coninck

