Tutorial 8: FOR Loop

Introduction:

In this tutorial we will learn how to use the FOR command in Sys-rpl. This command comes in handy when you have to do certain things more than once. As an example if you want to have a cool ‘Mission Impossible’ effect where the message deletes itself in 5 seconds. You want to see the time ticking away. For this problem you could use the DOWAIT command five times to wait one second and refresh the screen every time when one has passed, but that would be very cumbersome. The better way to do this is with the use of the FOR command. 
New Commands:

%seconds DOWAIT
* This command needs one argument. The time it has to wait in seconds.

#stop #start DO code here LOOP
* This is the actual FOR loop. It takes two bints as arguments: the stop number and the start number. It executes the loop from start to stop-1. Start number must be greater than or equal to stopping value. 
#stop #1+_ONE_DO (DO) code here LOOP
* This command is a variation of the command above. It adds automatically 1 to the stop number and has one as start number.

INDEX@

* Special variable that is used only by the FOR loop. It contains the value of the current index. E.g.: when the loop starts it contains the start value. When the loop is run for the  last time it contains the stop – 1 as value.
#number INDEX@#-







--> #number
* This command needs one argument. A BINT. It does the current index number minus the number you have specified by the BINT and take the absolute value of the result.
"string1" "string2" &$






--> "string1&2"
* &$ needs two strings. It concatenates the two strings. E.g.: “hello” “ world!” &$ would give “hello world!”.

The code: 

Make an aplet with the name ‘Mission Impossible’ and the filename ‘MI’. In the editing window, scroll down till the beginning of the program. Delete the usual lines and instead do this:

1. Clear the screen.

2. Display “Your goal is to:” on row1.
3. Display “1. Infiltrate the” on row2.
4. Display “embassy without being” on row3.

5. Display on row 4 “noticed.”.

6. Display “2. Get the diamonds.” on row 5.
7. Display “This message will be” on row7.

The end result should be:

You can compile it if you wish, but nothing really special here. 
Now for the actual loop. We must see the timer going from 5 to 1 and then the screen must disappear. So normally you would think FIVE for start number and ONE as stop number. But you are wrong! Because the start value has to be greater than or equal to the stop number, that’s why I underlined that phrase it the “new commands section”. With other words we use ONE as start number and FIVE as stop value.
And another important thing I have to tell you, unlike as in HP-Basic the Sys-rpl DO-LOOP doesn’t support negative increments! Big bummer! But what we have to do then? 
We are going to create an effect that it looks like it counts backwards! We could use a variable, store five in it and every time when the loop is run decrement it by one. That’s one solution, but then we have to use a variable and we are too lazy to make one.

Or is their a way from making from one a five and from 5 a one? current index + 4? That would be right for 1, but for anything greater than that it wouldn’t be correct anymore.
Current index - six and then make it positive? Yes, that would be correct! And oh my god what a coincidence ( there is a command available to do that. It’s called INDEX@#-. INDEX@#- needs one argument namely a BINT. It does the number in INDEX@ minus the number you have specified by the BINT and make it positive. Great so let’s try to use that! This should be your source by now:

Now write DO under / next to FIVE ONE. Now we are going to use INDEX@#-. 1-6= -5, 2-6= -4, etc. So the BINT we’ll use is SIX. So write SIX and then INDEX@#- under DO. Now we want to see that number. Because it’s a BINT we have to convert it to a real with… Yes indeed you have remembered UNCOERCE. Now make a string from it and display it on row8. And as last thing before we are going to compile is a delay from 1 second each time the loop is run. For this we are going to use the DOWAIT command. This command needs only one argument. A real that represents the desired waiting time. In this case we use %1. Now end the loop with the word LOOP. So by now we have:

Now compile the program and what do you see? Yes the timer goes backwards alright, but now he gets stuck on number 2! Let’s use our brains here what did go wrong. If you think that the problem would be solved when you change ONE to ZERO. You are wrong! The problem is that the loop never reaches FIVE, it goes only to FOUR. So remember that you have to count 1 to your number. Changing FIVE to SIX will solve our little nasty problem.

Compile it and run it again on your calculator. Now it works correctly!

I will show now a code that it really is a mission impossible message ;-)


&$ concatenates two strings. #1+_ONE_DO (DO) (Don’t ask me why the (DO) is there though, but you must add it) is a word that programmers will use to optimize there code. It does the stop number+1 (so here it is 6) and uses one as start number. This code takes only 2.5 bytes instead of 5. Not much you think, but using a lot of these optimized codes will reduce the size of your source code greatly! You can find these optimized codes in ‘programming in sys-rpl for the HP-49g’ (link in my Sys-rpl links). This was it for this lesson. Try making some variations on this tutorial. As a last thing I just show the source when you just want to count to five (starting from one):

 
Easy, isn’t it? For this tutorial I want to thank Jonathan Busby for helping me with the problem that occurred while making this example program.
Screenshots:

[image: image1.png]1O P ate BF
1 TnfiTteate fhe
cipsdtd TS Beine
el
T

Thiz nessase uill be
This message will be




[image: image2.png]Hessage deleted




This was it for Tutorial 8: FOR loops. The next tutorial will handle about the unconditional loop begin until…

NAMELESS _Action


::


*************************************************


*		      Begin of the program		*


*************************************************


 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP


 $ "Your goal is to:"


 DISPROW1


 $ "1. Infiltrate the"


 DISPROW2


 $ "embassy without being"


 DISPROW3


 $ "noticed."


 DISPROW4


 $ "2. Get the diamonds."


 DISPROW5


 $ "This message will be"


 DISPROW7





 FIVE ONE 


 DO


  SIX INDEX@#- UNCOERCE DO>STR DISPROW8


  %1 DOWAIT


 LOOP





 $ "This message will be"


 DISPROW7





 FIVE ONE





 SIX ONE


 DO


  SIX INDEX@#- UNCOERCE DO>STR DISPROW8


  %1 DOWAIT


 LOOP





 FIVE #1+_ONE_DO (DO)


  "deleted in " SIX INDEX@#- UNCOERCE DO>STR &$ " seconds." &$ DISPROW8


  %1 DOWAIT


 LOOP


 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP


 $ "   Message deleted"


 DISPROW4





 FIVE #1+_ONE_DO (DO)				


  INDEX@ UNCOERCE DO>STR DISPROW8


  %1 DOWAIT


 LOOP








© 2004 Michaël De Coninck and Colin Croft


