
 1

Current subjects in computer science

PATTERN RECOGNITION

PRACTICE 1:

- Studying PCA with a bidimensional set in Matlab.

- Studying PCA with images in Matlab.

- Face recognition sytem based on PCA.

 2

1. Studying PCA with a bidimensional set in Matlab.

Run the matlab script PCA_example.m. This script computes the PCA directions of the
bidimensional dataset formed by the data matrix X.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

original
centered
uncorrelated

Figure 1. Output plot from PCA_example.m.

Exercise 1: Using Matlab, answer these questions:
• Which is the value of the mean vector of the original dataset?
• Which is the value of the covariance matrix?
• Which are the values of the eigenvectors and eigenvalues?

Exercise 2: Modify the PCA_example.m script in order to include the following data
(X) and show the results graphically (as the previous Figure1):

X
(2,1)
(2,3)
(4,3)
(5,3)
(5,6)
(6,7)
(9,5)
(9,9)

Answer these questions:
• Which is the value of the mean vector of the original dataset?
• Which is the value of the covariance matrix?
• Which are the values of the eigenvectors and eigenvalues?

 3

2. PCA examples with images

The Figure 2 illustrates the performance of the PCA transformation with images.
Basically, this figure describes the processes: eigenspace generation and
reconstruction.

On the top, the first row shows the color images of 9 well-known motorcycle
riders1, these are the input images used to generate the PCA subspace. The input
images are the original data matrix X of size M x N, where N=9 is the number of
images, and M is the dimension of each image (M=273 x 254 x 3 = 208026).

On the second row, the first 8 eigenvectors of the PCA transform of X are shown.
And the average image of the set is shown on the right.

The rest of the rows show the reconstructions of each image using subsets of
eigenvectors: using 1, 2, 3,..8 vectors. For each rider, the image on the left is made
using just one projection coefficient and 1 vector, and the image on the right is made
using the whole set of vectors and so, it is equal to the original one.

At the end of each image set the reconstruction error is shown.
The figure 2 has been drawn using the matlab function riders.m. (inside the riders
folder)

1 From left to right: Valentino Rossi, Sete Gibernau, Dani Pedrosa, Jorge Lorenzo, Loris Capirossi,
Max Biaggi, Toni Elías, Roberto Rolfo y Manuel Poggiali.

 4

Figure 3. PCA example with images (famous motorcycle rider faces).

 5

You must study carefully the matlab code of the function riders.m and run it. Try with

>> [im_reco, e, V, M, D, energy]=riders(1);

and you will obtain the following graphics:

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Error

In riders.m code, the PCA transformation is made by the function pc_evectors.m,
which basically makes the same operations of PCA_example.m, but using patterns
(images) of very high dimensionality (the color images of the riders).

• Exercise 3: Modify riders.m in order to include the German rider Alex
Hofmann (hofmann.jpg). You may eliminate any of the other riders.

 6

3. Face Recognition System based on PCA.

There are a lot of face databases on the internet which the researchers use to test
their new face recognition algorithms. You may find some of these databases in:

http://www-2.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-images.html

In Figures 4 and 5, you may see some faces belonging to ORL face database.
Basically, a face database is a collection of frontal face pictures of people.

In this section, we will use ORL face database
(http://www.uk.research.att.com/facedatabase.html) to show how to make a face
recognition system based on PCA. There are 10 images per person. And in our code
we will use just 8 persons to show how the face system works.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

Figure 4. 30 different members of the ORL face database .

 7

orl-faces/s3/1.pgm orl-faces/s3/2.pgm orl-faces/s3/3.pgm orl-faces/s3/4.pgm orl- faces/s3/5.pgm

orl-faces/s3/6.pgm orl-faces/s3/7.pgm orl-faces/s3/8.pgm orl-faces/s3/9.pgm orl-faces/s3/10.pgm

Figure 5. 10 images from the same person.

The matlab script ORL_faces.m (inside the faces folder) generates the PCA
subspace using one image example per person and projects the rest of the images.
Open and read the script carefully.

Figure 6.

Run:

>> [p1,p2,p3,p4,p5,p6,p7,p8]=ORL_faces(6,1);

The matlab script ORL_faces.m produces the PCA projections of the ORL faces.
Each column in the matrices (p1, p2, ...) corresponds to a compressed face in a
lower dimension space.

The 2D and 3D output graphics of ORL_faces.m give some idea of how the faces
are separated. (see Figures 7 and 8.)

ORL_faces.m
orl-faces/s3/1.pgm orl-faces/s3/2.pgm orl-faces/s3/3.pgm orl-faces/s3/4.pgm orl-faces/s3/5.pgm

orl-faces/s3/6.pgm orl-faces/s3/7.pgm orl-faces/s3/8.pgm orl-faces/s3/9.pgm orl-faces/s3/10.pgm

 8

-3000 -2000 -1000 0 1000 2000 3000
-3000

-2000

-1000

0

1000

2000

3000
face1
face2
face3
face4
face5
face6
face7
face8

Figure 7. Bidimensional projections of the faces from ORL

-4000
-2000

0
2000

4000

-4000

-2000

0

2000

4000
-2000

-1000

0

1000

2000

3000

face1
face2
face3
face4
face5
face6
face7
face8

Figures 8. 3D Projections of the faces from ORL

 9

To test the performance of the recognition system, we will separate the face images
in 2 sets:

• training
• test

and we will use the function classifier.m.

 function class=classifier(p1,p2,p3,p4,p5,p6,p7,p8,new_point,N_train,display)
 %%
 classifier --> compute the euclidean distance of the new_point to the class means
 %%
 p1,p2,p3,p4,p5,p6,p7,p8 --> the projections of the faces on the eigenspace
 new_point --> new projection, we want to classify it
 N_train --> number of training images
 display ==1 show the graphics display==0 doesnt show the graphics
 class --> the result of the new_point classification
 %%

The first eight parameters, p1 to p8, correspond to the projections of the faces of
eight different persons on the eigenspace. These are the training examples for each
of the eight classes of the problem. The next parameter, new_point, corresponds to
the new face image that has to be classified (actually, new_point contains the
projection of such new face image on the eigenspace). The function classifier.m
computes the distance from the new point to each of the classes, and selects the
nearest class (i.e. the person the new image is supposed to belong to).

The N_train parameter is used to specify the number of training examples to be
used in the experiment (i.e. the number of points used to compute the mean value of
each class, which will be used for measuring distances to the new face). In general,
the higher the number of training examples, the better the behaviour of the system.

N-train has to be lower than 10, as the number of available examples per class
(images per person) is 10.

Finally, the display parameter is used to show different plots which help
understanding the class distribution of the problem.

If you run:

>> classifier(p1,p2,p3,p4,p5,p6,p7,p8,p1(:,10),5,1)

you will obtain:

ans =

 1
That means the new point (p1(:,10)) belongs to class 1, so it´s a face from person
number 1 of ORL.

The function classifier.m. also provides some ouput graphics. One of this graphics
is shown in Figure 9.

 10

-3000 -2000 -1000 0 1000 2000 3000
-3000

-2000

-1000

0

1000

2000

3000

Figure 9. Output graphic from classifier.m

Finally, it is possible to measure the expected classification accuracy of the face
recognition system. In order to obtain such measure, you have to run the function
classifier.m for many different images and compute how many correct
classifications are obtained. This process is carried out by test_faces.m

If you run the previous program, you will obtain:

Nv=3; %dimension of the projections
N_train=5;%number of training images
N_test=5; %number of test images

[p1,p2,p3,p4,p5,p6,p7,p8]=ORL_faces(Nv,0);

results=zeros(8,N_test);
for j=1:8 %8 members
 for i=(10-N_test+1):10 %N_test faces to test

comando=sprintf('results(%d,%d)=classifier(p1,p2,p3,p4,p5,p6,p7,p8,p%d(:,%d),%d,0
);',j,(i-N_train),j,i,N_train);
 eval(comando);
 end
 end
results

 11

results =

 1 1 2 1 1
 1 2 2 1 2
 4 4 4 3 3
 1 4 4 3 3
 5 5 3 3 4
 6 6 6 6 6
 7 7 7 7 7
 8 8 8 8 8

That result has to be interpreted as follows:
- The first row of the matrix corresponds to the class predicted for each of the 5
training images of person #1. One of these images has been classified as belonging
to person #2, so there has been a classification error. The remaining images have
been correctly classified.
- The remaining rows have to be interpreted in the same way.
- Having a look at the whole matrix, it should be clear that there have been 12
classification errors out of 40 experiments.

From the previous result, it is possible to compute the confusion matrix. Such
matrix represents the classification results in a slightly different way: each row of
the confusion matrix is associated to an actual class and each colum of the matrix is
associated to a predicted class. Ideally, the confusion matrix should be diagonal
(when there are no classification errors).

Class 1 2 3 4 5 6 7 8 Total Success Error
1 4 1 0 0 0 0 0 0 5 80% 20%
2 2 3 0 0 0 0 0 0 5 60% 40%
3 0 0 2 3 0 0 0 0 5 40% 60%
4 0 1 2 2 0 0 0 0 5 40% 60%
5 0 0 2 1 2 0 0 0 5 40% 60%
6 0 0 0 0 0 5 0 0 5 100% 0%
7 0 0 0 0 0 0 5 0 5 100% 0%
8 0 0 0 0 0 0 0 5 5 100% 0%

Total 6 4 6 5 2 5 5 5 20 70% 30%

• Exercise 4: Run test_faces.m with these parameters:
o N_train=5, N_test=5, Nv=6
o N_train=2, N_test=8, Nv=6

 and in each case, compute the confusion matrix. You may do it manually or using a
matlab function. It´s up to you!

