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FEATURE EXTRACTION AND 
SELECTION METHODS
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The task of the feature extraction and 
selection methods is to obtain the most 
relevant information from the 
original data and represent that 
information in a lower dimensionality
space.

Feature extraction and selection methods
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When the cost of the acquisition and 
manipulation of all the measurements is high 
we must make a selection of features.

The goal is to select, among all the available 
features, those that will perform better.

Example: which features should be used for 
classifying a student as a good or bad one:

Available features: marks, height, sex, weight, IQ.

Feature selection would choose marks and IQ and 
would discard height, weight and sex. 

We have to choose P variables in a set of M 
variables so that the separability is maximal.

Selection methods
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The goal is to build, using the available 
features, those that will perform better.

Example: which features should be used for 
classifying a student as a good or bad one:

Available features: marks, height, sex, weight, IQ.

Feature extraction may choose marks + IQ2 as the 
best feature (in fact, it is a combination of two 
features). 

The goal is to transform the origin space X in 
a new space Y to obtain new features that 
work better. This way, we can compress the 
information.

Extraction methods
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PCA = Karhunen-Loeve transform = Hotelling transform
PCA is the most popular feature extraction method
PCA is a linear transformation 
PCA is used in face recognition systems based on appearance 

Principal Component Analysis
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PCA has been successfully applied to human face 
recognition.

PCA consists on a transformation from a space of 
high dimension to another with more reduced 
dimension.

If the data are highly correlated, there is redundant 
information.

PCA decreases the amount of redundant information by 
decorrelating the input vectors.

The input vectors, with high dimension and correlated, can 
be represented in a lower dimension space and 
decorrelated.

PCA is a powerful tool to compress data.

Principal Component Analysis
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PCA by Maximizing Variance (I)

We will derive PCA by maximizing the variance in the direction of
principal vectors. 

Let us suppose that we have N M-dimensional vectors xj aligned in the
data matrix X.  

Let u be a direction (a vector of lenght 1). The projection of the j-th
vector xj onto the vector u can be calculated in the following way:
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PCA by Maximizing Variance (II)

We want to find a direction u that maximizes the variance of the
projections of all input vectors xj, j=1,..N.

The function to maximize is:
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Using the technique of Lagrange multipliers, the solution
to this maximization problem is to compute the
eigenvectors and the eigenvalues of the covariance
matrix C.

where C is the covariance matrix of the data matrix X.

MORE INFO in PCA.pdf
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PCA by Maximizing Variance (III)

The largest eigenvalue equals the maximal variance, while the
corresponding eigenvector determines the direction with the
maximal variance.

By performing singular value decomposition (SVD) of the
covariance matrix C we can diagonalize C:

TUUC Λ=
in such a way that the orthonormal matrix U contains the
eigenvectors u1, u2,.. uN in its columns and the diagonal matrix
Λ contains the eigenvalues λ1, λ 2,.. λ N on its diagonal.

The eigenvalues and the eigenvectors are arranged with respect
to the descending order of the eigenvalues, thus λ1≥ λ 2 ≥.. ≥ λ N. 
Therefore, the most of the variability of the input random 
vectors is contained in the first eigenvectors. Hence, the 
eigenvectors are called principal vectors. 
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Computing PCA

Steps to compute the PCA transformation
of a data matrix X:

• Center the data

• Compute the covariance matrix

• Obtain the eigenvectors and eigenvalues
of the covariance matrix

• Project the original data in the
eigenspace

Matlab code:
%number of examples

N=size(X,2); 

%dimension of each example

M=size(X,1); 

%mean

meanX=mean(X,2); 

%centering the data

Xm=X-meanX*ones(1,N); 

%covariance matrix

C=(Xm*Xm')/N; 

%computing the eigenspace: 

[U D]=eig(C); 

%projecting the centered data 
over the eigenspace

P=U'*Xm; 

X
C

Λ,U

XUP T ⋅=

U can be used as a linear transformation
to project the original data of high
dimension into a space of lower
dimension.
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PCA of a bidimensional dataset
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Computing PCA of a set of images

This approach to the calculation of principal vectors is very
clear and widely used. However, if the size of the data vector 
M is very large, which is often the case in the field of
computer vision, the covariance matrix C becomes very large
and eigenvalue decomposition of C becomes unfeasible.

But, if the number of input vectors is smaller than the size of
these vectors (N<M), PCA can be sped up using a method
proposed by Murakami and Kumar which is also known as 
Turk and Pentland´s trick.

MORE INFO in PCA.pdf

When we work on Matlab, we use pc_evectors.m to
apply the Turk and Pentland´s trick and compute the
PCA transformation of a set of images
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Face recognition using PCA (I)

Eigenfaces for Recognition, Turk, M. & Pentland, A. , 
Journal of Cognitive Neuroscience, 3, 71-86, 1991.
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LDA = Fisher analysis
LDA is a linear transformation
LDA is also used in face recognition
LDA seeks directions that are efficient for 
discrimination between classes

In PCA, the subspace defined by the vectors is the one 
that better describes the conjunct of data.
LDA tries to discriminate between the different classes 
of data.

Linear Discriminant Analysis (I)
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We have a conjunct of N vectors of dimension M in the data 
matrix MxN. 
We have C classes and k vectors per class.
We want to find the transformation matrix W that better 
describes the subspace that discriminates between classes, after
projecting the data in the new space.
The objective is to make maximum the distance between 
classes Sb and minimizing Sw.

Linear Discriminant Analysis (I)

XWP ⋅= are the eigenvectors ofW

C

16

Linear Discriminant Analysis (II)

class 1
class 1

class 2 class 2

The figure shows the effect of LDA transform in 
a conjunct of data composed of 2 classes.
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Linear Discriminant Analysis (III)

Limitations of LDA

LDA works better than PCA when the training data are 
well representative of the data in the system.

If the data are not representative enough, PCA performs 
better.

18

Independent Component Analysis (I)

•Independent Component Analysis

•ICA is a statistical technique that represents a 
multidimensional random vector as a linear 
combination of nongaussian random variables 
('independent components') that are as independent
as possible. 

•ICA is somewhat similar to PCA. 

•ICA has many applications in data analysis, source
separation, and feature extraction. 
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ICA – cocktail party problem

Cocktail party problem
ICA is a statistical technique for decomposing a complex
dataset into independent sub-parts. Here we show how it
can be applied tothe problem of separation of Blind
Sources.
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ICA – cocktail party problem

Cocktail party problem

)t(si

)t(xi

Estimate the sources
from the mixed signals



11

21

ICA – cocktail party problem

Linear model:
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We can model the problem as X=AS
S = 4D vector containing the independent source
signals.
A = mixing matrix.
X = Observed signals.

22

ICA – cocktail party problem

Mixed signals
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ICA – cocktail party problem

Sources

24

ICA – cocktail party problem

ICA: One possible solution is to assume that the
sources are independent.

)s(p)s(p)s(p)s,,s,s(p n21n21 KK =

)t(si
)t(xi

Estimate the sources
from the mixed signals
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ICA – cocktail party problem

SAX ⋅=

SourcesMixed signals Mixing matrix

MODEL ICA 

26

ICA – cocktail party problem

XWS ⋅=

Mixed
signals

Sources Separation matrix

ESTIMATING THE SOURCES

ASXAW ≈→= +IC’s
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Computing IC’s

Typically, in ICA algorithms, W is sought such that
the rows of it have maximally non-gaussian
distributions and are mutually uncorrelated.
A simple way to do this is to first whiten the data 
and then seek orthogonal non-normal projections.
We want to find arrows ωi / si = wi

T·x have
maximally non-gaussian distributions and
mutually uncorrelated.

28

PCA, WHITENING, ICA (I)

PCA:
uncorrelated data

(the covariance matrix of the PCA transformed data 
has the eigenvalues in its diagonal)

WHITENING: 
PCA + scaling

(the covariance matrix of the whiten data is the identity)

ICA:
WHITENING + rotation
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WHITENING

WHITENING: 
PCA + scaling

30

ICA (I)

ICA:
WHITENING + rotation

R is a rotation that maximizes the non-gaussianity of
the projections
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ICA (II)

ICA model:

32

ICA (III)

FastICA : is a free MATLAB program that
implements the fast-fixed point algorithm.
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PCA, WHITENING, ICA (II)

34

Non gaussianity (I)

SUPERGAUSSIAN                     SUBGAUSSIAN
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No gaussianity (II)
generateNongExample(1)
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ICA in CNS (Computational
Neuroscience) (I)

BSS aplications with EEG and MEG signals.
The brains activity is measured through Electroencephalograms. 
Those signals are a mixture of different activities in the brain and
other external noises.
ICA solves correctly the problem of extracting the original activity
signals

Modeling the performance of the neurons in area
V1 of mammalian cortex. 

• Spikes
• Receptive fields
• Natural images

Some studies propose that the behaviour of one
kind of neurons can be computationally described
throught the ICA analysis of this natural inputs.
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Spikes

SPIKES: electrical signal in 
neurons

38

Receptive fields
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Simple experiment

Natural 
Image

Receptive
fields

INPUT OUTPUTICA
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HWX ·≈

NMF (I)

Non-negative matrix factorization (NMF) is a recently
developed technique for finding parts, and it is based on
linear representations of non-negative data.
Given a non-negative data matrix X, NMF finds an approximate
factorization

into non-negative factors W and H. The non-negativity constraints make
the representation purely additive (allowing no subtractions), in contrast to
many other linear representations such as PCA or ICA.

Motivation: In most real systems, the variables are non negative. PCA and
ICA offer results complicated to interpret.

W and H are chosen as the matrix that minimize reconstruction error.
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NMF as a feature extraction method in faces

NMF (II)

The importance of NMF is that it has capacity of obtaining
significant features in collections of real biological data.

When applied to X = Faces, NFM generates base vectors that
are intuitive features of the faces (eyes, mouth, nose…)

42

NMF local features

NMF (III)
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NMF local features

NMF (IV)

44

NMF (V)

• NMF presents features that make it adequate for applications
in object recognition.

• It allows extracting local features as shown on the previous
figure. Some images extract the text, others the top side, 
others the general shape of the object…

• It can be useful in presence of occusions.
• In this case, it is not possible to extract global features, but we can 

extract local ones.

• It can be useful also to identify objects in non-structured
environments.

• At last, we can use it to extract categories of objects.


