FEATURE EXTRACTION AND
SELECTION METHODS

Feature extraction and selection methods

m The task of the feature extraction and
selection methods is to obtain the most
relevant information from the
original data and represent that
information in a lower dimensionality
space.




Selection methods

m  When the cost of the acquisition and
manipulation of all the measurements is high
we must make a selection of features.

m  The goal is to select, among all the available
features, those that will perform better.

m  Example: which features should be used for
classifying a student as a good or bad one:
= Available features: marks, height, sex, weight, 1Q.

m  Feature selection would choose marks and 1Q and
would discard height, weight and sex.

m  We have to choose P variables in a set of M
variables so that the separability is maximal.

Extraction methods

m  The goal is to build, using the available
features, those that will perform better.

m  Example: which features should be used for
classifying a student as a good or bad one:

= Available features: marks, height, sex, weight, 1Q.

m  Feature extraction may choose marks + 1Q? as the
best feature (in fact, it is a combination of two
features).

m  The goal is to transform the origin space X in
a new space Y to obtain new features that
work better. This way, we can compress the
information.




Principal Component Analysis

PCA = Karhunen-Loeve transform = Hotelling transform

PCA is the most popular feature extraction method

PCA is a linear transformation

PCA is used in face recognition systems based on appearance

Principal Component Analysis

m PCA has been successfully applied to human face
recognition.

m PCA consists on a transformation from a space of
high dimension to another with more reduced
dimension.

m If the data are highly correlated, there is redundant
information.
m PCA decreases the amount of redundant information by
decorrelating the input vectors.

= The input vectors, with high dimension and correlated, can
be represented in a lower dimension space and
decorrelated.

m PCA is a powerful tool to compress data.




PCA by Maximizing Variance (1)

We will derive PCA by maximizing the variance in the direction of
principal vectors.

Let us suppose that we have N M-dimensional vectors Xx; aligned in the
data matrix X.
N = examples

dimension = M

Let u be a direction (a vector of lenght 1). The projection of the j-th
vector X; onto the vector u can be calculated in the following way:

M
=T o
p;=U"-X; =D ux
i=1

PCA by Maximizing Variance (11)

We want to find a direction u that maximizes the variance of the
projections of all input vectors Xx;, j=1,..N.

The function to maximize is: \
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where C is the covariance matrix of the data matrix X.

C=%)Z-)ZT X=X-pul,

H= [lul""!:um]T

Using the technique of Lagrange multipliers, the solution
to this maximization problem is to compute the
eigenvectors and the eigenvalues of the covariance
matrix C.

MORE INFO in PCA.pdf




PCA by Maximizing Variance (l11)

The largest eigenvalue equals the maximal variance, while the
corresponding eigenvector determines the direction with the

maximal variance.

By performing singular value decomposition (SVD) of the
covariance matrix C we can diagonalize C:

C=UAU"

in such a way that the orthonormal matrix U contains the
eigenvectors u,, U,,.. Uy in its columns and the diagonal matrix
A contains the eigenvalues &,, A ,,.. A  on its diagonal.

The eigenvalues and the eigenvectors are arranged with respect
to the descending order of the eigenvalues, thus A,> A ,>.. 24 .
Therefore, the most of the variability of the input random
vectors is contained in the first eigenvectors. Hence, the
eigenvectors are called principal vectors.

Computing PCA

Steps to compute the PCA transformation

of a data matrix X:

Center the data x

Compute the covariance matrix C

Obtain the eigenvectors and eigenvalues

of the covariance matrix U A
H

Project the original data in the

eigenspace T I
P=UT X

U can be used as a linear transformation
to project the original data of high

Matlab code:
%number of examples
N=size(X,2);

%dimension of each example
M=size(X,1);

%mean

meanX=mean(X,2);
%centering the data
Xm=X-meanX*ones(1,N);
%covariance matrix
C=(Xm*Xm=")/N;

%computing the eigenspace:
[U D]=eig(C);

%projecting the centered data
over the eigenspace

P=U"*Xm;

dimension into a space of lower
dimension.
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PCA of a bidimensional dataset

L
original
centered
uncorrelated | —
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Computing PCA of a set of images

This approach to the calculation of principal vectors is very
clear and widely used. However, if the size of the data vector
M is very large, which is often the case in the field of
computer vision, the covariance matrix C becomes very large
and eigenvalue decomposition of C becomes unfeasible.

But, if the number of input vectors is smaller than the size of
these vectors (N<M), PCA can be sped up using a method
proposed by Murakami and Kumar which is also known as
Turk and Pentland”s trick.

When we work on Matlab, we use pc_evectors.m to
apply the Turk and Pentland”s trick and compute the
PCA transformation of a set of images

MORE INFO in PCA.pdf
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Face recognition using PCA (1)

Eigenfaces for Recognition, Turk, M. & Pentland, A. ,
Journal of Cognitive Neuroscience, 3, 71-86, 1991.
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Linear Discriminant Analysis (1)

m LDA = Fisher analysis
m LDA is a linear transformation
m LDA is also used in face recognition

m LDA seeks directions that are efficient for
discrimination between classes

m In PCA, the subspace defined by the vectors is the one
that better describes the conjunct of data.

m LDA tries to discriminate between the different classes
of data.
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Linear Discriminant Analysis (1)

= We have a conjunct of N vectors of dimension M in the
matrix MxN.

m We have C classes and k vectors per class.

data

= We want to find the transformation matrix W that better
describes the subspace that discriminates between classes, after

projecting the data in the new space.

m The objective is to make maximum the distance between

classes S, and minimizing S,,.

P=W.X W  are the eigenvectors of Sy 'Sy,
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Linear Discriminant Analysis (I1)

m The figure shows the effect of LDA transform in

a conjunct of data composed of 2 classes.
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Linear Discriminant Analysis (111)

Limitations of LDA

A4

= LDA works better than PCA when the training data are
well representative of the data in the system.

m If the data are not representative enough, PCA performs
better.
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Independent Component Analysis (1)

*Independent Component Analysis

*|CA is a statistical technique that represents a
multidimensional random vector as a linear
combination of nongaussian random variables
('independent components') that are as independent
as possible.

*|CA is somewhat similar to PCA.

*|CA has many applications in data analysis, source
separation, and feature extraction.
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ICA — cocktail party problem

m Cocktail party problem
m ICA is a statistical technique for decomposing a complex
dataset into independent sub-parts. Here we show how it
can be applied tothe problem of separation of Blind

Sources.

Q'sx4(t)
X3(t)

©
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ICA — cocktail party problem

m Cocktail party problem

Estimate the sources Si(D)
from the mixed signals x;(t)

20
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ICA — cocktail party problem

m Linear model:

Xy (t) = a8, (t) + a8, (1) + ay3S5(t) + a8, (1)

X (1) = ap,8, (1) + 85,5, (1) + @p3S3(t) + sS4 ()
X3(t) = ayS; (t) +ag,S, (t) + AgaS3(t) + a3S, ()
X4 (t) = 8,38, (1) + 84,8, (1) + @385 (t) + sS4 (1)

m We can model the problem as X=AS

m S = 4D vector containing the independent source
signals.

= A = mixing matrix.
m X = Observed signals.
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ICA — cocktail party problem

Mixed signals
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ICA — cocktail party problem

Sources
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ICA — cocktail party problem

Estimate the sources S (1)
from the mixed signals X;(t)

.

ICA: One possible solution is to assume that the
sources are independent.

P(S1,S;,---1Sy) = P(S)P(S,) - - P(S,)

24
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ICA — cocktail party problem

MODEL ICA
X=A-S
/ I

Mixed signals  Mixing matrix Sources
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ICA — cocktail party problem

ESTIMATING THE SOURCES
S=W-X
V2

Sources  Separation matrix  Mixed
signals

IC’s W=A"—> X ~AS

26
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Computing IC’s

m Typically, in ICA algorithms, W is sought such that
the rows of it have maximally non-gaussian
distributions and are mutually uncorrelated.

m A simple way to do this is to first whiten the data
and then seek orthogonal non-normal projections.

m We want to find arrows o; / s; = w;"-x have
maximally non-gaussian distributions and
mutually uncorrelated.
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PCA, WHITENING, ICA (1)

m PCA:

uncorrelated data

(the covariance matrix of the PCA transformed data
has the eigenvalues in its diagonal)

m WHITENING:

PCA + scaling
(the covariance matrix of the whiten data is the identity)

m ICA:
WHITENING + rotation

28
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WHITENING

s WHITENING:
PCA + scaling

K L
X ~ Y ojuv] = UAVT
j=1

Z- A UTX - VT
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ICA (1)

m ICA:
WHITENING + rotation

S=RTAWU'X = R7Z
R isarotation that maximizes the non-gaussianity of

the projections

30
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ICA (1D

m ICA model:

X~ UAVT = UARR'VT = AS
TT
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ICA (111)

rnGR

FastICA : is a free MATLAB program that

implements the fast-fixed point algorithm.

32
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PCA, WHITENING, ICA (11)

ICA transformation by FastICA

(a) ()rigi’nal (b) um:l‘)rrcluled (c) whitened (d) independent (ej all directions

Fig. 2. Two artificial examples: a subgaussian dataset (1st. row) and a supergaussian dataset (2nd. row) (a), both transformed
by PCA (b), whitening (c) and using the ICA model by means of FastICA (d). The last figure in cach row (¢) shows the original
dataset with the ICA and PCA directions.

Non gaussianity (1)

SUPERGAUSSIAN SUBGAUSSIAN
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No gaussianity (11)

generateNongExample(1)
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ICA in CNS (Computational
Neuroscience) (1)

m BSS aplications with EEG and MEG signals.

m The brains activity is measured through Electroencephalograms.
Those signals are a mixture of different activities in the brain and
other external noises.

m ICA solves correctly the problem of extracting the original activity
sighals

m Modeling the performance of the neurons in area
V1 of mammalian cortex.
* Spikes
* Receptive fields
= Natural images
m Some studies propose that the behaviour of one
kind of neurons can be computationally described

throught the ICA analysis of this natural inputs.
36
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Spikes

m SPIKES: electrical signal in

neurons

T 2 H v o [ 0 o ] 0

=

)

Figure 1: An inhomogeneus Poisson spike train
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Figure 2: The spike-trigeered average images for each of the 12 time steps
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Simple experiment

INPUT OUTPUT
Natural Receptive
Image fields

NMF (1)

Non-negative matrix factorization (NMF) is a recently
developed technique for finding parts, and it is based on
linear representations of non-negative data.

Given a non-negative data matrix X, NMF finds an approximate

factorization
X ~W-H

into non-negative factors W and H. The non-negativity constraints make
the representation purely additive (allowing no subtractions), in contrast to
many other linear representations such as PCA or ICA.

Motivation: In most real systems, the variables are non negative. PCA and
ICA offer results complicated to interpret.

W and H are chosen as the matrix that minimize reconstruction error.

40
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NMF (11)

NMF as a featur e extr action method in faces

The importance of NMF is that it has capacity of obtaining
significant features in collections of real biological data.

When applied to X = Faces, NFM generates base vectors that
are intuitive features of the faces (eyes, mouth, nose...)

41

NMF (111)

m NMF = local features

42
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NMF (1V)

s NMF = local features
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NMF (V)

NMF presents features that make it adequate for applications
in object recognition.

It allows extracting local features as shown on the previous
figure. Some images extract the text, others the top side,
others the general shape of the object...

It can be useful in presence of occusions.

» Inthis case, it is not possible to extract global features, but we can
extract local ones.

It can be useful also to identify objects in non-structured
environments.

At last, we can use it to extract categories of objects.

44
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